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Abstract

This paper deals with roommate problems (Gale and Shapley, 1962) that are solvable,

i.e., have a non-empty core (set of stable matchings). We study rank-fairness within

pairs of stable matchings and the size of the core by means of maximal and average

rank gaps. We provide upper bounds in terms of maximal and average disagreements

in the agents’ rankings. Finally, we show that most of our bounds are tight.

Keywords: matching, roommate problem, stability, core, rank-fairness, rank gap, bound.

JEL–Numbers: C78.

1 Introduction

In roommate problems (Gale and Shapley, 1962), a group of agents wish to divide up into

pairs and singletons. Each agent has a preference list or so-called ranking over the other

agents and being single (which can be interpreted as recurring to an outside option). The

central solution concept for roommate problems is the set of stable matchings (or core), i.e.,

the partitions of agents in pairs and singletons for which there are no blocking coalitions.
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Observation: If all agents’ rankings are based on a (common) ordering of the agents,1 then

there is a unique stable matching that is, moreover, rank-fair (within matched pairs).

Rank-fairness refers to the resemblance of the “ranks” (i.e., positions in the rankings) that

the two members of any matched pair assign to one another. A stable matching is rank-fair

(within matched pairs) if the “rank gap” in each pair of matched agents is nil, i.e., its two

members assign the same rank to one another. In other words, no agent can argue that his

mate is treated more favorably. Obviously, this is a relatively weak form of fairness: there

are no comparisons with agents different from his mate.2

The observation above applies to real-life applications when there is a criterion according

to which the agents order themselves. For instance, in case of roommates that have to share

rooms in dorms or police-officers that have to go on patrol in couples, this criterion could be

seniority. However, it is not unlikely that there are multiple criteria and that preferences vary

from one agent to another. What can we say about the core in this more realistic case?

A first problematic issue in tackling this question could be the possible non-existence of

stable matchings.3 However, Chung (2000) provides a number of sufficient conditions for the

existence of a stable matching that are economically interpretable.4 Hence, in view of Chung’s

(2000) findings it seems reasonable to not worry (too much) about the non-existence but focus

instead on the robustness of the observation above. More specifically, our results show that if

rankings are “sufficiently similar” then (i) no stable matching can be very “rank-unfair” and

(ii) the “size” of the core cannot be very large. Next, we explain in more detail our results.

To formally state our results, we define (dis)similarity of rankings in terms of “disagree-

ments” over agents. The disagreement over an agent is the difference between the maximal

and the minimal rank of the agent in the other agents’ rankings. Section 3 delivers two results

(Theorems 1 and 2) that show (i). We say that a stable matching is not very rank-unfair if

maximal/average5 rank gaps are “small.” Theorem 1 provides an upper bound of the maximal

1More precisely (and without loss of generality), if the set of agents is N = {1, . . . , n}, then agent i’s

ranking is (from most to least preferred) 1, 2, . . . , i − 1, i + 1, . . . , n − 1, n (being unmatched is the worst

option).
2Klaus and Klijn (2010) do make comparisons between all agents, but they only consider “weak rankings”

that contain stable mates (i.e., partners obtained at stable matchings). More precisely, let S be a set of 2k+1

stable matchings. For each agent i consider the “weak ranking” that is obtained by restricting his original

ranking to mates obtained in S and such that if he is matched to some agent j at exactly l stable matchings

in S then j is listed l times. Then, assigning each agent to his (k + 1)-st (weakly) most preferred mate in

the weak ranking constitutes a stable matching (Klaus and Klijn, 2010, Theorem 2). Klaus and Klijn (2010,

Corollary 1) deals with the case of a set with an even number of stable matchings.
3Gale and Shapley (1962) exhibit an unsolvable roommate problem, i.e., a roommate problem in which

there is no stable matching.
4Irving (1985) presents an algorithm that either outputs a stable matching or “no” if none exists. Using

Irving’s (1985) algorithm, Tan (1991, Theorem 6.7) provides a necessary and sufficient condition for the

existence of a stable matching in roommate problems.
5The maximum and the average are taken over all pairs of matched agents.
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rank gap in terms of the maximal disagreement, where the latter maximum is taken over all

agents. Moreover, we show that the bound is “tight” (Proposition 1): for any n, there is a

solvable roommate problem with n agents such that there is a stable matching whose maximal

rank gap coincides with the bound given in Theorem 1. Next, we focus on the average rank

gap. Obviously, our upper bound of the maximal rank gap is also an upper bound of the

average rank gap. Theorem 2 provides another upper bound of the average rank gap in terms

of the average disagreement, where the latter average is taken over all agents. By means of

two examples we show that neither bound is always better than the other (Examples 1 and 2).

Section 4 delivers (ii). We first clarify what we mean by the “size” of the core. From the

point of view of a social planner or a clearinghouse, the number of stable matchings could

be a relevant measure. However, we believe that from the point of view of an individual

agent a more relevant measure is the range of the ranks of mates at stable matchings. Thus,

we measure the size of the core by means of the rank gap that exists between each agent’s

worst and best stable mates, i.e., his least preferred and most preferred partners among those

that are obtained at stable matchings. Similarly to Section 3, there are two natural ways to

proceed: first, we consider the maximal rank gap in the core, and second, we consider the

average rank gap in the core; the maximum and the average are taken over all agents.6 We

show that a (trivial) upper bound for the maximal rank gap in the core is tight (Proposition 2).

Regarding the average rank gap in the core, we provide an upper bound in terms of average

disagreement (Theorem 3) and show that it is “essentially” tight (Proposition 3).

Our analysis is closely related to Holzman and Samet (2014) which studies stable match-

ings between men and women in (two-sided) marriage problems (Gale and Shapley, 1962).

Their results show that if for each side of the market rankings are sufficiently similar, then

stable matchings are “assortative” and the size of the core is small. As Holzman and Samet

(2014) point out, their results suggest similarity of rankings as a possible explanation of two

real-life phenomena: matching of likes and smallness of the core. To study roommate prob-

lems we adapt the tools and the approach of Holzman and Samet (2014). Since our analysis

in Sections 3 and 4 parallels the analysis of Holzman and Samet (2014) it is convenient to

compare the results and proofs in detail in a separate section (Section 5).

Even though our analysis is similar to Holzman and Samet’s (2014), it is non-trivial

and of interest for the following reasons. First, roommate problems are particular instances

of hedonic coalition formation (Bogomolnaia and Jackson, 2002) as well as network forma-

tion (Jackson and Watts, 2002)7 and appear in many real-life situations, e.g., assignment of

students to double rooms in dorms, pairing police officers on patrols, exchange of holiday

homes, etc. Second, assortativeness acquires a particular meaning in the case of roommate

6Note the difference between “average/maximal rank gap (between mates)” (studied in Section 3) and

“average/maximal rank gap in the core” (studied in Section 4).
7We refer to Demange and Wooders (2004) and Jackson (2008) for surveys on coalition and network

formation.
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problems. More specifically, in roommate problems all agents are peers (i.e., of the same

type). Hence, it is natural to see if, conditional on stability, it is possible to achieve “rank-

fairness within matched pairs,” i.e., the two members of each matched pair rank each other

“similarly.” Third, roommate problems are related to marriage problems, but they are struc-

turally different.8 The one-sidedness of roommate problems introduces challenging technical

complications, in particular to establish the tightness of our bounds. We postpone further

discussion to Section 5. Fourth, even though the literature on roommate problems has grown

substantially,9 the structure of their core does not seem to be much explored.

The use of disagreements, rank gaps, and the size of the core in our analysis as well

as that of Holzman and Samet (2014) requires that these measures have a similar meaning

for different agents. This seems reasonable for “non-extreme” situations where variations of

preference intensities are limited. But if for instance agents can be unacceptable (i.e., an

agent prefers to remain single), preference intensities need no longer be limited. For this

reason we assume throughout that all agents are mutually acceptable. We discuss this issue

in more detail in Section 5.

Apart from Holzman and Samet (2014), our paper is also related to Pittel (1993). He

studies roommate problems with preferences that are randomly and independently generated

from the uniform distribution (where all agents are mutually acceptable). The most closely

related part of his paper focuses on the ranks of stable mates, i.e., not rank gaps between

stable mates (as in our study). For any stable matching µ, let ρM(µ) denote the maximal rank

of some agent’s mate at µ (here the maximum is taken over all agents) and let ρA(µ) denote

the average rank of the agents’ mates at µ (here the average is taken over all agents). Pittel

(1993, Theorem 3) shows that ρM(µ) is asymptotic, in probability, to
√
n ln(n), uniformly

over all stable matchings µ. Pittel (1993, Theorem 4) implies that ρA(µ) is asymptotic to
√
n,

uniformly over all stable matchings µ, with exponentially high probability. Therefore, when

stable matchings exist, they are likely to be “well-balanced,” in the sense that at each stable

matching, matched agents “are likely to be close” to the top of each other’s preference lists.

The remainder of the paper is organized as follows. In Section 2, we describe the room-

mate problem. In Sections 3 and 4, we present our results on the rank-fairness of stable

matchings and the size of the core, respectively. In Section 5, we compare our results and

proofs with those in Holzman and Samet (2014). Section 5 also discusses assumptions and

possible extensions.

8For instance, unlike roommate problems, the core of any marriage problem is non-empty (Gale and

Shapley, 1962, Theorem 1) and is a distributive lattice (Roth and Sotomayor, 1990, Theorems 2.16 and 3.8).
9We refer to the books of Gusfield and Irving (1989) and Manlove (2013) and the review of Gudmundsson

(2014) for comprehensive overviews of the literature on roommate problems.
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2 Model

There is a finite set of agents N = {1, 2, . . . , n} where n ≥ 2 is a positive integer. Each

agent i has a strict preference relation over being matched to another agent in N\{i} and

being unmatched (or having an outside option) which is denoted by i. For each i, agent

i’s preferences can be represented by a ranking, i.e., a bijection ri : N → N such that for

j, j′ ∈ N , ri(j) < ri(j
′) if and only if agent i prefers j to j′. The integer ri(j) is the rank of

j in agent i’s ranking. Hence, more preferred agents have a smaller rank. In particular, the

agent ranked first is i’s most preferred roommate, the agent ranked second is i’s second most

preferred agent, and so on. We adopt the quite common assumption from the literature that

being unmatched is each agent’s least preferred option, i.e., for each i ∈ N , ri(i) = n. Let

r ≡ (ri)i∈N be the profile of rankings. A (roommate) problem (Gale and Shapley, 1962) is

given by (N, r), or shortly r.

A matching is a function µ : N → N of order two, i.e., for all i ∈ N , µ(µ(i)) = i.

If j = µ(i) then we say that i and j are matched to one another and that they are (each

other’s) mates at µ. Equivalently, a matching can be written as a partition of N in pairs and

singletons.

A pair {i, j} ⊆ N is a blocking pair for matching µ if ri(j) < ri(µ(i)) and rj(i) < rj(µ(j)).

A matching µ is stable if there is no blocking pair. Let S(r) denote the set of stable matchings

at r. A coalition T ⊆ N is a blocking coalition for matching µ if there exists a matching µ′

such that µ′(T ) = T , for all i ∈ T , ri(µ
′(i)) ≤ ri(µ(i)) and for some j ∈ T , rj(µ

′(j))<rj(µ(j)).

The core is the set of matchings that cannot be blocked by any coalition. Alcalde (1994)

shows that the core equals S(r). A roommate problem is solvable if its core is non-empty.

Not all roommate problems are solvable (Gale and Shapley, 1962, Example 3). We focus on

the class of solvable roommate problems and study their stable matchings. The following

observation follows from the “lone wolf theorem” (Klaus and Klijn, 2010, Theorem 1) and

the assumption that all agents are mutually acceptable.

Observation 1. Let r be solvable. If n is even, then each stable matching consists of exactly
n
2
pairs of agents. If n is odd, then there is an agent (“the lone wolf”) that is the unique

unmatched agent at all stable matchings.

In the case of a solvable roommate problem with an odd number of agents, we will assume,

without loss of generality, that the lone wolf of Observation 1 is agent n.

3 Rank-fairness of stable matchings

Let r be a solvable roommate problem and µ ∈ S(r). Matching µ is rank-fair (within matched

pairs) if no agent is treated more favorably than his mate at µ in the sense that they have

5



the same rank in each other’s ranking. Formally, matching µ is rank-fair (within matched

pairs) if for all i ∈ N , ri(µ(i)) = rµ(i)(i).

Observation 2. If all agents’ rankings are based on a (common) ordering of the agents, then

there is a unique stable matching that is, moreover, rank-fair. Formally and without loss of

generality, for each i ∈ N , let ri : 1, 2, . . . , i− 1, i+ 1, . . . , n− 1, n denote (from most to least

preferred) agent i’s ranking. Then, S(r) contains a unique stable matching that is, moreover,

rank-fair.

Our objective is to show that Observation 2 is “robust” in multiple ways.

Let r be a solvable roommate problem. The (dis)similarity of rankings is measured through

“disagreements.” For each i∈N , the disagreement that the agents in N\{i} have over agent

i is given by δr(i) ≡ maxj∈N\{i} rj(i)−minj∈N\{i} rj(i). The maximal disagreement at r

is given by

∆M(r) ≡ max
i∈N

δr(i).

Let µ ∈ S(r). Rank-(un)fairness of µ is measured through the rank gaps (or r-gaps)

γr(i, j) ≡ |ri(j) − rj(i)| where i and j are mates at µ. Large rank gaps indicate that some

agents are treated unfairly (asymmetrically) with respect to their mates. The maximal

r-gap between mates at µ is given by

ΓM(r, µ) ≡ max
{i,j}∈µ

γr(i, j).

Our first result, Theorem 1, provides an upper bound for the maximal rank gap between

mates at stable matchings in terms of maximal disagreement. This shows the robustness

of Observation 2 with respect to rank-fairness: if rankings are sufficiently similar (∆M(r) is

small), then no stable matching can be very rank-unfair (for each µ ∈ S(r), ΓM(r, µ) is small).

Theorem 1. [Bound for maximal rank gap between mates.]

Let r be a solvable roommate problem. Then, for each stable matching µ ∈ S(r),

ΓM(r, µ) ≤ B1(r) ≡


0 if n = 2, 3;

2 if n = 4, 5;

2∆M(r)− 1 if n ≥ 6.

Proof. Let r be a solvable roommate problem. Let n = 2. Then, ri(j) = 1 for all i, j ∈ N
with i 6= j and at the unique stable matching µ the two agents are matched to one another.

One immediately verifies that ΓM(r, µ) = 0.

Let n = 3. Then, since agent 3 is the lone wolf, agents 1 and 2 are matched to one another

at the unique stable matching, and moreover r1(2) = r2(1) = 1. One immediately verifies

that ΓM(r, µ) = 0.

Let n = 4. Then, for each stable matching µ and each {i, j} ∈ µ, γr(i, j) ≤ 3 − 1 = 2.

Hence, ΓM(r, µ) ≤ 2.
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Let n = 5. Then, for each stable matching µ and each {i, j} ∈ µ, γr(i, j) ≤ 3− 1 = 2. (If

for some agent i 6= n, ri(µ(i)) = 4, then {i, 5} would constitute a blocking pair for µ.) Hence,

ΓM(r, µ) ≤ 2.

Let n ≥ 6. Let µ ∈ S(r) and {i, j} be a pair of mates at µ, i.e., µ(i) = j and i 6= j. We

prove that ri(j)− rj(i) ≤ 2∆M(r)− 1.

By definition of ri(j), agent i prefers each of the ri(j)− 1 agents in J ′ ≡ {j′ ∈ N : ri(j
′) <

ri(j)} to agent j. Let j′ ∈ J ′. Since µ is stable, rj′(i
′) < rj′(i) where i′ ≡ µ(j′). Then,

0 < −rj′(i′) + rj′(i), which is equivalent to [rj(i
′) − rj(i)] < [rj(i

′) − rj(i)] − rj′(i′) + rj′(i).

Since rj(i
′)−rj′(i′) ≤ δr(i′) ≤ ∆M(r) and rj′(i)−rj(i) ≤ δr(i) ≤ ∆M(r), we have rj(i

′)−rj(i) <
2∆M(r). Hence, rj(i

′) < rj(i)+2∆M(r). Therefore, µ(j′) is among the rj(i)+2∆M(r)−1 most

preferred options of agent j. Hence, since |J ′| = ri(j)− 1 and for all j′′, j′′′ ∈ J ′ with j′′ 6= j′′′,

µ(j′′) 6= µ(j′′′), we have that all ri(j) − 1 agents in µ(J ′) are among the rj(i) + 2∆M(r) − 1

most preferred options of agent j.

Now notice that trivially ∆M(r) > 0 and hence rj(i) < rj(i) + 2∆M(r). So, i is also

among the rj(i) + 2∆M(r)− 1 most preferred options of agent j. Since i = µ(j) and j 6∈ J ′,
i 6∈ µ(J ′). Hence, there are |µ(J ′)∪ {i}| = ri(j)− 1 + 1 agents among the rj(i) + 2∆M(r)− 1

most preferred options of agent j. Hence, ri(j) ≤ rj(i) + 2∆M(r) − 1, which completes the

proof.

Next, we show that for each n ≥ 2 the bound provided in Theorem 1 is in fact “tight.”

Proposition 1. [Tightness of bound for maximal rank gap between mates.]

For each n ≥ 2, there is a solvable roommate problem r such that for some stable matching

µ ∈ S(r),

ΓM(r, µ) = B1(r).

Proof. The cases n = 2, 3 follow from the proof of Theorem 1.

Let n = 4. Consider the problem (N, r) with N = {1, 2, 3, 4} and r given on the left

hand side of Table 1. Each column represents the ranking of an agent where higher placed

agents are more preferred agents. For instance, column 1 shows that agent 1’s most preferred

roommate is agent 2, his second most preferred roommate is agent 3, and his third most

preferred roommate is agent 4. Since being unmatched is each agent’s least preferred option,

we have omitted the option of being unmatched in the table. The unique stable matching at

r is µ = {{1, 2}, {3, 4}}, the boxed matching in Table 1. So, r is solvable. Since γr(1, 2) = 0

and γr(3, 4) = 2, ΓM(r, µ) = 2. Hence, ΓM(r, µ) = 2 = B1(r). The proof of the case n = 5

runs similarly using the profile of rankings on the right hand side of Table 1.

Let n = 6. Consider the problem (N, r) with N = {1, 2, ..., 6} and r given by the left hand

side of Table 2. The unique stable matching at r is µ = {{1, 2}, {3, 4}, {5, 6}}, the boxed

matching in Table 2. So, r is solvable. Since γr(1, 2) = 3, γr(3, 4) = 0, and γr(5, 6) = 0,
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r1 r2 r3 r4

2 1 1 3

3 3 2 1

4 4 4 2

r1 r2 r3 r4 r5

2 1 1 3 3

3 3 2 1 1

4 4 4 2 2

5 5 5 5 4

Table 1: Rankings in Proposition 1 for n = 4 (left) and n = 5 (right).

r1 r2 r3 r4 r5 r6

3 3 4 3 3 3

4 1 1 1 4 4

5 4 5 5 6 5

6 5 6 6 1 1

2 6 2 2 2 2

r1 r2 r3 r4 r5 r6 r7

3 3 4 3 3 3 3

4 1 1 1 4 4 1

5 4 5 5 6 5 4

6 5 6 6 1 1 5

2 6 2 2 2 2 6

7 7 7 7 7 7 2

Table 2: Rankings in Proposition 1 for n = 6 (left) and n = 7 (right).

we have ΓM(r, µ) = 3. It is easy to verify that δr(1) = δr(4) = δr(6) = 2, δr(5) = 1, and

δr(2) = δr(3) = 0. Hence, ∆M(r) = 2. So, ΓM(r, µ) = 3 = 2∆M(r)− 1 = B1(r). The proof of

the case n = 7 runs similarly using the profile of rankings on the right hand side of Table 2.

Let n ≥ 8 be even. We construct a problem (N, r) with N = {1, 2, ..., n} as follows.

For convenience, Table 3 illustrates our construction for n = 10. First, we require that the

agents in {1, 2, ..., 6} order their options in the same way as in Table 2 (see boldfaced part

of Table 3)– we will refer to this condition as “restricted problem.” Second, we impose the

following additional conditions on the rankings:

(1) For each agent j ∈ {7, 8, ..., n}, r2(j) = j − 1.

(2) For each agent i ∈ N\{2}, ri(2) = n− 1.

(3) For each agent i ∈ {1, 3, 4, 5, 6} and each agent j ∈ {7, 8, ..., n}, ri(j) = j − 2.

(4) Let i ∈ {8, 10, ..., n} be even. Then, (4a) for each agent j ∈ {3, 4, ..., i
2
+1}, ri(j) = j−2,

(4b) ri(i−1) = i
2
, (4c) ri(1) = i

2
+ 1, and (4d) for each agent j ∈ { i

2
+ 2, i

2
+ 3, ..., i−2},

ri(j) = j.

(5) For each even agent i ∈ {8, 10, ..., n− 2} and each agent j ∈ {i+ 1, ..., n}, ri(j) = j− 2.

(6) For each odd agent i ∈ {7, 9, ..., n − 1} and each agent j ∈ N\{i, i + 1}, (6a) ri(j) =

ri+1(j) and (6b) ri(i+ 1) = i+1
2

.
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Rank r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
1 3 3 4∗ 3∗ 3 3 3 3 3 3
2 4 1∗ 1 1 4 4 4 4 4 4
3 5 4 5 5 6∗ 5∗ 5 5 5 5
4 6 5 6 6 1 1 8∗ 7∗ 6 6
5 7 6 7 7 7 7 1 1 10∗ 9∗

6 8 7 8 8 8 8 6 6 1 1
7 9 8 9 9 9 9 9 9 7 7
8 10 9 10 10 10 10 10 10 8 8
9 2∗ 10 2 2 2 2 2 2 2 2

(1) (3) (2)

(4a)

(6a) (5)

(4d)

(4b)
(4c)

(6a)

(6b)

Table 3: Rankings in Proposition 1 for n = 10 (the boldfaced part is “consistent” with Table 2).

Consider the matching µ such that for each odd agent i ∈ N , µ(i) = i + 1 (the starred

matching in Table 3). We show that µ is stable at r. Let σ be the order such that σ =

(σ1, σ2, ..., σn) = (3, 4, 5, 6, ..., n− 1, n, 1, 2). For each odd k ∈ {1, 3, ..., n− 1}, {σk, σk+1} ∈ µ.

By the restricted problem, (4a), (4b), and (6), for each odd k ∈ {1, 3, ..., n − 1} and each

l > k + 1, we have rσk(σk+1) < rσk(σl) and rσk+1
(σk) < rσk(σl). Hence, for each odd k ∈

{1, 3, ..., n − 1}, σk and σk+1 are each other’s most preferred agent in N\{σ1, σ2, ..., σk−1}.
Hence, µ is stable. (So, in particular, r is solvable.) For each odd k ∈ {3, 5, ..., n − 1},
γr(σk, σk+1) = 0 and γr(σ1, σ2) = r1(2)−r2(1) = (n−1)−2 = n−3. Hence, ΓM(r, µ) = n−3.

Next, we calculate for each i ∈ N , the disagreement over agent i, δr(i), to determine

∆M(r) = maxi∈N δ
r(i).

(i) By the restricted problem, (4c), and (6a), δr(1) = rn(1)− r2(1) =
(
n
2

+ 1
)
− 2 = n

2
− 1.

(ii) By (2), δr(2) = 0.

(iii) By the restricted problem, (4a), and (6a), δr(3) = 0, δr(4) = 2, and δr(5) = 1.

(iv) By (4) and (6), for each odd agent i ∈ {7, 9, ..., n−3}, δr(i) = ri+2(i)−ri+1(i) = i−
(
i+1
2

)
.

The maximum of δr(i) is achieved at i = n−3 where δr(n−3) = rn−1(n−3)− rn−2(n−
3) = (n− 3)−

(
n−3+1

2

)
= n

2
− 2.

(v) By the restricted problem, (4), and (6), for each even agent i ∈ {6, 8, ..., n− 2}, δr(i) =

ri+1(i) − ri−1(i) = i − i
2
. The maximum of δr(i) is achieved at i = n − 2 where

δr(n− 2) = rn−1(n− 2)− rn−3(n− 2) = (n− 2)−
(
n−2
2

)
= n

2
− 1.

9



(vi) By (1), (3), (4b), (5), and (6a), δr(n−1) = r2(n−1)−rn(n−1) = (n−2)−
(
n
2

)
= n

2
−2.

(vii) By (1), (3), (5), and (6), δr(n) = r2(n)− rn−1(n− 2) = (n− 1)−
(
n
2

)
= n

2
− 1.

Finally, from (i)–(vii) it follows that ∆M(r) = maxi∈N δ
r(i) = n

2
− 1. Hence, we have

B1(r) = 2∆M(r)− 1 = 2
(
n
2
− 1
)
− 1 = n− 3 = ΓM(r, µ).

Let n ≥ 9 be odd. Consider the problem constructed for the case of n− 1 agents. We add

agent n and define the ranks ri(n) = n − 1 for all i = 1, 2, ..., n − 1 and the ranking rn such

that (a) for all j = 1, 3, 4, ..., n− 1, rn(j) = r2(j) and (b) rn(2) = n− 1. The same arguments

as for the case n − 1 show that B1(r) = 2∆M(r) − 1 = 2
(⌊

n
2

⌋
− 1
)
− 1 = 2

(
n−1
2
− 1
)
− 1 =

n−4 = ΓM(r, µ). (The only difference is that δr(2) = 1 and δr(n) = 0 but this does not affect

the computation of ∆M(r).)

An alternative approach to quantify the rank-(un)fairness of a stable matching is to look

at the average rank gap instead of the maximal rank gap. Let r be a solvable roommate

problem and µ ∈ S(r). The average r-gap between mates at µ is defined as10

ΓA(r, µ) ≡ 1

bn/2c
∑
{i,j}∈µ

γr(i, j).

An immediate consequence of Theorem 1 is that ΓA(r, µ) ≤ B1(r).

To study average rank gaps between mates at stable matchings, we can also look at the

average disagreement instead of the maximal disagreement. The average disagreement at

r is defined as

∆A(r) ≡ 1

n

∑
i∈N

δr(i).

The next result, Theorem 2, shows that the average rank gap between mates at a stable

matching can be bounded by means of the average disagreement. This shows again the

robustness of Observation 2 with respect to rank-fairness, albeit in a slightly different way:

if rankings are sufficiently similar (∆A(r) is small), then no stable matching can be very

rank-unfair (for each µ ∈ S(r), ΓA(r, µ) is small).

Theorem 2. [Bound for average rank gap between mates.]

Let r be a solvable roommate problem. Then, for each stable matching µ ∈ S(r),

ΓA(r, µ) ≤ B2(r) ≡

{
4∆A(r) if n is even;

4 n
n−1∆A(r) if n is odd.

Proof. Let r be a solvable problem. Let µ ∈ S(r). Let N0 ≡ {i ∈ N : ri(µ(i)) > rµ(i)(i)}.
Note that |N0| ≤

⌊
n
2

⌋
. If N0 = ∅, then the statement follows trivially.

10For any real number x, bxc is the largest integer k with k ≤ x. Recall that any stable matching contains

exactly
⌊
n
2

⌋
pairs of agents (and additionally one “lone wolf” in the case of an odd number of agents).
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Suppose N0 6= ∅. Let i0 ∈ N0. Let Mi0 be the set of ri0(µ(i0)) − 1 agents µ(j) with

j ∈ N such that i0 strictly prefers agent µ(j) to µ(i0). Since µ ∈ S(r), for each j ∈ N with

µ(j) ∈Mi0 we have

rµ(j)(j) < rµ(j)(i
0). (1)

Next, note that there are maxi∈N\{i0} ri(i
0)− 1 agents in N that in ri0 obtain a rank that

is strictly smaller than maxi∈N\{i0} ri(i
0). Hence, there are at least

max

{
0 ,
(
ri0(µ(i0))− 1

)
−
(

max
i∈N\{i0}

ri(i
0)− 1

)}
= max

{
0 , ri0(µ(i0))− max

i∈N\{i0}
ri(i

0)

}
agents j ∈ N with µ(j) ∈Mi0 that in ri0 obtain a rank that is weakly larger than the number

maxi∈N\{i0} ri(i
0), i.e., ri0(j) ≥ maxi∈N\{i0} ri(i

0). Note that ri0(j) ≥ maxi∈N\{i0} ri(i
0) implies

maxi∈N\{j} ri(j) ≥ maxi∈N\{i0} ri(i
0) (here we use that j 6= i0, which follows from µ(j) ∈Mi0).

Hence, there are at least max
{

0 , ri0(µ(i0))−maxi∈N\{i0} ri(i
0)
}

agents j ∈ N with µ(j) ∈
Mi0 and that satisfy

max
i∈N\{j}

ri(j) ≥ max
i∈N\{i0}

ri(i
0). (2)

Let Pi0 be the set of agents j with µ(j) ∈Mi0 that satisfy (1) and (2). From the above it

immediately follows that

|Pi0| ≥ ri0(µ(i0))− max
i∈N\{i0}

ri(i
0). (3)

Let P ≡ ∪i0∈N0Pi0 . For each j ∈ P , let Qj ≡ {i0 ∈ N0 : j ∈ Pi0}. Since each j ∈ P

satisfies (1) for each i0 ∈ Qj, agent µ(j) gives a smaller rank to j than to each of the agents

i0 in Qj, which implies that rµ(j)(j) + |Qj| ≤ maxi0∈Qj
rµ(j)(i

0). Hence, for each j ∈ P ,

rµ(j)(j) ≤ max
i0∈Qj

rµ(j)(i
0)− |Qj| ≤ max

i0∈Qj

max
i∈N\{i0}

ri(i
0)− |Qj|, (4)

where the second inequality follows from µ(j) 6= i0. (By definition of Mi0 , i
0 strictly prefers

agent µ(j) to µ(i0). Since i0 is the worst option for i0, it follows that µ(j) 6= i0.) Since each

j ∈ P satisfies (2) with respect to each i0 ∈ Qj, we also have that for all j ∈ P ,

max
i∈N\{j}

ri(j) ≥ max
i0∈Qj

max
i∈N\{i0}

ri(i
0). (5)

Inequalities (4) and (5) imply that for all j ∈ P ,

|Qj| ≤ max
i∈N\{j}

ri(j)− rµ(j)(j) ≤ max
i∈N\{j}

ri(j)− min
i∈N\{j}

ri(j) = δr(j), (6)

where the second inequality follows from j 6= µ(j) (because µ is stable). Then,∑
i0∈N0

[
ri0(µ(i0))− max

i∈N\{i0}
ri(i

0)

]
≤
∑
i0∈N0

|Pi0| =
∑
j∈P

|Qj| ≤
∑
j∈P

δr(j) ≤
∑
i∈N

δr(i), (7)
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where the first and second inequalities follow from (3) and (6), respectively. Moreover,∑
i0∈N0

[
max

i∈N\{i0}
ri(i

0)− rµ(i0)(i0)
]
≤
∑
i0∈N0

[
max

i∈N\{i0}
ri(i

0)− min
i∈N\{i0}

ri(i
0)

]
=
∑
i0∈N0

δr(i0). (8)

Adding inequalities (7) and (8) yields∑
i0∈N0

[
ri0(µ(i0))− rµ(i0)(i0)

]
≤
∑
i∈N

δr(i) +
∑
i0∈N0

δr(i0) ≤ 2
∑
i∈N

δr(i).

Hence,

ΓA(r, µ) =
1

bn/2c
∑
{i,j}∈µ

|ri(j)− rj(i)| =
1

bn/2c
∑
i0∈N0

[
ri0(µ(i0))− rµ(i0)(i0)

]
≤ 2

bn/2c
∑
i∈N

δr(i) =
2n

bn/2c
∆A(r) = B2(r).

We have established that B1 and B2 are both bounds for ΓA(r, µ), but how do they

compare? Bound B1 gives a sharper estimate for roommate problems where the maximal

disagreement is “small” relative to the average disagreement. Bound B2, on the other hand,

is more useful for roommate problems where the maximal disagreement is “large” relative to

the average disagreement. We illustrate this in the following two examples where we exhibit

solvable roommate problems rA and rB such that B1(rA) > B2(rA) and B2(rB) > B1(rB).

Example 1. [Solvable roommate problem rA with B1(rA) > B2(rA).]

Consider the problem (N, rA) with N = {1, 2, ..., 6} and rA = r given by Table 4. The unique

stable matching at rA is µ = {{1, 2}, {3, 4}, {5, 6}}, the boxed matching in Table 4. So, rA is

solvable.

r1 r2 r3 r4 r5 r6

3 3 4 3 3 3

4 4 1 1 4 4

5 5 5 5 6 5

6 6 6 6 1 1

2 1 2 2 2 2

Table 4: Rankings in Example 1.

It is easy to verify that δr
A

(1) = 3, δr
A

(2) = δr
A

(3) = δr
A

(5) = 0, and δr
A

(4) = δr
A

(6) = 1.

Hence, B1(rA) = 2∆M(rA)−1 = 2×3−1 = 5 and B2(rA) = 4∆A(rA) = 4× 3+0+0+1+0+1
6

= 10
3

.

Therefore, B1(rA) > B2(rA). �
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Example 2. [Solvable roommate problem rB with B2(rB) > B1(rB).]

Consider the problem (N, rB) with N = {1, 2, ..., 6} and rB = r given by the left hand side

of Table 2. Note that the only (small) difference between rB and rA of Example 1 is the

ranking of agent 2. The unique stable matching at rB is µ = {{1, 2}, {3, 4}, {5, 6}}, the boxed

matching in the left hand side of Table 2. So, rB is solvable.

It is easy to verify that δr
B

(1) = δr
B

(4) = δr
B

(6) = 2, δr
B

(2) = δr
B

(3) = 0, and δr
B

(5) = 1.

Hence, B1(rB) = 2∆M(rB)−1 = 2×2−1 = 3 and B2(rB) = 4∆A(rB) = 4× 2+0+0+2+1+2
6

= 14
3

.

Therefore, B2(rB) > B1(rB). �

Examples 1 and 2 show that B1 and B2 are very conservative bounds for ΓA(r, µ). It

is easy to verify that for n = 4, for each solvable roommate problem r, and for each stable

matching µ ∈ S(r), ΓA(r, µ) < B1(r). Similarly, for each n ∈ {3, 4}, for each solvable

roommate problem r, and for each stable matching µ ∈ S(r), ΓA(r, µ) < B2(r).11 We have

carried out computer simulations to study the performance of B1 and B2 for larger values of

n. Our simulations suggest that strict inequalities hold for all n > 4 as well, but we have not

been able to formally prove this.

4 Size of the core

In this section, we show that Observation 2 is also robust in terms of the “size” of the core.

Clearly, there are different ways to decide whether the core is “small” or “large.” From the

point of view of a social planner or a clearinghouse, the number of stable matchings could be

a relevant measure. However, we believe that from the point of view of an individual agent

a more relevant measure is the range of the ranks of mates at stable matchings. Thus, we

measure the size of the core by means of the rank gap that exists between each agent’s least

preferred and most preferred partners among those that are obtained at stable matchings.

Formally, let r be a solvable roommate problem. For each i ∈ N , a stable mate of

i is an agent that is matched to i at some stable matching, i.e., j is a stable mate of i

if there is µ ∈ S(r) such that µ(i) = j. For each i ∈ N , we denote i’s best stable

mate by µB(i) and i’s worst stable mate by µW (i), i.e., there are stable matchings

µ′, µ′′ ∈ S(r) such that µB(i) = µ′(i) and µW (i) = µ′′(i) and for all stable matchings µ ∈ S(r),

ri(µ
B(i)) ≤ ri(µ(i)) ≤ ri(µ

W (i)).

Lemma 1. Let r be a solvable roommate problem. The function µB : N → N is a matching

if and only if the function µW : N → N is a matching if and only if S(r) is a singleton, i.e.,

there is a unique stable matching at r.

11For each n ∈ {2, 3}, for each solvable roommate problem r, and for each stable matching µ ∈ S(r),

ΓA(r, µ) = B1(r). For n = 2, there is a unique solvable roommate problem r and for its unique stable

matching µ ∈ S(r) we have ΓA(r, µ) = B2(r).
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The proof of Lemma 1 follows easily from the decomposition lemma.12

Lemma 2. [Decomposition lemma (Diamantoudi et al., 2004, Footnote 5).]13

Let r be a solvable roommate problem. For each i ∈ N , if µ, µ′ ∈ S(r) and agent i prefers µ(i)

to µ′(i), then agent µ(i) prefers his mate at µ′ to his mate at µ and also agent µ′(i) prefers

his mate at µ′ to his mate at µ, i.e., rµ(i)(µ
′(µ(i))) < rµ(i)(i) and rµ′(i)(i) < rµ′(i)(µ(µ′(i))).

Proof of Lemma 1. Let r be a solvable roommate problem. If S(r) is a singleton, then

(by definition) µB and µW coincide with the unique stable matching. Now suppose |S(r)| >
1. Then, for some i ∈ N , µB(i) 6= µW (i). Let µ, µ′ ∈ S(r) such that µ(i) = µB(i) and

µ′(i) = µW (i). From Lemma 2, j ≡ µ(i) prefers µ′(j) to µ(j) = i. Hence, µB(j) 6= i. Hence,

µB(µB(i)) = µB(µ(i)) = µB(j) 6= i. So, µB is not a matching. Applying Lemma 2 to µ′(i)

and using similar arguments shows that µW is not a matching either. 2

The next lemma will be useful for the proof of Theorem 3. It says that whenever an agent

obtains his best stable mate the latter obtains his worst stable mate, and vice versa. This

result is related to but logically independent of the decomposition lemma.14

Lemma 3. Let r be a solvable roommate problem. For each i ∈ N , µW (µB(i)) = i and

µB(µW (i)) = i.

Proof. Let r be a solvable roommate problem. Let i ∈ N . Let j ≡ µB(i). Suppose to the

contrary that µW (j) 6= i. By definition of µW (j), there is µ ∈ S(r) such that µ(j) = µW (j) 6= i

and rj(i) < rj(µ(j)). Moreover, by definition of µB(i), ri(j) < ri(µ(i)). Hence, {i, j} blocks

µ, a contradiction to µ ∈ S(r). Hence, µW (j) = i. Hence, µW (µB(i)) = i.

Next, we prove the second statement. Note that µB is injective. (To see this, suppose

that there are i, i′ ∈ N such that µB(i) = µB(i′) = j. From the first statement it follows

that i = µW (µB(i)) = µW (µB(i′)) = i′.) Since N is finite and µB : N → N is injective, µB

is bijective. Let i ∈ N . There is (exactly one) j ∈ N such that µB(j) = i. From the first

statement, µW (µB(j)) = j. So, µW (i) = j. Substituting j = µW (i) in µB(j) = i yields the

desired conclusion.

For each i ∈ N , we define agent i’s rank gap in the core as ri(µ
W (i)) − ri(µB(i)). As a

first measure of the size of the core we consider the maximal rank gap in the core. Formally,

12The first version of the decomposition lemma for marriage problems appears in Knuth (1976, page 29)

and is attributed to J.H. Conway. See also Roth and Sotomayor (1990, Corollary 2.21).
13Diamantoudi et al. (2004) prove the decomposition lemma for any number of agents and also for problems

in which agents can be unacceptable to other agents.
14Since the functions µB and µW are in general not matchings (Lemma 1), we can only apply the decom-

position lemma as follows. Let i ∈ N . Let µ and µ′ be any stable matchings such that µ(i) = µB(i) and

µ′(i) = µW (i). Since agent i prefers µB(i) to µW (i), it follows from the decomposition lemma that agent

µW (i) prefers his mate at µ′ (which is i) to his mate at µ. Our Lemma 3 shows that in fact µW (i) prefers i to

any other stable mate, i.e., not only the mates at the matchings in the set {µ : µ is stable and µ(i) = µB(i)}.
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the maximal r-gap in the core of r is given by

ΓM(r) ≡ max
i∈N

ri(µ
W (i))− ri(µB(i)).

Obviously, for any solvable roommate problem r,15

ΓM(r) ≤ B3(r) ≡

{
n− 2 if n is even;

n− 3 if n is odd.

Next, we show that for each n ≥ 2 the bound B3 is in fact tight.

Proposition 2. [Tightness of bound for maximal rank gap in core.]

For each n ≥ 2, there is a solvable roommate problem r such that ΓM(r) = B3(r).

Proof. Let n = 2. Then, ri(j) = 1 for all i, j ∈ N with i 6= j and at the unique stable matching

µ the two agents are matched to one another. One immediately verifies that ΓM(r, µ) = n−2 =

0.

r1 r2 r3 r4

2 3∗ 4 1∗

4∗ 1 1 3

3 4 2∗ 2

r1 r2 r3 r4 . . . rn−1 rn

2 3∗ 4 5∗ . . . n 1∗

n∗ 1
... 3 . . . n− 2∗ n− 1

...
...

...
... . . .

...
...

...
... 2∗

... . . .
...

...

Table 5: Rankings in Proposition 2 for n = 4 (left) and even n ≥ 6 (right).

Let n ≥ 4 be even. Consider any problem (N, r) with N = {1, 2, ..., n} and r such that

for each agent i ∈ N\{n}, ri(i + 1) = 1 and rn(1) = 1 and for each agent i ∈ N\{1, 3},
ri(i− 1) = 2, r1(n) = 2, and r3(2) = n− 1, as illustrated in Table 5.

Let µ be the matching such that for each odd agent i ∈ N , µ(i) = i+ 1 and for each even

agent i ∈ N , µ(i) = i − 1 (the boxed matching in Table 5). We show that µ is stable. At

µ, each odd agent is matched to his most preferred agent and each even agent only is willing

to block with a particular odd agent. Hence, there is no blocking pair for µ. So, µ is stable.

(So, in particular, r is solvable.)

Let µ∗ be the matching such that for each odd agent i ∈ N\{1}, µ∗(i) = i − 1 and

µ∗(1) = n and for each even agent i ∈ N\{n}, µ∗(i) = i + 1 and µ∗(n) = 1 (the starred

matching in Table 5). We show that µ∗ is stable. At µ∗, each even agent is matched to his

15The proof for odd n is as follows. Suppose that for some solvable roommate problem r, ΓM (r) > n − 3.

Then, ΓM (r) = n− 2 and there exists an agent i such that ri(µ
W (i))− ri(µB(i)) = n− 2. In particular, there

exists a stable matching µ ∈ S(r) such that ri(µ(i)) = n − 1, i.e., i is matched to his least preferred agent.

But then i together with the lone wolf block µ, which contradicts its stability.
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most preferred agent and each odd agent in N\{3} is only willing to block with a particular

even agent. Therefore, there is no blocking pair for µ∗. Hence, µ∗ is stable.

Since by definition ΓM(r) ≤ n − 2, it follows from r3(µ
W (3)) − r3(µB(3)) ≥ r3(µ

∗(3)) −
r3(µ(3)) = r3(2)− r3(4) = n− 2 that ΓM(r) = n− 2 = B3(r).

Let n ≥ 3 be odd. Consider the problem constructed for the case of n− 1 agents. We add

agent n and define the ranks ri(n) = n − 1 for all i = 1, 2, ..., n − 1 and the ranking rn such

that for all j = 1, 2, ..., n− 1, rn(j) = j. The same arguments as for the case n− 1 show that

ΓM(r) = n− 3 = B3(r).

Alternatively, we can measure the size of the core by averaging the rank gap between the

worst and best stable mates over all agents. Formally, the average r-gap in the core of r

is given by

ΓA(r) ≡ 1

n

∑
i∈N

[
ri(µ

W (i))− ri(µB(i))
]
.

An immediate consequence of ΓM(r) ≤ B3(r) is that ΓA(r) ≤ B3(r). The next result provides

a better bound than B3 for the average rank gap in the core.16 More specifically, Theorem 3

shows that the average rank gap in the core can be bounded by means of the average disagree-

ment. Hence, Observation 2 is also robust with respect to the size of the core: if rankings are

sufficiently similar (∆A(r) is small), then from each individual agent’s point of view all stable

matchings are close to one another (ΓA(r) is small).

Theorem 3. [Bound for average rank gap in core.]

For each solvable roommate problem r, ΓA(r) ≤ B4(r) ≡ ∆A(r).

Proof. Let r be a solvable roommate problem. It follows from Lemma 3 that∑
i∈N

ri(µ
W (i)) =

∑
j∈N

rµB(j)(j) and
∑
i∈N

ri(µ
B(i)) =

∑
j∈N

rµW (j)(j).

Therefore,
∑

i∈N
[
ri(µ

W (i))− ri(µB(i))
]

=
∑

j∈N
[
rµB(j)(j)− rµW (j)(j)

]
. Then, since

∑
j∈N

[
rµB(j)(j)− rµW (j)(j)

]
≤
∑
j∈N

[
max
i∈N\{j}

ri(j)− min
i∈N\{j}

ri(j)

]
=
∑
j∈N

δr(j),

it follows that ΓA(r) = 1
n

∑
i∈N
[
ri(µ

W (i))− ri(µB(i))
]
≤ 1

n

∑
i∈N δ

r(i) = ∆A(r).

Our final result shows that the bound B4 is “essentially tight.” More precisely, for each

population size n that is a multiple of 6, we construct a solvable roommate problem r with n

agents such that ΓA(r) = B4(r).

16One immediately verifies that for each solvable roommate problem r, B4(r) ≤ B3(r).

16



Proposition 3. [“Essential” tightness of bound B4 for average rank gap in core.]

For each n = 6l where l is a positive integer, there is a solvable roommate problem r such that

ΓA(r) = B4(r).

Proof. Let n = 6l where l is a positive integer. We construct a problem (N, r) such that

N = {1, 2, ..., n} with n = 6l. Table 6 illustrates the construction for the case where n = 12,

i.e., l = 2. We impose the following restrictions on the rankings of N :

Rank r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
1 2 3 1∗ 6 4∗ 5 8 9 7∗ 12 10∗ 11
2 5 6∗ 4 3 1 2∗ 11 12∗ 10 9 7 8∗

3
4
5
6
7
8 10 11 12 10 11 12 10 11 12 11∗ 12 10
9 7 8 9 7 8 9 9∗ 7 8 7 8 9
10 4 5 6 5∗ 6 4 4 5 6 4 5 6
11 3∗ 1 2 1 2 3 1 2 3 1 2 3

(1)

(2)

(3)

(4)

(5)

(6)

Table 6: Rankings in Proposition 3 for n = 12. Matchings µ1 (underlined), µ2 (starred), and µ3

(boldfaced).

(1) For each k ∈ {0, 1, ..., l− 1} and each i ∈ {1, 2}, we have ri+6k(i+ 6k+ 1) = 1. For each

k ∈ {0, 1, ..., l−1} and each i ∈ {5, 6}, we have ri+6k(i+6k−1) = 1, r3+6k(3+6k−2) = 1,

and r4+6k(4 + 6k + 2) = 1.

(2) For each k ∈ {0, 1, ..., l− 1} and each i ∈ {1, 2}, we have ri+6k(i+ 6k+ 4) = 2. For each

k ∈ {0, 1, ..., l−1} and each i ∈ {5, 6}, we have ri+6k(i+6k−4) = 2, r3+6k(3+6k+1) = 2,

and r4+6k(4 + 6k − 1) = 2.

(3) For each k ∈ {0, 1, ..., l− 1} and each i ∈ {2, 3}, we have ri+6k(i+ 6k− 1) = n− 2k− 1.

For each k ∈ {0, 1, ..., l− 1} and each i ∈ {4, 5}, we have ri+6k(i+ 6k+ 1) = n− 2k− 2,

r1+6k(1 + 6k + 2) = n− 2k − 1, and r6+6k(6 + 6k − 2) = n− 2k − 2.

(4) For each i ∈ {1, 2, 3}, each p ∈ {1, 2, ..., 2l − 1}, and each k ∈ {0, 1, ..., p − 1}, we have

ri+3p(i+ 3k) = n− k − 1.

(5) For each i ∈ {1, 2, 3}, each p ∈ {0, 1, ..., l}, and each k ∈ {p + 1, ..., 2l − 1}, we have

ri+3p(i+ 3k) = n− k − 1.
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(6) Each agent i ∈ N places the agents in N\{i} that have not been assigned yet to a rank

in arbitrary order (so that they get ranks 3 up to n− 2l − 1).

First, we show that the rankings are well-defined i.e., there is no incompatibility in the

construction above. In (1), we describe the first row of the table and in (2), the second

row of the table. Note that for each agent’s ranking, the agent in row 1 differs from the

one in row 2. In (3), we describe a threshold row for each agent which will represent his

largest rank at a stable matching. Note that for each s ∈ {0, 1, ..., 2l − 1} and for each agent

i ∈ {1 + 3s, 2 + 3s, 3 + 3s}, the agent in the threshold row is again an agent in the set

{1 + 3s, 2 + 3s, 3 + 3s} and has not appeared in the construction before (i.e., (1) and (2)). In

(4), we describe the ranks below the threshold row for each agent. Note that for each agent i,

these ranks are only for certain agents j with j < i (and they have not appeared before). In

(5), we describe some ranks above the threshold row for each agent. Note that for each agent

i, these ranks are only for certain agents j with j > i (and they have not appeared before).

Conditions (4) and (5) are symmetric in the sense that for any two agents i, j ∈ N , agent

i has agent j in some rank described by (4) if and only if agent j has agent i in some rank

described by (5).

Next, we define three matchings µ1, µ2, and µ3. Let µ1 be the matching such that for

each odd agent i ∈ N , µ1(i) = i + 1 (the underlined matching in Table 6). Let µ2 be the

matching such that for each k ∈ {0, 1, ..., l− 1}, µ2(1 + 6k) = 3 + 6k, µ2(2 + 6k) = 6 + 6k, and

µ2(4 + 6k) = 5 + 6k (the starred matching in Table 6). Let µ3 be the matching such that for

each k ∈ {0, 1, ..., l − 1}, µ3(1 + 6k) = 5 + 6k, µ3(2 + 6k) = 3 + 6k, and µ3(4 + 6k) = 6 + 6k

(the boldfaced matching in Table 6). We show that µ1 is stable. Because of the symmetry

in our construction, the stability of µ2 and µ3 follows from similar arguments. For each

k ∈ {0, 1, ..., l − 1}, we have

r1+6k(µ
1(1 + 6k)) = r1+6k(1 + 6k + 1) = 1 since 1 + 6k is odd and (1),

r2+6k(µ
1(2 + 6k)) = r2+6k(2 + 6k − 1) = n− 2k − 1 since 2 + 6k is even and (3),

r3+6k(µ
1(3 + 6k)) = r3+6k(3 + 6k + 1) = 2 since 3 + 6k is odd and (2),

r4+6k(µ
1(4 + 6k)) = r4+6k(4 + 6k − 1) = 2 since 4 + 6k is even and (2),

r5+6k(µ
1(5 + 6k)) = r5+6k(5 + 6k + 1) = n− 2k − 2 since 5 + 6k is odd and (3), and

r6+6k(µ
1(6 + 6k)) = r6+6k(6 + 6k − 1) = 1 since 6 + 6k is even and (1).

At µ1, for each k ∈ {0, 1, ..., l−1}, agents 1+6k and 6+6k are matched to their most preferred

agent. For each k ∈ {0, 1, ..., l − 1}, agents 3 + 6k and 4 + 6k are only willing to block with

particular agents, namely 1 + 6k and 6 + 6k, respectively, but as we have just noticed each of

the latter agents is matched to his most preferred agent. It only remains to prove that there is

no blocking pair contained in the set {2 + 6k : k = 0, 1, ..., l− 1}∪{5 + 6k : k = 0, 1, ..., l− 1}.
First, for each k, k′ ∈ {0, 1, ..., l − 1} such that k′ < k, we have
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r2+6k(2 + 6k′) = r2+6k(2 + 3(2k′))
by (4)
== n− 2k′ − 1 > n− 2k − 1 = r2+6k(µ

1(2 + 6k)),

r5+6k(5 + 6k′) = r5+6k(2 + 3(1 + 2k′))
by (4)
== n− 2k′ − 2 > n− 2k − 2 = r5+6k(µ

1(5 + 6k)), and

r2+6k(5 + 6k′) = r2+6k(2 + 3(1 + 2k′))
by (4)
== n− 2k′ − 2 > n− 2k − 1 = r2+6k(µ

1(2 + 6k)).

Second, for each k, k′ ∈ {0, 1, ..., l − 1} such that k′ ≤ k, we have

r5+6k(2 + 6k′) = r5+6k(2 + 3(2k′))
by (4)
== n− 2k′ − 1 > n− 2k − 2 = r5+6k(µ

1(5 + 6k)).

Hence, there is no blocking pair for µ1. So, µ1 is stable. (So, in particular, r is solvable.)

Finally, we prove that ΓA(r) = B4(r). We first calculate for each i ∈ N , δr(i), to obtain∑
i∈N δ

r(i). By (1), for each i ∈ N , minj∈N\{i} rj(i) = 1. By (3), (4), and (5), for each

s ∈ {0, 1, ..., 2l− 1} and each i ∈ {1 + 3s, 2 + 3s, 3 + 3s}, we have maxj∈N\{i} rj(i) = n− s− 1.

Then, ∑
i∈N

δr(i) =
∑

s∈{0,...,2l−1}

∑
j∈{1,2,3}

δr(j + 3s)

=
∑

s∈{0,...,2l−1}

∑
j∈{1,2,3}

[(n− s− 1)− 1] =
∑

s∈{0,...,2l−1}

∑
j∈{1,2,3}

(n− s− 2)

=
∑

s∈{0,...,2l−1}

3(n− s− 2) = 6l(n− 2)−
∑

s∈{0,...,2l−1}

3s

= 6l(6l − 2)− 3(2l − 1)2l

2
= 30l2 − 9l.

Next, we consider
∑

i∈N
[
ri(µ

W (i))− ri(µB(i))
]
. For each i ∈ N , let Wi and Bi be the

worst mate and the best mate in {µ1(i), µ2(i), µ3(i)}, respectively. For each k ∈ {0, 1, ..., l−1}
and each j ∈ {1, 2, 3}, we have

rj+6k(Wj+6k)− rj+6k(Bj+6k) = (n− 2k − 1)− 1 = n− 2k − 2.

Similarly, for each k ∈ {0, 1, ..., l − 1} and each j ∈ {4, 5, 6}, we have

rj+6k(Wj+6k)− rj+6k(Bj+6k) = (n− 2k − 2)− 1 = n− 2k − 3.

Hence,∑
i∈N

[
ri(µ

W (i))− ri(µB(i))
]
≥
∑
i∈N

[ri(Wi)− ri(Bi)]

=
∑

k∈{0,...,l−1}

∑
j∈{1,...,6}

[rj+6k(Wj+6k)− rj+6k(Bj+6k)]

=
∑

k∈{0,...,l−1}

∑
j∈{1,2,3}

(n− 2k − 2) +
∑

k∈{0,...,l−1}

∑
j∈{4,5,6}

(n− 2k − 3)

=
∑

k∈{0,...,l−1}

3(n− 2k − 2 + n− 2k − 3)

19



=
∑

k∈{0,...,l−1}

3(2n− 4k − 5)

= 3l(2n− 5)−
∑

k∈{0,...,l−1}

12k

= 36l2 − 15l − 12l(l − 1)

2

= 30l2 − 9l.

From Theorem 3 and
∑

i∈N
[
ri(µ

W (i))− ri(µB(i))
]
≥
∑

i∈N δ
r(i), it follows that for each

i ∈ N , Wi = µW (i) and Bi = µB(i), and more importantly,

ΓA(r) =
1

n

∑
i∈N

[
ri(µ

W (i))− ri(µB(i))
]

= 5l − 3

2
=

1

n

∑
i∈N

δr(i) = B4(r).

5 Concluding remarks

As we have mentioned in the Introduction, our paper is closely related to Holzman and Samet

(2014). Holzman and Samet (2014) study marriage problems which constitute a particular

kind of roommate problems: the difference is that in a marriage problem agents are either

male or female, and a man (woman) only wants to be matched to a woman (man) or to

him(her)self.17 Below we first discuss the main assumptions in our study and Holzman and

Samet (2014). Next, we will describe the main differences in the results and proofs to show

that our study is not a straightforward adaptation of Holzman and Samet’s (2014) analysis.

Finally, we will discuss some ideas for possible future research.

Our study and Holzman and Samet (2014) make the following assumptions. First, Holz-

man and Samet (2014) assume that the number of men equals the number of women. We do

not make the corresponding assumption on the number of agents in our roommate problems:

the number of agents need not be even. Second, Holzman and Samet (2014) assume that each

man is acceptable to all women and that each woman is acceptable to all men. A parallel

assumption in our study is that all agents are mutually acceptable. This is a restrictive but

not unusual assumption (see, e.g., Irving, 1985 and Pittel, 1993). More importantly, in certain

situations the assumption seems very natural. For instance, when pairing police officers on

patrols or assigning students to share double rooms in dorms, the involved agents may prefer

any co-worker or roommate (instead of losing a job, living too far from campus, or paying an

unfeasible rent). In these applications, all agents are mutually acceptable. Suppose we drop

the assumption. Then, it can happen that some agents find some other agent unacceptable.

How should we (re)define or interpret the concepts and tools employed in our study?

It would still be possible (mathematically) to continue to use the same definitions of the

maximal and average rank gap between mates and the maximal and average rank gap in the

17In other words, each man (woman) puts any other men (women) below the outside option of being single.

20



core. However, the interpretation of rank gaps would become less clear. The reason is that, as

mentioned in the Introduction, we implicitly assume that rank gaps have a similar meaning

for different agents. This seems reasonable for “non-extreme” situations where variations

of preference intensities are limited. However, as soon as agents can be unacceptable, it

is clear that preference intensities need no longer be limited. Dropping the assumption of

mutual acceptability also complicates the notion and interpretation of maximal and average

disagreements in at least two ways. First, suppose agent i is agent j’s most preferred mate,

while agent k finds agent i unacceptable. How should we quantify the disagreement over agent

i? We believe there is not an obvious answer to this question. Second, suppose some agent

i finds all other agents unacceptable, while j finds i acceptable and k finds i unacceptable.

Should we remove agent i from the market? If so, how should we adjust the rankings of the

other agents after the removal of agent i? Again, we do not have a clear answer. In short,

dropping the assumption of mutual acceptability leads to conceptual problems. Interestingly,

these problems disappear if unacceptability is allowed in a structural way, which is exactly

the case of Holzman and Samet (2014)! In their study there is an exogenously given partition

of men and women and it is assumed that each man is acceptable to all women (but not to

any of the other men) and that each woman is acceptable to all men (but not to any of the

other women).

Next, we compare the tools, results, and proofs in Holzman and Samet (2014) and our

study. We have adapted their tools for our roommate problems. Rank gaps between mates are

defined in exactly the same way. The size of the core is measured differently: while we consider

the average and maximal rank gap in the core, Holzman and Samet (2014) only consider two

(separate) average metrics: a woman-metric and a man-metric. Because of the bilaterality of

the markets in Holzman and Samet (2014), they measure disagreement (or displacement) of an

agent with respect to the rankings of the agents on the other side of the market. We measure

disagreement with respect to all other agents. Even in roommate problems derived from a

common ordering as in Observation 2, there is still a lot of disagreement. In contrast, marriage

problems where all men order the women in the same way and where all women order the

men in the same way, have zero disagreement. The difference is due to the somewhat artificial

disagreement that arises as agents have to rank themselves last in our roommate problems:

if all other agents rank i highest, then i still has to rank some other agent j highest, so there

is disagreement over j. This makes our bound B2 even more conservative than its marriage

counterpart (Holzman and Samet, 2014, Theorem 2).18

Holzman and Samet (2014) study rank gaps at stable matchings and the size of the core

of marriage problems, and provide upper bounds that are “essentially” tight. The particular

class of marriage problems studied in Holzman and Samet (2014) is not a subclass of the class

of roommate problems that we study. The reason is again that we assume that all agents

18Holzman and Samet (2014, p.283) conjecture that the marriage counterpart of B2 can be reduced signif-

icantly.
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are mutually acceptable. Obviously, our class of (one-sided) roommate problems is also not

a subclass of the class of (two-sided) marriage problems. Therefore, our results and those of

Holzman and Samet (2014) are not logically related. However, the proofs of our Theorems 1

and 2 are similar to those of Theorems 1 and 2 in Holzman and Samet (2014). All of our

other results and proofs (including Proposition 1, Lemma 3, Proposition 2, Theorem 3, and

Proposition 3) are novel. Our propositions show the tightness of our bounds. The proofs

of Propositions 1 and 3 are based on a very non-trivial construction of particular roommate

markets. There are (at least) three reasons that explain the non-triviality of the construction:

1) the existence of stable matchings is not guaranteed for roommate markets, 2) we cannot

use “universal rankings” (as in Example 1 of Holzman and Samet, 2014), and 3) there are

no side-optimal or side-pessimal stable matchings (as in Example 3 of Holzman and Samet,

2014). The (non-trivial) proof of Theorem 3 is based on Lemma 3, which is interestingly

related to but logically independent of the decomposition lemma.

We have provided tightness results for the bounds of the maximal rank gap between mates

and the maximal/average rank gap in the core (Propositions 1, 2, and 3). In the proofs of these

results we exhibit and construct roommate problems such that a particular measure coincides

with its bound. In each of these cases, it is not difficult to see that certain (combinations

of) changes in the rankings can be made such that for the resulting rankings the measure

again coincides with its bound. A natural research question would be to determine (for a

given population size) the proportion of roommate problems for which the measure coincides

with the upper bound.19 However, given a tight problem (as in the proofs of Propositions 1,

2, and 3) it does not seem unlikely that some “permitted” combinations of changes may

be quite radical, which might make it complicated to find all of them. Also, exhaustive

computations by computer or even simulations do not seem a feasible alternative approach

as the number of possible problems for size n is ((n − 1)!)n which grows exponentially in

n (for instance, for n = 6 and n = 12 there are already 2.99e+12 and 1.64e+91 problems,

respectively). More generally, it would be interesting to obtain the distribution of the distance

between the measure and its upper bound (not only the probability mass at 0). Again, such

an analysis seems highly complicated but could be a very ambitious future research line.
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