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Abstract

We introduce a new axiom for power indices, which requires the total (ad-

ditively aggregated) power of the voters to be nondecreasing in response to an

expansion of the set of winning coalitions; the total power is thereby re�ecting

an increase in the collective power that such an expansion creates. It is shown

that total-power monotonic indices that satisfy the standard semivalue axioms

are probabilistic mixtures of generalized Coleman-Shapley indices, where the

latter concept extends, and is inspired by, the notion introduced in Casajus

and Huettner (2018). Generalized Coleman-Shapley indices are based on a ver-

sion of the random-order pivotality that is behind the Shapley-Shubik index,

combined with an assumption of random participation by players.
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1 Introduction

The Shapley-Shubik power index1 and the Banzhaf power index2 enjoy a near-universal

recognition as valid measures of a priori voting power. The two indices quantify the

power held by individual voters under a given decision rule by assigning each in-

dividual the probability of being pivotal in a certain mode of random voting. The

Shapley-Shubik power index views voters as "aligned in order of their enthusiasm for

the proposal" over which the vote is held, with all orders being possible and equally

likely a priori; an individual is pivotal if "by joining his more enthusiastic colleagues,

[he] brings [that] coalition up to winning strength."3 In the Banzhaf power index, the

pivotal status of an individual is de�ned as his ability to a¤ect the outcome of the

vote in a random set of voters, assuming that all sets are equally likely. Thus, the

assumption behind the Shapley-Shubik index is that all voters will ultimately vote

"yes," and the pivotality of a voter only arms him with some bargaining advantage

in demanding adjustments in the content of the proposal; the Banzhaf power index,

on the other hand, views pivotality as being in a position to single-handedly push the

proposal through.

The two indices, in their narrow interpretation, measure the voting power of

each individual voter, but the individual power is often additively aggregated across

individuals in order to compute the implied power of sets of voters. There is somewhat

less clarity as to what an aggregation of power over a set represents, compared to

the rather straightforward concept of individual power that is behind the two indices,

but such an aggregation is taken quite seriously. A need for comparison of power

of di¤erent sets arises both in practice (see, e.g., Brahms (2013, Chapter 5)), and

in axiomatic treatment of power indices. Indeed, the original axiomatizations of the

two indices contain references to the total, or combined, power of voters. Dubey

(1975), who axiomatically characterized the Shapley-Shubik power index, imposed

the e¢ ciency axiom �whereby the total power of the voter set is 1, independently of

1De�ned in Shapley and Shubik (1954).
2As if often done in the literature, we use the term "Banzhaf index" for brevity, although the origin

of this power index lies in multiple works (Penrose (1946), Banzhaf (1965, 1966, 1968), Coleman

(1971)). The speci�c variant of the Banzhaf index used in this work is referred to as the "Banzhaf

measure" in Felsenthal and Machover (1998).
3All quotations in this sentence are taken from Dubey and Shapley (1979, p. 103).
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the particular decision rule. Dubey and Shapley (1979), who axiomatized the Banzhaf

power index, assumed the total power of all voters to be equal to the expected number

of swing voters, or "swingers,"4 in the voter set; this number is also known as the

"sensitivity of the decision rule" (see Felsenthal and Machover (1998), Section 3.3).

Following the discovery of the 2-e¢ ciency of the Banzhaf index by Lehrer (1988),

whereby the combined power of any two voters remains unchanged if the two voters

"merge" and act as a single bloc, multiple axiomatizations of the Banzhaf index were

o¤ered based on relaxed versions of that property.5

Recently, Casajus and Huettner (2018) suggested a new power index, which they

named the Coleman-Shapley index, with an underlying probability model that very

naturally combines the assumptions behind the Shapley-Shubik and the Banzhaf in-

dices. Speci�cally, the power of an individual voter is, again, his probability of being

pivotal, but in the following hybrid situation. Similarly to the Banzhaf scenario,

each individual votes "yes" with probability 1
2
; independently of the other voters;

an alternative, equivalent, assumption would be that an individual is only inter-

ested in/capable of voting with probability 1
2
: As in the Shapley-Shubik scenario, the

pivotality of a voter is de�ned with respect to a random order (re�ecting the "en-

thusiasm") of all active6 voters; the probability of being pivotal is now conditional

on the voter being active. Thus, the notion of pivotality here still implies the ability

to a¤ect the content of a proposal, but the passage of the proposal is now viewed as

uncertain. The characteristic feature of the Coleman-Shapley index is that the total

power of all voters coincides with a well-recognized concept �the power attributed

to individual voters sums up to (twice) the Coleman�s (1971) "power of a collectivity

to act," de�ned as the proportion of winning sets among all (sub)sets of voters.

The total power of voters according to the Banzhaf power index, being the de�ni-

tion of the sensitivity of a decision rule, quanti�es "the ease with which [the decision

rule] responds to voters�wishes."7 It is not surprising that the total Banzhaf power

4See Dubey et al. (1979, p. 103). A swinger is de�ned w.r.t. a random set of voters (with the

uniform distribution over all subsets of the voting body) by the requirement that his vote a¤ects

the voting outcome of that set.
5See, e.g., Lehrer (1988), Nowak (1997), Casajus (2012), Haimanko (2018).
6Depending on the previous assumption, active voters are either yes-voters, or those that are

interested in/capable of voting.
7See Felsenthal and Machover (1998, p. 52).
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favors games where the outcome of the vote appears, a priori, to be very uncertain,

as this is when individual voters have a good chance to be pivotal. Indeed, as shown

in Dubey and Shapley (1979), the total Banzhaf power of a given voter set is max-

imal for the simple majority rule, as that rule creates the greatest instability in the

outcome of the vote, under the assumption that votes are cast completely at random

and independently across individuals.

The total power behaves in a notably di¤erent fashion, however, under the other

two indices. The total Shapley-Shubik power is �xed at 1, and hence the simple

majority rule has the same standing as the rest. Under the Coleman-Shapley index,

the total power, which is identi�able with the aforementioned Coleman power of

collectivity to act, is at the intermediate level for the simple majority rule, falling

with an increase in the majority quota. Indeed, Coleman�s measure of the power

of collectivity is concerned with the ease of a collective achievement. Thus, higher

quotas mean a lower number of winning sets, and, accordingly, lower collective power.

The above monotonicity feature of the total Coleman-Shapley power extends from

the simple majority to general, not necessarily symmetric and quota-based, decision

rules: the smaller is the set of winning sets (as in the particular case of a rising

majority quota), the lower is the total power of the voters. This property appears to

be quite reasonable if one wishes the total power, obtained by additive aggregation

of the individual power, to measure, or at least be highly correlated with, some form

of collective power held by the voters (naturally, collective power should respond

positively to an expansion of the set of winning coalitions).

Our concern in this work will be with power indices whose implied total power

re�ects collective power in the sense indicated above. We will call the property

whereby the total power in nondecreasing when winning sets are added total-power

monotonicity, or TP-monotonicity. Following the approach pioneered in Shapley and

Shubik (1954) and adopted in much of the literature on power indices, we will model

voting situations/decision rules as cooperative games known as simple (or voting)

games, and view a power index as a map de�ned on the domain of simple games.

The focus will be on power indices that are semivalues, a term that was borrowed

by Einy (1987) from the realm of value maps considered by Dubey et al. (1981),

and applied to power indices that satisfy four axioms that are quite standard and
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�gure prominently in the literature on axiomatizations. These axioms are: transfer

(or valuation), which has been a routine substitute for the additivity axiom for value

maps in the context of simple games since its introduction in Dubey (1975); positivity,

or non-negativity of the power index; symmetry, which requires covariance under

permutations of the player (voter) set; and dummy, whereby the power of a dummy

player (which can only be a null player, or a dictator, in a simple game) equals to the

payo¤ of his stand-alone coalition.

Our �rst contribution will be the identi�cation of a one-parametric class of TP-

monotonic semivalues. These semivalues constitute a natural generalization of the

Coleman-Banzhaf index of Casajus and Huettner (2018). For any q 2 (0; 1]; we will
de�ne the q-Coleman-Banzhaf index (or q-CS index, for short) in the same way as the

Coleman-Banzhaf index above, but with the following change: each voter�s probabil-

ity to be active (i.e., to vote "yes," or to be interested in/capable of voting, depending

on the interpretation) is now taken to be q, and not 1
2
: As before, di¤erent individuals

are independent in their activity status, and the q-CS index assigns each voter his

probability (conditional on being an active voter) of being a pivot in a uniformly

distributed random order of all active voters. The total q-CS power is a (1
q
-scaled)

version of the Coleman power of collectivity to act, de�ned as the probability that

the coalition of all active voters is winning. Obviously, such a probability responds

monotonically to any expansion of the set of winning coalitions in the game, and

hence the q-CS index is TP-monotonic; it is moreover a semivalue by standard argu-

ments. The class of q-CS indices contains the Shapley-Shubik index (for q = 1) and

the Coleman-Banzhaf index (for q = 1
2
) as special cases, and in particular captures all

scenarios lying on the spectrum de�ned by the two indices, where the voter�s prob-

ability of being active (which is either his natural propensity to support a proposal,

or the likelihood of being interested in/capable of voting, depending on the interpre-

tation) is given by the parameter q 2 (0; 1]: For completeness, we will also admit the
limit case of q = 0; when no one supports the proposal and the power of a voter is

the same as the winning status of his stand-alone coalition.

Although the generalized Coleman-Banzhaf indices are not the only TP-monotonic

semivalues, we will show, via a somewhat indirect approach, that they generate all

such semivalues. Our main tool will be Einy�s (1987) characterization of semivalues
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of simple games as probabilistic mixtures of x-values. For x 2 [0; 1] ; the x-value is
a power index (in fact, a semivalue itself) that assigns each voter i in a simple game

v the probability that he is pivotal8 for a random coalition of other players, joined

by each player with probability x independently of the rest. Einy�s result states that

any semivalue is obtained by integrating over x-values w.r.t. a uniquely determined

probability distribution �: Our �rst result, Theorem 1, studies the e¤ect of imposing

the TP-monotonicity assumption on a semivalue in terms of the implied conditions

on the representing distribution �: It turns out that a semivalue is TP-monotonic if

and only if the c.d.f. of the distribution � is a concave function.9

The structural implication of TP-monotonicity in Theorem 1 appears rather tech-

nical from �rst glance. However, it contains a much more explicit message, initially

hidden from view. Our Theorem 2 uses the concavity of the c.d.f. of the representing

distribution of a TP-monotonic semivalue to show that the latter is a probabilistic

mixture of generalized Coleman-Banzhaf indices. This characterization of the TP-

monotonic semivalues is a complete one: a semivalue is TP-monotonic if and only

if it is obtained by integrating q-CS indices over q 2 [0; 1] w.r.t. a uniquely de�ned
probability measure on [0; 1] : In particular, any TP-monotonic semivalue that is not

a convex combination of generalized Coleman-Banzhaf indices can be approximated

by such combinations, since integrals in our characterization are approximable by

weighted averages.

The paper is organized as follows. Section 2 recalls the basic de�nitions pertaining

to games and power indices, lists the semivalue axioms, and calls attention to the

known characterization of semivalues as mixtures of x-values. Generalized Coleman-

Shapley indices are de�ned in Section 3, and are shown to be attainable by the

"random arrival" and random-order approaches. Section 3 also introduces the axiom

of TP-monotonicity, and checks that it is satis�ed by all q-CS indices. Section 4

contains our main results: Theorem 1, which characterizes TP-monotonic semivalues

in terms of their underlying probablity distribution, and Theorem 2, which represents

TP-monotonic semivalues as mixtures of generalized Coleman-Shapley indices.

8In the context of a simple game, a pivot for a coalition is a player whose presence switches that

coalition from losing to winning.
9Theorem 1 contains the di¢ cult "only if" direction of this statement. The simpler "if" direction

is proved in Remark 1.
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2 Preliminaries

2.1 Finite games and simple (voting) games

Let U be an in�nite universe of players (or voters), and assume, w.l.o.g., that U

includes the set N of positive integers. Denote the collection of all coalitions (subsets

of U) by 2U ; and the empty coalition by ;: A game on U is given by a map v : 2U ! R

with v (;) = 0: A coalition N � U is called a carrier of v if v(S) = v(S \N) for any
S 2 2U :We say that v is a �nite game if it has a �nite carrier; the minimal carrier of
such v is, in e¤ect, its true player set. The space of all �nite games on U is denoted

by G: The domain SG of simple (or voting) games on U consists of all v 2 G such
that: (i) v(S) 2 f0; 1g for all S 2 2U ; (ii) v(U) = 1; and (iii) v is monotonic, i.e., if
S � T then v(S) � v(T ): If v 2 SG, a coalition S is winning if v(S) = 1; and losing
otherwise. Thus, as in Shapley and Shubik (1954), any v 2 SG describes a voting
system or a decision rule, with a full account of all possible coalitions of yes-voters

that can win the vote.

The space AG of additive games consists of all v 2 G satisfying v(S [ T ) =
v(S) + v(T ) whenever S \ T = ;: Any w 2 AG with a �nite carrier N is identi�able

with the vector10 fw(i) j i 2 Ng ; and thus may be thought of as a payo¤ vector to
the players in N:

2.2 Power indices and Semivalues

A power index ' is a map ' : SG ! AG, where ' (v) (i) is interpreted as the voting
power of player i in a simple game v. The following four axioms �plausible require-

ments that a general power index ' may be expected to obey �are quite routinely

assumed in analyzing and designing power indices, either in their entirety or in part.

As in Einy (1987), who was the �rst to look at the conjunction of these four axioms,

we will use the term semivalue11 in reference to any power index ' that satis�es all

the axioms.12

10We shall henceforth omit braces when indicating one-player sets.
11The term "semivalue" was originally coined in Dubey et al (1981) in the context of value maps

on G (see Remark 2).
12Variants of semivalue axioms have been present in the original axiomatizations of the Shapley-

Shubik and the Banzhaf power indices (see Dubey (1975) and Dubey and Shapley (1979)).
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Axiom I: Transfer. For any v; w 2 SG, ' (maxfv; wg) + ' (minfv; wg) =
' (v) + ' (w) :

As was shown in Dubey et al. (2005, p. 24), Tran can be restated in an equivalent

but conceptually clearer form, amounting to a requirement that the change in power

depends only on the change in the voting game.13

Axiom II: Symmetry. For any v 2 SG, i 2 U; and a permutation � of U;
' (�v) (i) = ' (v) (� (i)) ; where �v 2 G is given by (�v) (S) = v(�(S)) for all S 2 2U :

According to Symmetry, if players are relabeled in a game, their power indices

will be relabeled accordingly. Thus, irrelevant characteristics of the players, outside

of their role in the game v, have no in�uence on the power index.

Axiom III: Positivity. For any v 2 SG and i 2 U , ' (v) (i) � 0:

Positivity is natural, as every v 2 SG is monotonic by assumption, and hence
no player that joins a coalition can a¤ect its winning status negatively.

Axiom IV: Dummy. If v 2 SG and i is a dummy player in v, i.e. v(S [ i) =
v(S) + v(i) for every S � U n i; then ' (v) (i) = v (i) :

A dummy player in a simple game can be either a dictator (if v(i) = 1), in which

case fig is the minimal carrier of v, or a null player (if v (i) = 0), that does not belong
to the minimal carrier of v. Dummy can be viewed as a normalization requirement,

assigning power 1 to a dictator and power 0 to a null player.

2.3 Characterization of Semivalues

Dubey et al. (1981) de�ned a family of semivalues14
�
��
�
�
; parameterized by � 2

M ([0; 1]) �the set of probability measures on [0; 1]; as follows: given � 2 M([0; 1]);
13The possibility of such a restatement has been mentioned in Dubey and Shapley (1979, p. 106).

A special version of the restatement also appeared in Laruelle and Valenciano (2001).
14Dubey at al. (1981) considered semivalues on G and not on SG (for further discussion, see

Remark 2). The family of power indices with the forthcoming description is obtained by restricting

those semivalues to games in SG:
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for every v 2 SG with some �nite carrier N;

�� (v) (i) =
X
S�Nni

p
jN j
jSj (�) [v(S [ i)� v(S)] (1)

if i 2 N; where

pns (�) =

Z 1

0

xs (1� x)n�s�1 d� (x) ; (2)

and �� (v) (i) = 0 if i 2 U nN: The de�nition is independent of the choice of a carrier
N:

Einy (1987) showed that the set of semivalues on SG coincides with the family�
��
�
�2M([0;1])

: Formally, a power index ' is a semivalue if and only if ' = �� for some

� 2 M ([0; 1]) ; and � is uniquely determined by ': Relying on this equivalence, the

term semivalue will henceforth be used in reference to some member of the family�
��
�
�2M([0;1])

.

Each semivalue �� has a simple probabilistic interpretation. Assume that player i

believes that players other than himself have the same probability x of voting "yes"

(thereby joining the coalition of yes-voters), and that they do so independently of

each other; however, i may be uncertain about the parameter x; with his prior belief

being the distribution � over x: Then �� (v) (i) represents i�s a priori likelihood to

switch a random coalition of yes-voters from losing to winning by joining it.

If the parameter x is known, one may refer to the corresponding semivalue, for

which � is the Dirac measure concentrated on x; as x-value, which will be denoted �x

for simplicity. A general �� is then a probabilistic mixture of x-values: the de�nition

of �� implies that, for every v 2 SG and i 2 U;

�� (v) (i) =

Z 1

0

�x (v) (i)d� (x) : (3)

The family
�
��
�
�2M([0;1])

includes the two best-known and widely used semival-

ues: the Banzhaf power index � 1
2
, corresponding to � that is the Dirac measure

concentrated on 1
2
; and the Shapley-Shubik power index, corresponding to the uni-

form distribution on [0; 1] : The Coleman-Shapley index, introduced in Casajus and

Huettner (2018), is precisely �� for � that corresponds of the uniform distribution

on
�
0; 1

2

�
: Its probabilistic interpretation will be discussed in the next section, in a

unifying set-up that will single out a subfamily of semivalues in
�
��
�
�2M([0;1])

.
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3 Generalized Coleman-Shapley Indices and Total-

Power Monotonicity

The de�nition of the Coleman-Shapley index in Casajus and Huettner (2018) allows to

conjure up a more general framework, in which the Shapley-Shubik and the Coleman-

Shapley indices are included as particular cases. We will de�ne generalized Coleman-

Shapley indices as a one-pramateric family of semivalues, and will then show how

these indices arise in two models of random voting.

3.1 Generalized Coleman-Shapley Indices as Semivalues

For any 0 � q � 1; consider the probability measure �q 2 M ([0; 1]) that is concen-

trated on the interval [0; q] and, when q > 0; corresponds to the uniform distribution

on [0; q], i.e.,

d�q(x) =
1

q
Ix�qdx; (4)

where IA denotes the indicator function of the set A. Denote 'q = ��q ; and call it

q-Coleman-Shapley index, or q-CS index for short.

3.2 Random-arrival interpretation of q-CS Indices

When q > 0; the de�nition of the q-CS index by means of (1), (2) and (4) lends

itself to the following probabilistic interpretation, which is a version of the "random

arrival times" view that has usually been reserved for the Shapley value and the

weighted Shapley value (starting with Owen (1968)). Let v 2 SG be a game with
some �nite carrier N; and let fXigi2N be i.i.d. random variables with the uniform

distribution on [0; 1]: Think of Xi as measuring the dissatisfaction of player i with

a certain proposal that stands for vote; the given parameter q represents the cut-o¤

value of dissatisfaction above which a player will never vote in favor of a proposal.

Players whose dissatisfaction falls below or is equal to q will, on the other hand,

ultimately vote "yes", but their turn to join the support of the proposal depends

on their measure of dissatisfaction: the higher is Xi; the later will i join the other

yes-voters. It stands to reason that, in such a scenario, the in�uence of player i over

the vote should be quanti�ed as the probability (conditional on i being a yes-voter,
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having Xi � q) that the coalition of the proposal supporters switches from losing to

winning precisely when i�s turn arrives and he declares his support for the proposal.

The measure of voting power given by 'q (v) (i) = ��q (v) (i) does exactly that.

Formally, (1), (2) and (4) mean that

'q (v) (i) =
X
S�Nni

�Z q

0

xjSj (1� x)jN j�jSj�1 1
q
dx

�
[v(S [ i)� v(S)] ;

for every i 2 N (and 'q (v) (i) = 0 for every i 2 U nN), which can be readily seen to
be a restatement in terms of integrals of the equality

'q (v) (i) = E [v(fj 2 N j Xj � Xig)� v(fj 2 N j Xj < Xig) j Xi � q] ; (5)

where E stands for the expectation operator. The last equality is itself equivalent to

'q (v) (i) = Pr [v(fj 2 N j Xj < Xig) = 0 and v(fj 2 N j Xj � Xig) = 1 j Xi � q] :
(6)

3.3 Random-order interpretation of q-CS Indices

The following alternative description of a q-CS index can be derived from (5). Given

v 2 SG with a �nite carrier N; consider a random coalition SN � N de�ned by

the property that, for each i 2 N; Pr
�
i 2 SN

�
= q; and the events

�
i 2 SN

	
i2N

are independent. We can think of SN as the coalition of players who are interested

in, or capable of, voting for a speci�c proposal.15 Call the players in SN active.

Additionally, let RN be a random linear order of players in N; chosen w.r.t. to the

uniform distribution over all such orders, and assume that the choice of order is made

independently of the realization of SN :RN can be thought of as the ranking of players

w.r.t. their eagerness to vote in favor of the proposal; note that RN ranks all players,

including those who might not be active. For any such RN and i 2 N; denote by
Si(RN) the (random) coalition of players in N that precede i in RN (according to our

interpretation, Si(RN) consists of players who like the proposal more than i). Then

(5) is equivalent to

'q (v) (i) = E
�
v((Si(RN) [ i) \ SN)� v(Si(RN) \ SN) j i 2 SN

�
; (7)

15As mentioned in the Introduction, an alternative, equivalent interpretation views SN as the

coalition of all yes-voters.
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or

'q (v) (i) = Pr
�
v(Si(RN) \ SN) = 0 and v((Si(RN) [ i) \ SN) = 1 j i 2 SN

�
; (8)

for every i 2 N:
Just as in the random-arrival approach, here 'q (v) (i) is expressed as the prob-

ability that i is switches from losing to winning the coalition of active voters who

are ranked below i (i.e., are stronger than i) in their support, conditional on that i

is active. In order to see how (7) is obtained from (5) of the random-arrival set-up,

take RN be the order induced by the relative positions of the players in fXigi2N ; and
let SN = fi 2 N j Xi � qg; notice that even though such RN is not independent of

SN ; the random coalition Si(RN)\ SN is distributed as if RN is independent of SN

when there is a conditioning on i 2 SN :16

Note that 1-CS index, '1, is the Shapley-Shubik power index, as (6) or (8) boil

down to its usual de�nition as the (unconditional) probability of being pivotal in a

random order. Also, when q = 1
2
; (8) is, in e¤ect, the de�nition of the Coleman-

Shapley index in Casajus and Huettner (2018), and hence ' 1
2
is precisely that index:

3.4 The Total Power in q-CS Indices

The total power of players under a given q-CS index can be computed directly, but

we will �nd it as an upshot of a more general exercise. It turns out, as has been

already observed by Casajus and Huettner (2018) in the case of ' 1
2
, that for any

0 < q � 1 the q-CS index of v 2 SG can be expressed as the Shapley (1953) value of
an appropriately modi�ed game. Indeed, let vq 2 G be the game in which the payo¤
to any coalition S is the 1

q
-scaled probability that the coalition of active players

in S is winning in the game v; i.e., vq(S) = 1
q
E
�
v(S \ SN)

�
: Also recall that, for

any game w 2 G with a �nite carrier N; its Shapley value Sh(w) is de�ned as

Sh (w) (i) = E [w(Si(RN) [ i)� w(Si(RN))] for every i 2 N (and Sh (w) (i) = 0 for

every i 2 U nN):
16In (7), RN can be replaced by RSN

(a random, uniformly distributed order of players in SN ),

i.e., it su¢ ces to rank only the active players. Such an equation would have been the reduced form

of both (5) and (7), consistent with our description of the q-CS index in the Introduction. The

current (7) is preferable, however, as it is used in the proof of our forthcoming Proposition 1.
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Proposition 1. For any q; v as above and i 2 U; 'q (v) (i) = Sh(vq)(i):

Proof. For any i 2 N; by using the independence of Si(RN) and SN ; (7) can be

transformed into

'q (v) (i) = ERN

�
ESN

�
v((Si(RN) [ i) \ SN)� v(Si(RN) \ SN) j i 2 SN

��
= ERN

�
1

q
ESN

��
v((Si(RN) [ i) \ SN)� v(Si(RN) \ SN)

�
� Ii2SN

��
= ERN

�
1

q
ESN

�
v((Si(RN) [ i) \ SN)� v(Si(RN) \ SN)

��
= ERN

(vq(Si(RN) [ i)� vq(Si(RN)) = Sh(vq)(i):

Finally, when i 2 U nN , 'q (v) (i) = 0 and Sh(vq)(i) = 0 by de�nition. �

Proposition 1 and the e¢ ciency of the Shapley value imply that, for 0 < q � 1

and v 2 SG with a �nite carrier N;

'q (v) (U) = vq(N) =
1

q
E
�
v(SN)

�
; (9)

which is equivalent to

'q (v) (U) =
1

q
Pr
�
v(SN) = 1

�
: (10)

That is, the total power in the game v, as measured by 'q, is a constant multiple (
1
q
)

of the probability that the coalition of all active players is winning.

When q = 1; (9) is the usual e¢ ciency property of the Shapley-Shubik index.

When q = 1
2
; (10) is precisely the 2CPCA-e¢ ciency of Casajus and Huettner (2018),

whereby the total power in v equals to twice the Coleman (1971) power of a collectivity

to act (�the proportion of the winning coalitions among all coalitions in a carrier N
of v). Casajus and Huettner (2018) used the 2CPCA-e¢ ciency to characterize the

Coleman-Shapley index ' 1
2
using 2CPCA-e¢ ciency as a replacement of e¢ ciency in

the set of axioms of Dubey (1975) (originally devised for the Shapley-Shubik index).

Similar axiomatizations can be obtained for any 'q; with (10) as a substitute for

2CPCA-e¢ ciency, where the right-hand side is viewed as an alternative measure of

the power of a collectivity to act.

For q = 0; '0 (v) (i) = v(i) for every i 2 U ; hence,

'0 (v) (U) = '0 (v) (N) =
X
i2N

v(i); (11)

which can be seen as a limit version of (10), obtained by letting q > 0 tend to 0:
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3.5 The Axiom of Total-Power Monotonicity

When the set of winning coalitions in the game expands, there is no guarantee that

the individual power of every (or even most) players will not be a¤ected negatively.

Indeed, think of the change in the Shapley-Shubik power index '1 when a unanimity

game v = uT (where uT (S) = 1 if and only if T � S) sees its carrier T shrink to a
strict subset, T 0  T; and the game becomes uT 0 : The power of every i 2 TnT 0 then
falls from '1 (uT ) =

1
jT j to '1 (uT 0) = 0; which is to be expected as the players in

TnT 0 become null in uT 0, despite there being more winning coalitions. However, the
total power of players, '1 (v) (U) = 1; remains constant regardless of changes in v:

When a general q-CS index 'q is concerned, the total power 'q (v) (U)may depend

on v; but if the set of winning coalitions in v expands, i.e., if v 2 SG is replaced by
w 2 SG that satis�es v � w; the total power cannot go down:

'q (v) (U) � 'q (w) (U) : (12)

This fact is immediate from (9) when q > 0; and from (11) when q = 0:

The property embodied in (12) seems compelling, and, at the same time, su¢ -

ciently selective � it is not possessed by all semivalues. The Banzhaf power index,

for instance, attains the maximal total power on a given carrier of odd size at the

simple majority game (see Theorem 2 in Dubey and Shapley (1979)). We shall state

the monotonicity requirement in (12) as an axiom on the behavior of a general power

index ', and study its implication in the next section.

Axiom V: Total-Power Monotonicity (TP-Mon). If v; w 2 SG and v � w;
then ' (v) (U) � ' (w) (U) :

4 Results

4.1 Total-Power Monotonicity of a Semivalue

In this section we will characterize the e¤ect of imposing the axiom of TP-Mon on

the family of semivalues. On a technical level, TP-Mon reduces to concavity of the

c.d.f. of the representing distribution.

14



Theorem 1. If a semivalue ' = �� satis�es TP-Mon, then the c.d.f. F� of the

distribution corresponding to � is concave on [0; 1] :

Proof of Theorem 1. Let � 2M ([0; 1]) be such that �� satis�es TP-Mon. We

start with the following claim.

Claim. Let 0 < a < b < 1 and 0 < c < d � 1 be such that c � a = d � b > 0:
Then

� ((a; b]) � � ((c; d]) : (13)

Proof of the claim. We shall �rst establish (13) under the assumption that

� (fa; b; c; dg) = 0: (14)

Fix � > 0; and let 0 < " < b�a
2
be such that � ([t�; t+]) < � for t 2 fa; b; c; dg; where

t+ = min(t+ "; 1); t� = max(t� "; 0): Also, for any n 2 N such that 1
n
< "

2
and any

x 2 [0; 1]; let Y nx be a random variable with the binomial distribution B(n; x): Then

� ((a; b]) � �
�
(a�; b+)

�
� 2� =

Z
(a�;b+)

d� (x)� 2� �
Z
(a�;b+)

0@ [bn]X
k=[an]

Pr(Y nx = k)

1A d� (x)� 2�
(where [t] stands for the integer part of t)

=

[bn]X
k=[an]

�Z 1

0

Pr(Y nx = k)d� (x)

�
�
Z
(a�;b+)c

0@ [bn]X
k=[an]

Pr(Y nx = k)

1A d� (x)� 2�
�

[bn]X
k=[an]

�Z 1

0

Pr(Y nx = k)d� (x)

�
�
Z
(a�;b+)c

Pr(

����Y nxn � x
���� > "

2
)d� (x)� 2�: (15)

By the Chebishev�s inequality,

Pr(

����Y nxn � x
���� > "

2
) � 1

n"2
; (16)

and hence the expression in (15) is bound from below by

[bn]X
k=[an]

�Z 1

0

Pr(Y nx = k)d� (x)

�
� 1

n"2
�2� =

[bn]X
k=[an]

�Z 1

0

�
n

k

�
xk(1� x)n�kd� (x)

�
� 1

n"2
�2�:

(17)

For k = 0; :::; n; let wn+1;k+1 2 SG be the k + 1-majority game with carrier

N = f1; :::; n+1g; i.e., wn+1;k+1(S) = 1 if and only if jS \N j � k+1: It follows from
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the de�nition of �� in (1) and (2) that

�� (wn+1;k+1) (U) = (n+ 1)

Z 1

0

�
n

k

�
xk(1� x)n�kd� (x) ; (18)

and so the right-hand side of (17) is equal to

1

n+ 1

[bn]X
k=[an]

�� (wn+1;k+1) (U)�
1

n"2
� 2�:

We have thereby established that

� ((a; b]) � 1

n+ 1

[bn]X
k=[an]

�� (wn+1;k+1) (U)�
1

n"2
� 2�: (19)

Since: (i) �� satis�es TP-Mon; (ii) wn+1;k+1 � wn+1;k0+1 whenever k � k0; and

(iii) c� a = d� b > 0; we obtain

[bn]X
k=[an]

�� (wn+1;k+1) (U) �
[dn]X

k=[cn]+1

�� (wn+1;k+1) (U) :

From this, (18) and (19),

� ((a; b]) � 1

n+ 1

[dn]X
k=[cn]+1

�� (wn+1;k+1) (U)�
1

n"2
� 2�

=

[dn]X
k=[cn]+1

Z 1

0

�
n

k

�
xk(1� x)n�kd� (x)� 1

n"2
� 2�

�
[dn]X

k=[cn]+1

Z
[c+;d�]

�
n

k

�
xk(1� x)n�kd� (x)� 1

n"2
� 2�

=

[dn]X
k=[cn]+1

Z
[c+;d�]

Pr(Y nx = k)d� (x)�
1

n"2
� 2�

=

nX
k=0

Z
[c+;d�]

Pr(Y nx = k)d� (x)�
X

k<[cn]+1 or k>[dn]

Z
[c+;d�]

Pr(Y nx = k)d� (x)�
1

n"2
� 2�:

As

nX
k=0

Z
[c+;d�]

Pr(Y nx = k)d� (x) =

Z
[c+;d�]

 
nX
k=0

Pr(Y nx = k)

!
d� (x) = �

��
c+; d�

��
� �((c; d])�2�;
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we obtain

� ((a; b]) � � ((c; d])�
X

k<[cn]+1 or k>[dn]

Z
[c+;d�]

Pr(Y nx = k)d� (x)�
1

n"2
� 4�

= � ((c; d])�
Z
[c+;d�]

0@ X
k<[cn]+1 or k>[dn]

Pr(Y nx = k)

1A d� (x)� 1

n"2
� 4�

� � ((c; d])�
Z
[c+;d�]

Pr(

����Y nxn � x
���� > "

2
)d� (x)� 1

n"2
� 4�:

By using the Chebishev�s inequality (16) again, the last expression is bound from

below by � ((c; d])� 2
n"2
� 4�: We have thus shown that

� ((a; b]) � � ((c; d])� 2

n"2
� 4�:

By letting n!1; this turns into � ((a; b]) � � ((c; d])� 4�; and since the �xed � > 0
was arbitrary, the desired inequality (13) is established under the assumption (14).

We will now show that assumption (14) can be dispensed with. First, notice that

when d = 1; all the arguments above work without the need to pass from d to d�:

Hence, it is not necessary to assume that � (fdg) = 0 when d = 1 (and, in addition,
� (fa; b; cg) = 0), in order to obtain (13).
Next, for any 0 < x < y � 1; there exists a sequence f(an; bn; cn; dn)g1n=1 such

that 0 < an < x < bn < 1; 0 < cn < y � dn � 1; cn � an = dn � bn > 0;

limn!1 an = limn!1 bn = x; limn!1 cn = limn!1 dn = y; � (fan; bn; cng) = 0; and

� (fdng) = 0 (unless dn = 1): As (13) holds for such an; bn; cn; dn by what has been
shown, we have � ((an; bn]) � � ((cn; dn]) ; which translates into � (fxg) � � (fyg) by
letting n ! 1: Since the latter inequality holds for all 0 < x < y � 1; � cannot

have atoms in (0; 1]: It follows that (14) always holds, and hence (13) holds for any

a; b; c; d as in the premise of the claim. �

Proof of Theorem 1 (continued). As has been argued in the last part of the

preceding proof, � has no atoms in (0; 1]: It follows that the c.d.f. F� that corresponds

to �; given by F� (x) = � ([0; x]) for any x 2 [0; 1] ; is continuous on (0; 1]: Because a
c.d.f. is right-continuous, F� is continuous on the entire closed interval [0; 1]: By (13),

F� (b)� F� (a) � F� (d)� F� (c) (20)

for any 0 < a < b < 1 and 0 < c < d � 1 such that c� a = d� b > 0. The continuity
of F� on [0; 1] implies that, furthermore, (20) holds even if a = 0:
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Now, given 0 � x < y � 1, consider any rational number 0 < r < 1, which has

the form r = m
n
for some n > m 2 N: Successive applications of (20) yield

F�(
m

n
x+

n�m
n

y)� F�(x) =

nX
k=m+1

�
F�(
k � 1
n

x+
n� k + 1

n
y)� F�(

k

n
x+

n� k
n

y)

�
� (n�m)

�
F�(
m

n
x+

n�m
n

y)� F�(
m+ 1

n
x+

n�m� 1
n

y)

�
� (n�m)

�
F�(
m� 1
n

x+
n�m+ 1

n
y)� F�(

m

n
x+

n�m
n

y)

�
� n�m

m

mX
k=1

�
F�(
k � 1
n

x+
n� k + 1

n
y)� F�(

k

n
x+

n� k
n

y)

�
=

n�m
m

�
F�(y)� F�(

m

n
x+

n�m
n

y)

�
;

and hence

F�(rx+ (1� r)y) � rF� (x) + (1� r)F� (y) (21)

holds for r = m
n
: Since F� is continuous on [0; 1], the inequality (21) holds for any

0 < r < 1; which shows that F� is indeed concave on [0; 1] : �

4.2 Mixing Generalized CS Indices: The OnlyWay to Achieve

Total-Power Monotonicity

Theorem 1 contains an implication that is somewhat hidden from sight. The next

theorem uncovers it, and points to a tight link between the TP-Mon property and

the family of generalized CS indices.

Theorem 2. A semivalue ' satis�es TP-Mon if and only if it is a mixture of

generalized CS indices, i.e., there exist a probability measure � 2M ([0; 1]), uniquely

determined by ', such that for every v 2 SG and i 2 U;

' (v) (i) =

Z 1

0

'q (v) (i) d� (q) : (22)

Proof. The fact that any q-CS index 'q satis�es TP-Mon has already been

noted (see (12)), and it is obvious that any mixture ' of generalized CS indices,

given by (22), inherits this property. This establishes the "if" direction. To prove

the "only if" direction, �x a semivalue ' that satis�es TP-Mon. By Theorem 1,
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' = �� for some � 2 M ([0; 1]) whose c.d.f. F� is continuous17 and concave on [0; 1] :

The last two properties of F� and its monotonicity as a c.d.f. imply that there exists

a nonincreasing function f� � 0 on (0; 1] such that18 F� (t) = F�(0) +
R t
0
f�(x)dx for

every t 2 (0; 1]; where F�(0) = � (f0g) :
Next, let g � 0 be any continuous function on [0; 1] ; and assume that F�(0) < 1:

Notice thatZ 1

0

g(x)d� (x) = g(0)F�(0) +

Z 1

0

g(x)f�(x)dx = g(0)F�(0) +

Z 1

0

g(x)

 Z f�(x)

0

ds

!
dx

= g(0)F�(0) +

Z 1

0

�Z 1

0

g(x)Is�f�(x)dx

�
ds: (23)

Denote a� = limx!0+ f� (x) > 0;19 and let h� be a nonincreasing function on [0; a�)

de�ned by h� (s) = supfx 2 [0; 1] j s � f�(x)g for every s 2 [0; a�); notice that h� > 0:
The expression in (23) is then equal to

g(0)F�(0) +

Z
[0;a�)

�Z 1

0

g(x)Ix�h�(s)dx

�
ds

= g(0)F�(0) +

Z
[0;a�)

h� (s)

�Z 1

0

g(x)
1

h� (s)
Ix�h�(s)dx

�
ds:

We have thereby shown thatZ 1

0

g(x)d� (x) = g(0)F�(0) +

Z
[0;a�)

h� (s)

�Z 1

0

g(x)
1

h� (s)
Ix�h�(s)dx

�
ds; (24)

where
R
[0;a�)

h� (s) ds = 1�F�(0): Now recall the de�nition of the probability measure
�q 2 M ([0; 1]) as the one that is concentrated on [0; q], with d�q(x) =

1
q
Ix�qdx when

q > 0: The equality (24) then becomesZ 1

0

g(x)d� (x) =

Z 1

0

�Z 1

0

g(x)d�q(x)

�
d�� (q) ; (25)

17Continuity of F� was established in the proof of Theorem 1, but we did not need to claim both

continuity and concavity in the statement of that theorem because concavity of F� on [0; 1] implies

its continuity on that interval. Indeed, the only discontinuity of a concave function on [0; 1] might

occur at the end-points, but that is impossible because F� is right-continuous and nondecreasing as

a c.d.f.
18One may take f� to be the left-hand derivative of F� on (0; 1]: If limx!0+ f�(x) = 1; then all

integrals in the proof that have the form
R t
0
:::dx (for 0 < t � 1), and in which the integrand involves

f�(x); should be regarded as improper integrals.
19The limit a� exists because f� is nondecreasing, and its positivity follows from the assumption

that F�(0) < 1: It may, furthermore, be equal to 1:
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where �� 2M ([0; 1]) is the probability measure determined by the following proper-

ties: ��(f0g) = F�(0); and ��((0; x]) =
R
[0;a�)

Ih�(s)�xh� (s) ds for any x 2 (0; 1]:
The measure � = �� turns out to be the one that is required in (22). Indeed,

given v 2 SG and i 2 U; by using (3) we obtain

' (v) (i) = �� (v) (i) =

Z 1

0

�x (v) (i) d� (x)

(by (25)) =

Z 1

0

�Z 1

0

�x (v) (i) d�q(x)

�
d�� (q)

=

Z 1

0

��q(v)(i)d�� (q) =

Z 1

0

'q(v)(i)d�� (q) :

Lastly, if F�(0) = 1 then � is supported on f0g; i.e., � = �0; implying that

' = ��0 = '0; and hence (22) holds trivially. Thus, the existence of � that satis�es

(22) has been established for any given ' = ��:

In order to show that � in (22) is determined uniquely by the given '; note that

for any v 2 SG and i 2 U;

' (v) (i) =

Z 1

0

'q(v)(i)d� (q) =

Z 1

0

�Z 1

0

�x (v) (i) d�q(x)

�
d� (q)

= �0(v)(i)� (f0g) +
Z
(0;1]

�Z
(0;1]

�x (v) (i)
1

q
Ix�qdx

�
d� (q)

= �0(v)(i)� (f0g) +
Z
(0;1]

�x (v) (i)

�Z
(0;1]

1

q
Ix�qd� (q)

�
dx

= �0(v)(i)� (f0g) +
Z
(0;1]

�x (v) (i)

�Z 1

x

1

q
d� (q)

�
dx:

Thus, ' = '� for � that is given by � (f0g) = � (f0g) and the equation d� (x) =�R 1
x
1
q
d� (q)

�
dx on (0; 1]: Because � is uniquely determined by ' (see Section 2.3),

the Radon-Nikodym derivative of � w.r.t. the Lebesgue measure, namely
R 1
x
1
q
d� (q),

is uniquely determined for almost every x 2 (0; 1]; and � (f0g) is also uniquely deter-
mined.

Now de�ne a �-�nite measure � on (0; 1] by d� (q) = 1
q
d� (q) : Thus � ([x; 1]) =R 1

x
1
q
d� (q) for every x 2 (0; 1]; and so, as claimed above, � ([x; 1]) is uniquely de-

termined for almost every x 2 (0; 1]: The latter fact implies that the entire � is

uniquely determined: But, since � (restricted to (0; 1]) is determined by � via its

Radon-Nikodym derivative d�
d�
(q) =

�
d�
d�
(q)
��1

= q; i.e., d� (q) = qd� (q) ; � is also

determined uniquely by the given ': �
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We conclude with two remarks.

Remark 1. It is easy to see, using Theorem 2 and its proof, that the assertion

in Theorem 1 holds in both directions: a semivalue ' = �� satis�es TP-Mon if and

only if the c.d.f. F� of the distribution corresponding to � is concave on [0; 1] : Indeed,

Theorem 1 provides the "only if" direction. As for the "if" direction, assume that

the c.d.f. F� of the distribution corresponding to � is concave on [0; 1] : The proof

of the "only if" direction of Theorem 2 shows that, in such a case, ' = �� has the

representation (22), and thus ' satis�es TP-Mon by the "if" assertion of Theorem

2.

Remark 2. Dubey et al. (1981) de�ned a semivalue on the space of all �nite

games, G, as a linear projection20 ' : G ! AG that satis�es the Symmetry and
Positivity axioms of Section 2.2 (in the context of general games in G, Symmetry
needs to be stated for any v 2 G; and Positivity for any monotonic v 2 G). Their
characterization of semivalues on G as the family

�
��
�
�2M([0;1])

(de�ned by (1) and (2)

for all v 2 G) is identical to the one surveyed in Section 2.3 in the context of simple
games. Using this characterization, generalized Coleman-Shapley values for games in

G can be de�ned in the same way as the corresponding indices on SG in Section 3.1,
and, with TP-Mon stated for games in G, all our results (Proposition 1, Theorems 1
and 2, and Remark 1) hold for semivalues on G instead of SG, by identical arguments.

20I.e., ' acts as the identity map when restricted to AG.
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