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Abstract

We discuss final-offer arbitration where two quantitative issues are in dispute

and model it as a zero-sum game. Under reasonable assumptions we both derive

a pure strategy pair and show that it is both a local equilibrium and furthermore

that it is the unique global equilibrium.

1 Introduction

Should negotiating parties fail to arrive at an agreeable solution, arbitration serves as

a mechanism whereby a binding resolution may be reached. In conventional arbitration

(CA), the disputing parties submit their cases to an agreed upon arbiter who has full

power to craft whatever fair and just settlement he sees fit. It is widely accepted, however,

that CA has a number of undesirable properties, in particular what has been called the

“chilling effect”: since both parties know the arbiter will craft a compromise, they tend

to take extreme positions. Since it is commonly held that a settlement reached through

negotiation is preferable to a settlement reached through arbitration, one can view the

purpose of a compulsory arbitration as motivating the parties to reach an agreement

during negotiations. This is the paradox of arbitration: the best arbitration mechanism

is that which is used least often.

It was Stevens (1966) who suggested a simple arbitration mechanism now known as

Final-Offer Arbitration (FOA). In FOA, the arbiter must select one of the final offers

submitted by the parties and has no prerogative to craft a compromise settlement. The
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theory was that such uncertainty in the final outcome would combat this chilling effect

driving the two parties to make final offers that are “close” to one another, or better still

motivate them to reach agreement during negotiations.

Since 1975 when FOA was adopted by Major League Baseball for salary disputes,

variants of FOA have been used in various states in public sectors where labor does not

have the right to strike (e.g. police, firefighters). A growing body of literature has been

developed by legal scholars, economists and game theorists studying both the theoretical

and empirical properties of FOA.

The first theoretical model of FOA was introduced by Crawford (1979). With the

assumption that both parties know with certainty the arbiter’s opinion of a “fair” settle-

ment, he showed that FOA would inevitably lead to the same outcome as conventional ar-

bitration. Farber (1980), Chatterjee (1981), and Brams and Merrill (1983) independently

developed game theoretic models of single-issue FOA for which players are uncertain of

the arbiter’s behavior. Farber studied the effect of risk aversion by one of the parties,

and derived the strategy pair which in many cases is a Nash equilibrium. Chatterjee and

Brams and Merrill model the game as zero-sum and consequently assumed both parties

are risk-neutral. Brams and Merrill provide sufficient conditions for the existence of a

pure equilibrium. In all three models, the arbiter is assumed by the players to choose a

“fair” settlement from a probability distribution commonly known to both players and

select whichever player’s offer is closest in absolute value. Kilgour (1994) studied the

game theoretic properties of FOA and extended the Brams-Merrill model to allow for

risk-aversion on the part of the players. Dickinson (2006) further showed that optimism

on the part of the players, in the form of a biased prior distribution, drives the final-offers

apart.

If multiple issues are in dispute, FOA has been primarily implemented in two ways

(Stern et al., 1975). Under Issue-by-Issue FOA (IBIFOA), the arbiter may craft a com-

promise of sorts from the two parties’ offers by choosing some components from one and

some from the other. Alternatively, Whole Package FOA (WPFOA) requires that the
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arbiter select one offer in its entirety. A multi-issue model of FOA was first discussed by

Crawford (1979) and further developed by Wittman (1986). Here the main concern was

the existence of a Nash equilibrium under various assumptions. Wittman was also able

to show in his model that increased risk-aversion leads a player to make a less extreme

final-offer. Olson (1992) discussed how the single-issue model does not accurately reflect

arbiter behavior when more than one issue is in dispute.

In his initial paper introducing FOA, Stevens cautions against the use of the “Whole

Package” variant, stating that “such a system would run the danger of generating unwork-

able awards...the arbitration authority might be forced to choose between two extreme

positions, each of which was unworkable”(Stevens, 1966). Tulis (2013) elaborates: “One

common criticism of package final-offer arbitration is that parties may be tempted to

include outrageous offers.” He further claims that “issue-by-issue final offers...are more

aligned with the objectives of final-offer arbitration.” We argue the opposite - that both

players’ optimal strategy in a multiple-issue FOA is to make all final-offers reasonable.

Furthermore, the additional variance in the awards from WP, as opposed to IBI, acts as

a greater motivator for the parties to reach agreement during negotiations. We show this

by extending the model of Brams and Merrill to multiple-issues and proceed to explicitly

construct a pure strategy pair, proving it is the unique optimal strategy pair.

2 Dual-Issue Final-Offer Arbitration

Our model extends the model defined by Brams and Merrill (1983). Let Player I be the

minimizer and Player II the maximizer in this zero-sum game. Let us consider the case

where each player makes not a single valued offer, but an ordered pair (xi, yi), i = 1, 2.

For this model, we assume that the two issues in dispute are quantitative and valued

identically by the players. An example of such a situation is one in which wage and

workers compensation amounts are in dispute; workers’ compensation may be valued at

the expected compensation amount (in the probabilistic sense). Even issues which are not
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monetary, such as number of sick days, may have a straightforward monetary valuation

by the parties. We will assume that these issues are positively correlated across the

industry. Let us further assume that both players are restricted to a strategy space S

which is an arbitrarily large, compact subset of R2. Both players are uncertain of the

arbiter’s opinion of a fair settlement (ξ, η), but assume that the arbiter (or a fact-finder)

is sampling from relevant industry data to form an opinion. Thus, by the Central Limit

Theorem, we suppose that their common prior distribution for (ξ, η) is a bivariate normal

distribution, N(µ,Σ) and it is common knowledge (Aumann). Let us assume without

loss of generality that µ = 0. Also let

Σ =

 σ2
x ρσxσy

ρσxσy σ2
y

 ,
where ρ > 0.

In the multi-issue case, FOA is typically handled in one of two ways: Issue-by-Issue

(IBI) or Whole-Package (WP). Under IBIFOA the arbiter rules independently on each

issue presented. A compromise of sorts may be crafted in this way. If the arbiter uses

the IBI mechanic, the players are engaged in two independently decided single-issue FOA

games. By the Brams-Merrill Theorem (1983), we know that the unique optimal strategy

pair of the players is given by

(x∗1, y
∗
1) =

(
−σx
√

2π

2
,−σy

√
2π

2

)
(x∗2, y

∗
2) =

(
σx
√

2π

2
,
σy
√

2π

2

)
. (1)

Under WPFOA the arbiter must rule in favor of one final-offer vector in its entirety.

It is in this variant that the choice of a distance criterion needs to be chosen by the

arbiter. The “distance” from a final-offer point (xi, yi) to (ξ, η) may be determined in

a number of ways∗. For this model we assume it is common knowledge that the arbiter

∗Many other distance concepts are reasonable and worthy of consideration. These include absolute
total difference, any Lp metric, Mahalanobis distance, or standardized distance. These are considered
by the author in detail elsewhere.
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uses Euclidean distance, or an L2 norm:

DL2

(
(x, y), (ξ, η)

)
=
√

(ξ − x)2 + (η − y)2. (2)

3 Properties of Dual-Issue FOA under L2 Distance

We now establish some properties of the game. Suppose Player I chooses pure strategy

a = (x1, x2) and Player II chooses pure strategy b = (x2, y2), and the arbiter considers

(ξ, η) a fair settlement. We define Ci(a,b), as the set of points in R2 which are strictly

closer to Player i’s final-offer than to the other player’s, namely

C1(a,b) :=
{

(x, y) : (x1 − x)2 + (y1 − y)2 < (x2 − x)2 + (y2 − y)2
}
, (3)

C2(a,b) :=
{

(x, y) : (x1 − x)2 + (y1 − y)2 > (x2 − x)2 + (y2 − y)2
}
. (4)

It is immediately apparent that C1(a,b) = C2(b, a). The midset is

Mid(a,b) :=
{

(x, y) : (x1 − x)2 + (y1 − y)2 = (x2 − x)2 + (y2 − y)2
}
. (5)

We observe that if a 6= b then Mid(a,b) is a line so P
(
(ξ, η) ∈Mid(a,b)

)
= 0. We can

now define the expected payoff to Player II from I

K(a,b) =


x1 + y1 a = b

(x1 + y1)P
(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(a,b)

)
a 6= b

(6)

The first property is anonymity of final-offers; the arbiter essentially does not care

which player submits which final-offer.

Lemma 3.1. K(a,b) = K(b, a).
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Proof. If a = b the proof is trivial. Assume a 6= b.

K(a,b) = (x1 + y1)P
(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(a,b)

)
= (x1 + y1)P

(
(ξ, η) ∈ C2(b, a)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C1(b, a)

)
= (x2 + y2)P

(
(ξ, η) ∈ C1(b, a)

)
+ (x1 + y1)P

(
(ξ, η) ∈ C2(b, a)

)
= K(b, a)

The next property is due to the symmetry of the bivariate normal distribution about

(0, 0).

Lemma 3.2. Let −a = (−x1,−y1) and −b = (−x2,−y2). Then K(−a,−b) = −K(a,b).

Proof. This proof makes use of two facts: First, (ξ, η) ∈ Ci(a,b)⇔ (−ξ,−η) ∈ Ci(−a,−b),

i = 1, 2. Secondly, (ξ, η) and (−ξ,−η) follow the same probability distribution.

K(−a,−b) = (−x1 − y1)P
(
(ξ, η) ∈ C1(−a,−b)

)
+ (−x2 +−y2)P

(
(ξ, η) ∈ C2(−a,−b)

)
= −

(
(x1 + y1)P

(
(ξ, η) ∈ C1(−a,−b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(−a,−b)

))
= −

(
(x1 + y1)P

(
(−ξ,−η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(−ξ,−η) ∈ C2(a,b)

))
= −

(
(x1 + y1)P

(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(a,b)

))
= −K(a,b)

Next we show that if the players play opposite pure strategies, the expected payoff of

the game is zero.

Lemma 3.3. Let −b = (−x2,−y2). Then K(−b,b) = 0.
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Proof. This proof also relies on the fact that (ξ, η) and (−ξ,−η) follow the same proba-

bility distribution.

K(−b,b) = (−x2,−y2)P
(
(ξ, η) ∈ C1(−b,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(−b,b)

)
= (x2 + y2)

(
P
(
(ξ, η) ∈ C2(−b,b)

)
− P

(
(ξ, η) ∈ C1(−b,b)

))
= (x2 + y2)

(
P
(
(ξ, η) ∈ C2(−b,b)

)
− P

(
(−ξ,−η) ∈ C1(b,−b)

))
= (x2 + y2)

(
P
(
(ξ, η) ∈ C2(−b,b)

)
− P

(
(−ξ,−η) ∈ C2(−b,b)

))
= (x2 + y2)

(
P
(
(ξ, η) ∈ C2(−b,b)

)
− P

(
(ξ, η) ∈ C2(−b,b)

))
= 0

With the previous lemmas, we can show that the value of the game is zero.

Lemma 3.4. Consider a bivariate FOA game where the arbiter chooses (ξ, η) ∼ N(0,Σ)

as a fair settlement and uses L2 distance to measure closeness. The value of the zero-sum

game is zero.

Proof. Because the strategy space S of each player is compact, by the general minimax

theorem the game has a value v.

First suppose an optimal pure strategy pair a∗,b∗ exists. Suppose v > 0. Then for

any pure strategy a of Player I, K(a,b∗) ≥ v > 0. But by Lemma 3.3 K(−b∗,b∗) = 0,

contradicting that v > 0. Similarly it cannot be the case that v < 0. Therefore v = 0.

Now suppose that optimal mixed strategies F ∗1 , F
∗
2 exist. Suppose v > 0. Then for

any mixed strategy F1,

K(F1, F
∗
2 ) ≥ v > 0. (7)

Player II may approximate the optimal strategy F ∗2 by F̂ ∗2 where probability mass is

concentrated only on a finite symmetric subset T ⊂ S such that for ε > 0 small enough
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and for any mixed strategy F1,

K(F1, F̂
∗
2 ) ≥ v − ε > 0.† (8)

Define

g∗1(x, y) = f̂ ∗2 (−x,−y),∀(x, y) ∈ T

and call the associated mixed strategy G∗1.

K(G∗1, F̂
∗
2 ) =

∑
(a,b)∈T×T

g∗1(a)f̂ ∗2 (b)K(a,b)

=
∑

(a,b)∈T×T

f̂ ∗2 (−a)g∗1(−b)K(a,b)

=
∑

(a,b)∈T×T

f̂ ∗2 (−a)g∗1(−b)K(b, a)

= −
∑

(a,b)∈T×T

g∗1(−b)f̂ ∗2 (−a)K(−b,−a)

With a change of variables c = −b,d = −a,

= −
∑

(c,d)∈T×T

g∗1(c)f̂ ∗2 (d)K(c,d)

= −K(G∗1, F̂
∗
2 )

Therefore K(G∗1, F̂
∗
2 ) = 0, contradicting (7), so v ≤ 0. In a similar manner we can show

that v ≥ 0.

The next property states that optimal pure strategy pairs, if they exist, must be

†This claim follows from three arguments: First, by a well known theorem of Varadharajan the space
of all probability measures M(S) is a compact metric space in weak topology. Secondly, the set of
probability all measures under weak topology concentrated on finite subsets of a compact metric space
S are themselves dense in the space of all probability measures on S. Lastly, by a well known theorem
of Prohorov, any compact subset T of M(S) is characterized by the property that given δ positive, there
exists a compact subset of C of T such that µ(C) > 1− δ for all µ in the set S.
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symmetric about the origin.

Lemma 3.5. Consider a bivariate Final-Offer Arbitration game where the arbiter chooses

(ξ, η) ∼ N(0,Σ) as a fair settlement, and uses L2 distance‡ for deciding closeness. Then

(x2, y2) is an optimal pure strategy for Player II if and only if (−x2,−y2) is an optimal

pure strategy for Player I.

Proof. Suppose b∗ = (x∗2, y
∗
2) is an optimal pure strategy for Player II. Because the value

of the game is zero,

K(a,b∗) ≥ 0,∀a. (9)

If −b∗ is not an optimal pure strategy for Player I then there exists b◦ such that

K(−b∗,b◦) > 0.

By Lemmas 3.1 and 3.2,

K(−b◦,b∗) = K(b∗,−b◦)

= −K(−b∗,b◦)

< 0

but this contradicts (9), so it must be the case that −b∗ is an optimal pure strategy for

Player I. The converse of the lemma is shown in an analogous way.

Recall from (6), that if Player I chooses a = (x1, y1) and Player II chooses b = (x2, y2),

assuming a 6= b,

K(a,b) = (x1 + y1)P
(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(a,b)

)
= (x1 + y1)P

(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)[1−

(
(ξ, η) ∈ C1(a,b)

)
]

= (x2 + y2) + (x1 + y1 − x2 − y2)P
(
(ξ, η) ∈ C1(a,b)

)
.

‡This lemma is true for any Lp metric, but for simplicity the proof is provided only for L2.
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Lemma 3.6. Suppose in the bivariate FOA game as described the arbiter chooses (ξ, η) ∼

N(0,Σ) and uses the L2 metric to measure closeness. If a pure optimal strategy pair

a∗ = (x∗1, y
∗
1),b∗ = (x∗2, y

∗
2) exists, then x∗2 ≥ 0, y∗2 ≥ 0 and x∗1 ≤ 0, y∗1 ≤ 0.

Proof. We know that if both players are playing optimally then the expected payoff is

zero. Suppose only one of Player II’s offers is negative§; WLOG let x∗2 < 0. By playing

(−x∗2,−y∗2), Player I is guaranteeing a zero expected payoff. Suppose Player I instead

switches to (x∗2,−y∗2). If y∗2 = 0 then the final offers are identical and the net award is x∗2.

Therefore let us assume y∗2 > 0.

K
(
(x∗2,−y∗2), (x∗2, y

∗
2)
)

= (x∗2 + y∗2) + (x∗2 − y∗2 − x∗2 − y∗2)P
(
(ξ, η) ∈ C1((x∗2,−y∗2), (x∗2, y

∗
2))
)

= x∗2 + y∗2

(
1− 2P

(
(ξ, η) ∈ C1((x∗2,−y∗2), (x∗2, y

∗
2))
))

Since C1 = {(x, y) : y < 0}, P ((ξ, η) ∈ C1) = P (η < 0) = 1
2
. Therefore,

K
(
(x∗2,−y∗2), (x∗2, y

∗
2)
)

= x∗2 < 0.

This contradicts that (x∗2, y
∗
2) is an optimal pure strategy for Player II. Thus x∗2 ≥ 0.

Because the choice of component is arbitrary, y∗2 ≥ 0 as well. The argument is the

same to show that Player I’s component offers must be non-positive in order to play

optimally.

4 Local Optimality of Pure Strategies

Having established some of the properties of the game in question, we now derive a pure

strategy pair for the players and show that it is a local equilibrium.

Theorem 4.1. If the arbiter chooses (ξ, η) ∼ N(0,Σ) and uses the L2 metric to measure

§Player II cannot possibly be playing optimally if both x∗2 < 0 and y∗2 < 0, for in this case Player I
may simply agree to the Player II’s final offer and happily accept a negative net settlement.
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closeness, the solution points for the two players i = 1, 2

(x∗i , y
∗
i ) =

(−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4
, (−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4

 (10)

constitute a local equilibrium provided ρ > max
{
−σ2

x+3σ2
y

4σxσy
,−3σ2

x+σ2
y

4σxσy

}
.

Proof. Recall that

K(a,b) = (x2 + y2) + (x1 + y1 − x2 − y2)P (Player I wins) (11)

The event that “Player I wins” occurs precisely when the arbiter picks a random fair

settlement (ξ, η) and

(x1 − ξ)2 + (y1 − η)2 < (x2 − ξ)2 + (y2 − η)2 (12)

which is equivalent to

(x2 − x1)ξ + (y2 − y1)η <
x2

2 + y2
2 − x2

1 − y2
1

2
= w. (13)

Letting Ω = (x2 − x1)ξ + (y2 − y1)η, we have that Ω ∼ N(0, σ2
Ω) where

σ2
Ω = (x2 − x1)2σ2

x + 2(x2 − x1)(y2 − y1)ρσxσy + (y2 − y1)2σ2
y . (14)

And Ω/σΩ follows a standard normal distribution. Thus we may express the expected

payoff as

K(a,b) = (x2 + y2) + (x1 + y1 − x2 − y2)Φ(z) (15)

where Φ(z) is the distribution function of a standard normal random variable and

z =
w

σΩ

=
x2

2 + y2
2 − x2

1 − y2
1

2
√

(x2 − x1)2σ2
x + 2(x2 − x1)(y2 − y1)ρσxσy + (y2 − y1)2σ2

y

. (16)
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The four partial first derivatives of K(a,b) are then

∂K

∂x1

= Φ(z) + (x1 + y1 − x2 − y2)φ(z)

(
− x1

σΩ

+
(x2 − x1)σ2

x + (y2 − y1)ρσxσy
σ2

Ω

z

)
(17)

∂K

∂y1

= Φ(z) + (x1 + y1 − x2 − y2)φ(z)

(
− y1

σΩ

+
(x2 − x1)ρσxσy + (y2 − y1)σ2

y

σ2
Ω

z

)
(18)

∂K

∂x2

= 1− Φ(z) + (x1 + y1 − x2 − y2)φ(z)

(
x2

σΩ

− (x2 − x1)σ2
x + (y2 − y1)ρσxσy
σ2

Ω

z

)
(19)

∂K

∂y2

= 1− Φ(z) + (x1 + y1 − x2 − y2)φ(z)

(
y2

σΩ

−
(x2 − x1)ρσxσy + (y2 − y1)σ2

y

σ2
Ω

z

)
(20)

If the players have optimal pure strategies a∗ and b∗ then we must have all four first

derivatives zero. By setting them equal to zero at (a∗,b∗) and by adding all (17) - (20)

we get

0 = 2− (x∗1 + y∗1 − x∗2 − y∗2)2

σ∗Ω
φ(z∗) (21)

so x∗1 + y∗1 − x∗2 − y∗2 6= 0. By adding (17) and (19) we have

0 = 1 +
x∗2 − x∗1
σ∗Ω

(x∗1 + y∗1 − x∗2 − y∗2)φ(z∗) (22)

and by adding (18) and (20) we have

0 = 1 +
y∗2 − y∗1
σ∗Ω

(x∗1 + y∗1 − x∗2 − y∗2)φ(z∗). (23)

From (22), (23) and Lemma 3.6 we know that

x∗2 − x∗1 = y∗2 − y∗1 = d∗ > 0. (24)

Note also that

σ∗2Ω = d∗2(α + β), (25)

12



where α = σ2
x + ρσxσy and β = ρσxσy + σ2

y . Furthermore, we now have that

z∗ =
d∗((x∗2 + x∗1) + (y∗2 + y∗1))

2σ∗Ω
=
x∗2 + x∗1 + y∗2 + y∗1

2
√
α + β

. (26)

We may now simplify the four equations derived from (17)-(20) as

0 = Φ(z∗) + 2φ(z∗)

(
x∗1√
α + β

− α

α + β
z∗
)

(27)

0 = Φ(z∗) + 2φ(z∗)

(
y∗1√
α + β

− β

α + β
z∗
)

(28)

0 = 1− Φ(z∗)− 2φ(z∗)

(
x∗2√
α + β

− α

α + β
z∗
)

(29)

0 = 1− Φ(z∗)− 2φ(z∗)

(
y∗2√
α + β

− β

α + β
z∗
)

(30)

By taking (27) + (28)− (29)− (30) and using (26) we get

0 = −2 + 4Φ(z∗) + 2φ(z∗)

(
x∗1 + y∗1 + x∗2 + y∗2√

α + β
− 2

α + β

α + β
z∗
)

1

2
= Φ(z∗) + 2φ(z∗)(2z∗ − 2z∗)

= Φ(z∗)

Thus z∗ = 0, and by simplifying the four equations (27)-(30) we get that x∗1 = y∗1 =

−x∗2 = −y∗2. We simplify σ∗2Ω = 4x∗21 (α + β) and noting that φ(0) = 1√
2π

, equation (27)

becomes

0 =
1

2
+ 2φ(0)

(
x∗1√
α + β

)
, (31)

or equivalently

x∗1 = −

√
2π(σ2

x + 2ρσxσy + σ2
y)

4
. (32)

To show that b∗ is a local maximum for Player II and a∗ is a local minimum for
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Player I we look at the second partial derivatives evaluated at (a∗,b∗). Letting

v(a,b) = (x1 + y1 − x2 − y2), u(a,b) = (x2 − x1)σ2
x + (y2 − y1)ρσxσy

∂K

∂x1

= Φ(z) + φ(z)

(
−vx1

σΩ

+
vuw

σ3
Ω

)

∂2K

∂x2
1

= φ(z)

(
− x1

σΩ

+
uz

σ2
Ω

)
+ φ(z) (−z)

dz

dx1

(
−vx1

σΩ

+
vuw

σ3
Ω

)
+ φ(z)

([
− x1

σΩ

− v

σΩ

− vx1u

σ3
Ω

]
+

[
uw

σ3
Ω

− vwσ2
x

σ3
Ω

− vux1

σ3
Ω

+
3
2
vx1w

σ5
Ω

])
∂2K

∂x2
1

∣∣∣∣
(a∗,b∗)

= φ(0)

(
−2x∗1
σ∗Ω
− v∗

σ∗Ω
− 2u∗v∗x∗1

σ∗3Ω

)
= φ(0)

(
− 2x∗1
−2x∗1

√
α + β

− 4x∗1
−2x∗1

√
α + β

− 8(−2x∗1α)x∗31

−8x∗31 (α + β)3/2

)
=

φ(0)√
α + β

(
3− 2α

α + β

)

since σ∗Ω = 2(−x∗1)
√
α + β. This will be positive if and only if α + 3β > 0, or

equivalently,

ρ > −
σ2
x + 3σ2

y

4σxσy
. (33)

Similarly,

∂2K

∂y2
1

∣∣∣∣
(a∗,b∗)

=
φ(0)√
α + β

(
3− 2β

α + β

)
which is positive if and only if

ρ > −
3σ2

x + σ2
y

4σxσy
. (34)

Note that it is impossible for both (33) and (34) to be unsatisfied, as this would imply

that α < 0 and β < 0 and thus α + β < 0.
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Letting t(a,b) = (x2 − x1)ρσxσy + (y2 − y1)σ2
y , the mixed partial derivative is

∂2K

∂y1∂x1

=
∂

∂y1

∂K

∂x1

=
∂

∂y1

(
Φ(z) + φ(z)

(
−vx1

σΩ

+
vuw

σ3
Ω

))
= φ(z)

(
− y1

σΩ

+
tz

σ2
Ω

)
+ φ(z) (−z)

dz

dy1

(
−vx1

σΩ

+
vuw

σ3
Ω

)
+ φ(z)

(
−x1

σΩ

− vx1t

σ3
Ω

− ρσxσyvw

σ3
Ω

− y1uv

σ3
Ω

+
3utwv

σ5
Ω

+
uw

σ3
Ω

)
∂2K

∂y1∂x1

∣∣∣∣
(a∗,b∗)

= φ(0)

(
− x

∗
1

σ∗Ω
− x∗1
σ∗Ω
− x∗1v

∗t∗

σ∗3Ω

− x∗1u
∗v∗

σ∗3Ω

)
=

x∗1
σ∗3Ω

φ(0)
(
−2σ∗2Ω − v∗(u∗ + t∗)

)
=

x∗1
σ∗3Ω

φ(0)
(
−2(4x∗21 (α + β))− 4x∗1(−2x∗1(α + β))

)
=

x∗1
σ∗3Ω

φ(0) (0)

= 0

Then Kx1x1Ky1y1 −K2
x1y1

> 0 as long as

ρ > max

{
−
σ2
x + 3σ2

y

4σxσy
,−

3σ2
x + σ2

y

4σxσy

}
.

It can be similarly verified that b∗ is a local maximum for Player II when Player I plays

a∗, with the same condition on ρ.

5 Global Optimality of Pure Strategies

We now proceed to show that the pure strategies found in the preceding section are

indeed globally optimal and thus represent the unique optimal strategy pair. We first

briefly consider the special case where σx = σy.

Theorem 5.1. If σx = σy, then the pure strategy pair a∗,b∗ is a global equilibrium.

Proof. Suppose Player II plays b∗ = (x∗2, x
∗
2). If Player I fixes w̃ < 2x∗2 and selects a pure

15



strategy a = (x, y) with x+ y = w̃, then he will wish to choose x to minimize

K(a,b∗) = 2x∗2 + (w̃ − 2x∗2)Φ(z).

Since w̃ − 2x∗2 < 0, this is equivalent to maximizing z. Equation (16) becomes

z =
2x∗22 − x2 − (w̃ − x)2

2σx
√

(x∗2 − x)2 + 2ρ(x∗2 − x)(x∗2 − w̃ + x) + (x∗2 − w̃ + x)2
.

The numerator, −2x2 + 2w̃x + 2x∗22 − w̃2, is maximized when x = w̃
2
, while the function

in the denominator under the radical is minimized when x = w̃
2
. Therefore, if Player II

chooses the pure strategy b∗, it is sub-optimal for Player I to play any pure strategy off

the line y = x. Since in the one-dimensional case the strategies (a∗,b∗) are a global pure

equilibrium (see Brams and Merrill III (1983)), the proof is complete.

Before showing that a∗,b∗ is a global pure strategy equilibrium for σx 6= σy, we have

to establish a few lemmas.

Lemma 5.2. Suppose Player II chooses strategy b∗ = (x∗2, x
∗
2). If Player I selects pure

strategy a = (x1, y1) then z(a,b∗) = 0 iff (x1, y1) lies on the circle of radius
√

2x∗2 centered

at the origin. Furthermore, x2
1 + y2

1 < 2x∗22 iff z > 0 and x2
1 + y2

1 > 2x∗22 iff z < 0.

Proof. From (16)

z(a,b∗) =
2x∗22 − (x2

1 + y2
1)

2σΩ

,

and the proof is straightforward.

Lemma 5.3. If another pure strategy a = (x1, y1) 6= −b∗ = (−x∗2,−x∗2) exists such that

K(a,b∗) ≤ 0, then x1 + y1 < 0 and either

x2
1 + y2

1 < 2x∗22 or x1 + y1 ≤ −2x∗2.

16



Proof. Suppose x1 + y1 ≥ 0. Because the net offer of Player II, 2x∗2 > 0, and Player II

has a positive probability p of being chosen by the arbiter, the expected payoff

K(a,b∗) = p(2x∗2) + (1− p)(x1 + y1) > 0.

This contradicts our assumption.

Suppose x2
1 + y2

1 ≥ 2x∗22 . Then z ≤ 0 by Lemma 5.2 and Φ(z) ≤ 1
2
. Suppose also that

x1 + y1 > −2x∗2. Then

x1 + y1 − 2x∗2 = −4x∗2 + ε

for some 0 < ε < 2x∗2. But then

K(a,b∗) = 2x∗2 + (x1 + y1 − 2x∗2)Φ(z)

= 2x∗2 − (4x∗2 − ε)Φ(z)

≥ 2x∗2 − (4x∗2 − ε)
1

2

=
ε

2

> 0

and this contradicts our assumption.

The following general lemma, a special case of which was used in Theorem 5.1 will be

needed subsequently.

Lemma 5.4. Let

f(x) =
g(x)

h(x)

where both g(x) and h(x) are continuously differentiable functions. Suppose g(x) has a

unique global maximum at xg and h(x) has a unique global minimum at xh (and neither

function has any other local extrema). Then f is maximized at some point between xg

and xh.

17



Proof. Let x̄ = max{xg, xh} and x = min{xg, xh}. Let u ≥ 0. Certainly ḡ(u) = g(x̄+ u)

and g(u) = g(x − u) are both decreasing functions of u. Similarly h̄(u) = h(x̄ + u) and

h(u) = h(x−u) are both increasing functions of u. Thus on the interval (−∞, x], f(x) is

maximized at x and on the interval [x̄,∞), f(x) is maximized at x̄. If we are looking for

the maximum value of f , we need not consider any points in (−∞, x) ∪ (x̄,∞); in other

words f attains its maximum value somewhere on the interval [x, x̄].

We now proceed to show that if Player II chooses pure strategy b∗ = (x∗2, x
∗
2) and

I deviates from a∗ = (−x∗2,−x∗2) to any other pure strategy (x1, y1) then it will simply

result in a positive expected payoff.

Lemma 5.5. Suppose ρ > 0, and σx < σy. If Player II plays pure strategy b∗ = (x∗2, x
∗
2)

then the only pure strategy on the circle x2
1 + y2

1 = 2x∗22 where K(a,b∗) ≤ 0 is a =

(−x∗2,−x∗2).

Proof. If x2
1 + y2

1 = 2x∗22 , z(a,b∗) = 0, so

K(a,b∗) = 2x∗2 + (x1 + y1 − 2x∗2)Φ(0)

= 2x∗2 + (x1 + y1 − 2x∗2)
1

2

= x∗2 +
x1 + y1

2
.

Geometrically we can see that x1 + y1 is minimized on the circle x2
1 + y2

1 = 2x∗22 at

(−x∗2,−x∗2).

Against Player II’s strategy b∗ = (x∗2, x
∗
2), any pure strategy a = (x1, y1) may be

represented in terms of r and θ as (x∗2 + r cos θ, x∗2 + r sin θ). This will greatly facilitate

the remaining proofs¶. In this representation, with t(θ) = −(cos θ+sin θ), we can rewrite

K(a,b∗) = 2x∗2 + r(cos θ + sin θ)Φ(z) = 2x∗2 − rt(θ)Φ(z) (35)

¶For convenience we will define t(θ) := −(cos θ + sin θ) and σ2
θ := σ2

x cos2 θ + 2ρσxσy cos θ sin θ +
σ2
y sin2 θ. Note that t(θ) = −

√
2 sin(θ + π

4 ).
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and

z(r, θ) =
2x∗22 − (x∗2 + r cos θ)2 − (x∗2 + r sin θ)2

2r
√
σ2
x cos2 θ + 2ρσxσy cos θ sin θ + σ2

y sin2 θ
=

2x∗2t(θ)− r
2
√
σ2
θ

(36)

Figure 1: A sketch of some features of the problem. With b∗ = (x∗2, x
∗
2) fixed, the circle

in blue are the points where z = 0, the ellipse in magenta shows the angle of the minor
axis of the bivariate distribution (see Lemma 5.8). The two rays in green correspond
to Lemma 5.6, and the region between them is where K(a,b∗) is minimized. From
Lemma 5.3, for any point a in the region in gray, K(a,b∗) > 0. In Lemma 5.8 we fix r∗

and show that for all points along the arc shown, the expected payoff is positive.

Lemma 5.6. Suppose ρ > 0, and σx < σy. For all pure strategies a = (x∗2 + r cos θ, x∗2 +

r sin θ), if K(a,b∗) is minimized then θ ∈ [arctan σ2
x−ρσxσy
σ2
y−ρσxσy

, 5π
4

].

Proof. As in Theorem 5.1, suppose Player I first fixes his net offer x+y = w̃ < 2x∗2. With

w̃ fixed, he now chooses x in order to minimize the the expected payoff

K(a,b∗) = 2x∗2 + (w̃ − 2x∗2)Φ(z).
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Because w̃ − 2x∗2 < 0, he chooses x to maximize

z =
2x∗22 − x2 − (w̃ − x)2

2
√
σ2
x(x
∗
2 − x)2 + 2ρσxσy(x∗2 − x)(x∗2 − w̃ + x) + σ2

y(x
∗
2 − w̃ + x)2

.

As in Theorem 5.1, the numerator is maximized when x = w̃
2
, which corresponds to

θ = 5π
4

. The denominator has a unique minimum when

x =
x∗2(α′ − β′) + β′w̃

α′ + β′
=
x∗2(α′ − β′) + β′(x+ y)

α′ + β′
,

where α′ = σ2
x − ρσxσy and β′ = σ2

y − ρσxσy. Solving for y, we get

y = x∗2
β′ − α′

β′
+
α′

β′
x.

So for all w̃, the set of offers which minimize the denominator is a line with a slope α′

β′
which

passes through b∗. Observe that α′

β′
< 1, so arctan α′

β′
< 5π

4
. Since w̃ < 2x∗2 is arbitrary,

by Lemma 5.4 we know that K(a,b∗) is minimized for some (x∗2 + r cos θ, x∗2 + r sin θ)

where θ ∈ [arctan α′

β′
, 5π

4
].

Figure 2: An illustration of the angle θM of the minor axis of the bivariate normal
distribution for σx < σy.

We will pause briefly to consider the bivariate normal distribution with ρ > 0 and

σx < σy. In particular, if we look at a contour of constant density, we will have an ellipse.
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The minor axis of this ellipse will be relevant in Lemma 5.8. An analysis of the geometry

is enough to convince one that the angle θM > 3π
4

. Furthermore, this is the direction

along which the distribution has the minimum variance.

Lemma 5.7. Let ρ > 0, σx < σy, (ξ, η) ∼ N(0,Σ), Ω = ξ cos θ+η sin θ and σ2
θ = V ar(Ω).

Then σ2
θ is minimized at

θM = arctan

σ2
y − σ2

x

2ρσxσy
−

√(
σ2
y − σ2

x

2ρσxσy

)2

+ 1

 >
3π

4
.

It is helpful to realize that θM is the angle of the minor axis of the ellipse formed by

any constant-density contour of f(ξ, η). The major axis will have the angle θM , referenced

in the proof.

Proof. For any angle θ, V ar(Ω) is given by

σ2
θ = σ2

x cos2 θ + 2ρσxσy cos θ sin θ + σ2
y sin2 θ

=
σ2
x + σ2

y

2
+ ρσxσy sin 2θ +

σ2
x − σ2

y

2
cos 2θ.

This is minimized or maximized when the derivative

2ρσxσy cos 2θ + (σ2
y − σ2

x) sin 2θ = 0,

or equivalently when

tan 2θ =
−2ρσxσy
σ2
y − σ2

x

.

By trigonometric identity this is equivalent to

2 tan θ

1− tan2 θ
=
−2ρσxσy
σ2
y − σ2

x

,
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which leads to the quadratic in tan θ

tan2 θ −
σ2
y − σ2

x

ρσxσy
tan θ − 1 = 0.

This admits solutions

tan θ =
σ2
y − σ2

x

2ρσxσy
±

√(
σ2
y − σ2

x

2ρσxσy

)2

+ 1.

Of the two solutions, one is positive while the other is negative. Let

tan θM =
σ2
y − σ2

x

2ρσxσy
−

√(
σ2
y − σ2

x

2ρσxσy

)2

+ 1, and tan θM =
σ2
y − σ2

x

2ρσxσy
+

√(
σ2
y − σ2

x

2ρσxσy

)2

+ 1.

One can of course verify that

tan θM = − 1

tan θM
.

Since tan θM > 1, −1 < tan θM < 0. Hence sin θM > cos θM > 0 and sin θM < 0 < cos θM .

Therefore σ2
θM

< σ2
θM , so θM minimizes σ2

θ while θM maximizes σ2
θ . Finally we note that

because tan θM > −1,

θM > arctan(−1) =
3π

4
.

Lemma 5.8. Suppose ρ > 0, and σx < σy. For any pure strategy a = (x∗2 + r cos θ, x∗2 +

r sin θ) 6= −b∗ = (x∗2, x
∗
2) with θ ∈ [θM ,

5π
4

] and x2
1 + y2

1 > 2x∗22 , K(a,b∗) > 0.

Proof. Observe that K > 0 is equivalent to

2x∗2 − rt(θ)Φ(z) > 0 ⇔ Φ(z) < f(r, θ) =
2x∗2
rt(θ)

.

Let us fix r∗ > 2
√

2x∗2. The proof proceeds via three claims:

Claim 1: f(r∗, θ) is a decreasing function for θ ∈ [θM ,
5π
4

].

Proof of Claim 1: This claim follows immediately after noting that t(θ) is an increasing
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function on (3π
4
, 5π

4
), and, from Lemma 5.7, 3π

4
< θM .

Claim 2: Φ(z(r∗, θ)) is an increasing function for θ ∈ [θM ,
5π
4

].

Proof of Claim 2: Recall that z =
2x∗2t(θ)−r

2
√
σ2
θ

. For θ ∈ [3π
4
, 5π

4
], r0 = 2x∗2t(θ) is increas-

ing and attains its maximum value of 2
√

2x∗2 when θ = 5π
4

. Since r∗ > 2
√

2x∗2 ≥ r0,

z(r∗, θ) < 0. Because σ2
θ attains its minimum at θM and is maximized at θM > 5π

4
, σ2

θ is

increasing on [θM ,
5π
4

].

Consider

|z| = r∗ − 2x∗2t(θ)

2
√
σ2
θ

.

For θ ∈ [θM ,
5π
4

], t(θ) increases so the numerator is decreasing. Meanwhile the denomi-

nator is increasing. Thus Φ(z(r∗, θ)) is an increasing function in [θM ,
5π
4

].

Claim 3: Φ(z(r∗, 5π
4

)) < f(r∗, 5π
4

).

Proof of Claim 3: If we fix θ = 5π
4

, then the players are in the one-dimensional FOA

game, and we already know that a∗ = −b∗ (i.e. r∗ = 2
√

2x∗2) is the globally optimal

strategy for Player I to play against b∗. Since we have fixed r∗ > 2
√

2x∗2, Player I is not

playing optimally, so K > 0 which is equivalent to the claim.

From these three claims it follows that K > 0 for r > 2
√

2x∗2 and θ ∈ [θM ,
5π
4

].

Lemma 5.9. Suppose ρ > 0, and σx < σy. Then

θM < arctan
α′

β′
,

where α′ = σ2
x − ρσxσy and β′ = σ2

y − ρσxσy.

Proof. We just need to show that the slope α′

β′
is greater than tan θM . In other words, we

must show that
σ2
y − σ2

x

2ρσxσy
−

√(
σ2
y − σ2

x

2ρσxσy

)2

+ 1 <
σ2
x − ρσxσy
σ2
y − ρσxσy

.

Suppose for some σx < σy and 0 < ρ < 1 we have a contradiction, that is

σ2
y − σ2

x

2ρσxσy
−

√(
σ2
y − σ2

x

2ρσxσy

)2

+ 1 ≥ σ2
x − ρσxσy
σ2
y − ρσxσy

.
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This inequality is equivalent to the following inequalities:

β′ − α′

2ρσxσy
−

√(
β′ − α′
2ρσxσy

)2

+ 1 ≥ α′

β′

β′ − α′

2ρσxσy
− α′

β′
≥

√(
β′ − α′
2ρσxσy

)2

+ 1(
β′ − α′

2ρσxσy

)2

− (β′ − α′)α′

ρσxσyβ′
+
α′2

β′2
≥
(
β′ − α′

2ρσxσy

)2

+ 1

−(β′ − α′)α′

ρσxσyβ′
+
α′2

β′2
− 1 ≥ 0

−(β′ − α′)α′β′ + α′2ρσxσy − β′2ρσxσy ≥ 0

(α′ − β′)α′β′ + (α′ − β′)(α′ + β′)ρσxσy ≥ 0

α′β′ + (α′ + β′)ρσxσy ≤ 0

(σ2
xσ

2
y − ρσ3

xσy − ρσxσ3
y + ρ2σ2

xσ
2
y) + (σ2

x − 2ρσxσy + σ2
y)ρσxσy ≤ 0

σ2
xσ

2
y − ρ2σ2

xσ
2
y ≤ 0

(1− ρ2)σ2
xσ

2
y ≤ 0.

This is of course impossible as −1 < ρ < 1. Note that we used the facts that β′ =

σ2
y − ρσxσy > 0 and α′ − β′ = σ2

x − σ2
y < 0.

Corollary 5.10. If ρ > 0, σx < σy, and b∗ = (x∗2, x
∗
2) then for all a = (x1, y1) with

x2
1 + y2

1 > 2x∗22 , K(a,b∗) > 0.

Proof. By Lemma 5.6, K(a,b∗) is minimized for some θ ∈ [arctan σ2
x−ρσxσy
σ2
y−ρσxσy

, 5π
4

]. By

Lemma 5.9, [arctan σ2
x−ρσxσy
σ2
y−ρσxσy

, 5π
4

] ⊂ [θM ,
5π
4

], and by Lemma 5.8, K(a,b∗) > 0 for any

θ ∈ [θM ,
5π
4

] with x2
1 + y2

1 > 2x∗22 .

Now that we have shown that against (x∗2, x
∗
2) all pure strategies for Player I outside

the circle x2 +y2 = 2x∗22 will give a positive expected payoff, we consider strategies within

the circle.

Lemma 5.11. Suppose ρ > 0, σx < σy and b∗ = (x∗2, x
∗
2). For all pure strategies

a = (x1, x2)such that x2
1 + y2

1 < 2x∗22 , K(a,b∗) > 0.
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The proof relies on the concavity of the CDF of the normal distribution within the

circle in question.

Proof. From Lemma 5.3, we need only show that K(a,b∗) > 0 for all a in the semi-circle

described by 
x+ y < 0,

x2 + y2 < 2x∗22 .

In terms of θ, we are restricting our attention to θ ∈ (π, 3π
2

). For the angles θ in question,

t(θ) > 1. Recall from (35) that K(a,b∗) > 0 is equivalent to

Φ(z) < f(r, θ) =
2x∗2
rt(θ)

.

First we fix θ̃ ∈ (π, 3π
2

). Let r0 = 2x∗2t(θ̃). Note by definition that z(r0, θ̃) = 0. Since

z = r0−r
2
√
σ2
θ

, it is straightforward to show that

d

dr
Φ(z)

∣∣∣∣
z=0

= φ(z)
dz

dr

∣∣∣∣
z=0

=
1√
2π

−1

2
√
σ2
θ̃

=
−1

2
√

2πσ2
θ̃

.

Define y as the line tangent to Φ at (r0,
1
2
), specifically,

y(r, θ̃) = − r − r0

2
√

2πσ2
θ̃

+
1

2
.

Note Φ is a concave function for r < r0. Therefore, Φ(z(r, θ̃)) ≤ y(r, θ̃). To demon-

strate that f > Φ for all r < r0, it suffices to show that f > y for all r. Since f and y

are both continuous functions and limr→0+ f(r, θ̃) =∞� y(0, θ̃), it suffices to show that

f 6= y for any r. If the two curves do intersect, then there is at least one solution to the

equation √
2π(α + β)

2rt(θ̃)
= − 1

2
√

2πσ2
θ̃

r +
t(θ̃)
√
α + β

4
√
σ2
θ̃

+
1

2
,
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or equivalently

0 =
1

2
√

2πσ2
θ̃

r2 −

t(θ̃)√α + β

4
√
σ2
θ̃

+
1

2

 r +

√
2π(α + β)

2t(θ̃)

= r2 −

(
t(θ̃)

√
2π(α + β)

2
+
√

2πσ2
θ̃

)
r +

2π
√

(α + β)σ2
θ̃

t(θ̃)
.

We have a quadratic in r. Let

r̂ =
t(θ̃)

√
2π(α + β)

4
+

√
2πσ2

θ̃

2

and

∆ =

(
t(θ̃)

√
2π(α + β)

2
+
√

2πσ2
θ̃

)2

−
8π
√

(α + β)σ2
θ̃

t(θ̃)

If ∆ < 0 then we are done. Let us assume that ∆ ≥ 0. If f(r∗, θ̃) = y(r∗, θ̃), it

must that r∗ < r0; for r ≥ r0, f(r, θ̃) > Φ(z(r∗, θ̃)) > y(r∗, θ̃). This gives us a condition,
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namely r̂ +
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∆
2
< r0.
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√
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√
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(
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2
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−
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(
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√
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(
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t(θ̃) <
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in other words, t(θ̃) < 1, which is a contradiction.

The following is the main result.

Theorem 5.12. For ρ > 0, if the arbiter uses L2 distance as a decision criterion, then

a∗ = (−x∗2,−x∗2),b∗ = (x∗2, x
∗
2) is a pure global equilibrium pair.

Proof. This follows from the previous lemmas. WLOG σx ≤ σy. If Player II plays pure

strategy b∗, then for any pure strategy a = (x1, y1), K(a,b∗) ≥ 0, and equality is only

achieved when a = a∗.
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6 Variability of Issue-by-Issue and Whole Package

Outcomes

Having shown that under an L2 distance criterion there is a unique pure optimal strategy

pair, we consider the question of whether the issue-by-issue or whole-package variant is

more in line with the aims of FOA. Since FOA makes arbitration a costly alternative

by its inherent uncertainty, we may compare the uncertainty (i.e. variance) between

equilibrium strategies under the two mechanisms. It may come as no surprise that the

arbitrated outcome in WPFOA has a higher variance.

Theorem 6.1. Under L2 criterion, the expected payoff is zero under either Issue-by-Issue

rules or Whole-Package. If both players choose optimal strategies then the variances of

the awards, respectively, are π
2
(σ2

x + σ2
y) and π

2
(σ2

x + 2ρσxσy + σ2
y).

Proof. Under IBIFOA, since the components are awarded independently, the variance is

V ar(K) = V ar(K(x) +K(y))

= E(K(x)2) + E(K(y)2)

=
1

2

(
2

2πσ2
x

4

)
+

1

2

(
2

2πσ2
y

4

)
=
π

2
(σ2

x + σ2
y)

Under WPFOA the variance is

V ar(K) = E(K2)

=
1

2
(2x∗1)2 +

1

2
(2x∗2)2

= 4x∗22

=
π

2
(σ2

x + 2ρσxσy + σ2
y)
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Thus we argue that quantitative issues should be arbitrated by package rather than

independently to provide a stronger motivation to the parties to reach “security in agree-

ment” (Stevens, 1966).

7 Conclusions

We have developed a model of two issue final-offer arbitration as a zero-sum game where

both players are risk-neutral, issues under dispute are quantitative and the values are

additive, the arbiter chooses a fair settlement from a bivariate normal distribution com-

monly known to both players and measures how ‘reasonable’ a final-offer is by its L2

distance from this reasonable settlement. We have shown, among other properties, that

with reasonable assumptions the game has a value of zero. If the two components are not

too negatively correlated, locally optimal pure strategies are derived. If we further assume

that the issues are positively correlated, these represent the unique optimal strategy pair.

Finally it was observed that in this case whole-package FOA leads to an outcome with

greater variance than IBI, and would act as a greater motivator to reach agreement in

negotiations.

This represents only an initial model of the multi-issue FOA game. Many variants

are worthy of consideration. Firstly the arbiter may use one of any number of decision

criteria including L1 distance, L∞ distance, total absolute difference, and Mahalanobis

distance. It may be the case that the final-offer vectors must be standardized before

measuring distance, and Players valuation of a final-offer may be more complicated than

the sum of the two components. Another obvious extension is to look at the n-issue

game.

Finally it worth considering an extension of final-offer arbitration to n-player games.

This would have applications for inheritance splitting, for example, where the heirs cannot

agree on a fair split and need to bring in an arbiter. To our knowledge, final-offer

arbitration has not been used in this scenario but we feel it would be an effective means
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to encourage agreement among the players.
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