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A Generalization of the Harsanyi NTU Value to Games with

Incomplete Information✩

Andrés Salamanca

Department of Business and Economics, University of Southern Denmark

Abstract

In this paper, we introduce a solution concept generalizing the Harsanyi non-transferable uti-

lity (NTU) value to cooperative games with incomplete information. The so-defined S-solution

is characterized by virtual utility scales that extend the Harsanyi-Shapley fictitious weighted-

utility transfer procedure. We construct a three-player cooperative game in which Myerson’s

[Cooperative games with incomplete information. Int. J. Game Theory, 13, 1984, pp. 69-96]

generalization of the Shapley NTU value does not capture some “negative” externality gen-

erated by the adverse selection. However, when we explicitly compute the S-solution in this

game, it turns out that it prescribes a more intuitive outcome which takes into account the above

mentioned informational externality.

Keywords: Cooperative games, incomplete information, virtual utility.

JEL Classification: C71, C78, D82.

1. Introduction

The value is a central solution concept in the theory of cooperative games. Introduced by Sha-

pley (1953) for the study of games with transferable utility (TU), the value has been extended in

different ways to general games with nontransferable utility (NTU); some of the most notable

NTU values are due to Harsanyi (1963) and Shapley (1969)1. The value has proved to be a sur-

prisingly useful solution concept for the analysis of cooperative outcomes in economic models

✩This paper makes part of my Ph.D. dissertation written at Toulouse School of Economics. I am very much

indebted to Françoise Forges for her insights, her continuous guidance and for innumerable discussions. I am

also grateful to Thomas Mariotti, François Salanié, Peter Sudhölter and two anonymous referees of this journal
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1The Shapley NTU value is sometimes referred as the “λ-transfer value”. The Harsanyi NTU value, being less

tractable, has received less attention. Indeed, the Shapley NTU value was introduced as a simplification of the

Harsanyi NTU value. Both values are compared in Hart (1985b) in terms of their axiomatic characterizations and

in Hart (2004) by means of a simple example. The reader is referred to Peleg and Sudhölter (2007, ch. 13) and

Myerson (1991, ch. 9) for further details and formal definitions of these two solution concepts.



under complete information (see Aumann (1994) for a partial bibliography of applications).

However, many interesting economic situations are characterized by information asymmetries,

such as adverse selection and moral hazard problems. Then, the question of examining the

value in more realistic environments with incomplete information naturally arises.

Under incomplete information, an agreement should be seen as a mechanism (state contingent

decision plan). The enforcement of any such mechanisms relies on the players’ claims about

their private information. As a consequence, the final agreement may be subject to strategic

manipulation. A cooperative agreement must then be incentive compatible, in the sense that it

provides the appropriate incentives for every individual to reveal honestly his private informa-

tion.

Myerson (1984a,b) developed a method in which the incentive compatibility constraints are

used to define the virtual utility of the players. Virtual utility generalizes the weighted-utility

scales in the Harsanyi-Shapley fictitious transfer procedure2. Elaborating on this approach,

Myerson (1984b) defined a bargaining solution which extends the Shapley NTU value to games

with incomplete information. The M-solution (short for Myerson’s solution) takes into account

not only the signaling costs associated to incentive compatibility, but also the fact that indi-

viduals negotiate at the interim stage. It also involves the identification of “rational threat”

mechanisms for each coalition. Rational threats determine how much credit each (type of a)

player can claim from the proceeds of cooperation.

In order to keep a tractable mathematical formalization allowing for general existence of the

M-solution, Myerson (1984b) imposed various assumptions on the commitment structure of the

underlying bargaining situation (see Section 6 in Myerson (1984b) for a detailed discussion).

These simplifying assumptions entail, however, a reduced sensitivity of the M-solution to some

informational externalities. This is evidenced by a prominent example introduced by de Clippel

(2005).3 In this paper we provide another intuitive example in which the M-solution does

not capture some “negative” externality generated by the adverse selection. Starting from the

two-person bargaining problem studied in Section 10 of Myerson (1984a), we construct a three-

player game in which the uninformed individuals (players 1 and 2) can overcome the potential

adverse selection problem they face by ignoring the informed individual (player 3) and agreeing

on an outcome that is equitable and efficient for both of them. As we will argue in Section

3, a reasonable outcome for this game should leave the informed player with a low expected

payoff. Nevertheless, under the M-solution the informed player extracts a considerable amount

of utility. Our example shares features with a complete information NTU game previously

proposed by Roth (1980). In that game, the Shapley NTU value exhibits some difficulties of

a similar nature to that of the M-solution in our example. Hart (1985a) showed, however, that

the Harsanyi NTU value prescribes a more appealing outcome in Roth’s game. Our main goal

in this paper is to explore the extent to which Myerson’s virtual utility approach can be used

as a mathematical tool for generalizing the Harsanyi NTU value to games with incomplete

information. Therewith we hope to provide an alternative compelling outcome for our three-

player game.

2Myerson (1992) provides a detailed explanation of the fictitious transfer procedure.
3De Clippel’s example is an incomplete information version of a NTU game introduced by Owen (1972).
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Harsanyi (1963) introduced his NTU value using a model of bargaining in which players inside

each coalition negotiate a vector of dividends. This dividend allocation procedure is rather in-

tractable and difficult to extend to games with incomplete information. In this work, we shall

generalize a simpler (yet equivalent) definition of the Harsanyi NTU value introduced by Myer-

son (1980). This definition, which dispenses with the notion of dividends, is characterized by

an equity condition called balanced contributions (see also Myerson (1992) for a detailed ex-

planation). While there might be several appealing ways to extend the balanced contributions to

games with incomplete information, here we adopt a method that preserves a conceptual coher-

ence with Imai’s (1983) equivalent subgame value characterization of the Harsanyi NTU value.

In Section 4, we build on Myerson’s (1984b) virtual utility approach to formulate a “natural”

extended version of the subgame value equity condition. We then define an egalitarian criterion

to be the unique extension of the balanced contributions that is consistent with our generalized

subgame value condition (cf. Proposition 2). These equity principles are then used in Section

5 to define optimal threat mechanisms for all coalitions. In Section 6 we formally define our

cooperative solution concept, which we call the S-solution. We also exhibit its properties.

The formulation of our egalitarian criterion is inspired in the analysis of our motivating example.

As a result, when we explicitly compute the S-solution in this game, it turns out that it prescribes

an outcome for which there is more agreement with what we intuitively expect the outcome to

be. The S-solution provides a different viewpoint when compared with the M-solution. In this

sense, the S-solution illuminates the problem from another angle. Both the M-solution and the

S-solution reflect different important qualitative features of our example. Therefore, one should

not dispense with either one.

Our construction of the S-solution can be seen as a more sophisticated adaptation of Myer-

son’s (1984b) theory. Indeed, the S-solution requires all threat mechanisms to be equitable,

whereas the M-solution only requires equity in the case of the grand coalition. This difference

between both solution concepts can be understood as a matter of “credibility” of the threats.

Unfortunately, and as it might be expected, extending equity to all coalitions makes a signifi-

cant difference to the analysis, and the S-solution may fail to exist. In Section 7 we provide a

simple example of a game in which there is no S-solution. Under complete information, the

same difficulty for the Harsanyi NTU value is ruled out by considering games whose characte-

ristic function is comprehensive4. This amounts to assuming free disposal of utility. The same

approach does not immediately extend to games with incomplete information. Indeed, when

cooperative agreements are made at the interim stage, it is not clear how to derive an analog

4A characteristic function game V is comprehensive if, for every (nonempty) coalition S , whenever V(S ) ⊆ R
S

contains an allocation u, it also contains all allocations v satisfying v ≤ u. Further assumptions are also required

for the existence of the Harsanyi NTU value: (i ) if u, v ∈ ∂V(N) (i.e., u and v are efficient for the grand coalition)

and u ≥ v, then u = v (non-levelness); (ii ) V(N) = K +C, where K ⊆ R
N is a compact set and C ⊆ R

N is a convex

cone (see Peleg and Sudhölter (2007, Theorem 13.3.5)). Assumption (i ) excludes vanishing utility weights, while

(ii ) is a technical assumption guaranteeing that the set of utility weights λ ∈ RN
++ for which the “primal problem”

maxv∈V(N) λ · v has a finite optimum is compact and convex. It is worth noticing that these assumptions are not

necessary for the definition of the Harsanyi NTU value. They express restrictions on the space of games for which

a Harsanyi NTU value can be computed. Similar hypothesis are also required for the axiomatic characterization of

the Harsanyi NTU value (see Hart (1985b)).
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of the characteristic function under incomplete information5. On the other hand, while in a

setting with complete information free disposal of utility is usually taken as an innocuous as-

sumption, the same cannot be done under asymmetric information. In fact, allowing players

to discard utility at the interim stage may alter the incentives structure of the game, as it will

be illustrated in Section 7. The previous difficulties prevent us from obtaining an existence

result of the S-solution. This is not specific of our approach. Indeed, de Clippel (2012) encoun-

tered similar difficulties for the existence of an alternative (interim) egalitarian criterion in the

context of mechanism design. The techniques and analytical tools used in the special case of

complete information to achieve positive results cannot generally be extended to games with

incomplete information. The reason is that incentive constraints interconnect the decisions in

different states in an intricate way. This is also the case for the non-emptiness of the core of

an exchange economy with incomplete information (see Forges, Minelli and Vohra (2002) for a

detailed discussion on this issue).

The virtual utility approach has already been used as a conceptual tool for understanding coo-

peration under incomplete information in more specific contexts. Myerson (1983) considered

negotiations controlled by an informed principal and Myerson (1984a) formulated a generali-

zed Nash bargaining solution for two-person bargaining problems. Another contribution which

ought to be pointed out is Myerson (2007), where virtual utility scales were used for extend-

ing the inner core. The present paper is thus a direct continuation on this work. Indeed, our

construction of the S-solution allowed us to study the significance of the virtual utility approach

beyond the solution concepts mentioned above. Yet, the most important contribution from for-

mulating our new cooperative solution may be that it led us to develop conceptual structures

which have deepened our understanding of the logical issues involved in cooperation under

asymmetric information. Also, it provided a way for unifying the axiomatically derived theo-

ries of Nash (1950), Harsanyi (1963) and Myerson (1984a).

As described above, the paper is organized as follows: Section 2 is devoted to specifying for-

mally the model of a cooperative game with incomplete information and the notations used,

including the basic assumptions on the class of games considered. We also present a summary

of the facts one needs to know about Myerson’s (1984b) virtual utility approach. Our moti-

vating example is analyzed in Section 3. The virtual utility approach is used in Section 4 to

define our egalitarian criterion. In Section 5, the ideas of Section 4 are applied to define optimal

egalitarian threats. In Section 6 we introduce the S-solution. We then compute the S-solution

of the example of Section 3. Non-existence of the S-solution is discussed in Section 7.

2. Formulation

2.1. Bayesian Cooperative Game

The model of a cooperative game with incomplete information is as follows. Let N = {1, 2, ..., n}

denote the set of players. For each (non-empty) coalition S ⊆ N, DS denotes the set of feasible

joint actions for coalition S . We assume that the sets of joint actions are finite and superadditive,

5See Forges and Serrano (2013) for a discussion about this issue.
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that is, for any two disjoint coalitions6 S and R,

DR × DS ⊆ DR∪S .

For any player i ∈ N, we let Ti denote the (finite) set of possible types for player i. The

interpretation is that ti ∈ Ti denotes the private information possessed by player i. We use the

notations7 tS = (ti)i∈S ∈ TS =
∏

i∈S Ti, t−i = tN\i ∈ T−i = TN\i and t−S = tN\S ∈ T−S = TN\S . For

simplicity, we drop the subscript N in the case of the grand coalition, so we define D = DN and

T = TN . We assume that players have a common prior belief p defined on T , and that all types

have positive marginal probability, i.e., p(ti) > 0 for all ti ∈ Ti and all i ∈ N.8 At the interim

stage each player knows his type ti ∈ Ti, and hence, we let p(t−i | ti) denote the conditional

probability of t−i ∈ T−i that player i infers given his type ti.

The utility function of player i ∈ N is ui : D×T → R. As in most of the literature in cooperative

game theory, we assume that coalitions are orthogonal, namely, when coalition S ⊆ N chooses

an action which is feasible for it, the payoffs to the members of S do not depend on the actions

of the complementary coalition N \ S . Formally,

ui((dS , dN\S ), t) = ui((dS , d
′
N\S ), t),

for every S ⊂ N, i ∈ S , dS ∈ DS , dN\S , d
′
N\S
∈ DN\S and t ∈ T . Then we can let ui(dS , t) denote

the utility for player i ∈ S if dS ∈ DS is carried out. That is, ui(dS , t) = ui((dS , dN\S ), t) for any

dN\S ∈ DN\S (recall that DS × DN\S ⊆ D).

A cooperative game with incomplete information is defined by

Γ = {N, (DS )S⊆N , (Ti, ui)i∈N , p}.

A (direct) mechanism for the grand coalition N is a mapping µN : T → ∆(D), where ∆(D)

denotes the set of probability distributions over D. The interpretation is that if N forms, it makes

a decision randomly as a function of its members’ information. Let the set of mechanisms for

N be denotedMN .

The (interim) expected utility of player i of type ti under the mechanism µN when he pretends

to be of type τi (while all other players are truthful) is

Ui(µN , τi | ti) =
∑

t−i∈T−i

p(t−i | ti)
∑

d∈D

µN(d | τi, t−i)ui(d, (ti, t−i)).

As is standard, we denote Ui(µN | ti) = Ui(µN , ti | ti).

6For any two sets A and B, A ⊆ B denotes weak inclusion (i.e., possibly A = B), and A ⊂ B denotes strict

inclusion.
7For simplicity we write S \ i, S ∪ i and Di instead of the more cumbersome S \ {i}, S ∪ {i} and D{i}.
8The common prior assumption is made without loss of generality, since the solution concept developed in

this paper satisfies the probability-invariance axiom described by Myerson (1984b), and so for any game with

inconsistent beliefs, conditional probabilities and utilities can be jointly modified in a way that the new game

satisfies the common prior assumption and both games impute probability and utility functions that are decision-

theoretically equivalent (see also Myerson (1991, p. 72-3)).
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Players can use any communication mechanism to implement a state-contingent contract. Be-

cause information is not verifiable, the only feasible contracts are those which are induced by

Bayesian Nash equilibria of the corresponding communication game. By the revelation princi-

ple (see Myerson (1991, ch. 6)), we can restrict attention to (Bayesian) incentive compatible

direct mechanisms. Formally, a mechanism µN is incentive compatible (for the grand coalition)

if and only if

Ui(µN | ti) ≥ Ui(µN , τi | ti), ∀ti, τi ∈ Ti, ∀i ∈ N.

We denote asM∗
N

the set of incentive compatible mechanisms for coalition N (“*” stands for

incentive compatible as in Holmström and Myerson (1983)).

A mechanism µN is (interim) individually rational if and only if

Ui(µN | ti) ≥ max
di∈Di

∑

t−i∈T−i

p(t−i | ti)ui(di, t), ∀ti ∈ Ti, ∀i ∈ N.

2.2. Incentive Efficiency and The Virtual Utility Approach

Following Holmström and Myerson (1983) we say that a mechanism µ̄N for the grand coalition

is (interim) incentive efficient if and only if µ̄N is incentive compatible and there does not exist

any other incentive compatible mechanism giving a strictly higher expected utility to all types

ti of all players i ∈ N.9 Because the set of incentive-compatible mechanisms is a compact

and convex polyhedron, (by the supporting hyperplane theorem) the mechanism µ̄N is incentive

efficient if and only if there exist non-negative numbers λ = (λi(ti))i∈N, ti∈Ti
, not all zero, such

that µ̄N is a solution to

max
µN∈M

∗
N

∑

i∈N

∑

ti∈Ti

λi(ti)Ui(µN | ti) (2.1)

We shall refer to this linear-programming problem as the primal problem for λ. Let αi(τi | ti) ≥ 0

be the Lagrange multiplier (or dual variable) for the constraint that the type ti of player i should

not gain by reporting τi. Then the Lagrangian for this optimization problem can be written as

L(µN , λ, α) =
∑

i∈N

∑

ti∈Ti

















λi(ti)Ui(µN | ti) +
∑

τi∈Ti

αi(τi | ti)
[

Ui(µN | ti) − Ui(µN , τi | ti)
]

















,

where µN ∈ MN. To simplify this expression, let

vi(d, t, λ, α) =
1

p(ti)

































λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















ui(d, t) −
∑

τi∈Ti

αi(ti | τi)
p(t−i | τi)

p(t−i | ti)
ui(d, (τi, t−i))

















(2.2)

The quantity vi(d, t, λ, α) is called the virtual utility of player i ∈ N from the joint action d ∈ D,

when the type profile is t ∈ T , w.r.t. the utility weights λ and the Lagrange multipliers α. Then,

the above Lagrangian can be rewritten as

L(µN , λ, α) =
∑

t∈T

p(t)
∑

d∈D

µN(d | t)
∑

i∈N

vi(d, t, λ, α) (2.3)

9We have departed slightly from the formal definition of Holmström and Myerson (1983) in using strict in-

equalities rather than weak inequalities and one strict inequality.
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Necessary and sufficient first order conditions (from duality theory of linear programming)

imply the following result:

Proposition 1.

An incentive compatible mechanism µN is incentive efficient if and only if there exist some

vectors λ ≥ 0 (λ , 0) and α ≥ 0, such that

αi(τi | ti)
[

Ui(µN | ti) − Ui(µN , τi | ti)
]

= 0, ∀i ∈ N, ∀ti ∈ Ti, ∀τi ∈ Ti (2.4)

and µN maximizes the Lagrangian in (2.3) over all mechanisms inMN, namely,

∑

d∈D

µN(d | t)
∑

i∈N

vi(d, t, λ, α) = max
d∈D

∑

i∈N

vi(d, t, λ, α), ∀t ∈ T (2.5)

Equation (2.4) is the usual dual complementary slackness condition. Condition (2.5) says that

any incentive efficient mechanism µN must put positive probability weight only on the decisions

that maximize the sum of the players’ virtual utilities, on each information state. This implies

that if players are given the possibility to transfer virtual utility, conditionally on every state,

then µN would be ex-post efficient10. Incentive compatibility forces each player to act as if he

was maximizing a distorted utility, which magnifies the differences between his true type and

the types that would be tempted to imitate him. Myerson (1984b) refers to this idea as the

virtual utility hypothesis. A more detailed discussion about the meaning and significance of the

virtual utility can be found in Myerson (1991, ch. 10).

The natural vector α in this Lagrangian analysis is the vector that solves the dual problem of

(2.1). This dual problem for λ can be written as

min
α≥0

∑

t∈T

p(t)















max
d∈D

∑

i∈N

vi(d, t, λ, α)















(2.6)

2.3. The M-solution

Using the concept of virtual utility, Myerson (1984a,b) generalizes the Harsanyi-Shapley fic-

titious transfer procedure in order to extend the Shapley NTU value to an environment with

incomplete information. Specifically, for any incentive efficient mechanism µN one associates a

vector (λ, α) of virtual utility scales. These scales correspond to the utility weights λ for which

µN solves the primal problem and the associated Lagrange multipliers α. Then, one considers

the fictitious game in which players are allowed to transfer virtual utility, conditional on every

state t ∈ T , w.r.t. the scales (λ, α). In the virtual game, each intermediate coalition S ⊂ N

commits to a rational threat mechanism to be carried out in case the other players refuse to

cooperate with the members of S . Rational threats are the basis for computing the (virtual)

worth of each coalition, and thus they determine how much credit each type of a player can

claim from the proceeds of cooperation in the grand coalition. Conditionally on every state,

rational threats thus define a coalitional game with transferable virtual utility. A mechanism is

10This property is specially useful for practical applications, in particular when computing value allocations.
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equitable for the grand coalition N if it gives each type of every player his (conditional) ex-

pected Shapley TU value of the fictitious game. A precise definition is given in Section 4 (see

Remark 1).

Myerson (1984b) defines the M-solution to be an incentive efficient mechanism µN for which

there exist virtual scales (λ, α) such that µN is equitable for the grand coalition. The associated

interim utility allocations are called an M-value. A formal definition of the M-solution can be

deduced from our cooperative solution concept (cf. Definition 6) by removing the egalitarian

restrictions from our optimal threat criterion (see Remark 3). Two variants of the value can be

considered depending on whether coalitional threats are required to be incentive compatible or

not. Myerson exclusively deals with the case in which only the mechanism of the grand coalition

is constrained to be (equitable and) incentive compatible. The M-solution is justified only in

situations where cooperative agreements are made before a coalition structure is determined,

while expecting that only the grand coalition will be forming. A detailed discussion on this

issue is given in Myerson (1984b, sec 6).

3. Motivating Examples

In this section we study two examples which motivate the introduction of our solution concept.

In both examples, it is shown that the M-value exhibits some “difficulties”; specifically, there

are compelling reasons leading to an outcome not consistent with the M-value.

3.1. Example 1: A Collective Choice Problem

We consider the following cooperative game with incomplete information. The set of players

is N = {1, 2, 3}. Only player 3 has private information represented by two possible types in

T3 = {H, L} with prior probabilities p(H) = 1 − p(L) = 9/10. Decision options for every

coalition are Di = {di} (i ∈ N), D{1,2} = [D1 × D2] ∪ {d12} = {[d1, d2], d12}, D{i,3} = [Di × D3] ∪

{di
i3, d

3
i3} = {[di, d3], di

i3, d
3
i3} (i = 1, 2) and DN =

[

D{1,2} × D3

]

∪
[

D{1,3} × D2

]

∪
[

D{2,3} × D1

]

. A

detailed interpretation will be given below. Finally, utility functions are as follows:

(u1, u2, u3) L H

[d1, d2, d3] (0, 0, 0) (0, 0, 0)

[d12, d3] (5, 5, 0) (5, 5, 0)

[d1
13, d2] (0, 0, 5) (0, 0, 10)

[d3
13, d2] (10, 0,−5) (10, 0, 0)

[d2
23, d1] (0, 0, 5) (0, 0, 10)

[d3
23
, d1] (0, 10,−5) (0, 10, 0)

This game can be interpreted as a collective choice problem in which three individuals have the

option to cooperate by investing in a work project which would benefit them. The project would

cost $10. It is commonly known that the project is worth $10 to player 1 as well as to player

2; but its value to player 3 depends on her type, which is unknown to the other players. If 3’s

type is H (“high”) then the project is worth $10 to her. However, if 3’s type is L (“low”) then

the project is only worth $5 to her.

Decision options for all coalitions are interpreted as follows. For each player i ∈ N, di is the only

available action for himself, which leaves him with his reservation utility normalized to $0. If
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coalition {1, 2} forms, its members may decide not to undertake the project by choosing [d1, d2]

or they can agree on the option d12 which carries out the project dividing the cost on equal parts.

If players 1 and 3 form a coalition, decision d
j

13 ( j = 1, 3) denotes the option to undertake the

project at j ’s expense. There is no need to consider intermediate financing options, because

they can be represented by randomized decisions. They may also agree on [d1, d3] which does

not implement the project. Decision options for coalition {2, 3} are similarly interpreted. If all

three form a coalition, they may use a random device to pick a two-person coalition which must

then make a decision as above.

To analyze this game, we first consider the situation in which players 1 and 3 must reach a

cooperative agreement to be implemented in case player 2 refuses to cooperate with them. In

such a situation, 1 and 3 face a threat-selection subgame described by a two-person cooperative

game with incomplete information that can be analyzed applying the concepts of Section 2.

Assume that threats are not required to be incentive compatible. Figure 1 illustrates the set of

feasible (i.e., individually rational) interim utility allocations for this (sub)game.

UH
3 UL

3

U1

b

b

b

b

b

b

b

(0,10,5)

(0.5,10,0)

(9.5,0,0)

(9,0,5)

b

(

19
4
, 5, 5

2

)

Figure 1: Feasible allocations for {1, 3}

An equitable utility allocation in this game can be constructed as follows. Suppose that player

3 is given the right to act as a “dictator”, so that she may enforce any mechanism that is indi-

vidually rational given the information that player 1 may infer from the selection of the mech-

anism. In this case, there is a clear decision that both types of player 3 would demand, namely,

d1
13. This decision implements the utility allocation (U1,U

H
3 ,U

L
3 ) = (0, 10, 5) which gives both

types of player 3 the highest expected utility they can get in the game. Moreover, it is effi-

cient (see Figure 1) and safe, i.e., it remains individually rational no matter what player 1 can

infer about 3’s type from this proposal. In the terminology of Myerson (1983), it is a strong

solution11 for player 3. On the other hand, if player 1 were a dictator, then he would clearly

demand the mechanism implementing the allocation (19/2, 0, 0), which yields the largest pos-

sible expected utility he can get, while leaving both types of player 3 with their individual

rationality levels (see Figure 1). Now consider a random-dictatorship in which each player is

11A strong solution may not exist, but if so it is unique up to equivalence in utility.

9



given equal chance of enforcing his/her strong solution. Then, the interim efficient allocation

(19/4, 5, 5/2) = 1
2
(0, 10, 5) + 1

2
(19/2, 0, 0) is equitable for {1, 3}.12 Indeed, random-dictatorship

together with efficiency characterize Myerson’s (1984a) generalization of the Nash bargaining

solution. Thus, this allocation is also the unique M-value for this (sub)game.

The value of a player is an index based on his ability to guarantee high payoffs to all members

of the coalitions to which he belongs (marginal contribution). From that perspective, player

3 should be considered as a weak player. By agreeing to cooperate with player 3, player 1

cannot expect to get more than 19/4 in an equitable allocation. Because players 1 and 2 are

symmetric, the same reasoning is also true for a negotiation between players 2 and 3. Hence,

both players 1 and 2 are better off in coalition {1, 2}, in which case they get 5 each, which is

strictly preferred to 19/4. When negotiating with player 3, 1 and 2 are adversely affected by

the likely presence of 3’s “bad” low type. However, by acting together players 1 and 2 face no

uncertainty at all. Indeed, it is commonly known that the project is equally worth to each of

them. A value allocation for our three player game should thus reward both types of player 3

less than the other two players13.

UH
3 UL

3

U1

b

b

b

b

(0,10,5)

(9,0,0)

(5,5,0)
b

(

9
2
, 5, 5

2

)

Figure 2: Incentive feasible allocations for {1, 3}

Let us suppose now that threats are required to be incentive compatible. Figure 2 depicts the

set of incentive feasible (i.e., incentive compatible and individually rational) interim utility al-

locations for the subgame faced by coalition {1, 3}. For this modified threat-selection game,

the strong solution for player 3 implements again the utility allocation (0, 10, 5).14 However,

the strong solution for player 1 now implements the allocation (9, 0, 0). Proceeding as before,

random-dictatorship prescribes the value allocation (9/2, 5, 5/2).15 We notice that both types of

12This allocation is implemented by the mechanism µ{1,3}(d
1
13 | L) = 1 − µ{1,3}(d

3
13
| L) = 3/4, µ{1,3}(d

1
13 | H) =

µ{1,3}(d
3
13
| H) = 1/2.

13At this point, I have to admit that, although I have tried to make my arguments as compelling as possible, this

sort of discussion may leave room for disagreement.
14When incentive constraints matter, a safe mechanism for player 3 is one which would be incentive compatible

and individually rational if player 1 knew 3’s type.
15This allocation is implemented by the mechanism µ{1,3}(d

1
13 | L) = µ{1,3}([d1, d3] | L) = 1/2, µ{1,3}(d

1
13 | H) =

10



player 3 get the same expected utility in an equitable allocation regardless of whether incentive

constraints are relevant or not. In contrast, 1’s expected utility is reduced in the presence of

incentive constraints. Incentive compatibility leads to efficiency losses that are mainly beared

by the uninformed party, hence increasing the incentives for 1 and 2 to form a coalition, and

thus reducing 3’s bargaining ability. Therefore, we argue that 3’s expected payoff from a value

allocation in the whole game should be further reduced when coalitional threats are required to

be incentive compatible.

The unique M-value of our three-player game is the utility allocation16

(

U1,U2,U
H
3 ,U

L
3

)

=
(

10
3
, 10

3
, 10

3
, 5

3

)

. (3.1)

The M-value rewards players proportionally to their valuations of the project, as if the likely

presence of 3’s low type did not adversely affect players 1 and 2. This is so even when threats are

required to be incentive compatible. In this example, the M-value is insensitive to the negative

externality that adverse selection exerts on 3’s bargaining position.

One possible interpretation for the counterintuitive behavior of the M-value here can be obtained

by applying the random-dictatorship procedure to the grand coalition: the strong solution for

player 3 in N implements the allocation (U1,U2,U
H
3 ,U

L
3 ) = (0, 0, 10, 5). The strong solution

for player 1 (resp. 2) in N implements the allocation (19/2, 1/2, 0, 0) (resp. (1/2, 19/2, 0, 0)).

Averaging these utility vectors we obtain (3.1). It is worth emphasizing that this procedure

does not generally characterize the M-value. Yet for our example, it exhibits why both types of

player 3 extract a considerable amount of utility. The random dictatorship procedure applied to

N ignores the possibilities of cooperation among subsets of players, hence it is only acceptable

when coalitions are treated symmetrically. Indeed, Myerson’s rational threats criterion cares

only about the joint overall gains that can be allocated inside a coalition, but not about the

way in which they are distributed. Because all coalitions can achieve the total surplus from

the project, the M-value treats all coalitions symmetrically. For instance, the mechanism that

implements d
j

j 3
( j = 1, 2) in both states is a rational threat for coalition { j , 3}. This mechanism

however gives the whole surplus of cooperation to player 3, which is manifestly not equitable.

Such a threat can be considered as being not “credible”, in the sense that player i < { j , 3} could

not believe that player j would agree to implement d
j

j 3
in case cooperation in N breaks down.

It seems then that, if we want our considerations to be well reflected in a value allocation

for this game, we require our cooperative solution to take into account the equity restrictions

that coalitions face when sharing the proceeds of cooperation. This intuition will guide our

formulation of the equity principles introduced in the next section. But, before proceeding to

Section 4, and for the sake of completeness, we shall briefly analyze an additional example

introduced by de Clippel (2005).

µ{1,3}(d
3
13
| H) = 1/2.

16The incentive efficient mechanism µN([d12, d3] | t) = 2
3
, µN([d2

23, d1] | t) = µN([d1
13, d2] | t) = 1

6
for all t ∈ T3 is

an M-solution. The value is supported by the utility weights (λ1, λ2, λ
H
3 , λ

L
3 ) = (1, 1, 9/10, 1/5) and the Lagrange

multipliers (α1(L | H), α1(H | L)) = (0, 0). We focus only on non-degenerated values, i.e., those which are

supported by strictly positive utility weights λ. Utility weights are determined up to a positive scalar multiplication.

We then normalize utility weights so that virtual utilities of the uninformed players coincide with their real utilities.

This is possible since 1 and 2 are symmetric. Explicit computations are given in the Supplementary material.
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3.2. Example 2: A Bilateral Trade Problem

Let us consider the following cooperative game with incomplete information. N = {1, 2, 3},

T1 = {H, L}, p(H) = 1 − p(L) = 4/5, Di = {di} (i = 1, 2, 3), D{1,2} = {[d1, d2], d1
12, d

2
12},

D{1,3} = {[d1, d3]}, D{2,3} = {[d2, d3]}, DN = {[d1, d2, d3], [d1
12, d3], [d2

12, d3], d23, d32} and

(u1, u2, u3) [d1, d2, d3] [d1
12, d3] [d2

12, d3] d23 d32

H (0, 0, 0) (90, 0, 0) (0, 90, 0) (0, 90, 0) (0, 0, 90)

L (0, 0, 0) (30, 0, 0) (−60, 90, 0) (0, 30, 0) (0, 0, 30)

The game can be interpreted as follows. Player 2 is the seller of a single good that has no

value for himself. Player 1 is the only potential buyer and he has a valuation of the good that

can be low (30$), with probability 1/5, or high (90$), with probability 4/5. Decision [d1, d2]

represents the no-exchange alternative. Decision d1
12 (resp. d2

12) represents the situation where

player 1 receives the good from player 2 for free (resp. in exchange of 90$). Any other transfer

of money from player 1 to player 2 (between 0$ and 90$) can be represented by a lottery defined

on {d1
12, d

2
12}. Because of the necessity to give player 1 an incentive to participate honestly, both

players are limited in their abilities to share the gains from trade. Indeed, the mechanism that

gives the entire surplus to player 2 in both states, is not incentive compatible. On the other

hand, player 3 acts as a pure intermediary (broker), which does not generate any additional

surplus from the trade. Yet, his participation partly releases players 1 and 2 from the incentive

constraints they face when they cooperate. Indeed, when she joins coalition {1, 2} (so that the

grand coalition forms), decisions d23 and d32 are added to D{1,2} × D{3}. Decision d23 (resp. d32)

gives the whole surplus to player 2 (resp. 3) in both states17.

As it is shown by de Clippel (2005), the unique M-value of this game is the interim utility

allocation
(

UH
1 ,U

L
1 ,U2,U3

)

= (45, 15, 39, 0) . (3.2)

We observe that player 3 is considered a null player. Even though player 3 does not create any

additional surplus, it would be fair to give her some positive payoff, as players 1 and 2 have to

rely on her in order to weaken the incentive constraints they face. As in the previous example,

requiring optimal threats to be incentive compatible does not change the M-value allocation.

We conclude that the M-value is not sensitive to the informational contribution of player 3.

4. Equity Principles for Bayesian Cooperative Games

The Harsanyi NTU value can be characterized using two different fair allocation rules. The

first of these two equity notions, introduced by Myerson (1980) under the name of balanced

contributions, requires that, for any two members of a coalition, the amount that each player

would gain by the other’s participation should be equal when utility comparisons are made in

some weighted utility scale. The second equity principle, denominated subgame value equity by

Imai (1983), says that, for every coalition S ⊆ N, each player in S should obtain his Shapley TU

17It can be shown that when player 3 drops out of the game and coalition {1, 2} forms, the constraint asserting that

type 1H has no incentive to report to be type 1L is binding in any incentive efficient mechanism for this coalition.
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value from the game restricted to the subcoalitions of S when utility has been made comparable

in some weighted utility scale. These two equity notions are in dual relationship: for fixed utility

scales both allocation rules are equivalent (equity equivalence). In this Section, we extend this

result to the case of incomplete information.

Given a vector of utility weights λ and a vector of Lagrange multipliers α, let us consider the

fictitious game in which players make interpersonal utility comparisons in the virtual utility

scales (λ, α). In such a virtual game, each player’s payoffs are represented in the virtual utility

scales and virtual payoffs are transferable among the players (conditionally on every state).

We assume that, as a threat during the bargaining process within the grand coalition N, each

coalition S ⊂ N commits to some mechanism µS : TS → ∆(DS ).18 We denote byMS the set of

mechanisms for S . LetM =
∏

S⊆NMS denote the set of possible profiles of mechanisms that

all various coalitions might select.

Let vi(µS , t, λ, α) denote the linear extension of vi(·, t, λ, α) (as defined in (2.2)) over µS . We

define WS (µS , t, λ, α) as the sum of virtual utilities that the members of S ⊆ N would expect in

state t when they select the mechanism µS , that is

WS (µS , t, λ, α) =
∑

i∈S

vi(µS , t, λ, α). (4.1)

Let W(η, t, λ, α) = (WS (µS , t, λ, α))S⊆N denote the characteristic function game when the vector

of threats η = (µS )S⊆N ∈ M is selected by the various coalitions19 in the virtual game. For

any vector η ∈ M, let ηS = (µR)R⊆S denote its restriction to the subcoalitions of S . We define

W |S (ηS , t, λ, α) as the subgame of W(η, t, λ, α) obtained by restricting the domain of W(η, t, λ, α)

to the subsets of S . Let φ be the Shapley TU value operator ; for i ∈ S ⊆ N, φi(S ,W |S (ηS , t, λ, α))

will thus denote the Shapley TU value of player i in the subgame restricted to S when the vector

of threats ηS is selected in the virtual game.

We denote Vi(µS | ti, λ, α) the expected virtual utility of type ti of player i ∈ S when the members

of S agree on µS , i.e.,

Vi(µS | ti, λ, α) ≔
∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α). (4.2)

Definition 1 (Equitable mechanism).

For any coalition S ⊆ N, the mechanism µS is equitable for S w.r.t. ηS , λ and α if

Vi(µS | ti, λ, α) =
∑

t−i∈T−i

p(t−i | ti) φi(S ,W |S (ηS , t, λ, α)), ∀ti ∈ Ti, ∀i ∈ S . (4.3)

If for all coalitions R ⊆ S , µR is equitable for R w.r.t. ηR, λ and α, then the vector of threats

ηS = (µR)R⊆S is called equitable w.r.t. λ and α.

18When a coalition S forms, it cannot rely on the information possessed by the players outside S . In other

words, a communication mechanism for a coalition must be measurable with respect to the private information of

its members. This is equivalent to define a mechanism as µS : T → ∆(DS ) with µS (t) = µS (t′) for every t, t′ ∈ T

such that tS = t′
S

.
19Strictly speaking, the component µN ∈ MN of η is not a threat, since there is no coalition to threaten. However,

we keep this terminology in order to simplify the exposition.
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Then, a mechanism for coalition S is said to be equitable for S if it gives every type of a

player in S his (conditionally) expected Shapley TU value from the virtual subgame obtained

by restricting W(η, t, λ, α) to the subcoalitions of S . This equity notion extends Imai’s subgame

value equity condition20.

Remark 1. When S = N, the equality in (4.3) reduces to Myerson’s (1984b) principle for

equitable compromises.

Definition 2 (Egalitarian mechanism).

For any coalition S ⊆ N, the mechanism µS is egalitarian for S w.r.t. (µS \i)i∈S , λ and α if

∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

[

vi(µS , t, λ, α) − vi(µS \ j, t, λ, α)
]

=

∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

[

v j(µS , t, λ, α) − v j(µS \i, t, λ, α)
]

, ∀ti ∈ Ti, ∀i ∈ S . (4.4)

If for all coalitions R ⊆ S , µR is egalitarian for R w.r.t. (µR\i)i∈R, λ and α, then the vector of

threats ηS = (µR)R⊆S is called egalitarian w.r.t. λ and α.

Equation (4.4) says that the expected average virtual contribution of the different players in S

to player i equals the expected average virtual contribution of player i to the different players

in S as assessed by his type ti. This egalitarian criterion generalizes Myerson’s balanced con-

tributions condition21. Indeed, when information is complete (i.e., Ti is a singleton for every

i ∈ N, so that we can set α = 0), condition (4.4) implies that the j-th terms on both sides are

equal: the marginal contribution of j to i, measured by vi(µS , λ)−vi(µS \ j, λ), equals the marginal

contribution of i to j, symmetrically measured by v j(µS , λ) − v j(µS \i, λ). The same implication

cannot be expected to generally hold in the case of asymmetric information. The reason is that,

since negotiations take place at the interim stage, the individual probability assessments of the

different types of the various players need not be the same. Then, i’s personal evaluation of j’s

gains may not coincide with j’s evaluation of her own gains.

For given arbitrary vectors (µR)R⊂S , λ and α, equity and egalitarianism are in general two di-

fferent notions of “fairness” for coalition S ⊆ N. In particular, notice that while an egalitarian

mechanism µS depends only on the mechanisms (µS \i)i∈S , an equitable mechanism depends on

the whole profile of threats (µR)R⊂S . However, it turns out that if the whole profile ηS is egalita-

rian, then it is also equitable, and viceversa.

Proposition 2 (Equity equivalence).

For any coalition S ⊆ N, the vector of threats ηS = (µR)R⊆S is equitable (w.r.t. λ and α) if and

only if it is egalitarian (w.r.t. λ and α).

This result is significant, first, in establishing a dual relationship between equity (as defined by

the Shapley TU value) and the balanced contributions in environments with incomplete informa-

20When information is complete, so that Ti is a singleton for every i ∈ N, (4.3) reduces to the first condition in

Proposition 6 of Imai (1983).
21It also extends the “preservation of average differences” principle introduced by Hart and Mas-Colell (1996).
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tion. Second, and most important, Proposition 2 helps us to justify why our egalitarian criterion

is (probably) the most appropriate generalization of the balanced contributions condition.

When information is asymmetric, so that the probability assessments of the various types of dis-

tinct players are different, Proposition 2 cannot be deduced from the equity equivalence under

complete information simply by taking (conditional) expectations. Instead we use a “consis-

tency property” of the Shapley TU value: the value of a player is the average of his marginal

contribution to the grand coalition WN−WN\i and his values φi(N\ j,W |N\ j) in the subgames with

|N| − 1 players (see Hart (2004, p. 39)). Apart from this clarification, the proof of Proposition 2

is straightforward .

Proof. We start proving the “only if” part. Let η ∈ M be a vector of equitable threats (w.r.t. λ and α).

Let S ⊆ N and i ∈ S be fixed. Then, for any j ∈ S \ i, µS \ j is equitable for S \ j (w.r.t. ηS \ j, λ and α).

Thus, for all ti ∈ Ti,

∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

φi

(

S \ j,W |S \ j(ηS \ j, t, λ, α)
)

=
∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

vi(µS \ j, t, λ, α). (4.5)

On the other hand, because µS is equitable for S (w.r.t. ηS , λ and α), we have that for all ti ∈ Ti,

∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α) =
∑

t−i∈T−i

p(t−i | ti)φi (S ,W |S (ηS , t, λ, α))

=
∑

t−i∈T−i

p(t−i | ti)
1

|S |

[

WS (µS , t, λ, α) −WS \i(µS \i, t, λ, α)

+
∑

j∈S \i

φi

(

S \ j,W |S \ j(ηS \ j, t, λ, α)
)

]

=
1

|S |

∑

t−i∈T−i

p(t−i | ti)

[

vi(µS , t, λ, α) +
∑

j∈S \i

vi(µS \ j, t, λ, α)

+
∑

j∈S \i

(

v j(µS , t, λ, α) − v j(µS \i, t, λ, α)
)

]

, (4.6)

where (4.5) has been used in the last equality. Finally, rearranging terms in (4.6) we get (4.4).

Consider now the “if” part. Let η ∈ M be a vector of egalitarian threats (w.r.t. λ and α). For any coalition

S ⊆ N and any player i ∈ S of type ti, the (conditionally) expected marginal contribution of player i to

coalition S is

∑

t−i∈T−i

p(t−i | ti)
[

WS (µS , t, λ, α) −WS \i(µS \i, t, λ, α)
]

=
∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α) +
∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

[

v j(µS , t, λ, α) − v j(µS \i, t, λ, α)
]

=
∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α) +
∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

[

vi(µS , t, λ, α) − vi(µS \ j, t, λ, α)
]

=
∑

t−i∈T−i

p(t−i | ti)



















|S |vi(µS , t, λ, α) −
∑

j∈S \i

vi(µS \ j, t, λ, α)



















,
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where the second equality is due to the fact that µS is egalitarian for S w.r.t. (µS \ j) j∈S , λ and α. Therefore,

∑

t−i∈T−i

p(t−i | ti)φi(S ,W |S (ηS , t, λ, α)) =
∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α).

We conclude this section with a convenient characterization of an equitable mechanism for the

grand coalition. It will allow us to identify the real interim utilities corresponding to an equitable

allocation in the virtual game.

Definition 3 (Warranted claims).

Let (λ, α) be a vector of virtual scales and η ∈ M a vector of threats. The interim allocation

ω ∈
∏

i∈N R
Ti is warranted by λ, α and η if

















λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















ωi(ti) −
∑

τi∈Ti

αi(ti | τi)ωi(τi) =

∑

t−i∈T−i

p(t)φi(N,W(η, t, λ, α)), ∀ti ∈ Ti, ∀i ∈ N. (4.7)

The quantity ωi(ti) is called the warranted claim of type ti of player i.

Remark 2. By Lemma 1 in Myerson (1983), the warrant equations have a unique solution in the

vector of warranted claims of player i, provided that λ > 0. Furthermore, the solution (weakly)

increases (in the vector sense) as the right-hand side is increased.

The following result follows from the equalities (3.10) and (3.11) in Myerson (1984b).

Lemma 1.

Let (λ, α) be a vector of virtual scales such that α is a solution of the dual for λ. Let η ∈ M be

a vector of threats such that µN is a solution of the primal for λ. The mechanism µN is equitable

for N w.r.t. η, λ and α if and only if the vector of interim utilities U(µN) ≔ (Ui(µN | ti))i∈N,ti∈Ti
is

warranted by λ, α and η.

We can thus interpret the warrant equations: they implicitly define ω to be the real utility allo-

cation which would give every type of each player (in the grand coalition) his expected Shapley

TU value in the virtual game.

5. Optimal Threats

In this section we use the equity principles previously developed in order to extend Harsanyi’s

(1963, sec. 9) optimal threat strategies. Specifically, we modify Myerson’s (1984b) rational

threats by requiring coalitional threats to meet our egalitarian criterion.

Definition 4 (Optimal egalitarian threats).

The mechanism µ̄S ∈ MS is an optimal egalitarian threat for S ⊆ N w.r.t. (µS \i)i∈S , λ and α if
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and only if µ̄S is a solution to

max
µS ∈MS

∑

t∈T

p(t)WS (µS , t, λ, α) (5.1)

s.t. (4.4)

The optimal threats criterion in (5.1) postulates that each coalition should maximize the ex-ante

expected total virtual utility that its members would earn when coalitions commit to a vector

of egalitarian threats. In view of Proposition 2, we could also have defined an optimal threat

replacing the egalitarian constraints (4.4) in (5.1) by the equity conditions in (4.3). However,

this alternative definition is less tractable since threats of one coalition cannot be determined

without knowledge of threats of all its subcoalitions22.

We notice that the maximization in (5.1) is carried out over all mechanisms inMS . However,

we can alternatively require threats to be incentive compatible. A mechanism µS is incentive

compatible for coalition S ⊆ N if and only if23

∑

t−i∈T−i

p(t−i | ti)
∑

dS ∈DS

µS (dS | tS )ui(dS , t)

≥
∑

t−i∈T−i

p(t−i | ti)
∑

dS ∈DS

µS (dS | τi, tS \i)ui(dS , t), ∀i ∈ S , ∀ti, τi ∈ Ti.

We denote asM∗
S

the set of incentive-compatible mechanisms for coalition S .

Definition 5 (Incentive compatible optimal egalitarian threats).

A mechanism µ̄S ∈ MS is an incentive compatible optimal egalitarian threat for S ⊆ N w.r.t.

(µS \i)i∈S , λ and α if and only if it solves (5.1) over all mechanisms inM∗
S .

Given some virtual scales (λ, α), (incentive compatible) optimal egalitarian threats must be

recursively constructed: for each S , given the threats (µ̄S \i)i∈S , µ̄S is determined solving (5.1).

This recursion leads to a profile of threats η̄ = (µ̄S )S⊆N which we call an (coalitionally incentive

compatible) egalitarian solution w.r.t. λ and α.24

Myerson (1984b, sec. 6) argues that maximizing the ex-ante expected virtual worth of a coali-

tion is appropriate in games where only the mechanism chosen by the grand coalition will

be implemented. In such a situation, the final payoffs are granted by the grand coalition and

therefore the mechanisms (µS )S⊂N need not be either equitable or incentive compatible. Thus,

Myerson’s (1984b) rational threats maximize the objective function in (5.1) constrained only

by the feasibility of the mechanisms, i.e., µS ∈ MS . Even if we agree with this reasoning,

the examples in Section 3 illustrate situations in which some relevant aspects of the interme-

diate coalitions are ignored by Myerson’s rational threat criterion. In contrast, we think that

for a mechanism µS to constitute an appropriate measure of the strength of coalition S , it must

22A definition like that would be consistent with Imai’s (1983) characterization of the Harsanyi NTU value.
23Clearly, when S = N this definition coincides with the one introduced in Section 2.
24Egalitarian solutions generalize the monotonic solutions introduced by Kalai and Samet (1985) to games with

incomplete information.
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be equitable regardless of whether it is expected to be implemented or not. It should be clear

that a vector η = (µS )S⊆N of (inductively constructed) optimal egalitarian threats is egalitarian.

Therefore, by Proposition 2, η is also equitable. This reasoning is summarized in the following

proposition.

Proposition 3.

Let η = (µS )S⊆N be an (coalitionally incentive compatible) egalitarian solution w.r.t. λ and α.

Then, for each coalition S ⊆ N, ηS is equitable w.r.t. λ and α.

6. The S-Solution

In this section we apply the ideas developed in the preceding sections to construct an egalitarian-

based cooperative solution.

Definition 6 (S-solution).

A mechanism µ̄N ∈ MN is an S-solution if and only if there exist vectors λ > 0, α ≥ 0 and

η = (µS )S⊆N ∈ M with µN = µ̄N such that

(i ) µN is a solution of the primal problem for λ.

(ii ) α is a solution of the dual problem for λ.

(iii ) For each coalition S ⊂ N, µS is an optimal egalitarian threat for S w.r.t. (µS \i)i∈S , λ and α.

(iv ) µN is an egalitarian threat for N w.r.t. (µN\i)i∈N , λ and α.

The vector of interim utilities U(µ̄N) is called an S-value.

Alternatively, a bargaining solution can be defined replacing condition (iii ) by

(iii ′ ) For each coalition S ⊂ N, µS is an incentive compatible optimal egalitarian threat for S

w.r.t. (µS \i)i∈S , λ and α.

In that case an S-solution is called coalitionally incentive compatible.

Conditions (i ) − (iv ) in our definition of an S-value have natural interpretations: (i ) genera-

lizes the λ-weighted utilitarian criterion, (ii ) says that α is the vector of Lagrange multipliers

associated with (i ), and (iii ) extends Harsanyi’s (1963) optimal threats criterion to games with

incomplete information. It follows from (i ) that µN maximizes the Lagrangian in (2.3). Hence,

(i ) and (iv ) imply that µN is also an optimal egalitarian threat for N w.r.t. (µN\i)i∈N , λ and α

(i.e., µN solves (5.1) for N). Therefore, the whole vector of threats η = (µS )S⊆N is an egalitarian

solution.

Remark 3. By Lemma 1, we can equivalently define an S-solution replacing condition (iv ) by

(iv ′ ) U(µN) is warranted by λ, α and η.

This equivalent definition puts the S-solution in a form that makes it easily comparable with the

M-solution. Indeed, with (iv ′ ), the S-solution differentiates itself from the M-solution only in

that the latter does not require optimal threats to meet our egalitarian criterion. Then, it follows

that when n = 2 both solution concepts coincide25.

25Singleton coalitions are not constrained by the egalitarian restrictions in (4.4)
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Theorem 1 (Two-player games).

Let Γ be a two-player cooperative game with incomplete information. Then, any (non-

degenerated) M-solution is an S-solution and viceversa. Moreover, if Γ is a two-person bar-

gaining problem26, both solution concepts coincide with Myerson’s (1984a) generalization of

the Nash bargaining solution.

Theorem 2 (Individual rationality).

Both variants of the S-bargaining solution are interim individually rational.

Proof. Let µN be an S-solution supported by η, λ and α. For each i ∈ N, let µ̂i ∈ Mi be defined by
∑

t−i∈T−i

p(t−i | ti)
∑

di∈Di

µ̂i(di | ti)ui(di, t) = max
di∈Di

∑

t−i∈T−i

p(t−i | ti)ui(di, t), ∀ti ∈ Ti, (6.1)

For each t ∈ T , the TU game W(η, t, λ, α) is weakly superadditive27 (since decision sets are superad-

ditive). Then, φi(N,W(η, t, λ, α)) ≥ vi(µi, t, λ, α) for every t ∈ T . Also, for all i ∈ N,
∑

t−i∈T−i
p(t−i |

ti)vi(µi, t, λ, α) ≥
∑

t−i∈T−i
p(t−i | ti)vi(µ̂i, t, λ, α) for all ti ∈ Ti, since µi is an optimal egalitarian threat for

i. Then, we have that for each i ∈ N and ti ∈ Ti,
















λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















Ui(µN | ti) −
∑

τi∈Ti

αi(ti | τi)Ui(µN | τi)

=
∑

t−i∈T−i

p(t)φi(N,W(η, t, λ, α))

≥
∑

t−i∈T−i

p(t)vi(µ̂i, t, λ, α)

≥

















λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















max
di∈Di

∑

t−i∈T−i

p(t−i | ti)ui(di, t)

−
∑

τi∈Ti

αi(ti | τi) max
di∈Di

∑

t−i∈T−i

p(t−i | τi)ui(di, (τi, t−i)), (6.2)

where the first line follows from the fact that U(µN) is warranted by η, λ and α (cf. condition (iv′ )); the

second line follows from the first part of the proof; and finally, the last inequality uses (6.1) applied to τi.

The desired conclusion is obtained from (6.2) together with Remark 2.

The following result follows directly from the definitions (cf. Harsanyi (1963, sec. 10)).

Theorem 3 (Generalization of the Harsanyi NTU value).

Let Γ be a cooperative game with complete information, i.e., Ti is a singleton for every i ∈ N.

If µ̄N is an S-solution of Γ, then the utility allocation U(µ̄N) is a Harsanyi NTU value of Γ.

Conversely, if the utility allocation Ū = (Ūi)i∈N is a (non-degenerated) Harsanyi NTU value of

Γ, then there exists an S-solution of Γ, µ̄N , such that Ū = U(µ̄N).

We are now ready to compute our bargaining solution in the examples introduced in Section 3.

26A two-person bargaining problem is a cooperative game satisfying: n = 2, Di = {di} for all i ∈ N and

ui(d
∗, t) = 0 for all i ∈ N and t ∈ T , where d∗ ≔ [di, d j] is the disagreement outcome.

27A TU game (N,W) is weakly superadditive if and only if for each player i ∈ N, W(S \ i) +W({i}) ≤ W(S ) for

all coalitions S ⊆ N containing i. Clearly, by definition of the Shapley TU value, weak superadditivity implies that

φi(N,W) ≥ W({i}) for every i ∈ N.

19



6.1. Example 1

Let us consider the vector of utility weights λ̄ = (λ̄1, λ̄2, λ̄
H
3 , λ̄

L
3) = (1, 1, 9/10, 1/5). First, we

notice that for any feasible mechanism µN ∈ MN we have that

U(µN , λ̄) ≔ U1(µN) + U2(µN) + 9
10

U3(µN | H) + 1
5
U3(µN | L) ≤ 10, (6.3)

Consider now the problem of finding the best incentive compatible and individually rational

utility allocation for each possible type of every player. Straightforward computations yield

that the best allocation for player 1 is (U1,U2,U
H
3 ,U

L
3 ) = (19/2, 1/2, 0, 0). By symmetry, the

best allocation for player 2 is (1/2, 19/2, 0, 0). Finally, (0, 0, 10, 5) is simultaneously the best

allocation for both types of player 3. These three allocations are incentive efficient, and they

lie on the hyperplane U(µN , λ̄) = 10. Then, by convexity of M∗
N

, any individually rational

and incentive efficient mechanism µN must satisfy U(µN , λ̄) ≥ 10. Thus, (6.3) implies that the

incentive efficient frontier coincides with the hyperplane U(µN , λ̄) = 10 on the individually

rational zone. Therefore, in view of Theorem 2, condition (i ) implies that a value allocation can

only be supported by the utility weights λ̄.28

The utility weights λ̄ reflect the optimal inter-type compromise between both types of player

3. To conceal her type, player 3 must achieve a balance that puts extra weight on the payoff

maximization goals of type L (inscrutability principle). This is what explains that λ̄L
3 differs

from the prior probability p(L) by scaling up the actual utility of type L. On the other hand, the

optimal value of the dual variables in the dual problem for λ̄ is (ᾱ3(L | H), ᾱ3(H | L)) = (0, 0).

Given these virtual scales, it can be easily verified that the only S-value of this game is29

(

U1,U2,U
H
3 ,U

L
3

)

=
(

61
18
, 61

18
, 60

18
, 20

18

)

. (6.4)

According to (6.4), the S-value rewards both types of player 3 less than players 1 and 2. This

is in contrast to the M-value, which rewards players proportionally to their valuations of the

project, as if there were no adverse selection problem. This feature of the S-value is due to the

fact that, by requiring optimal threats to satisfy our egalitarian criterion, coalitions {1, 3} and

{2, 3} cannot agree to fully distribute the total gains of cooperation. Indeed, because players

in coalition {i, 3} (i = 1, 2) are constrained to choose a feasible allocation giving them equal

gains (in the virtual utility scales), then they have to settle for a sum of payoffs of at most

$20/3(< $10) in state L. This implies that, in a two-person coalition with 3, players 1 and 2

cannot expect to get more than $29/6(< $5) each. That is, the expected “marginal contribution”

of player 3 in a two-person coalition is strictly lower than what 1 and 2 can get in coalition

{1, 2}. Consequently, 3 is perceived to have a weak bargaining position. It then appears that the

S-value reflects the game situation better that the M-value.

The asymmetry reflected in the allocation (6.4) comes uniquely from the fact that players 1 and

2 are adversely affected by 3’s low type. None of the inefficiencies created by the incentive

compatibility is taken into account: on one hand, incentive constraints are not essential for the

28The same utility weights support the unique M-value (see Section 3).
29Detailed computations are provided in the Supplementary material.
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grand coalition (i.e., incentive constraints do not impose any restriction for achieving an ex-

post efficient allocation) and, on the other hand, optimal egalitarian threats are not required to

be incentive compatible. The unique coalitionally incentive compatible S-value of this game is

(

U1,U2,U
H
3 ,U

L
3

)

=
(

41
12
, 41

12
, 40

12
, 10

12

)

. (6.5)

When we take account of the incentive constraints that coalitions {1, 3} and {2, 3} face, our

bargaining solution gives much less to player 3 in both states compared to the situation in

which incentive constraints are only imposed for the grand coalition (compare (6.4) and (6.5)).

In fact, when coalition {i, 3} (with i = 1, 2) is required to choose a mechanism that is incentive

compatible, its members cannot agree on a virtual utility allocation giving them equal gains

without an efficiency loss. Thus player 3’s bargaining ability is further lowered by the necessity

for players to trust each other.

It seems that, in this particular game, our solution concept provides much more agreement with

what we expect the outcome to be.

6.2. Example 2

Proceeding as in Example 1, it can be shown that any incentive compatible and individually

rational mechanism is incentive efficient if and only if it satisfies

4
5
U1(µN | H) + 1

5
U1(µN | L) + U2(µN) + U3(µN) = 78, (6.6)

The natural vector of utility weights is thus λ̄ = (λ̄H
1 , λ̄

L
1 , λ̄2, λ̄3) = (4/5, 1/5, 1, 1). For these

utility weights, the corresponding dual variables are (ᾱ1(L | H), ᾱ1(H | L)) = (0, 0). Then, we

conclude that incentive constraints do not matter for the grand coalition. As it was previously

discussed in Section 3.2, the participation of player 3 in the grand coalition releases players 1

and 2 from the incentive constraints they face in coalition {1, 2}. Unlike Example 1, here utility

weights and prior probabilities coincide. This is so because player 3 allows 1 and 2 to fully

distribute the gains from trade. Types are then essentially verifiable, as any transfer of utility

can be implemented by a utility equivalent incentive compatible mechanism.

Given these virtual scales, it can be checked that the interim allocation in (3.2) is also the unique

S-value of this game. Both the M-value and the S-value coincide because the virtual value of

coalition {1, 2} is computed while using the vector (λ, α) as specified for the grand coalition.

By doing so, we act as if incentive constraints do not matter for coalition {1, 2}, although they

do. To remedy this, we impose incentive constraints for all intermediate coalitions. The unique

coalitionally incentive compatible S-value of this game is the allocation

(

U1,U2,U
H
3 ,U

L
3

)

= (45, 13, 38.6, 0.8) . (6.7)

The S-value generates an interesting alternative to the M-value in de Clippel’s example. This

game however also puts in evidence some “difficulties” with our bargaining solution. First,

notice that while it is the case that the coalitionally incentive compatible S-value rewards player

3, it is as if both players 1 and 2 pay $0.8 to player 3 in exchange of her service. This may be

considered as not reasonable since only player 2 needs the help of player 3 in order to extract the

whole cooperative surplus. Second, the virtual worths of all coalitions in our bargaining solution
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are computed using the vector (λ, α) specified for the grand coalition. As a consequence, the

efficiency losses due to the incentive compatibility at the level of all subcoalitions are not taken

into account, unless incentive constraints are explicitly required.

All in all, it turns out that both examples presented in this paper are similar in nature, and that

the S-solution prescribes intuitively appealing outcomes in each case.

7. Some Comments About the (Non-)Existence of the S-solution

The S-solution is characterized by strong equity conditions that may lead to its non-existence

in some cases. In this section we shall exhibit an example of a 4-player cooperative game

with complete information in which there is no S-solution. The following hinders the existence

of the S-solution in this example: first, optimal egalitarian threats do not exist for some utility

weights; second, optimal egalitarian threats vary discontinuously with the utility weights, which

makes impossible the consistency of conditions (i ) and (iv ) in the definition of the S-solution.

This example can be used to construct a game with incomplete information satisfying the same

properties. The method is outlined in footnote 30 below. We study instead the game with

complete information, this being however easier to analyze. Finally, we discuss the reasons

why the methods and techniques used to obtain existence results of the Harsanyi NTU value

cannot be well adapted to games with incomplete information.

7.1. Example 3: Non-existence of the S-solution

Let ΓC be the following cooperative game (with complete information): the set of players is

N = {1, 2, 3, 4}. Decision options for every coalition are Di = {di} (i ∈ N), D{1,2} = [D1 × D2] ∪

{d12} = {[d1, d2], d12}, D{1,3} = D1 × D3 = {[d1, d3]}, D{2,3} = [D2 × D3] ∪ {d23} = {[d2, d3], d23},

D{1,2,3} =
[

D1 × D{2,3}
]

∪
[

D{1,2} × D3

]

, DS∪{4} = DS × D4 (S ⊂ N \ 4) and DN =
[

D{1,2,3} × D4

]

∪

{d1
N , d

2
N, d

3
N
, d4

N}. Finally, utility functions are as follows:

dN (u1, u2, u3, u4)

[d1, d2, d3, d4] (0, 0, 0, 0)

[d12, d3, d4] (2, 2, 0, 0)

[d1, d23, d4] (0, 1, 1, 0)

d1
N

(−1, 3, 3, 3)

d2
N

(3,−1, 3, 3)

d3
N

(3, 3,−1, 3)

d4
N

(3, 3, 3,−1)

We notice that decisions [d1, d2, d3, d4], [d12, d3, d4] and [d1, d23, d4] are strictly Pareto domi-

nated. Hence, the Pareto frontier (of the grand coalition) is a bounded surface contained in the

hyperplane

u1 + u2 + u3 + u4 = 8.

Natural utility weights supporting an S-solution are λ̄i = 1 for all i ∈ N. However, no egalitarian

solution can be constructed for λ̄. Let us see this. For coalitions consisting of a single player

i (i ∈ N), the unique optimal egalitarian threat is the (deterministic) mechanism di. Similarly,

coalition {1, 2} has a unique optimal egalitarian threat given by the (deterministic) mechanism
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d12. For coalition {2, 3} (resp. {1, 3}) we have that the unique optimal egalitarian threat is d23

(resp. [d1, d3]). Then, the egalitarian restrictions in (4.4) for coalition S = {1, 2, 3} reduce to:

u1(µS ) − u3(µS ) = 1 (7.1)

u2(µS ) − u1(µS ) = 1 (7.2)

Condition (7.2) implies that µS ([d12, d3]) = 1 − µS ([d1, d23]) = 0. However, (7.1) requires that

µS ([d12, d3]) > 0, which is a contradiction. We conclude that no egalitarian solution exists w.r.t.

λ̄.

Proposition 4.

The game ΓC has no S-solution. This holds even if we allow some (but not all) utility weights

to vanish.30

A detailed proof is given in the Appendix. A further difficulty prevents the existence of an S-

solution in this game, namely, the optimal solution correspondence of (5.1) may not be upper-

hemicontinuous in the utility weights. Consider, for instance, coalition {1, 2}. The set of feasible

expected utility allocations for {1, 2} is given by the line segment ~ow illustrated in Figure 3.

o

u2

2

u12

λ1u1 = λ2u2bw

Figure 3: Feasible allocations for {1, 2}

For any vector λ > 0 such that λ1/λ2 , 1, the unique optimal egalitarian threat is µ̄{1,2}(d12) = 1−

µ̄{1,2}([d1, d2]) = 0, this being the unique feasible mechanism satisfying the egalitarian constraint

λ1u1 = λ2u2. The corresponding utility allocation is o. However, when λ1/λ2 = 1, the unique

optimal egalitarian threat is µ̃{1,2}(d12) = 1 − µ̃{1,2}([d1, d2]) = 1, achieving the utility allocation

w. We conclude that the optimal solutions correspondence of (5.1) for S = {1, 2}, viewed as a

function of λ1/λ2, is discontinuous. As stated earlier, this lack of continuity impedes conditions

(i ) and (iv ) to be simultaneously satisfied as the utility weights λ accommodate. This issue can

30 The game ΓC can be used to construct a game with incomplete information for which there is no S-solution.

Let N and (DS )S⊆N be defined as in ΓC . For each i = 1, 2, 3, let Ti be a singleton. Player 4 has private information

in the form of two possible types T4 = {A, B} with prior probabilities q(A) = 1 − q(B) > 0. Utility functions are

defined as follows: wi(dN , A) = ui(dN) and wi(dN , B) = βui(dN) (with β > 0), where (ui)i∈N is defined as in ΓC .

Then, the game ΓI = {N, (DS )S⊆N , (wi, Ti)i∈N , q} has no S-solution. Indeed, because the incentives of player 4 are

fully aligned in both states, incentive constraints are not essential. Thus, we can set the Lagrange multipliers to be

α4(A | B) = α4(B | A) = 0. Virtual utilities then reduce to λ-weighted utilities. The rest of the analysis follows,

mutatis mutandis, the same reasoning as for ΓC .
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only be appreciated while exhaustively analyzing conditions (i ) and (iv ) for all values of λ (see

proof of Proposition 4).

7.2. Free Disposal and the Structure of Incentives

When information is complete, the above difficulties are ruled out by considering games whose

characteristic function is comprehensive (free disposal of utility). Then, one is tempted to ac-

commodate free disposal activities by introducing decisions in each DS specifying how much

utility a player may discard. This has no significant consequence when information is complete,

however under asymmetric information, adding new decisions may change the incentive struc-

ture of the game: free disposal can be used for signaling purposes, i.e., for weakening incentive

compatibility. As a result, for any interim utility allocation on the interim incentive efficient

frontier (of the grand coalition), we cannot generally extend the original game by introduc-

ing additional decisions allowing players to discard utility (conditional on every state), while

leaving the original utility allocation efficient in the expanded problem31. In order to illustrate

this issue, consider again the (sub)game faced by players 1 and 3 in Example 1. Assume now

that player 3 is allowed to dispose of her utility in state H. Specifically, let d̃ be such that

u3(d̃,H) = 0, u3(d̃, L) = 5 and u1(d̃,H) = u1(d̃, L) = 0. Decision d̃ is equivalent to implement

decision d1
13 first, but then player 3 agrees to discard 10 units of her utility in state H. Now

consider the expanded problem with decision set D̃{1,3} = D{1,3} ∪ {d̃}. The new set of incentive

feasible interim utility allocations is depicted in Figure 4.

UH
3 UL

3

U1

b

b

b

b

b

b

(0,10,5)

(9.5,0,0)

(9,0,5)

(5,5,0)

Figure 4: Incentive feasible allocations for {1, 3} in the expanded problem

When comparing Figures 2 and 4, we observe that the game has substantially changed after d̃

was introduced. As required, type H of player 3 can now achieve all the allocations in which he

discards any nonnegative amount of utility. However, permitting free disposal facilitated also

the fulfillment of incentive constraints, thus allowing both players to achieve higher interim

31Clearly, this issue is not present in ΓC , this being a game with complete information. Neither is it in ΓI ,

as incentive constraints are not essential in this game. Nevertheless, in more general games in which incentives

constraints are binding, the same difficulties are also encountered. In that cases, in addition to the utility weights λ,

also the dual variables α have to be taken into consideration. Exemplify such situations is, however, more difficult

due to the endogenous nature of the dual variables.

24



utilities with respect to the original problem32. In particular, any incentive efficient allocation

in the expanded game is ex-post efficient, which is not the case in the original game (cf. Figure

1). This implies that incentive constraints are not essential in the enlarged problem. In addition,

the supporting utility weights to the Pareto frontier of the expanded bargaining problem are no

longer the same as in the original problem33.
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equity imposes no restrictions for singleton coalitions. Hence, in this case, allowing for free disposal is no longer

necessary for guaranteeing existence and (upper-hemi)continuity of the optimal egalitarian threats.
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9. Appendix

9.1. Proof of Proposition 4

Let µN be an S-solution of ΓC supported by λ and η = (µS )S⊆N . We verify recursively conditions

(i ) − (iv ). Because ΓC has complete information, there are no incentive constraints, which is

equivalent to set α = 0, so that virtual utility reduces to λ-weighted utility and the egalitarian

criterion in (4.4) becomes

λi

(

ui(µS ) − ui(µS \ j)
)

= λ j

(

u j(µS ) − u j(µS \i)
)

, ∀i, j ∈ S . (9.1)

For coalitions consisting of a single player i, it is clear that ui(µi) = 0. For all two-person

coalitions containing player 4, D{i,4} = {[di, d4]}. Then, it follows immediately that ui(µ{i,4}) =

u4(µ{i,4}) = 0 for all i ∈ N \ 4. Similarly, D{1,3} = {[d1, d3]}, thus u1(µ{1,3}) = u3(µ{1,3}) = 0.

Consider now coalition {1, 2}. It can be easily verified that an optimal egalitarian threat for this

coalition satisfies:

(

u1(µ{1,2}), u2(µ{1,2})
)

=



















(2, 2), if λ1 = λ2 > 0

(y, y), y ∈ [0, 2], if λ1 = λ2 = 0

(0, 0), if λ1 , λ2
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Similarly,

(

u2(µ{2,3}), u3(µ{2,3})
)

=



















(1, 1), if λ2 = λ3 > 0

(y, y), y ∈ [0, 1], if λ2 = λ3 = 0

(0, 0), if λ2 , λ3

We proceed now by cases.

Case 1: λ1 = λ2 = λ3 > 0. Condition (9.1) applied to S = {1, 2, 3} leads to equations (7.1) and

(7.2). We have already shown in Section 7 that these two equations are incompatible.

Case 2: λ1 = λ2 > 0, λ2 , λ3. Without loss of generality, we can set λ1 = λ2 = 1. It can

be easily verified that, (9.1) implies: u1(µ{1,2,3}) = u2(µ{1,2,3}) = u1(µ{1,2,4}) = u2(µ{1,2,4}) = 2

and u3(µ{1,2,3}) = u4(µ{1,2,4}) = u2(µ{2,3,4}) = u3(µ{2,3,4}) = u4(µ{2,3,4}) = 0. Then, condition (9.1)

applied to N reduces to

u1(µN) = u2(µN) (9.2a)

u1(µN) = λ3u3(µN) + 2 (9.2b)

u1(µN) = λ4u4(µN) + 2 (9.2c)

On the other hand, we have that

u1(dN) + u2(dN) + λ3u3(dN) + λ4u4(dN) =



















2 + 3(λ3 + λ4), if dN = d1
N
, d2

N

6 − λ3 + 3λ4, if dN = d3
N

6 + 3λ3 − λ4, if dN = d4
N

(9.2d)

Subcase 2.1: λ3 > 1, λ4 > 1. Condition (i ) implies that µN(d3
N

) = µN(d4
N) = 0. But then, (9.2a)

requires that µN(d1
N

) = µN(d2
N

) = 1/2. Hence, u1(µN) = u2(µN) = 1 and u3(µN) = u4(µN) = 3.

With this, (9.2b) reduces to λ3 = −1/3, which is a contradiction.

Subcase 2.2: λ3 > 1, λ4 = 1. Condition (i ) implies that µN(d3
N

) = 0. But then, u1(µN) <

λ3u3(µN) + 2, which contradicts (9.2b).

Subcase 2.3: λ3 > 1, λ4 < 1. Condition (i ) implies that µN(d4
N) = 1. But then, (9.2c) reduces to

λ4 = −1.

Subcase 2.4: λ3 < 1, λ4 ≥ 1. Condition (i ) implies that µN(d3
N

) = 1. But then, u1(µN) >

λ3u3(µN) + 2, which contradicts (9.2b).

Subcase 2.5: λ4 < λ3 < 1. Condition (i ) implies that µN(d4
N

) = 1. The same conclusion as in

the case 2.3 is obtained.

Subcase 2.6: λ3 < λ4 < 1. Condition (i ) implies that µN(d3
N

) = 1. The same conclusion as in

the case 2.4 is obtained.

27



Subcase 2.7: 0 < λ3 = λ4 < 1. Condition (i ) implies that µN(d3
N

) = 1 − µN(d4
N) = β with

β ∈ [0, 1]. Condition (9.2b) implies

β[1 + λ3] + (1 − β)[1 − 3λ3] = 0 ⇒ β =
3λ3 − 1

4λ3

Similarly, (9.2c) implies

β[1 − 3λ3] + (1 − β)[1 + λ3] = 0 ⇒ β =
1 + λ3

4λ3

Therefore, 3λ3 − 1 = 1 + λ3, or equivalently, λ3 = 1, which is a contradiction.

Subcase 2.8: λ3 = λ4 = 0. As in the previous case, condition (i ) implies that µN(d3
N

) = 1 −

µN(d4
N) = β with β ∈ [0, 1]. However, (9.2a) and (9.2b) imply that u1(µN) = u2(µN) = 2, which

cannot be satisfied by any such mechanism.

Case 3: λ1 = λ2 = λ3 = 0. From (9.1) with S = N, i = 2 and j = 4, we get that

λ4u4(µN) = 0 (since u4(µ{1,3,4}) = 0). Hence,
∑

i∈N λiui(µN) = 0. However, condition (i ) im-

plies that
∑

i∈N λiui(µN) = 3, which is a contradiction.

Case 4: λ1 = λ2 = 0, λ2 , λ3. Condition (9.1) applied to S = N with i = 2 and j = 3, 4

gives λ3u3(µN) = λ4u4(µN) = 0 (since u3(µ{1,3,4}) = u4(µ{1,3,4}) = 0). Hence,
∑

i∈N λiui(µN) = 0.

However, condition (i ) implies that
∑

i∈N λiui(µN) > 0, which is a contradiction.

Case 5: λ1 , λ2, λ2 = λ3 > 0. Without loss of generality, we can set λ2 = λ3 = 1. It can

be easily verified that, (9.1) implies: u2(µ{1,2,3}) = u3(µ{1,2,3}) = u2(µ{2,3,4}) = u3(µ{2,3,4}) = 1

and u1(µ{1,2,3}) = u1(µ{1,2,4}) = u2(µ{1,2,4}) = u4(µ{1,2,4}) = u4(µ{2,3,4}) = 0. Then, condition (9.1)

applied to N reduces to

λ1u1(µN) = u2(µN) − 1 (9.3a)

λ1u1(µN) = u3(µN) − 1 (9.3b)

λ1u1(µN) = λ4u4(µN) (9.3c)

On the other hand, we have that

λ1u1(dN) + u2(dN) + u3(dN) + λ4u4(dN) =



















2 + 3(λ1 + λ4), if dN = d2
N , d3

N

6 − λ1 + 3λ4, if dN = d1
N

6 + 3λ1 − λ4, if dN = d4
N

(9.3d)

Subcase 5.1: λ1 > 1, λ4 > 1. Condition (i ) implies that µN(d2
N

) = 1−µN(d3
N

) = βwith β ∈ [0, 1].

But then, since u2(µN) = u3(µN) (by (9.3a) and (9.3b)), we must necessarily have that β = 1/2.

Therefore, u2(µN) = u3(µN) = 1 and u1(µN) = u4(µN) = 3. However, this together with (9.3a)

imply that λ1 = 0, which is a contradiction.

Subcase 5.2: λ1 > 1, λ4 = 1. Condition (i ) implies that µN(d1
N) = 0. Hence, (since λ1 > 2/3)

λ1u1(µN) > u2(µN) − 1, which contradicts (9.3a).
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Subcase 5.3: λ1 > 1, λ4 < 1. Condition (i ) implies that µN(d4
N) = 1. With this, (9.3a) implies

that λ1 = 2/3 < 1, which is a contradiction.

Subcase 5.4: λ1 < 1, λ4 ≥ 1. Condition (i ) implies that µN(d1
N) = 1. This together with (9.3a)

imply that λ1 = −2.

Subcase 5.5: λ1 < λ4 < 1. Condition (i ) implies that µN(d1
N

) = 1. The same conclusion as in

case 5.4 is obtained.

Subcase 5.6: λ4 < λ1 < 1. Condition (i ) implies that µN(d4
N

) = 1. Hence, (9.3c) implies that

3λ1 = −λ4. Therefore, (since λ1, λ2 ≥ 0) λ1 = λ2 = 0, which is a contradiction.

Subcase 5.7: 0 < λ4 = λ1 < 1. Condition (i ) implies that µN(d1
N

) = 1 − µN(d4
N

) = β, with

β ∈ [0, 1]. On the other hand, (9.3c) implies that u1(µN) = u4(µN). Hence, we must have that

β = 1/2. But then, (9.3a) implies that λ1 = 2, which is a contradiction.

Subcase 5.8: 0 = λ4 = λ1. As in the previous case, condition (i ) implies that µN(d1
N

) = 1 −

µN(d4
N) = β, with β ∈ [0, 1]. Hence, u2(µN) = u3(µN) = 3. However, by (9.3a) and (9.3b),

u2(µN) = u3(µN) = 1, which contradicts the previous fact.

Case 6: λ1 , λ2, λ2 = λ3 = 0. Condition (9.1) applied to S = N with i = 2 and j = 1, 4

gives λ1u1(µN) = λ4u4(µN) = 0 (since u1(µ{1,3,4}) = u4(µ{1,3,4}) = 0). Hence,
∑

i∈N λiui(µN) = 0.

However, condition (i ) implies that
∑

i∈N λiui(µN) = 3(1 + λ4) > 0, which is a contradiction.

Case 7: 0 = λ2 , λ1, λ2 , λ3. Condition (9.1) applied to S = N with i = 2 and j = 1, 3, 4 gives

λ1u1(µN) = λ3u3(µN) = λ4u4(µN) = 0 (since u1(µ{1,3,4}) = u3(µ{1,3,4}) = u4(µ{1,3,4}) = 0). Hence,
∑

i∈N λiui(µN) = 0. However, condition (i ) implies that
∑

i∈N λiui(µN) = 3(λ1 + λ3 + λ4) > 0

(since we must have λ1 > 0 and λ3 > 0). But this is a contradiction.

Case 8: λ2 > λ1, λ2 , λ3. Condition (9.1) applied to S = N with i = 1 and j = 2 gives

λ1u1(µN) = λ2u2(µN) (since u1(µ{1,3,4}) = u2(µ{2,3,4}) = 0). On the other hand, condition (i ) im-

plies that µN(d2
N) = 0. But then, this implies that λ1u1(µN) < λ2u2(µN), which is a contradiction.

Case 9: λ2 < λ1, λ2 , λ3. As in the previous case, we have that λ1u1(µN) = λ2u2(µN). We also

have that condition (i ) implies µN(d1
N) = 0. But then, this implies that λ1u1(µN) > λ2u2(µN),

which is a contradiction.

We conclude that ΓC has no S-solution. This completes the proof.
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