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Abstract

We introduce the axiom of composition independence for power indices and

value maps. In the context of compound (two-tier) voting, the axiom requires

the power attributed to a voter to be independent of the second-tier voting

games played in all constituencies other than that of the voter. We show that

the Banzhaf power index is uniquely characterized by the combination of com-

position independence, four semivalue axioms (transfer, positivity, symmetry,

and dummy), and a mild e¢ ciency-related requirement. A similar characteri-

zation is obtained as a corollary for the Banzhaf value on the space of all �nite

games (with transfer replaced by additivity).

JEL Classi�cation Numbers: C71, D72.

Keywords: Simple Games, Compound Games, Banzhaf Power Index, Banzhaf

value, Composition Property, Semivalues, Transfer, Symmetry, Positivity, Dummy.

�This work was motivated by a conversation the author had with Sergiu Hart on the composition

property of the Banzhaf index in compound games, in which Sergiu observed that each voter�s power

is independent of the games played in other constituencies. This fact is the basis for the new axiom

of composition independence.
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1 Introduction

The Banzhaf power index is arguably the most adequate mechanism for measuring

the a priori in�uence of voters in a voting situation; see, e.g., the extensive discussion

in Section 3.1 of Felsenthal and Machover (1998). The idea behind the index is clear

and simple. If a voter, or an outside observer, stand behind the standard "veil of

ignorance", the best they can do is to assume that Yes and No votes by the electorate

members constitute outcomes of Bernoulli trials with p = 1
2
(i.e., each voter is a priori

equally likely to choose Yes or No). In this setting, it is natural to de�ne the power

of a voter to in�uence the voting outcome as the probability that his vote is decisive,

namely, that the election would be lost without that voter�s support but won with

his support.

The Banzhaf power index has a long history. A version of it was initially suggested

by Penrose (1946), followed by two subsequent rediscoveries by Banzhaf (1965, 1966,

1968) and Coleman (1971).1 The much-used probabilistic version described above2

has its origin in the work of Dubey and Shapley (1979), who initiated the study of the

Banzhaf index in the game-theoretic framework. Following the approach of Shapley

and Shubik (1954), they model a voting situation as a simple cooperative game (or

voting game); the Banzhaf index of a player (voter) is then the probability that he

is a swinger for a random coalition of other players (which each player joins with

probability 1
2
, independently of anyone else), meaning that he turns that coalition

from losing to winning by joining it.3

The simple probabilistic model upon which the Banzhaf index is based has a

fascinating implication for measuring voting power in compound voting. The latter

1The name of John F. Banzhaf III has been the one most associated with that power index, due

to the number of works he authored on the subject and the legal repercussions of his �ndings and

recommendations. Thus, siding with most of the literature, we will use the term "Banzhaf power

index" for brevity, although, and perhaps more appropriately, the index is sometimes referred to as

the Penrose-Banzhaf-Coleman power index.
2Felsenthal and Machover (1998) call this version "the Banzhaf measure."
3Our notion of swinger is a slight adaptation of the term used in Dubey and Shapley (1979, p.

103), who de�ned it in relation to a random coalition that may include the swinger, in which case the

e¤ect of his departure from that coalition on its winning status is also considered. The probability

of being a swinger is the same under both de�nitions, and hence both swinger notions may be used

in de�ning the Banzhaf index.
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term refers to two-tier voting systems, of which there are numerous examples rang-

ing from high-pro�le ones such as the US Electoral College and the Council of the

European Union to the legislative organization of a local government. The common

game-theoretic model underlying these systems is the one in which the player set N is

partitioned into k disjoint "constituencies" C1; :::; Ck, and the outcome of the vote in

a constituency Cj is described by a simple game wj with player set Cj (wj is, in most

cases, the simple majority game). Following the vote in N = [kj=1Cj; decision-making
moves into the "council of representatives," where players-representatives from the

set R = f1; :::; kg vote in accordance with the voting outcomes in their respective
constituencies; the outcome of the council vote is in turn determined by a simple

game v (which is, in most cases, a weighted majority game4).

In the compound game v [w1; :::; wk] thus described, player i0 2 Cj0 is a swinger
with respect to a coalition S � N n fi0g if and only if he is a swinger in the game
wj0 (for S \ Cj0) and his representative j0 is a swinger in v (for the coalition T
of representatives j 6= j0 whose vote is sanctioned by S, i.e., wj(S \ Cj) = 1): A

little re�ection reveals that when players in N n fi0g form S by joining randomly

and independently (each with probability 1
2
), the event that i is a swinger in wj0

and the event that j0 is a swinger in v are themselves independent ; moreover, the

induced distribution of T � R is such that each representative participates in it with
probability 1

2
;5 independently of other representatives: The de�nition of the Banzhaf

index of a player as his probability of being a swinger � for a coalition joined by

each other player with probability 1
2
and independently of the rest � thus implies

a well-known property of the index: the power of player i0 in the compound game

v [w1; :::; wk] is equal to the product of his power in his second-tier game wj0 and the

power of his representative j0 in the �rst-tier game v.

The latter attribute of the Banzhaf index, to which we will refer as the composition

4The weights given to di¤erent representatives may be (roughly) proportional to the population

sizes of the counties they represent; but that is often not the case, either by necessity or by design.

(See Chapter 4 of Felsenthal and Machover (1998)) for many examples of weighted voting in the

US.)
5To be precise, in order for the this property to hold all second-tier games wj need to be decisive,

i.e., constant-sum (as in the scenario where all wj are simple majority games with an odd number

of players).
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property, was �rst noticed by Owen (1975). Owen also showed that the composition

property is satis�ed by the Banzhaf value � the natural extension of the Banzhaf

index to all games � for properly generalized compound games whose components

are not necessarily simple. This strikingly simple behavior of the Banzhaf index has

an immediate computational upshot, as the complexity of calculating the power of

a voter in real-life instances of compound voting (where constituency sizes can run

into millions) is immensely reduced. Indeed, the �rst-tier games are mostly too small

to pose a serious problem in computing power, while the (possibly huge) second-tier

games are usually the simple majority ones, where the power can be approximated

with a high degree of precision by applying the standard Stirling�s formula. This

computational simplicity is what stands behind the derivation of the famous "square-

root rule" of Penrose, as rendered in Theorem 3.4.3 of Felsenthal and Machover

(1998), whereby all voters enjoy (approximately) equal voting power only when the

Banzhaf power indices of their representatives are proportional to the square root of

the size of their respective constituencies.6

The appeal of the composition property leads to the natural question of whether

there are other sensible power indices sharing this property. It turns out that the

composition property is too powerful to allow any signi�cant freedom of choice. Owen

(1978) showed that, on the space of all games,7 the Banzhaf value is essentially the

only value map that satis�es standard axioms in conjunction with the composition

property.8 The strength of the composition property is particularly noticeable when

attention is restricted to simple games: Dubey et al. (2005) showed that imposing just

two axioms together with the composition property yields the Banzhaf power index.

(The two axioms are transfer (or valuation), which has been the standard substitute

for the additivity axiom in the context of simple games since its introduction in Dubey

(1975), and strict positivity (or monotonicity), which requires the power measure to

be non-negative and non-zero.)

6The underlying assumption behind this principle is that all second-tier voting games are simple

majority games, which is the case in most real-life instances of compound voting.
7The claim is also true for the space of all constant-sum games.
8See Theorems 7 and 8 in Owen (1978). Although some other indices, such as the useless null

index and the simplistic "dictatorial" index, also emerge from his axiomatization, they are easily

removed by adding the dummy and strict positivity axioms; see Section 5 in Owen (1978).
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The composition property may, as an axiom, be criticized on the grounds of being

a technical or computational requirement, lacking a compelling conceptual basis. As a

very strong condition, however, the composition property can be weakened in various

ways, which may provide a conceptually sounder axiom. That is the path we intend

to follow, starting with the following observation. According to the composition

property, the ingredients for computing the power of player i0 2 Cj0 in the compound
game v [w1; :::; wk] are his power in his second-tier game wj0 and the power of his

representative j0 in �rst-tier game v: In particular, in order to compute his power,

all i0 needs to be aware of is his own game wj0 and the game v played on the �rst

tier. We shall state that partial aspect of the composition property as an axiom,

calling it composition independence. The axiom will require, for any compound game9

v [w1; :::; wk] ; the power of any player i0 who belongs to a constituency Cj0 to be

independent of the second-tier games wj played in all other constituencies (i.e., for

j 6= j0).
On the conceptual level, the justi�cation of composition independence lies in un-

derstandable limitations of the knowledge that a player may possess about the overall

voting structure. The new axiom says that a huge deal of seemingly important details

are, in fact, of no relevance to the player when he assesses his voting power. Com-

position independence implies that he does not need to have any detailed idea of the

structure of the voting process (i.e., the simple game played) in any of the constituen-

cies other than his own. In particular, he does not need to know the number of voters

in other constituencies, or even what these constituencies are. The only characteristic

of the other constituencies the player is expected to know is their total number, as it

pertains to the knowledge of the �rst-tier game v between the representatives, which

remains necessary.

We will show that both the Banzhaf power index and the Banzhaf value can be

uniquely characterized using the composition independence axiom. As composition

independence is relatively mild on its own, the result of the type of Dubey et al. (2005)

�where the composition property was accompanied by just two extra requirements �

should not be expected. And, indeed, in our results a total of �ve (logically indepen-

9As in the premise for the composition property, it will be assumed that the second-tier games

w1; :::; wk are constant-sum.
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dent) requirements will accompany composition independence. Four of them are the

semivalue axioms (the term comes from the works of Dubey et al. (1981) and Einy

(1987) who considered maps satisfying the conjunction of these axioms in the context

of general games, and simple games, respectively). The semivalue axioms for power

indices on the domain of simple games �the already mentioned transfer and positiv-

ity axioms, symmetry, and dummy �are quite standard, and all four axioms or their

subsets �gure prominently in the literature on axiomatizations. (In particular, the

transfer axiom, which is the "heaviest" of the four, has been a backbone of most ax-

iomatic approaches to the Banzhaf index; see, e.g., Dubey and Shapley (1979), Lehrer

(1988), Albizuri and Ruiz (2001), Dubey et al. (2005), Casajus (2012), Haimanko

(2017)). For general games, linearity replaces transfer in the set of semivalue axioms,

but its weaker form �additivity �will su¢ ce for our needs. (Additivity is the most

frequently used axiom in the treatment of value maps ever since its introduction in

Shapley (1953).)

The extra non-semivalue axiom that we impose is new, and contains a requirement

that is signi�cantly weaker than e¢ ciency. The e¢ ciency axiom, whereby the total

power of all players is equal to 1 (or the total value is equal to the worth of the grand

coalition, in the case of general games) is almost invariably assumed in axiomatiza-

tions of the Shapley-Shubik power index and the Shapley value, but it is �agrantly

violated by the Banzhaf index. However, we will show that the Banzhaf index has

the following �avor of e¢ ciency: Consider a sequence of simple games where the size

of the player set tends to in�nity; then it cannot be the case that, in the limit, every

player�s power is above some positive constant that is common to all players.10 This

will be postulated for general power indices by our vanishing power axiom. Stated

slightly more generally, the same axiom will be assumed on value maps in the context

of general games.

The paper is organized as follows. In Section 2 we recall the basic de�nitions

pertaining to �nite and simple games, and the notions of the Banzhaf index and

value. Section 3 states our axioms for power indices on the domain of simple games

and Section 4 proves the characterization result for the Banzhaf index. Section 5 does

10We will establish this claim in Remark 2. Any e¢ cient power index would satisfy such a claim,

but it is not entirely obvious in the case of the non-e¢ cient Banzhaf index.
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likewise for the Banzhaf value on the space of all �nite games.

2 Preliminaries

2.1 Finite games and simple games

Let U be an in�nite universe of players; it may be assumed w.l.o.g. that U includes

the set N of positive integers. Denote the collection of all coalitions (subsets of U)

by 2U ; and the empty coalition by ;: A game on U is given by a map v : 2U ! R

with v (;) = 0: A coalition N � U is called a carrier of v if v(S) = v(S \ N) for
any S 2 2U : We say that v is a �nite game if it has a �nite carrier; the minimal
carrier of such v is, in e¤ect, its true player set. The space of all �nite games on U

is denoted by G: A game v 2 G is said to be constant-sum, or of constant sum c, if

v(S) + v(U n S) = c (= v(U)) for every S 2 2U :
The domain SG � G of simple games on U consists of all v 2 G such that: (i)

v(S) 2 f0; 1g for all S 2 2U ; (ii) v(U) = 1; and (iii) v is monotonic, i.e., if S � T then
v(S) � v(T ): If v 2 SG, a coalition S is winning if v(S) = 1; and losing otherwise. If
v 2 SG is constant-sum, i.e., S is winning in v if and only if UnS is losing in v, then
v is called decisive.

The space AG � G of additive games consists of all v 2 G satisfying v(S [ T ) =
v(S) + v(T ) whenever S \ T = ;: Any w 2 AG with (�nite) carrier N is identi�able

with the vector11 fw(i) j i 2 Ng ; and thus may be thought of as a payo¤ vector to
the players in N:

2.2 Power indices and value maps

A power index ' is a map ' : SG ! AG, where ' (v) (i) is interpreted as the voting
power of player i in a simple game v. A map ' : G ! AG, de�ned on the full domain
of �nite games, is called a value map; for v 2 G; ' (v) (i) may be viewed as an
evaluation of player i�s "utility of playing the game" (see Roth 1988).

The Banzhaf value is a value map � that is given, for any v 2 G with a �nite
11We shall henceforth omit braces when indicating one-element sets.

7



carrier N; by

� (v) (i) =
1

2n�1

X
S�Nni

v(S [ i)� v(S)

if i 2 N; where n = jN j ; and
� (v) (i) = 0

if i 2 U n N: It is easy to see that � (v) is well de�ned, being independent of the
choice of the carrier N of v. The restriction of � to SG is the Banzhaf (power) index.

3 Axioms for Power Indices

This section introduces our axioms �plausible requirements that a general power

index ' may be expected to obey �whose combination will later be shown to uniquely

characterize the Banzhaf power index. We begin with four familiar semivalue axioms

that are quite routinely assumed in dealing with power indices, either in their entirety

or in part.12

In order to state the �rst axiom, given v; w 2 SG let v _w; v^w 2 SG be de�ned
by

(v _ w) (S) = max fv(S); w(S)g ; (v ^ w) (S) = min fv(S); w(S)g

for all S 2 2N :

Axiom I: Transfer (Tran) For any v; w 2 SG, ' (v _ w)+' (v ^ w) = 'v+'w:

As remarked in Dubey et al. (2005, p. 24), Tran can be restated in an equivalent

but conceptually clearer form, amounting to a requirement that the change in power

depends only on the change in the voting game.13

Next, denote by � the set of all permutations of U: For any � 2 � and v 2 G,
de�ne a game �v 2 G by (�v) (S) = v(�(S)) for all S 2 2N : The game �v is the same
as v except that players are relabeled according to �:

12Variants of these axioms have been present in the original axiomatizations of the Shapley-

Shubik and the Banzhaf power indices (see Dubey (1975) and Dubey and Shapley (1979)). The

term "semivalue" comes from Einy (1987); see Remark 1 below.
13A special version of this restatement appeared earlier in Laruelle and Valenciano (2001).
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Axiom II: Symmetry (Sym). For any v 2 SG, i 2 U; and � 2 �; ' (�v) (i) =
' (v) (� (i)) :

According to Sym, if players are relabeled in a game, their power indices will be

relabeled accordingly. Thus, irrelevant characteristics of the players, outside of their

role in the game v, have no in�uence on the power index.

Axiom III: Positivity (Pos). For any v 2 SG and i 2 U , ' (v) (i) � 0:

The positivity requirement is natural, as every v 2 SG is monotonic by assumption
and hence the in�uence of any player joining a coalition is always non-negative.

Axiom IV: Dummy (Dum). If v 2 SG and i is a dummy player in v, i.e.
v(S [ i) = v(S) + v(i) for every S � U n i; then ' (v) (i) = v (i) :

A dummy player in a simple game can be either a dictator (if v(i) = 1), in which

case a coalition is winning if and only if it contains i, or a null player (if v (i) = 0),

that does not belong to the minimal carrier of v. Accordingly, the last axiom can be

viewed as a normalization requirement, assigning the highest possible power (1) to a

dictator, and the lowest possible power (0) to a null player.

Remark 1 (Semivalues). Einy (1987) referred to power indices satisfying Tran,

Sym, Pos, andDum as semivalues, and we adopt this term. He showed that a power

index ' is a semivalue if and only if it has the following representation: there exists

a (uniquely determined) probability measure � on [0; 1] such that, for every v 2 SG
with some �nite carrier N;

' (v) (i) =
X
S�Nni

p
jN j
jSj [v(S [ i)� v(S)] (1)

if i 2 N; where

pns =

Z 1

0

xs (1� x)n�s�1 d� (x) ; (2)

and ' (v) (i) = 0 when i 2 U nN: When � is concentrated on 1
2
; the Banzhaf index �

is obtained; in particular, � is a semivalue. �

Now recall the notion of a compound game (see Shapley (1964)). Consider

v; w1; :::; wk 2 SG such that R = f1; :::; kg (the set of representatives) is a carrier

9



for v; and w1; :::; wk have disjoint �nite carriers (constituencies) C1; :::; Ck: (Note that

no assumption is made on the relation between the set of representatives and the

constituencies; we think of player j 2 R as the representative of constituency Cj, but
he need not be a member of Cj:) The game u 2 SG is said to be the compounding of
v with w1; :::; wk; written u = v[w1; :::; wk]; if

u(S) = v(fj j wj (S) = 1g)

for all S 2 2U : Notice that
Sk
j=1Cj is a carrier for u.

Axiom V: Composition Independence (CompInd). Let v[w1; :::; wk] be a

compound simple game in which w1; :::; wk 2 SG are decisive, with corresponding con-
stituencies C1; :::; Ck. Given 1 � j � k; let w01; :::; w0j�1; w0j+1; :::; w0k 2 SG be another
collection of decisive games with corresponding disjoint carriersC 01; :::; C

0
j�1; C

0
j+1; :::; C

0
k �

U n Cj: Then, for every i 2 Cj,

' (v[w1; w2; :::; wk]) (i) = '
�
v[w01; :::; w

0
j�1; wj; w

0
j+1; :::; w

0
k]
�
(i):

The axiom requires the voting power of any player i in any constituency Cj to be

independent of the voting games that played in all other constituencies (and even of

the composition of the other constituencies). Thus, i should be able to determine his

power based only on the knowledge of the voting game of his constituency, and of the

second-tier voting game played between the representatives 1; :::; k:

The Banzhaf index � satis�es CompInd because it adheres to a much stronger

requirement, the composition property. The latter means that the index is multiplica-

tively separable for any compound game: it is well known (see Theorem 2 in Owen

(1975)) that if v[w1; :::; wk] is a compound game in which w1; :::; wk are decisive, then

� (v[w1; :::; wk]) (i) = � (v) (j) � � (wj) (i) (3)

for every j = 1; :::; k and every i 2 Cj: It follows that � (v[w1; :::; wk]) (i) does not
depend on the games wj0 for j0 6= j; and hence � satis�es CompInd.

Axiom VI: Vanishing Power (VanPow). Let fvkg1k=1 � SG be a sequence of
games with corresponding (nonempty) carriers fNkg1k=1; and assume that limk!1 jNkj
=1: Then

lim inf
k!1

min
i2Nk

' (vk) (i) � 0:
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The axiom embodies a mild aspect of e¢ ciency (that would require the total power

of all players to be equal to 1), by stipulating that, when the size of the player set

of a game tends to in�nity, it cannot be the case that every player�s power is above

some positive constant that is common to all players.14

Remark 2. (The Banzhaf index satis�es VanPow). While the Banzhaf

index is not e¢ cient, it does satisfy the signi�cantly weaker VanPow. Indeed, by

Theorem 2 of Dubey and Shapley (1979),X
i2Nk

� (vk) (i) �
jNkj
2jNkj�1

�jNkj � 1h
jNkj
2

i �; (4)

where [m] denotes the integer part of m. This implies that

(0 � ) min
i2Nk

� (vk) (i) �
1

2jNkj�1

�jNkj � 1h
jNkj
2

i �:
By the standard application of the Stirling�s formula (see, e.g., Spencer and Florescu

(2014)),
�jNkj�1�
jNkj
2

�� �q 2
�(jNkj�1)2

jNkj�1; and hence

lim
k!1

min
i2Nk

� (vk) (i) = lim
k!1

s
2

�(jNkj � 1)
= 0: �

4 Uniqueness of the Banzhaf Index

The six axioms of the previous section uniquely characterize the Banzhaf power index:

Theorem 1. The Banzhaf index � is the only power index on SG that satis�es
Tran, Sym, Pos, Dum, CompInd, and VanPow.

Proof. The fact that � satis�es the axioms has been established in the previous

section. Now assume that ' is a power index on SG that satis�es the six axioms.
In particular, ' is a semivalue (see Remark 1), and hence there exists a probability

measure � on [0; 1] for which (1), (2) hold. Denote by ui the unanimity game with

carrier fig � U , i.e., a dictator game, where

ui (S) =

8<: 1; if i 2 S;
0; otherwise

14When Pos is also assumed to hold, VanPow implies that lim infk!1mini2Nk
' (vk) (i) = 0, as

power cannot be negative.
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for all S 2 2U , and by mi;j;k the simple two-player majority game on fi; j; kg � U;

where

mi;j;k(S) =

8<: 1; if jS \ fi; j; kgj � 2;
0; otherwise

for all S 2 2U : Such ui and mi;j;k are decisive.

Next consider the game v = m1;2;3 [u1; u2;m3;4;5] : By (1) and (2) in Remark 1,

' (v) (1) =

Z 1

0

�
x � ((1� x)3 + 3(1� x)2x) + (1� x) �

�
x3 + 3x2(1� x)

��
d� (x) :

(5)

On the other hand,

' (m1;2;3) (1) =

Z 1

0

2x (1� x) d� (x) : (6)

It follows from CompInd, applied to the compound games v = m1;2;3 [u1; u2;m3;4;5]

and m1;2;3 = m1;2;3 [u1; u2; u3] ; that the expressions in (5) and (6) are equal. ThusZ 1

0

p(x)d� (x) = 0; (7)

where

p(x) =
�
x � ((1� x)3 + 3(1� x)2x) + (1� x) �

�
x3 + 3x2(1� x)

��
� 2x (1� x) :

Now notice that p(0) = p(1
2
) = p(1) = 0; and that the polynomial p is negative

on [0; 1] n f0; 1
2
; 1g (indeed, p has a unique local maximum of 0; attained at xmax = 1

2
;

and a global minimum of � 1
16
; attained at xmin;1 = 1

2
� 1

2
p
2
2 (0; 1

2
) and at xmin;2 =

1
2
+ 1

2
p
2
2 (1

2
; 1)). Thus (7) implies that � is supported on f0; 1

2
; 1g:

Finally, for each k � 1 consider the games vk = u1 _ :::_ uk and vk = u1 ^ :::^ uk
with carrier Nk = f1; :::; kg: By applying (1) and (2), and using the fact that � is
supported on f0; 1

2
; 1g; we obtain

' (vk) (i) = � (0) +
1

2k�1
�

�
1

2

�
and

'
�
vk
�
(i) = � (1) +

1

2k�1
�

�
1

2

�
for every i 2 Nk: The conjunction of Pos andVanPowmandates that lim infk!1mini2Nk ' (vk) (i)
= 0 and lim infk!1mini2Nk '

�
vk
�
(i) = 0; which is only possible if � (0) = 0 and

� (1) = 0:We conclude that � is, in fact, supported on 1
2
; which means that ' = �: �

12



Remark 3 (Logical independence of the axioms). No single axiom in the

statement of Theorem 1 may be omitted, as for any axiom there are power indices

other than � that satisfy the other �ve axioms. Indeed:

1. Let ' (v) (i) = 0 for every v 2 SG and i 2 U who is not a dummy player in v;
and ' (v) (i) = v(i) for i who is a dummy in v. The power index ' satis�es all

the axioms except Tran.

2. Fix i0 2 U; and let ' be given, for every v 2 SG, by ' (v) (i) = � (v) (i) if i 6= i0;
and ' (v) (i0) = v(i0): The power index ' satis�es all the axioms except Sym.

3. For every v 2 SG and i 2 U , let ' (v) (i) = 2� (v) (i)� v(i): The power index '
satis�es all the axioms except Pos.

4. The null index, ' � 0; satis�es all the axioms except Dum.

5. The Shapley-Shubik power index, given by

' (v) (i) =
X
S�Nni

jSj!(n� jSj � 1)!
n!

[v(S [ i)� v(S)]

for every v 2 SG with a �nite carrier N and i 2 N; and ' (v) (i) = 0 for every
i 2 U nN; satis�es all the axioms except CompInd.

6. Let ' (v) (i) = v(i) for every v 2 SG and i 2 U . The power index ' satis�es all
the axioms except VanPow. As VanPow only has "bite" because the universe

of players U is in�nite, this example also shows that our axioms would not

uniquely characterize � for a �nite U . �

5 Axioms for Value Maps and the Banzhaf Value

In this section we will extend and modify our axioms in order to �t the setting of

value maps. Of the four semivalue axioms, Tran changes the most, returning to its

original form of the additivity axiom that has been immensely popular in cooperative

game theory since its introduction in Shapley (1953). (Tran, �rst suggested and used

in Dubey (1975), was a necessary adaptation of additivity in the context of simple

games, as their set is not closed under addition.)

13



Axiom I�: Additivity (Add) For any v; w 2 G, ' (v + w) = 'v + 'w:

The other three semivalue axioms undergo only two small changes: the domain

of games switches from SG to G, and the games in the premise of Pos�are assumed
to be monotonic (that was not necessary for the domain SG of Pos because simple
games that we consider are monotonic by de�nition).

Axiom II�: Symmetry (Sym�). For any v 2 G, i 2 U; and � 2 �; ' (�v) (i) =
' (v) (� (i)) :

Axiom III�: Positivity (Pos�). For any monotonic v 2 G and i 2 U , ' (v) (i) �
0:

Axiom IV�: Dummy (Dum�). If v 2 G and i is a dummy player in v, i.e.
v(S [ i) = v(S) + v(i) for every S � U n i; then ' (v) (i) = v (i) :

Although the proof of our forthcoming characterization result for the Banzhaf

value does not require any change in CompInd, i.e., it would have su¢ ced to limit

attention to simple �rst- and second-tier games in compounding, we will introduce a

version of the axiom for general compound games in order to stress that the property

inCompInd is not speci�c to simple games, as far as the Banzhaf value is concerned.

Following Owen (1964), we de�ne a general compound game as follows. Consider

v; w1; :::; wk 2 G such that the set of representatives R = f1; :::; kg is a carrier for
v; and w1; :::; wk have disjoint �nite carrier-constituencies C1; :::; Ck: Let us moreover

assume that wj(S) 2 [0; 1] for each j 2 R and S 2 2U : The compounding of v with
w1; :::; wk; u = v[w1; :::; wk] 2 G; is given by

u(S) =
X
T�R

0@Y
j2T
wj (S) �

Y
j2RnT

(1� wj (S))

1A � v(T )
for all S 2 2U . Each game wj can be thought of as determining the probability that
a coalition S "controls" the representative j of the constituency Cj in the �rst-tier

game v; u(S) is then the expected payo¤ to S in that probabilistic scenario.

Axiom V�: Composition Independence (CompInd�). Let v[w1; :::; wk] 2 G
be a compound game in which w1; :::; wk 2 G are non-negative and of constant sum 1;

14



with corresponding constituenciesC1; :::; Ck. Given 1 � j � k; letw01; :::; w0j�1; w0j+1; :::; w0k 2
G be another collection of non-negative games of constant sum 1, with corresponding
disjoint carriers C 01; :::; C

0
j�1; C

0
j+1; :::; C

0
k � U n Cj: Then, for every i 2 Cj,

' (v[w1; w2; :::; wk]) (i) = '
�
v[w01; :::; w

0
j�1; wj; w

0
j+1; :::; w

0
k]
�
(i):

Since the Banzhaf value � on G satis�es (3) for any v[w1; :::wk] as above (see

Theorem 2 in Owen (1975)), it satis�es CompInd�.

The VanPow axiom could also have been left unchanged without a¤ecting our

characterization result. Again, we present a generalized version in order to emphasize

that the Banzhaf value � satis�es such a generalization.

Axiom VI�: Vanishing Power (VanPow�). Let fvkg1k=1 � G be a sequence of
monotonic games with corresponding (nonempty) carriers fNkg1k=1; and assume that
limk!1 jNkj =1 and that lim supk!1 vk (Nk) <1: Then

lim inf
k!1

min
i2Nk

' (vk) (i) � 0:

Remark 4 (The Banzhaf value satis�es VanPow�). Let A > 0 be such

that vk (Nk) � A for all k � 1: For each 0 < q � A and k � 1; denote by vqk the

simple game15 with carrier Nk that is given by v
q
k(S) = 1 if vk(S) � q; and v

q
k(S) = 0

otherwise. Notice that

vk(S) =

Z A

0

vqk(S)dq (8)

for all S 2 2U : From the de�nition of � and (8) it follows that, for every k � 1 and
i 2 Nk;

� (vk) (i) =

Z A

0

� (vqk) (i) dq;

and henceX
i2Nk

� (vk) (i) =
X
i2Nk

Z A

0

� (vqk) (i) dq

=

Z A

0

 X
i2Nk

� (vqk) (i)

!
dq � A jNkj

2jNkj�1

�jNkj � 1h
jNkj
2

i �;
15Notice that vqk may be the zero game, which is, in principle, excluded from the domain SG: For

technical reasons, we will admit the game v = 0 as part of SG in our forthcoming considerations,
keeping in mind that � (0) = 0:
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where the last inequality is immediate from (4). Arguing as in Remark 2 from this

point on, we obtain the equality limk!1mini2Nk � (vk) (i) = 0: �

The six modi�ed axioms uniquely characterize the Banzhaf value, just as their

original versions did in the case of the Banzhaf power index:

Theorem 2. The Banzhaf value � is the only value map on G that satis�es Add,
Sym�, Pos�, Dum�, CompInd�, and VanPow�.

Proof. It has already been established that � satis�es the above axioms, and it

only remains to be shown that any value map ' satisfying the axioms must coincide

with �: Given any such '; its restriction ' jSG to the domain SG clearly satis�es the
axioms Tran,16 Sym, Pos, Dum, CompInd, and VanPow for power indices, and

thus

' jSG= � jSG (9)

by Theorem 1.

Next �x a �nite set ; 6= N � U; and, for any ; 6= T � N , denote by uT 2 SG the
unanimity game with carrier T; given by

uT (S) =

8<: 1; if T � S;
0; otherwise

for all S 2 2U : It is well known that fuTg;6=T�N � SG forms a basis for the vector
space GN of games with carrier N; and thus any v 2 GN can be written as a unique
linear combination v =

P
;6=T�N aTuT of the members of this basis. It follows from

Add that

' (v) =
X

;6=T�N

' (aTuT ) : (10)

Add also implies that ' (auT ) = a' (uT ) for any rational a; and an application of

Pos�(enabled by the fact that auT is monotonic for any positive a) establishes the

equality ' (auT ) = a' (uT ) for any real a. Using this and (9), the equality (10) yields

' (v) =
X

;6=T�N

' (aTuT ) =
X

;6=T�N

aT' (uT )

=
X

;6=T�N

aT� (uT ) =
X

;6=T�N

� (aTuT ) = � (v) :

16Add implies Tran because v + w = v _ w + v ^ w for any v; w 2 SG:
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Our argument therefore shows that ' and � coincide on the space GN for every
nonempty �nite N � U: But, obviously, G =

[
;6=N�U; jN j<1

GN ; and so ' and � coincide

on the entire G: �

Remark 5. (Logical independence of the axioms in Theorem 2). None of

the axioms in the statement of the theorem can be omitted. Each power index listed

in Remark 3 can be extended to the domain G (by using v 2 G instead of v 2 SG in
its de�nition), yielding a value map di¤erent from � that simultaneously satis�es �ve

given axioms out of the six.

Remark 6. (Equal treatment instead of symmetry). The symmetry axiom

(Sym or Sym�) can be replaced by the weaker equal treatment (ET) requirement in

Theorems 1 and 2. The latter stipulates that if i; j 2 U are substitutes in a game

v (i.e., for every S � U n fi; jg; v(S [ i) = v(S [ j)); then ' (v) (i) = ' (v) (j) :

The replacement by ET is possible due to the known results that the combination of

Tran, Dum, and ET implies Sym for power indices (see Proposition 3.5 in Albizuri

and Ruiz (2001)), and the combination of Add, Dum�, and ET implies Sym�for

value maps (see Theorem 4(b) in Malawski (2002)).
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