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Abstract

What networks can form and persist when agents are self-interested? Can such

networks be efficient? A substantial theoretical literature predicts that the only

networks that can form and persist must have very special shapes and that such

networks cannot be efficient, but these predictions are in stark contrast to empirical

findings. In this paper, we present a new model of network formation. In contrast to

the existing literature, our model is dynamic (rather than static), we model agents

as foresighted (rather than myopic) and we allow for the possibility that agents

are heterogeneous (rather than homogeneous). We show that a very wide variety

of networks can form and persist; in particular, efficient networks can form and

persist if they provide every agent a strictly positive payoff. For the widely-studied

connections model, we provide a full characterization of the set of efficient networks

that can form and persist. Our predictions are consistent with empirical findings.
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1 Introduction

Much of society is organized in networks and networks are important because individu-

als typically interact largely or perhaps entirely with those to whom they are closest in

the network (not necessarily physically). Examples include social networks (Facebook),

professional networks (LinkedIn), trading networks (Tesfatsion[32]), channels of informa-

tion sharing (Chamley and Gale[3]), buyer-seller networks (Kranton and Minehart[22]),

etc. The questions which this paper addresses are: What networks form and emerge at

equilibrium if agents are foresighted? Are these networks efficient? Are the emerging

networks robust to various types of deviations?

Network formation has been widely studied both in theoretical and empirical settings.

Starting from Jackson and Wolinsky[18] and Bala and Goyal[1], a large and growing

theoretical literature in economics has studied what networks form when self-interested

and strategic agents make decisions about which links to establish or sever with other

agents. Past research has mainly focused on characterizing the networks emerging at

equilibrium and determining whether socially-efficient networks can be supported in

equilibrium.

In the existing literature, network formation has been either modeled in a static

setting (e.g. Jackson and Wolinsky[18]), where agents take actions only once and si-

multaneously, or a dynamic setting (e.g. Watts[33]) where agents meet other agents

randomly over time and choose their actions (on whether to form or break a link with

another agent) whenever they are allowed to do so. Both these model have two impor-

tant limitations: i) agents are myopic, i.e. their actions at any point in time are solely

guided by their current payoffs, without consideration of future consequences; and ii)

agents are homogeneous, i.e. an agent’s payoff depends only on the network topology

and her position in the network, but not on her own characteristics or the characteris-

tics of her peers. Such limitations make this literature unable to model and characterize

real-world social and economic interactions. One of the key conclusions of this branch of

literature is that efficiency cannot be attained in equilibrium and the set of achievable

network topologies and that of efficient network topologies often differ. The existing

limited work on network formation with foresighted agents (see for example Dutta et

al.[6]) shares this negative result: they show that there are various valuation structures

in which no equilibrium can sustain efficient network topologies. These findings are in

stark contrast to empirical findings which suggest that efficient network topologies often

emerge in practice.

In this paper, we provide a first model and comprehensive analysis of dynamic net-
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work formation that does not suffer from the abovementioned limitations. We adopt a

standard dynamic network formation game, where agents meet one another randomly at

discrete times, and they choose whether to form or break links with other agents. As it

is standard in the network formation literature, we assume that link formation requires

bilateral consent while link severance is unilateral. We relax two key limitations of the

existing work. In our model, agents are heterogeneous, i.e. their payoffs depend on their

own characteristics and the characteristics of their peers as well as the topology of the

network and their position in the network. More importantly, agents are foresighted : in

making decisions they take into account both the current consequences of their decisions

and the future consequences of these decisions. Foresight plays an important role in vir-

tually all environments and would seem to play an especially important role in network

formation: agents may incur substantial costs to form or maintain links that yield small

current benefits because they (correctly) foresee that forming these links will encourage

linking behavior of others in a way that yields large future benefits. Analysis that ignores

the effects of foresightedness (and treats behavior as myopic) misses an important piece

of agents’ cost-benefit analysis. With hindsight, it is perhaps not surprising that such

analysis – while simpler than the analysis carried out here – leads to predictions that

are less consistent with empirical observations of real-life networks.

The dynamic game we analyze is a stochastic game in which states are determined

by the random selection process as well as the agents’ actions. When types are private

knowledge, this game is also a Bayesian game, in which agents learn dynamically and

update their beliefs based on observation of the formation history. As is common in

the literature on dynamic games, our focus is characterizing the equilibrium behavior

and outcomes when agents are patient. However, instead of characterizing the set of

achievable payoffs as in the repeated-game literature, we aim to characterize the set of

networks which persist (do not change) in equillibrium (forever).

Our main findings are presented in three theorems. Theorem 1 is a Network Conver-

gence Theorem for the setting where agents have complete information about character-

istics of others. It demonstrates that networks that yield each agent a positive one-period

payoff can persist in the long-run. The equilibrium strategies we construct are Markov,

and robust in several dimensions: to initial configurations, to agent trembles, and to

group deviations.

For a widely studied special case of our model, the connections model, our results are

directly comparable to previous theoretical and empirical work, especially with respect

to the sustainability of efficient networks. Theorem 2 extends the setting of Jackson

and Wolinsky[18] to heterogeneous agents who act foresightedly. This extension yields
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predictions that are much more consistent with empirical findings than previous work. In

particular, we predict that efficient networks may be obtained in equilibrium, in contrast

to [18] which predicts that efficient networks almost never obtain. (See below for further

discussion.)

Theorem 3 is a Network Convergence Theorem for the setting in which information

is incomplete: agents begin with prior beliefs about the characteristics of others and per-

form Bayesian updates based on observed history. Under natural assumptions about the

valuation structure, there exists an equilibrium in which patient agents are incentivized

to reveal their types by making connections. In such an equilibrium, information be-

comes ultimately complete and again, any network yielding a positive one-period payoff

for every agent can be sustained. This result points to a tractable equilibrium strategy

profile that covers the range of sustainable network topologies and involves a simple

updating process.

In summary, our results yield a new and positive basis for the sustainability of ef-

ficiency in networks: in settings in which efficient networks provide every agent with

a positive payoff, these networks can be sustained in equilibrium as long as agents are

patients. This is true for both the complete and incomplete information case. Neverthe-

less, we find that in typical cases the agents need to be more patient under incomplete

information than under complete information to achieve efficiency.

The remainder of the paper is organized as follows: Section 2 provides a review of

the related literature. Section 3 introduces the model. Section 4 presents the Network

Convergence Theorem under complete information on types, with an explicit construc-

tion of equilibrium strategies and a discussion on robustness. Section 5 analyzes the

connections model and characterizes the generically unique efficient network topology.

Section 6 introduces the Network Convergence Theorem under incomplete information

and illustrates the contrast between complete and incomplete information. Section 7

concludes the paper.

2 Literature Review

The existing economics literature on network formation can be generally categorized in

two main classes: settings in which the agents link formation is bilateral or unilateral, i.e.

whether the creation of a link requires bilateral consent of both agents involved, or can be

done unilaterally by an agent. Numerous social networks applications such as Facebook,

Google+ etc. are best modeled using models appertaining to the first category, while

Twitter is best modeled in the second category. The well-known connections model by
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Jackson and Wolinsky[18] falls into the first category as do the models considered in this

paper. Considering static strategic environment with homogeneous and myopic agents,

[18] argued that strongly efficient networks are necessarily either empty or a star or

a clique and that in generic cases strongly efficient networks cannot be sustained via

agents’ self-interested behavior. In the second category, Bala and Goyal[1] provided a

comprehensive analysis which yields quite different predictions on the efficient network

topologies and the equilibrium network topologies. However, we will not elaborate on

their results in this paper since our models falls into the first category.

A more recent development in static network formation is to introduce heterogeneity

among agents. Heterogeneity takes different forms in different branches in the literature,

but it can be divided into two main categories. The first type of heterogeneity is ex-

ogenous, such as different failure probabilities for different links (Haller and Sarangi[15])

and agent-specific values and costs (Galeotti[10], Galeotti et al.[12]). The second type

is endogenous heterogeneity, often represented as the amount of valuable resource pro-

duced by the agents themselves, as in Galeotti and Goyal[11]. In our paper, we adopt

the first approach since the heterogeneity we focus on is an agent’s endowed individual

characteristic. We assume a more general framework than most existing literature by as-

signing each agent a type that may affect others’ payoffs as well as her own. We conduct

our analysis in both cases where types are common knowledge (complete information)

and where they are private knowledge (incomplete information).

Another strand of literature describes network formation as an interactive process

over time, instead of a one-shot, static action profile. Again, various methods have been

proposed. For instance, Johnson and Gilles[19] and Deroian[5] analyze variations of

the connections model in a finite sequential game, and Konig et al.[20] models network

formation as a continuous-time Markov chain with random arrival of link creation oppor-

tunities. In this paper, we follow the network formation game introduced by Watts[33],

in which pairs of agents are selected randomly on a discrete and infinite time line to

update the potential link between them. A link is formed or maintained with bilateral

consent, and not formed or severed if either agent chooses to do so. This framework and

variations of it have been widely adopted to analyze strategic interactions in social and

economic networks (Jackson and Watts[17], Skyrms and Pemantle[30], Song and van der

Schaar[31]).

In works adopting this dynamic model, agent myopia is a common assumption, which

means that agents only take into account their current payoffs at every point of decision;

another prevalent assumption is agent homogeneity, with the exception of our prior work

in [31], where we analyzed a variation of the connections model where an agent’s payoff
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is affected by others’ types but not his own. In terms of sustaining efficient networks,

predictions made are similar to Jackson and Wolinsky [18]: the strongly efficient network

cannot be sustained at all times in the formation process. The formation and persistence

of the strongly efficient network is random – it depends on the realized selection of agent

pairs in the early state – and as a result the probability of sustaining the efficient network

decreases as the number of agents increases.

There have been a few attempts to introduce foresightedness into the dynamic net-

work formation, but overall this topic remains understudied. This paper is related to

Dutta et al.[6], who also adopted the model of Watts[33] and assumed that agents take

future payoffs into account. Their main result once again points to the impossibility of

sustaining efficient networks in equilibrium by constructing a representative example.

The major difference between our paper and this paper is that we allow for a public

signal in the definition of a state in a Markov strategy profile – in this way, the agents

may have only limited knowledge about the past formation history but will still be able

to cooperate in achieving efficiency. Our positive result on sustaining efficient networks

holds for a more general valuation structure than most existing frameworks. Alternative

models on foresightedness in network formation include Page Jr. et al.[28] and Herings et

al.[16], whose solution concept is a pairwise stable network instead of equilibrium. Yet

again the efficiency-related results point to cases where the strongly efficient network

cannot be sustained even if it provides each player a positive payoff.

Our approach to the analysis and in particular our construction of equilibrium strate-

gies owes a great deal to the work of Dutta[7] and Forges[9]. In particular, we share the

general notion of characterizing patient agents’ behavior (though in the sense of network

topologies formed instead of payoffs attained) and our construction of equilibrium strat-

egy profiles benefit from the existence of a “uniform punishment strategy” mentioned in

Forges[9].

There are numerous empirical studies characterizing the properties of real-world

networks. The major properties identified by these works are: short diameter (Al-

bert and Barabasi[2]), high clustering (Watts and Strogatz[34]), positive assortativity

(Newman[26][27]), and inverse relation between clustering coefficient and degree (Goyal

et al.[14]). Moreover, experimental studies such as Falk and Kosfeld[8], Corbae and

Duffy[4], Goeree et al.[13] and Rong and Houser[29] have indicated that typical equi-

librium network topologies predicted by the existing theoretical analysis, especially the

star network, only emerge in a small fraction of experimental outcomes. Last but not

least, Mele[25] and Leung[24] show that networks formed in large social communities,

where agents are heterogeneous and withhold certain private information, often exhibit
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patterns not predicted by existing theoretical literature. In the subsequent analysis, we

will discuss most of the above properties and illustrate how they can be accounted for

in our framework.

3 Model

3.1 Network Topology

Consider a group of agents I = {1, 2, ..., N}. We consider undirected networks. Thus,

a network is a collection of unordered pairs of distinct elements of I : g ⊂ G(I) = {ij :

i, j ∈ I, i 6= j}. ij is called a link between agents i and j. A network g is empty if g = ∅.

(Agents who are not linked to anyone are singletons; in the empty network, all agents

are singletons.) Let G(I) = 2G(I) denote the set of all possible networks. Given a subset

of agents I ′, let GI′ denote a network that is formed within I ′.

Given a network g we say that agents i and j are connected, denoted i
g

↔ j, if there

exist j1, j2, ..., jn for some n such that ij1, j1j2, ..., jnj ∈ g. Let dij denote the distance,

or the smallest number of links between i and j. If i and j are not connected, define

dij := ∞.

Let N(g) = {i|∃j s.t. ij ∈ g} be the set of non-singletons, and let Ni(g) = {j :

ij ∈ g} be the set of neighbors of i. A component of network g is a maximal connected

sub-network, i.e. a set C ⊂ g such that for all i ∈ N(C) and j ∈ N(C), i 6= j, we have

i
C
↔ j, and for all i ∈ N(C) and j ∈ N(g), ij ∈ g implies that ij ∈ C. Let Ci denote

the component that contains link ij for some j 6= i. Unless otherwise specified, in the

remaining parts of the paper we use the word “component” to refer to any non-empty

component.

A network g is said to be empty if g = ∅, and connected if g has only one component

which is itself. g is minimal if for every component C ⊂ g and every link ij ∈ C, the

absence of ij would disconnect at least one pair of formerly connected agents. g is

minimally connected if it is minimal and connected.

3.2 Dynamic Network Formation Game

We adopt the framework by Watts[33] to formulate the network formation game. Time

is discrete and the horizon is infinite: t = 1, 2, .... We assume an initial network g(0);

this is a parameter. The game is played as follows:

1. In each period, a pair of agents (i, j) is randomly selected with equal probabilities

to update the link between them.

7



2. The two selected agents (each knowing the identity of the other) then play a

simultaneous move game: if there is a link between them, each can choose to sever

the link or not; if there is no link between them, each can choose to form a link

or not. An existing link can be severed unilaterally, whereas formation of a link

requires mutual consent.

3. In addition, in each period every agent (whether or not she is selected in the

current period) can choose to sever any of her existing links.

It is convenient not to distinguish between severing a link and not forming a link. Hence,

for each agent i and each agent j, i has two possible actions with respect to j : aij = 1

denotes the action that i agrees to form a link with j (if there is no existing link) or

not to sever the link (if there is an existing one), and aij = 0 otherwise. We emphasize

that a link is formed or maintained after bilateral consent (i.e. aij = aji = 1). Write

A = {0, 1}.

Let φ(t) be the pair of agents selected in period t and let σ(t) := {φ(τ),g(τ)}tτ=1

denote a formation history or a formation path up to time t, with the initial condition

that σ(0) = (∅,∅). Let Σ = {σ(t) : t ∈ N} denote the set of all possible formation

histories. It is important to note that the formation history is different from the sequence

of actions taken in two aspects. Conceptually, the formation history is a record of the

evolution of the network from an outsider’s point of view. In other words, it is the set

of all possible public information, whereas the actions are part of the agents’ private

information. Technically, even though the formation history is determined by actions

taken over time, it does not perfectly reveal every action. For instance, seeing a link

broken or not formed in the formation history only implies that at least one of the two

related agents chose action 0 in that period, but it does not identify the agent(s) who

did so.

Agents may not observe the entire formation history, but in each period every agent i

knows its neighbors Ni(g), i.e. the set of agents she links to. In addition, in each period

the agents observe a public signal which is generated by a signal device y : Σ → Y ,

where Y is the set of signal realizations. We sometimes refer to y as the monitoring

structure in the remainder of this paper. In general, the signal generated may depend

on the entire formation history and not only on the current actions. (Of course, the

latter is a special case.) We assume that y and Y are common knowledge.

The signal device determines what agents know about the formation history. For

instance, if Y = {0} and y(σ(t)) = 0 then agents have no knowledge of the formation

history whatsoever; if Y = Σ and y(σ(t)) = σ(t) then agents have complete knowledge
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of the formation history. If agents observe the events of each period, i.e. (φ(τ),g(τ))

for each τ , then they implicitly observe the full history σ(t). In general however, some

incomplete monitoring structure cannot be generated by single period reports; see our

discussion in Section 5. Intermediate signals structures represent incomplete observabil-

ity. Note however, that y is deterministic instead of random, so our notion of incomplete

observability is different from the perhaps more familar notion of imperfect monitoring.

In the various applications of this model, especially social networks, the signal device

can be interpreted as a news media, e.g. a newspaper, a television program or a website.

It will not record everything in the past for its audience, but it broadcasts important

events that attract public attention or irregular or inappropriate activities by certain

individuals. As we will see even incomplete knowledge about the formation history is

sufficient to sustain efficient networks in equilibrium.

3.3 Payoff Structure

Each agent has a type, denoted by θi for agent i. Let Θ ⊂ R denote the set of possible

types. Let θ̄ = (θ1, θ2, · · · ) denote the type vector for the whole group of agents. Given

a subset of agents I ′, let θ̄I′ denote the associated type vector.

The one-period payoff of agent i depends on the network structure and the type

vector. Specifically, this payoff is a function ui : Θ
N × G(I) → R. We assume that the

payoff to agent i is zero whenever agent i is a singleton: ui(θ̄,g) = 0 for all g in which i

is a singleton, regardless of θ̄ and g. Also, we assume that each agent’s payoff satisfies

component independence: ui(θ̄,g) = ui(θ̄, Ci).

For each agent, her payoff is realized in every period, though payoffs in different

periods may well be different according to the network topology. A payoff that realizes

t periods from now is discounted by γt, where γ ∈ (0, 1) is the time discount factor.

Hence, if the vector of networks that form over time is ḡ = {g(τ)}∞τ=1, agent i’s total

(discounted) payoff evaluated at period t is

Ui(θ̄, ḡ, t) =

∞
∑

τ=0

γτui(θ̄,g(t + τ)).

If the network is constant from time t onward, this reduces to (1− γ)−1ui(θ̄,g(t)).

In our analysis, we will discuss the possibility of converging to an efficient network

structure. Following the convention in the literature, our benchmark for efficiency will be

the strongly efficient network, i.e. the network that yields the largest sum of one-period

payoffs. We provide a formal definition below.
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Definition 1 (Strong efficiency). Given θ̄, a network g is strongly efficient if
∑N

i=1 ui(θ̄,g) ≥
∑N

i=1 ui(θ̄,g
′) for every g′.

Since the number of possible network topologies is finite, a strongly efficient network

always exists.

Another type of network we identify is a core-stable network. In a later section

we will demonstrate that such a network entails important additional properties of the

formation process.

Definition 2 (Core-Stable network). A network g is core-stable if there exists no

subgroup of agents I ′ ⊂ I and network g′ among I ′ (that is, there is no link ij ∈ g′ with

i ∈ I ′ and j ∈ I \ I ′) such that

ui(θ̄,g
′) ≥ ui(θ̄,g),

for every agent i ∈ I ′, and the inequality is strict for some agent i ∈ I ′. If g is not

core-stable, we say that g′ blocks g and call I ′ a blocking group.

We use the term core-stability because this criterion discourages any subgroup of

agents to break away from the network and form a sub-network on their own. Note that

this is different from pairwise stability defined in Jackson and Wolinsky[18]. Pairwise

stability of a network means that between any two agents, forming a new link cannot

benefit both and severing an existing link must hurt at least one, holding other links

in the network constant. It is a widely used solution concept for the static analysis

of network formation. Core-stability is more suitable in our dynamic setting because

foresighted agents will look ahead to the possibility of cooperation with a group of other

agents, not just a single other agent.

3.4 Example: Connections Model

We use the connections model in Jackson and Wolinsky[18] to illustrate how the network

topology itself, the agents’ positions and the type vector affect an agent’s payoff. The

connections model is widely applied in the network formation literature.

The payoff structure in this model is described as follows. There is a mapping f from

Θ to R++ that specifies payoffs from direct connections: if agent i is directly connected

with agent j (ij ∈ g), then agent i gets payoff f(θj) and agent j gets payoff f(θi) from

this connection. In addition, if agent i is indirectly connected to agent j, then i obtains

the payoff f(θj) discounted by δdij−1, where δ ∈ (0, 1) is the spatial discount factor, and

dij is the distance between i and j measured in the number of links. Finally, agent i
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pays a cost of c > 0 per period for every link that i has. Hence, in a single period with

network g, agent i’s current payoff is

ui(θ̄,g) =
∑

j:i
g

↔j

δdij−1f(θj)−
∑

j:ij∈g

c.

It is easy to see that the above payoff structure satisfies the assumptions we made

in the previous section. In the original and widely adopted version of the model, agents

are assumed to be homogeneous, i.e. f(θj) is a constant independent of j. In the above

formulation, the agents are heterogeneous: an agent’s payoff obtained from a connection

depends on the type of the agent it connects to. Note that the payoff structure exhibits

non-local externalities: though an agent gets a positive payoff from each agent she

connects to, she only pays a cost for each link she maintains. Moreover, an agent’s payoff

depends both on the network topology as well as an agent’s position. In particular, agents

who are distantly connected obtain lower payoffs from their connection than agents who

are closely connected. In various applications, this spatial discount can be regarded as

the decay of a valuable resource or information due to increased noise or risk. In a later

section, we will discuss the connections model in more details and present important

related results.

4 Network Convergence Theorem with Complete Informa-

tion

In this section, we characterize the set of networks that can persist in equilibrium when

agents are patient, assuming that the type vector is commonly known. We start by

defining strategies in this environment and the concept of an equilibrium. In particular,

we are interested in equilibria in which the network formation process converges, i.e.

over time the network rests on a specific topology which then persists forever.

4.1 Strategy, Equilibrium and Convergence

Fix the signal structure Y . A (pure) strategy of agent i is a mapping that assigns,

following every history, an action in {0, 1} to every other agent j. The constraint on this

mapping is that if i and j are not linked and the pair (i, j) is not selected in the current

period, then agent i’s action towards agent j has to be 0. Formally, let ωij ∈ Ω = {0, 1}

denote the state of whether the pair (i, j) is selected, and let ζij ∈ Z = {0, 1} denote the

state of whether i and j are linked in the current period. Write H for the set of histories

of public signals.
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Definition 3 (Strategy). A (pure) public strategy of agent i is a mapping si:

si : (I − i)×H× Ω× Z → A

such that syij(·, ·, 0, 0) ≡ 0.

Let S denote the set of all public strategies. (As is customary, we assume that agents

condition only on the public signal.)

Throughout the paper, we will focus onMarkov strategies, which by definition depend

not on the entire history of signals but only on the current signal. Hence, a Markov

strategy is a mapping si : (I − i)× Y × Ω× Z → A.

Associated with the device for public signals, the interpretation of a strategy in this

game is rather straightforward. For every agent i, the state in a Markov strategy at

a given time period is represented by her knowledge about the game at that period,

which is the combination of two elements: her knowledge about every other agent j,

which includes j’s type and whether j is linked to herself; and her knowledge about the

formation history σ(t). i’s information on the former is complete since she knows both

the identity of j and j’s type. The precision of her information on the latter, on the

other hand, may vary according to the public signal generating function y. Note that

strategies thus defined include strategies that assign actions only based on the network

formed in the previous period (so that Y = G) as in some existing literature, for instance

Dutta et al.[6]. A profile of strategies and a history define a probability distribution

on future histories assuming agents follow the given strategies. (Randomness arises

because the selection process is random.) When we take expectations we implicitly

mean expectations with respect to this probability distribution.

Now we are ready to define the equilibrium.

Definition 4 (Equilibrium). A (pure strategy) public perfect Markov equilibrium

is a vector of public Markov strategies s∗ = (s∗1, · · · , s
∗
N ) such that: for each agent i,

every period t and every possible history of the public signals, s∗i maximizes agent i’s

expected discounted total payoff at period t given s∗−i.

For the remainder of the paper, we simply refer to a public perfect Markov equilib-

rium as an equilibrium. It is easy to see that a pure strategy equilibrium for the game

always exists, regardless of the type vector and the specific payoff structure. Indeed,

since link formation and maintenance requires bilateral consent, the strategy profile

that every agent always chooses action 0 (sever/not form a link) already constitutes an

equilibrium. We note the existence of an equilibrium below.
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Proposition 1. There exists a pure strategy equilibrium.

We focus on equilibria in which the network formation process converges (after a

finite number of periods) and so leads to a persisting network. Before convergence

occurs, the evolution of the network is random because the selection process is random;

after convergence occurs, randomness has no further effect and so the limit network is

a random function of the initial network and the strategies. We believe that this notion

provides an appropriate account for what is to be expected in the formation process in

various applications such as social circles. People tend to form and sever links constantly

in the starting phase of building their social milieu, but over time they maintain a

relatively fixed circle of acquaintances (Kossinets and Watts[21]). We formally describe

such convergence in our model below.

Given a realized formation history σ(t) , the network topology thereafter {g(τ)}∞τ=t+1

is a stochastic process. We denote the probability measure generated by this stochastic

process as Qs∗,σ(t).

Definition 5 (Convergence). Given a realized formation history σ(t) we say that the

network formation process converges weakly to network g in equilibrium s∗ if

lim
T→∞

Qs∗,σ(t)(g(T
′) = g ∀T ′ ≥ T ) = 1.

We say that the network formation process converges strongly to network g if it

converges following every (finite) history.

Notice that convergence entails that the network converges in finite time with prob-

ability 1.

In what follows we focus on strong convergence rather than weak convergence for

2 reasons. The first is that strong convergence implies that if the evolution of the

network is disturbed by some exogenous process then it eventually returns to the same

limit. The second is that strong convergence guarantees robustness with respect to small

errors and with respect to coalitional deviations, not just individual deviations. We will

discuss these points in more detail below.

4.2 Informative Monitoring Structures

We will explicitly construct equilibrium strategy profiles that yield strong convergence

to a given network provided that the monitoring is “sufficiently informative”. We begin

by describing what this entails.

Fix a network g and integer K ≥ 1. We begin by defining a particular monitoring

structure yg,K.
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1. Y = {C,P}, where C represents the cooperation phase and P represents the

punishment phase.

2. yg,K(σ(0)) = C.

3. In period t ≥ 1: if yg,K(σ(t− 1)) = C, we distinguish 2 cases:

– case 1: for every pair of agents ij ∈ g, aij = aji = 1 and for every pair of

agents ij /∈ g , aij = 0 or aji = 0 (or both).

– case 2: otherwise (i.e. case 1 fails for some pair of agents ij)

– In case 1, we define yg,K(σ(t)) = C and in case 2, we define yg,K(σ(t)) = P .

4. In period t ≥ 1, if yg,K(σ(t− 1)) = P : we again distinguish 2 cases:

– case 1: y(σ(t− 2)) = y(σ(t− 3)) = .....y(σ(t −K)) = P

– case 2: otherwise

– In case 1, we define yg,K(σ(t)) = C and in case 2, yg,K(σ(t)) = P .

As we will see in the proof of Theorem 1 below access to the information provided by

yg,K allows the agents to divide the formation process into two phases: the cooperation

phase which continues forever if agents choose their actions in order to form or maintain

the network g, and the punishment phase that starts when agents depart from the

cooperation phase and continues for K periods. From the public signal C or P , each

agent knows what phase she should currently be in, but not how long that phase has

lasted or how many times the same phase has occurred before. As we will also see in the

proof, the parameter K plays a crucial role in guaranteeing that convergence is strong

rather than weak.

Consider any other signal structure ŷ with signal space Ŷ . ŷ is as informative as yg,K

if there is a mapping η : Ŷ → Y such that yg,K(σ(t)) = η(ŷ(σ(t)). That is, ŷ reveals

at least as much about the history as yg,K (and perhaps more). Notice that complete

information is always as informative as yg,K, no matter what g and K are.

4.3 Construction of Equilibrium Strategies

It is useful to give an explicit description of the strategies we will use in the proof. We

assume that the monitoring structure y is as informative as yg,K. Hence, agents always

know what they would know if the monitoring structure were exactly yg,K ; the strategies

14



we describe use only this information, so there is no loss in assuming that the monitoring

structure is exactly yg,K.

Consider the following strategy profile, denoted ŝc:

sij =

{

1, if ij ∈ g, yg,K = C, and max{ωij , ζij} = 1;

0, otherwise.

ŝc can be interpreted as the following pattern of behavior: the agents start by co-

operating towards building a designated network. They form or maintain a link if and

only if that link belongs to the specific network g. If a “deviation” - a link in g is not

formed or a link not in g is formed - is detected all agents leave the social circle (break

all links) for K periods before starting cooperation again.

4.4 The Network Convergence Theorem

We begin with a simple observation.

Proposition 2. If there exists an equilibrium in which the formation process converges

weakly to the network g, then ui(θ̄,g) ≥ 0 .

Proof. Suppose that there exists an equilibrium where the formation process converges

to g weakly, and that ui(θ̄,g) < 0 for some i. Then on the equilibrium path when g

has been formed and will persist forever, i is always strictly better off by deviating to

the strategy sij = 0 and obtaining payoff 0 thereafter. This is a contradiction to the

assumption of an equilibrium.

The Network Convergence Theorem with complete information shows that if the

inequality is strict for all agents i, the monitoring structure is sufficiently informative

(in particular if the monitoring structure yields complete information) and agents are

sufficiently patient then there is an equilibrium in which the formation process converges

strongly to g.

Theorem 1. Let g be a network for which ui(θ̄,g) > 0 for all i. There is an integer

K and a cutoff γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1) and the monitoring structure is as

informative as yg,K, then there exists an equilibrium in which the formation process

converges strongly to g.

As we have noted above, complete monitoring is always as informative as yg,K so we

obtain as an immediate corollary the corresponding Network Convergence Theorem for

complete monitoring.
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Corollary 1. Let g be a network for which ui(θ̄,g) > 0 for all i. If monitoring is com-

plete, there is a cutoff γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1), then there exists an equilibrium

in which the formation process converges strongly to g.

It is useful to contrast the Network Convergence Theorem with the familiar Folk

Theorem for the repeated games. The Folk Theorem says that every feasible, strictly

individually rational long-run average payoff vector can be achieved in an equilibrium if

agents are sufficiently patient. The Network Convergence Theorem says that every “fea-

sible, strictly individually rational” network can be achieved as the limit of a formation

process. The Folk Theorem talks about the long-run payoffs; the Network Convergence

Theorem talks about the long-run network. The proof of the theorem is stated below.

Proof. Consider the monitoring structure yg,K and the strategy profile ŝc. Given θ̄, let

v̄ denote the largest marginal benefit that an agent can obtain from forming or severing

a link in any network g. v̄ measures the largest possible marginal benefit that an agent

can get from deviating in one period. Since the number of networks is finite, we know

that v̄ exists.

Given θ̄and a formation history σ(t), consider an arbitrary agent. Let µ̄C(γ,M) and

µ
C
(γ,M) denote the largest and smallest expected total payoff the agent gets within

M periods of the cooperation phase, starting from any network. Note that an agent’s

payoff during the punishment phase is always equal to 0. We first establish the following

lemma.

Lemma 1. If ui(θ̄,g) > 0 for all i, then the following properties hold:

a. limγ→1 µ̄C(γ,∞) = limγ→1 µC
(γ,∞) = ∞.

b. There exists A > 0 such that µ̄C(γ,∞)− µ
C
(γ,∞) < A, regardless of γ.

Proof. Let W ∈ R denote the smallest possible payoff of any agent in any network in

one period.

For (a), it suffices to show that a lower bound of the two payoffs converges to infinity

as γ converges to 1. Consider the following hypothetical payoff structure: agent i’s one-

period payoff isW if the network is different from g, and ui(θ̄,g) otherwise. Starting from

any network g(0), the probability that g(t) 6= {g} is bounded above by min{N(N−1)
2 (1−

2
N(N−1))

t, 1} (this upper bound is constructed by supposing that g(0) = ∅ and g is the

complete network, and calculating the probability that some pair of agents has never

been selected during the t periods). For all t such that N(N−1)
2 (1− 2

N(N−1) )
t < 1 (let t∗
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be the smallest t satisfying this condition), i’s expected payoff in g(t) is bounded below

by

N(N − 1)

2
(1−

2

N(N − 1)
)tW + (1−

N(N − 1)

2
(1−

2

N(N − 1)
)t)ui(θ̄,g),

and agent i’s total expected payoff is bounded below by

t∗−1
∑

t=1

γt−1W +

∞
∑

t=t∗

γt−1(
N(N − 1)

2
(1−

2

N(N − 1)
)tW

+ (1−
N(N − 1)

2
(1−

2

N(N − 1)
)t)ui(θ̄,g))

=

t∗−1
∑

t=1

γt−1W +

∞
∑

t=t∗

γt−1ui(θ̄,g) +

∞
∑

t=t∗

γt−1N(N − 1)

2
(1−

2

N(N − 1)
)t(W − ui(θ̄,g))

=
W (1− γt

∗
)

1− γ
+

γt
∗−1ui(θ̄,g)

1− γ
+

N(N − 1)

2

γt
∗−1(1− 2

N(N−1))
t∗(W − ui(θ̄,g))

1− γ(1− 2
N(N−1))

.

It is clear that the sum of the first term and the third term above has a lower

bound which is independent of γ. In addition, the second term converges to infinity as

γ converges to 1 regardless of i. Hence part (a) is proved. (b) can be proved using a

similar argument.

Consider agent i at period t following any formation history. Note that i cannot

really “deviate” in the punishment phase given that all the agents other than i are using

their prescribed strategy in ŝc. Hence we only need to consider a deviation of agent

i in the cooperation phase. According to the one-step deviation principle, in order to

determine whether ŝc is an equilibrium we only need to consider i’s deviation in one

period, after which i returns to her prescribed strategy in ŝc. As mentioned before,

the largest possible marginal benefit that i gets from this deviation in this period is v̄.

Starting from the next period, i’s expected total payoff is bounded above by

γ1+K µ̄C(γ,∞).

If i does not deviate, then starting from the next period, i’s expected total payoff is

bounded below by

γµ
C
(γ,K) + γ1+Kµ

C
(γ,∞).

Therefore, we have

Total expected marginal benefit from deviation

≤v̄ + γ1+K(µ̄C(γ,∞) − µ
C
(γ,∞))− γµ

C
(γ,K)

<v̄ + γ1+KA− γµ
C
(γ,K),
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from property (b) above. Then from property (a), there exists γ′ ∈ (0, 1) and K̄ such

that µ
C
(γ,K) > 2(v̄ + A) for every γ ≥ γ′ and K ≥ K̄. Let γ̄ = max{γ′, 12}, then for

every γ ∈ [γ̄, 1), we have

v̄ + γ1+KA− γµ
C
(γ,K) < 0,

which implies that deviation is not profitable and hence ŝc is an equilibrium where the

formation process converges to g.

It might be noted that Proposition 2 and Theorem 1 together do not quite provide

a complete characterization of which networks can be achieved as weak or strong limits:

if ui(θ̄,g) = 0 for some i, the results are silent about the achievability of g. This seems

entirely analogous to the situation for the familiar Folk Theorem: strictly individually

rational payoff vectors can be achieved and sub-rational payoff vectors cannot be achieved

but the status of payoff vectors that are exactly rational (i.e. equal to the minmax payoff)

is indeterminate.

With our proposed strategy profile, the underlying mechanism for convergence to

such a network can be described as a “self-fulfilling prophecy”: the agents cooperate

in order to form a network that is commonly envisioned, and they punish any detected

deviation (there can be “undetected” deviations such as i choosing 1 but j still choosing

0 for a link ij /∈ g) by opting out of the group for K periods. for every agent, this

punishment is incentive compatible once everyone else complies. Afterwards, the agents

opt back in and resume cooperation. In this way, g always gets formed and persists no

matter what the initial network was and what the formation history has been.

An immediate yet important result from Theorem 1 is a clear criterion on sustaining

efficiency. For a strongly efficient network to be sustained in any equilibrium, it needs to

ensure a non-negative payoff for each agent. Conversely, if a strongly efficient network

yields every agent a positive payoff, then it can be sustained in equilibrium if the agents

are patient enough.

Corollary 2. If g is a strongly efficient network, and there is an equilibrium in which

the formation process converges weakly to g then ui(θ̄,g) ≥ 0 for all i. If g is strongly

efficient, ui(θ̄,g) > 0 for all i, and agents are sufficiently patient, then there exists an

equilibrium in which the formation process converges strongly to g .

This corollary presents a striking contrast to the argument offered by Dutta et al.[6]

that in generic cases efficiency cannot be sustained even if agents are patient and each

agent’s payoff in the strongly efficient network is positive. We provide an example below,

which is taken from Dutta et al.[6], to illustrate the difference.
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Example 1. This example is taken from Dutta et al., Theorem 2[6]. Consider I =

{1, 2, 3} and assume that all agents are of the same type. The payoff structure is

symmetric: for every i, j, k, ui(θ̄,∅) = 0, ui(θ̄, {ij}) = 2v, ui(θ̄, {ij, ik, jk}) = v,

while ui(θ̄, {ij, jk}) = 0. The unique strongly efficient network is the complete network

g = {12, 13, 23}.

[6] shows that there exists γ̄ < 1 such that if γ ∈ (γ̄, 1) then there is no pure strat-

egy equilibrium where the formation process converges strongly to the strongly efficient

network. This results from the constraint of agents’ knowledge on the formation history:

in [6] it is assumed that the agents only know the network formed in the previous period

and the pair of agents selected in the current period.

In our model, agents know more and this matters. To see why, consider the strat-

egy profile ŝc. In the punishment phase, no unilateral action can change the network

formation outcome, so we only need to inspect the incentives of agents to deviate in the

cooperation phase. Using the same methods as in the proof of Theorem 1 and plugging in

the values in this example, we can obtain a range of γ and K to make ŝc an equilibrium:

γ ∈ (0.97, 1), K ≥ 60.

At the end of this section we would like to emphasize again the importance and

significance of the monitoring structure. To sustain cooperation which leads to efficiency

over time, it is not necessary that agents know everything. The agents need not know

who committed a deviation or when a deviation occurred, but it is vital that they know

if someone has deviated in the recent past and whether they are supposed to carry

out punishment. A public signal device (newspaper, TV, website, etc.) can convey

such information across the group of agents and ensure a limited but effective form of

cooperation. As a practical implication, our analysis strongly suggests that modern

media, with its function of public broadcast, plays a crucial role in enhancing social

welfare.

4.5 Robustness of Equilibrium

Agents are not always rational and do not always choose actions independently of others,

so it seems important to ask whether results such as ours are robust to “mistakes”

and to coalitional deviations (in addition to individual deviations). In this section, we

demonstrate robustness of our results with respect to individual mistakes and coalitional

deviations.

We consider a model in which agents tremble uniformly. Fix a strategy profile s

and fix ǫ > 0. Write sǫ for the mixed strategy profile in which each agent i plays si
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with probability (1− ǫ) and chooses a random action with probability ǫ. Let Qǫ be the

probability distribution on the corresponding stochastic process of networks. Intuitively,

if ǫ is sufficiently small, then the network formation process will lead to g but will not

remain there because agents will randomly break links in g “by accident”, However,

following such a breakage the process will lead back to g. Hence, if ǫ is small, g will

probably occur “most of the time”. The following proposition formalizes this result.

Proposition 3. Fix a network g such that ui(θ̄,g) > 0 for all i and an integer K and

a monitoring structure y that satisfy the conditions of Theorem 1. Fix a, b > 0. There

exists γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1) and ŝc is the corresponding equilibrium strategy

constructed in Theorem 1, then

lim
T→∞

inf Qǫ(
|{t : 1 ≤ t ≤ T,g(t) = g}|

T
> 1− a) > 1− b

for all sufficiently small ǫ.

Proof. We first prove that ŝc is an equilibrium when ǫ is sufficiently small. Referring

to the proof of Theorem 1, it suffices to show that Lemma 1 still holds under this

alternative environment with a function ǫ(γ). For part (a) of Lemma 1, let t∗ be the

smallest t satisfying N(N−1)
2 (1 − 2

N(N−1) )
t < 1, and following a similar argument as in

the proof of Theorem 1, we know that i’s expected payoff in g(t) is bounded below by

W (1− (1− ǫ)Nt) +
N(N − 1)

2
(1−

2

N(N − 1)
)tW (1− ǫ)Nt

+ (1−
N(N − 1)

2
(1−

2

N(N − 1)
)t)ui(θ̄,g)(1 − ǫ)Nt.

Agent i’s total expected payoff is bounded below by

t∗−1
∑

t=1

γt−1W +
∞
∑

t=t∗

γt−1W (1− (1− ǫ)Nt) +
∞
∑

t=t∗

γt−1N(N − 1)

2
(1−

2

N(N − 1)
)tW (1− ǫ)Nt

+

∞
∑

t=t∗

(1−
N(N − 1)

2
(1−

2

N(N − 1)
)t)ui(θ̄,g)(1 − ǫ)Nt

=
W

1− γ
−

γt
∗−1(1− ǫ)Nt∗W

1− γ(1− ǫ)N
+

γt
∗−1(1− ǫ)Nt∗ui(θ̄,g)

1− γ(1− ǫ)N

+
N(N − 1)

2

γt
∗−1(1− ǫ)Nt∗(1− 2

N(N−1))
t∗(W − ui(θ̄,g))

1− γ(1− 2
N(N−1))(1 − ǫ)N

.

The last term has a lower bound which is independent of γ. Also, note that as ǫ → 0,
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we have

W

1− γ
−

γt
∗−1(1− ǫ)Nt∗W

1− γ(1− ǫ)N
→

W

1− γ
−

γt
∗−1W

1− γ

γt
∗−1(1− ǫ)Nt∗ui(θ̄,g)

1− γ(1− ǫ)N
→

γt
∗−1ui(θ̄,g)

1− γ
,

and as γ → 1, we have

W

1− γ
−

γt
∗−1W

1− γ
→ t∗ − 1

γt
∗−1ui(θ̄,g)

1− γ
→ ∞.

Hence, for every number x > 0, there exists a function ǫ(γ) such that for some γ′ ∈ (0, 1),

any (γ, ǫ) such that γ ≥ γ′ and ǫ ≤ ǫ(γ) makes agent i’s expected total payoff higher

than x. This proves part (a) of Lemma 1. Part (b) can be proved by a similar argument.

Now we prove the limit inferior in probability. Let T̂ be a sufficiently large integer

such that T̂−K

T̂
> 1−a. We know that for every b > 0 and τ ∈ N+, when ǫ is sufficiently

small we have Qǫ( |{t:τ≤t≤τ+T̂ ,g(t)=g}|

T̂
> 1 − a) > 1 − b. Moreover, this property is

invariant for every time period of length nT̂ , n ∈ N+. This completes the proof.

Next, we discuss how the additional property of stability of a network brings about

an equilibrium that prevents typical group deviations. Recall that a network is core-

stable if there is no subgroup of agents that can form another network on their own

(without linking to any agent not in the subgroup) and provide a Pareto improvement

for the subgroup. We consider a natural class of group deviations. Fix a sub-group of

agents Î ( I and a network ĝ ∈ G(Î) . We consider a group deviation by agents in Î in

which they commit to forming ĝ (that is they agree to form or maintain link ij if and

only if ij ∈ ĝ). We refer to these deviations as network deviations.

In the following result, we assume that the monitoring structure reveals the remaining

number of periods for the punishment phase.

Proposition 4. Fix a core-stable network g such that ui(θ̄,g) > 0 for all i. There exists

an integer K̂ and a cutoff γ̂ ∈ (0, 1) such that for every γ ∈ [γ̂, 1), there exists M(γ)

such that if K ≥ K̂ then

a. The strategy profile constructed in Theorem 1 is an equilibrium and the forma-

tion process converges strongly to g.

b. Following any formation history with the remaining punishment phase no longer

than M(γ) periods, no proper subgroup of agents has a profitable network deviation.

21



c. M(γ) is increasing in γ and limγ→1M(γ) = ∞.

Proof. Consider a formation history with the remaining punishment phase being K ′

periods (including the current period). By the assumption that g is core-stable, for

every Î ( I and associated ĝ, there exists an agent i such that ui(θ̄, ĝ) − ui(θ̄,g) < 0.

Fix one such i. From the current period onwards, if the agents follow ŝc, i’s total payoff

is bounded below by

γK
′

µ
C
(γ,∞).

Let V > 0 denote the largest possible payoff of any agent in any network in one period.

With a little abuse of notation, let g(t) denote the network formed t periods from the

current period. If the group of agents Î follow s′(Î , ĝ), i’s payoff in g(t) is bounded

above by

1{g(t) 6= ĝ}V + (1− 1{g(t) 6= ĝ})ui(θ̄, ĝ).

If the group of agents Î follow s′(Î , ĝ), the probability that g(t) 6= ĝ is bounded above

by min{N(N−1)
2 (1 − 2

N(N−1))
t+1, 1}. For all t such that N(N−1)

2 (1 − 2
N(N−1))

t+1 < 1, i’s

expected payoff in g(t) is bounded above by

N(N − 1)

2
(1−

2

N(N − 1)
)t+1V + (1−

N(N − 1)

2
(1−

2

N(N − 1)
)t+1)ui(θ̄, ĝ).

Following a similar argument to the proof of Lemma 1, there exists D > 0 (regard-

less of γ) such that i’s discounted expected total payoff from s′(Î , ĝ) is less than D +
∑∞

t=0 γ
tui(θ̄, ĝ). Now, the difference in i’s payoff between the two strategy profiles is

bounded above by

D +
∞
∑

t=0

γtui(θ̄, ĝ)− γK
′

µ
C
(γ,∞).

With a similar argument to above, there exists E > 0 (regardless of γ) such that

µ
C
(γ,∞) >

∑∞
t=0 γ

tui(θ̄,g) − E. Hence, the difference in i’s payoff between the two
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strategy profiles is bounded above by

D + E +

∞
∑

t=0

γtui(θ̄, ĝ)− γK
′

∞
∑

t=0

γtui(θ̄,g)

=D + E +

K ′−1
∑

t=0

γtui(θ̄, ĝ) + γK
′

(

∞
∑

t=0

γt(ui(θ̄, ĝ)− ui(θ̄,g)))

≤D + E +

K ′−1
∑

t=0

γtui(θ̄, ĝ) +
γK

′
F

1− γ

≤D + E +K ′V +
γK

′
F

1− γ
,

where F = max
Î ,ĝ

{ui(θ̄, ĝ)− ui(θ̄,g)}. Since the total number of networks is finite, we

know that F exists and that F < 0.

Let γ′′ be such that F
1−γ′′ = −|D+E|−1, and let K̄ and γ̄ be as derived in the proof

of Theorem 1. Let K̂ = K̄ and let γ̂ = max{γ′′, γ̄}. For every γ ≥ γ̂, let M(γ) be the

largest K ′ ∈ N such that D+E +K ′V + γK′
F

1−γ
< 0. We know that M(γ) exists because

K ′ = 0 always satisfies the inequality.

Now, given K̂ and any γ ≥ γ̂, ŝc is an equilibrium where the formation process

converges to g by Theorem 1. From the construction of M(γ), given any Î following any

formation history with the remaining punishment phase no longer than M(γ) periods,

there is always an agent in Î ( I and associated ĝ whose payoff under strategy profile

s′(Î , ĝ) is strictly lower than that under strategy profile ŝc. Hence, ŝc is immune to

s′(Î , ĝ). Finally, since the term D+E +K ′V + γK′
F

1−γ
is increasing in K ′ and decreasing

in γ, M(γ) is increasing in γ; the fact that limγ→1
γK′

F
1−γ

= −∞ for every given K ′ ensures

that limγ→1 M(γ) = ∞. This completes the proof.

To understand what this proposition means, note that K̂ is the length of the pun-

ishment period. In the equilibrium strategies that we have constructed, agents receive

a payoff of 0 during the punishment phase. Hence, if K̂ were infinite, or even extremely

long, groups would prefer to deviate rather than suffer such a long punishment. However

once K̂ is given, part b guarantees that if agents are sufficiently patient, groups of agents

will be willing to endure a punishment of length K̂ rather than coordinate on a network

deviation.
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5 Foresight in the Connections Model

We have shown that as long as a network secures a positive payoff for every agent, it

can be sustained in an equilibrium if the monitoring structure is fine enough and agents

are sufficiently patient. We now apply this result and the techniques to evaluate the

sustainability of efficient entworks in the widely studied connections model introduced

by Jackson and Wolinsky[18]. Jackson and Wolinsky[18] assume that agents are homo-

geneous and myopic and they argue that the strongly efficient network is either empty,

a star or a clique. We allow for heteregenous and foresighted agents and find a much

richer set of strongly efficient networks.

Because the general case is cumbersome we first discuss in detail a two-type envi-

ronment to clearly explain the key results without loss of much generality and to avoid

technical redundancy. We will demonstrate how the analysis can be extended to a gen-

eralized model with multiple types at the end of this section.

5.1 Characterization of Strongly Efficient Networks

Assume that each agent can be one of two types, α or β. Let nα, nβ > 0 denote the

number of type α agents and that of type β agents correspondingly. Without loss of

generality, we assume that f(α) > f(β). Let ge denote the strongly efficient network.

Before stating the formal result, we first present a graphical illustration of the topology

of the strongly efficient network under different parameter values in Figure 1.

The following theorem fomally characerizes the conditions on model parameters that

lead to each strongly efficient network topology.

Theorem 2. ge can be described as follows:

a. If (1− δ)f(β) > c, then ge is a clique encompassing every agent.

b. If (1 − δ)f(α)+f(β)
2 > c > (1 − δ)f(β), then ge is such that every two type α

agents are linked, and every type α agent is linked with every type β agent, but no

type β agent is linked with another type β agent.

c. If (1− δ)f(α) > c > (1− δ)f(α)+f(β)
2 , and (1+ δ(nα−1))f(α)+(1+ δ(nα+nβ−

2))f(β) > 2c, then ge is such that every two type α agents are linked, and every

type β agent is linked with the same type α agent, but no type β agent is linked

with another type β agent.

d. If (1 − δ)f(α) > c > (1 − δ)f(α)+f(β)
2 , and (1 + δ(nα − 1))f(α) + (1 + δ(nα +

nβ−2))f(β) < 2c, then ge is a clique encompassing every type α agent but no type
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Figure 1: Strongly efficient network in connections model

β agent.

e. If (1− δ)f(α) < c, f(α) + f(β) + δ[(nβ − 1)f(β) + (nα − 1)(f(α) + f(β))] > 2c,

and

2(nα − 1)f(α) + nβ(f(α) + f(β)) + δ[(nα − 1)(nα − 2)f(α) + nβ(nβ − 1)f(β)

+ nβ(nα − 1)(f(α) + f(β))]− 2(nα + nβ − 1)c > 0,

then ge is a star encompassing every agent, with a type α agent as the center.

f. If (1− δ)f(α) < c, and

(1 + δ(nα − 1))f(α) + (1 + δ(nα + nβ − 2))f(β) < 2c < f(α)(2 + δ(nα − 2)),

then ge is a star encompassing every type α agent but no type β agent.

g. If (1− δ)f(α) < c, and

max{2(nα − 1)f(α) + nβ(f(α) + f(β)) + δ[(nα − 1)(nα − 2)f(α) + nβ(nβ − 1)f(β)

+ nβ(nα − 1)(f(α) + f(β))] − 2(nα + nβ − 1)c, f(α)(2 + δ(nα − 2))− 2c} < 0,
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then ge is the empty network.

Despite the lengthy conditions on the payoffs from different types, the underlying

argument for the above characterization is straightforward. According to how much

benefit each type can provide via a connection, we can categorize types in a systematic

way and assign linkage correspondingly to maximize the sum of total payoffs. For the

high types among which a direct link always brings benefits that are higher than the

maintenance cost, a clique must be formed among them in any strongly efficient network.

The next category contains the types for which any single link to one of the highest types

is socially beneficial, but links among themselves are not. As a result, these types will

not link directly to themselves but will form every possible link to agents belonging to

the first category. When the benefit from a type gets even lower, such types can only add

to social welfare by having only one link to one agent of the strictly highest type, thus

minimizing the cost and receiving/providing most of the benefit via indirect connection.

Last but not least, agents of the lowest types cannot increase the social welfare in any

way and will remain singletons in a strongly efficient network.

The connected component of the strongly efficient network exhibits a “core-periphery”

pattern in topology. The core, which corresponds to the first category, consists of agents

with the highest connectivity degree and the largest clustering coefficient. The periph-

ery agents each have one or more links with the core agents, depending on the value

structure. The detailed proof of the theorem is provided below.

Proof. (a) The result is clear since (1 − δ)f(β) > c implies that the benefit from any

link (bounded below by 2(1− δ)f(β)) is greater than the associated cost (2c).

(b) If (1− δ)f(α)+f(β)
2 > c, a link between two type α agents or one type α agent and

one type β agent always increases the total payoff in the network. Given that there is a

link between these agents, c > (1− δ)f(β) implies that a link between two type β agents

always decreases the total payoff in the network. Hence, ge is as described in the result.

(c) The first condition implies that any pair of type α agents are linked in ge. Further-

more, for n type β agents with m1,m2, · · · ,mn links respectively (where m1,m2, · · · ,mn

are positive integers), the largest possible contribution to total payoff is

n
∑

k=1

[mk(f(α) + f(β)) + δ((nα −mk)(f(α) + f(β)) + (nβ − 1)2f(β)) − 2mkc].

Given the condition c > (1 − δ)f(α)+f(β)
2 , the above value is maximized at mk = 1 for

k = 1, 2, · · · , n. This upper bound is reached when all n type β agents are linked to the

same type α agent. It is not difficult to see that if the contribution by n type β agents is
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positive, then that by n+ 1 connected type β agents is also positive and larger. Hence,

in ge, either no type β agent is connected, or every type β agent is linked to the same

type α agent. The condition (1+ δ(nα− 1))f(α)+ (1+ δ(nα +nβ− 2))f(β) > 2c implies

that the contribution by nβ type β agents is positive, and hence ge is as described in

the result.

(d) It follows from the proof of (c).

(e) First, we establish the following lemma.

Lemma 2. Any strongly efficient network has at most one non-empty component.

Proof. Suppose that there exists some strongly efficient network that has two non-

empty components C1 and C2. For component m (m = 1, 2), let im denote (one of) the

agent(s) who has the highest payoff in component Cm. Since the network is strongly

efficient, we know that this payoff is non-negative for m = 1, 2. Let Dm be the set of

links that im has in component Cm. for every imj ∈ Dm and every D′
m ⊂ Dm − imj,

define

∆um(imj,D′
m) = uim(θ̄−im , (Cm \Dm) ∪D′

m)− uim(θ̄−im , (Cm \Dm) ∪D′
m − imj).

This term denotes the marginal payoff of i from link imj given D′
m. It is not difficult

to see that for D′′
m ⊂ D′

m, ∆um(imj,D′′
m) ≥ ∆um(imj,D′

m). Since agent im’s payoff is

non-negative, it follows that there must exist jm such that ∆um(imj,∅) ≥ 0.

Consider the network C1 ∪ C2 + j1j2. For j1, the marginal payoff from link j1j2

is strictly larger than ∆u2(i2j2,∅); similarly for j2, the marginal payoff from link j1j2

is strictly larger than ∆u1(i1j1,∅). Hence, the total payoff in this network is strictly

higher than that in the original network C1∪C2, which contradicts the assumption that

C1 ∪ C2 is strongly efficient.

We then show that if (1 − δ)f(α) < c, for every non-empty component g, the total

payoff in this component is weakly less than that in a star component with a type α

agent as the center, denoted g∗. Let kdαα, k
d
αβ , k

d
ββ denote the number of links between

two type α agents, one type α agent and one type β agent, and two type β agents

respectively. Let kindαα , kindαβ , kindββ denote the number of shortest indirect paths between

two agents in the same three cases above. Let ν(g) and ν(g∗) denote the total payoff

in the original component and the star component respectively. Note that the length of
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any indirect path is at least 2, and thus we have

ν(g) ≤(kdαα + δkindαα )2f(α) + (kdαβ + δkindαβ )(f(α) + f(β)) + (kdββ + δkindββ )2f(β)

− 2(kdαα + kdαβ + kdββ)c

ν(g∗) =(nα − 1 + δ
(nα − 1)(nα − 2)

2
)2f(α) + (nβ + δnβ(nα − 1))(f(α) + f(β))

+ δ
nβ(nβ − 1)

2
2f(β)− 2(nα + nβ − 1)c.

Note that

kdαα + kindαα =
nα(nα − 1)

2

kdαβ + kindαβ = nαnβ

kdββ + kindββ =
nβ(nβ − 1)

2
.

Then we have

ν(g)− ν(g∗) ≤(1− δ)((kdαα − (nα − 1))2f(α) + (kdαβ − nβ)(f(α) + f(β)) + kdββ2f(β))

− 2(kdαα + kdαβ + kdββ − (nα + nβ − 1))c

≤2(kdαα + kdαβ + kdββ − (nα + nβ − 1))((1 − δ)f(α) − c)

≤0.

Finally, note that equality is achieved if and only if (1) kdαβ = kβ , k
d
ββ = 0, kdαα + kdαβ +

kdββ = nα + nβ − 1 and (2) there is no (shortest) indirect path with length greater than

two between any two type α agents. These two conditions are satisfied if and only if g

is also a star component with a type α agent as the center.

It is clear that if a star component with a type α agent as the center results in a

positive total payoff, then adding an agent of type α as the periphery will increase the

total payoff; moreover, if the marginal payoff brought about by all the type β agents

in the star component is positive, then adding an agent of type β as the periphery will

increase the total payoff. Hence, ge can only be one of the following three: (1) the empty

network, (2) a star encompassing only type α agents, and (3) a star encompassing all

agents, with a type α agent as the center. The second and the third conditions in the

result ensure that the marginal payoff brought about by all the type β agents is positive,

and that (3) has a positive total payoff. Hence, (3) is ge.

(f) It follows from the proof of (e).

(g) It follows from the proof of (e).
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5.2 Strong Efficiency and Core-Stability

The connections model also allows us to investigate the relation between a strongly

efficient network and a core-stable network. Note that these two concepts do not imply

one another. In a strongly efficient network, there may be a subgroup of agents that

can improve the payoff of each member by “local autonomy”: for instance, the center

of a star will be strictly better off staying a singleton if all periphery agents are of low

type. On the other hand, even though the agents cannot improve everyone’s payoff in a

core-stable network, there may be a way to improve the total payoff. An example would

be to switch the center of a star from a low type agent to a high type one.

In this section, we establish necessary and sufficient conditions for a strongly efficient

network to be core-stable. It is helpful to first compute the largest possible one-period

payoff an agent of each type can get in any network.

Proposition 5. For θ ∈ α, β let V (θ) denote the maximum payoff that an agent of type

θ can obtain in any network in a single period. We have:

a. If (1− δ)f(β) > c, then

V (α) = (nα − 1)f(α) + nβf(β)− (nα + nβ − 1)c

V (β) = nαf(α) + (nβ − 1)f(β)− (nα + nβ − 1)c.

b. If (1− δ)f(α) > c > (1− δ)f(β), then

V (α) = (nα − 1)f(α) + δnβf(β)− (nα − 1)c

V (β) = nαf(α) + δ(nβ − 1)f(β)− nαc.

c. If min{f(α)+δ((nα−2)f(α)+nβf(β)), f(α)+δ((nα−1)f(α)+(nβ−1)f(β))} >

c > (1− δ)f(α), then

V (α) = f(α) + δ((nα − 2)f(α) + nβf(β))− c

V (β) = f(α) + δ((nα − 1)f(α) + (nβ − 1)f(β)) − c.

d. If f(α) + δ((nα − 1)f(α) + (nβ − 1)f(β)) > c > max{f(α) + δ((nα − 2)f(α) +

nβf(β)), (1 − δ)f(α)}, then

V (α) = 0

V (β) = f(α) + δ((nα − 1)f(α) + (nβ − 1)f(β)) − c.
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e. If max{f(α)+δ((nα−1)f(α)+(nβ−1)f(β)), f(α)+δ((nα−2)f(α)+nβf(β)), (1−

δ)f(α)} < c, then

V (α) = 0

V (β) = 0.

Proof. (a) Let V̂ (θ,m) be the largest possible payoff of an agent of type θ with m links.

We have

V̂ (α,m) =










0, if m = 0

mf(α) + δ((nα − 1−m)f(α) + nβf(β))−mc, if 0 < m ≤ nα − 1

(nα − 1)f(α) + (m− (nα − 1))f(β) + δ(nα + nβ − 1−m)f(β)−mc, otherwise

V̂ (β,m) =











0, if m = 0

mf(α) + δ((nα −m)f(α) + nβf(β))−mc, if m ≤ nα

nαf(α) + (m− nα)f(β) + δ(nα + nβ − 1−m)f(β)−mc, otherwise.

It is clear that these largest possible payoffs are achievable (for instance, let the agent

be a periphery agent in a star with a type α agent as the center, and form the rest of

the m links first with type α agents, then with type β agents if she is already linked

with every type α agent.). If (1 − δ)f(β) > c, for an agent of either type her payoff is

maximized when she makes every possible link, hence V (α) and V (β) are as shown in

the result.

(b) If (1−δ)f(α) > c > (1−δ)f(β), for an agent of either type her payoff is maximized

when she links with every type α agent but with no type β agent, hence V (α) and V (β)

are as shown in the result.

(c) If c > (1− δ)f(α), given that an agent is connected (not a singleton), her largest

payoff is higher when she has fewer links. Hence, her payoff is V̂ (θ, 1) if V̂ (θ, 1) ≥ 0 and

0 otherwise. Hence V (α) and V (β) are as shown in the result.

(d) It follows from the proof of (c).

(e) It follows from the proof of (c).

We can see from the proof above that the largest payoff an agent obtains from a

network is closely related to the network topology. Hence, if a network offers the largest

possible payoff to most of the agents, it is very likely to be core-stable since those agents’

payoffs cannot be improved further. The final criterion of stability then rests on whether

the few agents that do not get the highest possible payoff can form a beneficial coalition.

Using this argument, we inspect the strongly efficient network in every possible type

vector and present the result below.

30



Proposition 6. Consider cases (a) – (g) in Theorem 2. We have:

a, d, g. ge is core-stable.

b. ge is core-stable if and only if f(β) ≥ c.

c. ge is core-stable if and only if a network that links one type α agent to all the

type β agents yields the α agent a non-negative payoff.

e. ge is core-stable if and only if a network that has a type α agent at the center

yields the α agent a non-negative payoff.

f. ge is core-stable if and only if f(α) ≥ c.

Proof. (a)(d)(g) The cases (a) and (g) are clear. For (d), suppose that ge is not core-

stable, it then follows that any blocking group I ′ (with network g′) must contain at least

one type α agent, but not all type α agents. Consider the network g′ that blocks ge.

Since every agent in I ′ has a weakly higher payoff in g′ than in ge and some agent in

I ′ has a strictly higher payoff in g′ than in ge, the total payoff of agents in I ′ must be

strictly higher than that in ge. By Theorem 2, we can re-organize g′ into a clique with

only type α agents to yield an even higher total payoff. However, if a clique with only

type α agents has a positive total payoff, then it is impossible for a proper subset of

these agents to form a clique with a higher total payoff than their total payoff in the

original clique. Hence we have a contradiction.

(b) If f(β) < c, then ge is not core-stable because a clique formed by all type α agents

blocks ge. Suppose that f(β) ≥ c and that ge is not core-stable, then any blocking group

I ′ either only contains type α agents, or contains all the agents because each type β agent

in ge gets payoff V (β), and getting V (β) requires connection to every other agent. Both

cases contradict the fact that ge is strongly efficient.

(c) Let i denote the type α agent linking with all the type β agents. If i has a

negative payoff, then ge is not core-stable because {i} blocks ge. Suppose that i has a

non-negative payoff and that ge is not core-stable, then any blocking group I ′ either only

contains no type α agent other than i and at least one type β agent, or contains all the

agents because each type α agent other than i in ge gets payoff V (α), and getting V (α)

requires connection to every other agent. The second case contradicts the fact that ge

is strongly efficient. In the first case, note that the largest payoff of any type β agent in

I ′ is strictly less than V̂ (β, 1) (since c > (1− δ)f(β)), which is the payoff of every type

β agent in ge. Hence we again have a contradiction.

(e) Let j denote the type α agent at the center. If j has a negative payoff, then ge is

not core-stable because {j} blocks ge. Suppose that j has a non-negative payoff and that
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ge is not core-stable, then any blocking group I ′ either only contains j, or contains all

the agents because each agent other than j in ge gets payoff V (α) (or V (β)), and getting

V (α) (or V (β)) requires connection to every other agent. The first case contradicts the

assumptions that I ′ blocks ge and j has a non-negative payoff in ge, and the second case

contradicts the fact that ge is strongly efficient.

(f) If f(α) < c, then ge is not core-stable because the center agent in ge blocks ge.

Suppose that f(α) ≥ c and that ge is not core-stable, it then follows that any blocking

group I ′ (with network g′) must contain at least one type α agent, but not all type α

agents. Consider the network g′ that blocks ge. Since every agent in I ′ has a weakly

higher payoff in g′ than in ge and some agent in I ′ has a strictly higher payoff in g′

than in ge, the total payoff of agents in I ′ must be strictly higher than that in ge. By

Proposition 2, we can re-organize g′ into a star with only type α agents to yield an even

higher total payoff. However, if f(α) ≥ c, it is impossible for a proper subset of the type

α agents to form a star with a higher total payoff than their total payoff in ge. Hence

we have a contradiction.

The key to whether a strongly efficient network is core-stable is its “weakest link”: the

agent maintaining the most links but enjoying the smallest net payoff. If this particular

agent gets a negative payoff, she would prefer to simply sever all her links and remain a

singleton.

5.3 Effect of Spatial Discount

A crucial factor in the connections model is the spatial discount factor δ. It determines

the rate of payoff depreciation as two agents become further apart in connection, and

hence influences an agent’s incentives of directly linking to another already connected

agent. As a result, a change in δ affects every connected agent’s payoff and has a non-

negligible impact on the set of sustainable networks in equilibrium. The importance of

the spatial discount in a static environment and a dynamic one with myopia has been

noted in Jackson and Wolinsky[18] and Song and van der Schaar[31]. In the dynamics

with foresight, the role of δ becomes even more important than the previous cases be-

cause it enters the payoff an agent obtains for every period. As it turns out, the set of

sustainable networks changes monotonically with the value of δ.

Given θ̄, let G(δ) denote the set of networks g for which there is a cutoff γ̄ ∈ (0, 1)

such that if γ ∈ [γ̄, 1), then there exists an equilibrium in which the formation process

converges strongly to g.

Proposition 7. If δ1 > δ2, then G(δ1) ⊃ G(δ2).
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Proof. For every g ∈ G(δ2), it follows from Theorem 1(a) that every connected agent

in g gets a non-negative payoff when δ = δ2. Since δ1 > δ2, every connected agent in g

gets a positive payoff when δ = δ1. Then by Theorem 1 we know that g ∈ G(δ1).

Although the set of networks that are sustainable in equilibrium is monotone in δ,

the strongly efficient networks that are sustainable in equilibrium is not monotone in δ.

Consider the following example: f(α) = 3, f(β) = 0.5, c = 2, nα = 1 and nβ = 3. From

the previous analysis, we know that the strongly efficient network is either a star with the

type α agent as the center, or empty. On one hand, when δ is low (for instance δ = 0.1)

the efficient network is empty and clearly can be supported in equilibrium. On the other

hand, when δ is high (for instance δ = 0.8) the efficient network is a star. However, it is

clear that a star network cannot be supported in equilibrium since the center agent has

a negative payoff. Even though a higher δ sustains a larger set of networks, the strongly

efficient network changes with δ as well.

The spatial discount also partially determines the required patience level of agents

to sustain a network in equilibrium. When δ changes in a way that forming/maintaining

links becomes more beneficial to oneself in every period, every connected agent in a

network has higher incentive, and at the same time needs less patience, to sustain that

network in the long run. We demonstrate this by using our constructed equilibrium ŝc.

Given θ̄, K and g, let γ(δ) denote the smallest γ such that ŝc is an equilibrium (if such

γ exists) under spatial discount δ.

Proposition 8. There exists δ̂ ≤ 1 such that for every δ1, δ2 ∈ [0, δ̂] such that δ1 > δ2

and both γ(δ1) and γ(δ2) exist, γ(δ1) < γ(δ2).

Proof. Note that the only incentive problem faced by an agent is whether to sever or

refuse to form a link in g during the cooperation phase. Doing so saves the agent the

cost c, and the agent’s loss in benefit has the form of

L
∑

l=1

(δal − δbl)f(θjl)

where al ∈ N, bl ∈ N ∪ {∞} satisfy al < bl. When bl = ∞, clearly δal − δbl is increasing

in δ. When bl ∈ N, we have

d(δal − δbl)

dδ
= alδ

al−1 − blδ
bl−1 = δal−1(al − blδ

bl−al)

This derivative is positive when δ is sufficiently small. In other words, the benefit from

an existing link is increasing in δ when δ is sufficiently small. Let δ̂ ≤ 1 be the largest δ

such that every δ ∈ [0, δ̂] satisfies this property.
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Consider δ1, δ2 ∈ [0, δ̂] such that δ1 > δ2 and both γ(δ1) and γ(δ2) exist, and

γ ≥ γ(δ2). Note that by the above property, in any period during the cooperation

phase, the benefit from following the equilibrium strategy in the current period and in

every subsequent period is increasing in δ, and the cost stays the same. Hence, if ŝycc is

an equilibrium given δ2 and γ, it must also be an equilibrium given δ1 and γ. We can

then conclude that γ(δ1) < γ(δ2).

5.4 Generalized Connections Model

In this section, we generalize the above two-type connections model to a much richer

multi-type environment. Consider a type set Θ with finitely many types, and let the

payoff of agent i from connecting to agent j be f(θj) before spatial discount. Our results

on the unique efficient network and stability can be easily extended to this model. The

unique efficient network ge has a general core-periphery structure, characterized by a

partition of agents {I1, I2, I3, I4} induced by a triplet of types {θ1, θ2, θ3} such that

f(θ1) ≥ f(θ2) ≥ f(θ3) :

a. Core I1 = {i : f(θi) ≥ f(θ1)}: the maximal subset of inter-linked agents.

b. Periphery I I2 = {i : f(θ2) ≤ f(θi) < f(θ1)}: the maximal subset of agents

that do not belong to I1 but link to every agent of some type(s) in I1.

c. Periphery II I3 = {i : f(θ3) ≤ f(θi) < f(θ2)}: the maximal subset of agents

that do not belong to I1 ∪ I2 but link to the same agent in I1.

d. Singleton I4 = {i : f(θi) < f(θ3)}: the maximal subset of agents that do not

link to any other agent.

In the unique efficient network all agents in the core are linked to each other, all agents

in periphery I are linked to all agents of at least one type in the core, all agents in

periphery II are linked and only linked to the same agent in the core, and agents that

are singletons are unlinked. Figure 2 below illustrates a sample core-periphery network,

with one type in each category.

The type cutoffs, {θ1, θ2, θ3}, are determined in a similar way to the two-type model,

only with more tedious calculations on an agent’s maximum possible contribution to the

total payoff of the group. A rough intuition for this result is that an agent of a higher type

takes more responsibility, in the sense that she should form more links to create more

value for the greater good. The overall distinguishing features of the efficient network,

especially when the number of agents gets large, include a small diameter, a large ratio
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Figure 2: Sample core-periphery network

between number of links and number of agents, and a large ratio of number of “triangles”

(connected triples of agents) and number of agents. We show in the next section that in

realistic situations where the connections model applies, the level of coordination among

individuals is significantly higher than predicted by previous theories, and that our model

with foresight can account for a considerable proportion of cooperation behavior in these

endogenously formed networks.

Next, we can derive a necessary and sufficient condition for the efficient network

to be core-stable: an efficient network is core-stable if and only if the agent(s) of the

highest type has a non-negative payoff. The argument underlying the “if” part of this

result (the “only if” part is clear) is similar to the proof of Proposition 5. Suppose that

there is a blocking group I ′ and a corresponding network g′ on I ′ that yields a weakly

higher payoff for every agent in I ′ and a strictly higher payoff for at least one agent in

I ′. We can always re-organize g′ according to Theorem 2 to obtain a weakly higher total

payoff for the group I ′; then the agent with the highest payoff in the new network must

be at least as better-off as she is in ge. This agent cannot belong to I2 or I3 since the

agents in these two categories in ge have already enjoyed the unique highest possible

payoff that can only be provided by ge; however, if this agent belongs to I1, then it must

be the case that some other agent in I2 gets a lower payoff than in ge, a contradiction.

An important message conveyed by this result is that for efficiency to be achieved in

equilibrium and to prevent coalitional deviation, it is sufficient to focus on the agents of

the highest type, ensuring that their cost of maintaining links are covered by the benefit

from connection.
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5.5 Empirical Comparisons

We have provided a full characterization of the strongly efficient network in a standard

connections model with heterogeneous agents, in which we find that such networks gener-

ally exhibit a “core-periphery” structure. Prominent features of such network topologies

in terms of several descriptive statistics are: (1) a large average local clustering coef-

ficient (ALCC), measured by the number of pairs of linked neighbors devided by the

number of possible pairs of neighbors; (2) a large global clustering coefficient, measured

by the number of closed triangles devided by the number of triangles; (3) a short diame-

ter (D), measured by the number of links in the longest of all shortest paths between any

two agents). Both clustering coefficients indicate the degree to which small groups of

agents in a network tend to keep close ties to each other, and the diameter is an index of

the entire network’s density. Note that a large clustering coefficient does not guarantee

a small diameter. For instance, a “chain” network created by connecting many small

cliques has a large clustering coefficient but a large diameter.

Our findings are consistent with data collected from existing real networks. To see

this, we compare our predictions with data obtained from sample social networks from

Facebook and collaboration networks of Arxiv High Energy Physics (AHEP) 1, and also

with simulated networks following models with myopic agents, using pairwise stability

introduced by Jackson and Wolinsky[18] as the solution concept in each period. In the

simulation “Myopic 1”, we assume that the payoff from connecting to any one agent

before spatial discount is 10, the link maintenance cost is 5, and the spatial discount

factor is 0.6. In the simulation “Myopic 2”, we assume that there are three types of

agents; connecting to each type yields a payoff of 16, 10 and 6 before spatial discount

respectively, and the cost and the spatial discount factor remain the same. The ratio of

types is 1 : 2 : 3, that is type 1, 2 and 3 agents account for 1
6 ,

1
3 and 1

2 of the population

correspondingly. The simulated network formation process is run for a sufficiently long

time such that each pair of agents is selected at least twice in expectation. The “Fore-

sighted Model” column shows descriptive statistics for the strongly efficient network in

our model, with the same group size and type distribution as “Myopic 2”. Table 1 below

provides summary statistics on the networks and Figure 3 illustrates the actual network

topology in AHEP2. In Table 1, the entry “90% D” represents the 90th percentile in the

distribution of path length.

We find that the actual networks recorded are considerably closer to those predicted

1Source of datasets: SNAP Datasets: Stanford Large Network Dataset Collection [23].
2This visualization of network is provided by Tim Davis at TAMU. Retrieved from

http://www.cise.ufl.edu/research/sparse/matrices/SNAP/.
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Actual Simulation
Foresighted Model

Facebook AHEP Myopic 1 Myopic 2

N 4039 12008 1000 1000 1000

ALCC 0.6055 0.6115 0.1357 0.1957 0.4251

GCC 0.2647 0.3923 0.0458 0.0756 0.3570

D 8 13 2 2 2

90% D 4.7 5.3 2 2 2

Table 1: Summary statistics of networks

by our model with foresighted agents than by models with myopic agents which are

representative of much previous literature. In the two models with myopia, the network

is not clustered (small ALCC and GCC), suggesting a relatively small group of “super

star” agents that link to many “periphery” agents, but showing little direct relation

among the “periphery” agents. This is not true for the actual networks (large ALCC

and GCC). In contrast, the strongly efficient network we have characterized captures this

charateristics of high clustering, and we have shown that when agents are foresighted

this network can be supported in equilibrium. It corroborates our earlier statement that

our model with foresight provides a more appropriate framework of analyzing network

formation, which leads to more realistic predictions for actual networks.

Another observation that can be made based on these results is that the formed net-

works are rather dense (small D), confirming the well-studied small world phenomenon.

However, the diameter of an actual network is typically larger than that predicted by

the network formations models. We believe that this difference in diameter results from

the simplistic meeting process adopted in all this literature: individuals in an actual net-

work do not meet with uniform probabilities; instead, some agents may meet more often

while others only seldom. Hence, we believe that an important topic of future research

is understanding the effect of different meeting processes on the emerging networks.

6 Network Convergence Theorem with Incomplete Infor-

mation

In real-life applications, agents will not usually know the types of the other agents before

they are linked to them. As we have shown in our prior work in[31], the introduction

of incomplete information leads to significant differences in agents’ strategic behavior

and equilibrium network topology. In this section, we extend the Network Convergence
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Figure 3: AHEP network

Theorem to the environment with incomplete information. Surprisingly, we are able

to identify an undemanding condition on the payoff structure under which the forma-

tion process will again converge even in this setting to the strongly efficient network in

equilibrium.

6.1 Modeling Incomplete Information

At the beginning of t = 1, each agent only knows her own type and holds the prior belief

(that types are i.i.d. according to H) on other agents’ types.

Let B = ∆(ΘN ) denote the set of possible beliefs on the type vector. A (pure)

strategy of agent i is now a mapping

si : B × I − i× Y ×Ω× Z → A,

with the same constraint si(·, ·, ·, 0, 0) ≡ 0. An equilibrium is similarly defined as

before, except for the additional requirement that i maximizes her expected discounted

total payoff given her belief at every period.
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Let Bi : Y → B denote agent i’s belief updating function, which is a mapping from

the set of possible public signals to the set of possible beliefs. We assume that it satisfies

the following properties:

1. i knows her own type: regardless of σ(t), she puts probability 1 on her true

type.

2. i knows the type of any agent that she has been connected to: if some g such

that ij ∈ g has ever been formed in σ(t), then i always puts probability 1 on j’s

true type starting from period t.

3. Agents use Bayesian updating whenever possible. We adopt the convention that

when Bayes rule does not apply, agents maintain the same priors.

We now define some concepts related to the payoff structure that will be useful in

constructing equilibrium strategies later. First we define a partial equilibrium network

for a subset of agents.

Definition 6 (Partial equilibrium network). Given θ̄, a network g formed in I ′ ⊂ I is a

partial equilibrium network for I ′′ ⊂ I ′ if (1) each agent in I ′′ gets a positive payoff

from g; (2) no agent in I ′′ can increase her payoff by severing any of her links in g.

Given a subset of agents I ′ and the associated type vector θ̄I′ , consider a function

r : Θ|I′| → GI′ . We define the following property for r:

Definition 7 (Admissible function). We say that r is an admissible function for I ′

if for every θ̄I′ ∈ Θ|I′|, r(θ̄I′) is a network such that (1) every non-singleton agent in

r(θ̄I′) has a positive payoff; (2) there exists a partial equilibrium network in GI′ for the

set of singleton agents in r(θ̄I′), denoted as r′(θ̄I′). We say that I ′ is admissible if there

exists an admissible function r for I ′.

In a partial equilibrium network, no agent has incentive to unilaterally sever any of

her links; hence, the name “partial equilibrium”. Then (the existence of) an admissible

function essentially characterizes a particular type of agent subgroup: it maps every

type vector in the subgroup to a network that provides every connected agent a positive

payoff, and at the same time guarantees the existence of a partial equilibrium network

for the set of singleton agents. Intuitively, the former network can be sustained in the

long run when agents are patient, and the latter can be used as a way to reward the

future singleton agents for their revelation of private information. We will construct an

equilibrium strategy profile following this argument in the next section.
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In many cases, the whole agent set I is admissible. One of the simplest scenarios

is that for every type vector there exists a network yielding a positive payoff for every

agent, so that a partial equilibrium network will not even be necessary because the

set of singleton agents will be empty. For instance, consider the connections model

discussed before, and consider the following two-type scenario: Θ = {α, β}, N = 5,

f(α) > c > f(β), (1 + δ)f(β) > c, and f(α) + 3f(β) > 3c. First, note that when there

exists at least one type α agent, a partial equilibrium network for any number of type β

agents is a star network with a type α agent as the center. Then the following function

r is an admissible function for I:

r(θ̄) =

{

Star network with type α center, if at least two agents are of type α

Wheel network, otherwise.

It is easy to verify that r is indeed admissible for I. Moreover, it is also straight

forward to show that r maps θ̄ to the strongly efficient network whenever the strongly

efficient network gives every agent a positive payoff. In this type of payoff structure, the

larger N is, the more likely such a simple admissible function for I exists. When N is

large, even if f(α) and f(β) are both small relative to c, a topology such as a star or

a wheel may still ensure a positive payoff for every agent. In the case where r maps a

type vector to some unconnected network (a network with singleton agents), a star or a

wheel can be used as partial equilibrium networks (in the case of a star, the singleton

agents in r would be placed in the periphery).

6.2 Construction of Equilibrium Strategies

As with complete information, we explicitly construct a strategy profile that will consti-

tute an equilibrium when agents are sufficiently patient. First we specify the associated

monitoring structure, denoted yic. Similarly to the case with complete information, yic

measures the least informative monitoring structure needed for our network convergence

theorem.

To simplify the description of yic, we first introduce some additional notations. For

a given time period t and a given subgroup of agents I ′ ⊂ I, we denote as I ′′1 (g, t) the

subset of agents in I ′ that failed to form/maintain a link in g when possible, and as

I ′′2 (t) the subset of agents in I ′ that formed/maintained a link between I ′ and I \ I ′. We

let ĝI′ denote the clique on I ′. Finally, we say that information is complete within I ′ if

every agent knows the type of every other agent in I ′, and that information is incomplete

within I ′ otherwise. Denote these events in period t as Oc(I
′, t) and Oic(I

′, t).
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1. Y = {X0,X1, T,EC , EP } × 2I . The subset of I in the second argument rep-

resents the subgroup of non-solitary agents, and X0,X1, T,EC , EP represent five

phases with respect to this subgroup: the experimentation phase with incomplete

information, experimentation phase with complete information, transition phase,

exploitation phase with cooperation and exploitation phase with punishment corre-

spondingly. We will define and explain these concepts later.

2. yic(σ(0)) = (X0, I).

3. In period t ≥ 1, for every pair of agents i, j ∈ I ′ ⊂ I:

– a. If yic(σ(t− 1)) = (X0, I
′):

Oc(I
′ \ I ′′1 (ĝI′ , t), t) → yic(σ(t)) = (T, I ′ \ I ′′1 (ĝI′), t)

Oic(I
′ \ I ′′1 (ĝI′ , t), t) → yic(σ(t)) = (X0, I

′ \ I ′′1 (ĝI′), t).

– b. If yic(σ(t− 1)) = (X1, I
′): yic(σ(t)) = (T, I ′ \ (I ′′1 (r

′(θ̄I′), t) ∪ I ′′2 (t))).

– c. If yic(σ(t−1)) = (T, I ′): yic(σ(t)) = (EC , I
′) if r′(θ̄I′) has been the network

topology within I ′ (including no link between I ′ and I \I ′) for a fixed number

of J consecutive periods. Otherwise, yic(σ(t)) = (T, I ′\(I ′′1 (r
′(θ̄I′), t)∪I

′′
2 (t))).

– d. If yic(σ(t− 1)) = (EC , I
′):

I ′′1 (r(θ̄I′), t) ∪ I ′′2 (t) = ∅ → yic(σ(t)) = (EC , I
′)

I ′′1 (r(θ̄I′), t) ∪ I ′′2 (t) 6= ∅ → yic(σ(t)) = (EP , I
′)

– e. If yic(σ(t − 1)) = (EP , I
′): if yic = (EP , I

′) for a fixed number of K con-

secutive periods, then yic(σ(t)) = (EC , I
′). Otherwise, yic(σ(t)) = (EP , I

′).

Essentially, the realization of yic reveals publicly the current phase of the game and

whether agents in a certain subgroup I ′ are cooperating in every phase. The meaning of

cooperation is phase-specific. In the experimentation phase, agents are supposed to form

and maintain every link within I ′ whenever possible, until information becomes complete

in I ′ which brings the game into the transition phase. Then cooperation among agents

becomes forming the network r′(θ̄I′) and keeping it for J periods, with no link with I \I ′

at the same time. In these two phases, anyone who fails to cooperate will be marked

as a solitary agent. Afterwards, the game enters the exploitation phase and the public

signal works in the same way as yc in the previous section, with r(θ̄I′) as the designated

network.

Now we characterize the strategy profile based on yic, denoted ŝic. For every i, j ∈ I:
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1. If max{ωij , ζij} = 1, the set of non-solitary agents I ′ is admissible and i, j ∈ I ′,

then aij = 1 if any of the following is true:

– a. yic = (X0, I
′).

– b. yic = (X1, I
′) and ij ∈ r′(θ̄I′).

– c. yic = (T, I ′) and ij ∈ r′(θ̄I′).

– d. yic = (EC , I
′) and ij ∈ r(θ̄I′).

2. aij = 0 in all the other cases.

In this strategy profile, agents in an admissible set cooperate as much as they can

according to the public signal. First, they reveal their types by forming and maintaining

links in the experimentation phase until information becomes complete. In the transition

phase that follows, they form a partial equilibrium network r′(θ̄I′) to provide positive

payoffs to the singleton agents in network r(θ̄I′), the network that will persist in the

long run. After r′(θ̄I′) has existed for a specified length of time, the agents enter the

exploitation phase in which the formation process ultimately converges to r(θ̄I′). Agents

who do not conform before the exploitation phase are categorized as solitary agents and

are left as singletons for ever, and those who deviate during the exploitation phase only

get temporary punishment. Same as before, the exact deviating agent(s) cannot be

identified, so any punishment would be placed on pairs of agents rather than individual

ones.

6.3 The Network Convergence Theorem with Incomplete Information

In an environment with incomplete information, the Network Convergence Theorem still

holds in an admissible set of agents, but our constructed equilibrium strategy profile

leads to weak convergence only. The proof below shows that when agents are sufficiently

patient, (1) there exists a length of punishment K in the exploitation phase to ensure

cooperation and (2) there exists a length of reward J in the transition phase to ensure

information revelation for the singleton agents in r(θ̄) in the experimentation phase.

Theorem 3. If I is admissible, then for every admissible function r for I there exists a

cutoff γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1) and the true profile of types is θ̄, then there exists

an equilibrium in which the formation process converges weakly to r(θ̄).

Proof. Consider the monitoring structure yic and the strategy profile ŝic. It suffices to

show that for some J and K, there exists γ̄ ∈ (0, 1) such that for all γ ∈ [γ̄, 1), ŝic is an
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equilibrium. We need to check for sequential rationality given any possible formation

history. We proceed in the following order:

In the exploitation phase: since information is complete within I ′′, sequential ratio-

nality is given by Theorem 1.

Given any formation history, for every solitary agent: given that no other agent will

agree to form a link with her, her subsequent action will not affect her payoff, and hence

sequential rationality is satisfied.

Given any formation history such that the set of non-solitary agents is not admissible,

for every non-solitary agent: given that every other agent is choosing action 0, her

subsequent action will not affect her payoff, and hence sequential rationality is satisfied.

For every non-solitary agent in an admissible set I ′ in the transition phase: we need

to discuss two cases. Following the proof of Theorem 1, we argue as follows:

1. For every singleton agent i in r(θ̄I′): since I ′ is admissible, i’s payoff in this

phase is positive (and bounded away from zero, from the assumptions that Θ is

finite and I is finite) for J periods in r′(θ̄I′) if she follows the prescribed strategy.

Also, her maximum expected loss (negative payoff) before r′(θ̄I′) is formed for the

first time and in the exploitation phase is bounded above regardless of γ. Hence,

given a sufficiently large J and a sufficiently large γ, i does not have the incentive

to deviate before r′(θ̄I′) is formed for the first time and become a solitary agent

(the payoff from which is bounded above regardless of γ). After r′(θ̄I′) is formed,

since it is a partial equilibrium network by assumption, there is no incentive for i

to deviate and sever any of her links.

2. For every non-singleton agent j in r(θ̄I′): given J , j’s maximum expected loss in

this phase and before r(θ̄I′) is formed in the exploitation phase is bounded above

regardless of γ. By the definition of r, j’s payoff in r(θ̄I′) is positive (and bounded

away from zero, by the same argument as above), which realizes every period after

r(θ̄I′) is formed in the exploitation phase. Hence, given a sufficiently large γ, j

does not have the incentive to deviate in this phase and become a solitary agent.

For every non-solitary agent in an admissible set I ′ in the experimentation phase: we

need to discuss two cases. Following the proof of Theorem 1, we argue as follows:

1. For every singleton agent i in r(θ̄I′): i’s maximum expected loss in this phase is

bounded above regardless of γ since according to the strategy profile, information

becomes complete within finitely many periods almost surely. Then with a similar

argument to part (1) above, given a sufficiently large J and a sufficiently large γ,

i does not have the incentive to deviate and become a solitary agent.
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2. For every non-singleton agent j in r(θ̄I′): again, j’s maximum expected loss in

this phase is bounded above regardless of γ. Then with a similar argument to part

(2) above, given a sufficiently large γ, j does not have the incentive to deviate and

become a solitary agent.

This completes the proof. Note that there needs to be an upper bound on J in generic

cases: given γ, the larger J gets, the less incentive a non-solitary and non-singleton agent

in r(θ̄I′) may have for following the prescribed strategy in the transition phase.

The reason why we are not able to show strong convergence directly is due to the

incomplete information. Under complete information, agents’ beliefs on the type vector

stay constant (on the true types) over time despite the possibly changing public signals,

which guarantees unanimous knowledge on the payoff structure. Under incomplete in-

formation, however, the beliefs can be heterogeneous and can evolve over time according

to the realization of public signals. The evolution of beliefs, in turn, leads to each agent

forming a belief on others’ beliefs, and hence it is difficult for them to agree on coop-

eration towards one network topology. No matter how precise the public signal is (the

least precise being one constant signal, and the most precise being equal to the forma-

tion history), this potential obstacle to coordination exists as long as there is incomplete

information on the type vector among the agents.

Similar to Corollary 1, we obtain a result on sustaining a strongly efficient network

in equilibrium.

Corollary 3. Assume that I is admissible. If r(θ̄) is strongly efficient for every θ̄,

there exists γ̄ ∈ (0, 1) such that for all γ ∈ [γ̄, 1), there exists an equilibrium where the

formation process always converges to a strongly efficient network weakly.

6.4 Connections Model Revisited

We have discussed how introducing incomplete information into the strategic environ-

ment may have a considerable impact on the set of sustainable networks. Constraining

an agent’s knowledge on the type vector curbs her willingness to form costly links in

anticipation that such attempts may turn out to be futile. As a result, a sustainable

network under complete information may never emerge and persist under incomplete

information. Curiously, the impacts of complete and incomplete information on the

network formation process depend on agents’ patience. When agents are myopic, in-

complete information can be a catalyst for welfare improvement; when agents are very

patient, it turns around to become an impediment.
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We use the previously discussed connections model to make the comparison. Consider

a connections model (with an arbitrary set of types) where the payoff of agent i from

connecting to j is f(θj) (before spatial discount), and the expectation of payoff from a

single agent is larger than the link maintenance cost: E[f(θj)] > c. To avoid technical

complications, we assume that in every network the payoff of every connected agent is

strictly positive. and that the formation history is public knowledge: y(σ(t)) = σ(t).

Given a type vector θ̄ and a discount factor γ, let GW
c (θ̄, γ) (GS

c (θ̄, γ)) denote the set

of networks g such that there exists an equilibrium where the formation process weakly

(strongly) converges to g. Define GW
ic (θ̄, γ) and GS

ic(θ̄, γ) similarly.

Proposition 9. For every θ̄, there exists γ̄, γ ∈ (0, 1) such that:

a. if γ ∈ (0, γ), then GS
c (θ̄, γ) ⊂ GW

c (θ̄, γ) ⊂ GW
ic (θ̄, γ)

b. if γ ∈ (γ̄, 1), then GS
ic(θ̄, γ) ⊂ GW

ic (θ̄, γ) ⊂ GW
c (θ̄, γ) = GS

c (θ̄, γ)

Proof. GS
c (θ̄, γ) ⊂ GW

c (θ̄, γ) and GS
ic(θ̄, γ) ⊂ GW

ic (θ̄, γ) are clear from the definitions

of strong and weak convergence. We can apply Theorem 1 to show that GW
c (θ̄, γ) =

GS
c (θ̄, γ) = {g : ui(θ̄,g) > 0 for all i} when γ is close to 1. It immediately implies that

GW
ic (θ̄, γ) ⊂ GW

c (θ̄, γ) when γ is close to 1.

Now we prove that GW
c (θ̄, γ) ⊂ GW

ic (θ̄, γ) when γ is close to 0. For every g, sup-

pose that there exists an equilibrium sc under complete information where the formation

process converges weakly to g. Consider the following strategy profile sic under incom-

plete information: following any formation history σ(t) which is on the equilibrium path

in sc, in period t + 1 if any link ij is to be formed/maintained according to sc, then

aij = aji = 1; otherwise, aij = aji = 0. Following any formation history that is off

the equilibrium path in sc, each agent chooses action 0 thereafter. Clearly, this strategy

profile is an equilibrium following any formation history off the equilibrium path in sc.

For every formation history on the equilibrium path in syc , it replicates the formation

process according to sc. When γ is sufficiently small, each agent is indeed taking a

best response. When link ij is to be formed/maintained according to sc, if i, j know

each other’s type, the fact that they would have chosen to form/maintain the link in sc

implies that the current payoff from the link outweighs the cost, so due to myopia i, j

will also form/maintain the link. If i, j do not know each other’s type, the prescribed

strategy profile ensures that no Bayes’ update occurs and thus their beliefs about each

other’s type remains at the prior H. By the assumption that E[f(θj)] > c, aij = aji = 1

is a best response. When link ij is to be severed/not formed according to sc, note that

aij = aji = 0 is a Nash equilibrium in a one-shot game and implies mutual best response.
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Therefore, sic is an equilibrium under incomplete information and it produces a forma-

tion process identical to the one under sc. We can then conclude that when γ is close

to 0, if g ∈ GW
c (θ̄, γ) then g ∈ GW

ic (θ̄, γ), which means that GW
c (θ̄, γ) ⊂ GW

ic (θ̄, γ).

When agents are very patient, the set of sustainable networks is largest when in-

formation is complete. To the contrary, when agents are myopic, the set of sustainable

networks can be larger when information is incomplete. The reason is that when agents

are myopic they have less incentives to form links because they do not take account of

future benefits.

We conclude by showing that more networks are sustainable when agents are “more

valuable” whether or not information is complete or agents are patient. Intuitively, when

agents are more valuable, more networks can be sustained in equilibrium because it is

easier to provide a larger set of agents with a positive payoff.

Proposition 10. Consider any two type vectors θ̄ and θ̄′. If f(θi) ≥ f(θ′i) for all i, then

for every γ ∈ (0, 1), Gn
m(θ̄, γ) ⊃ Gn

m(θ̄′, γ), m = c, ic, n = S,W .

Proof. Consider a strategy profile s (under either information structure) such that

when the type vector is θ̄′, s is an equilibrium where the formation process converges

(either strongly or weakly) to a network g. Modify it slightly in the following way:

whenever a link ij is supposed to be severed/not formed according to s, agents i, j

choose aij = aji = 0. Now consider the modified strategy profile s′ when the type

vector is θ̄. First, it is easy to see that it is indeed a best response to choose 0 when

a link is supposed to be severed/not formed given that the other agent is also choosing

0. Secondly, note that given the same formation history, the Bayes’ update by any

agent under s and s′ is the same. As a result, whenever the prescribed action in s′ is

1, it is again a best response due to the assumptions that s is an equilibrium and that

f(θi) ≥ f(θ′i) for all i. Therefore s
′ is an equilibrium when the type vector is θ̄′, and the

formation process will converge in exactly the same way. This completes the proof.

7 Conclusion

In this paper, we have studied the problem of dynamic network formation by foresighted,

heterogeneous agents under complete and incomplete information. A large and growing

literature has examined the network formation process from various aspects, but the

impact of agents’ foresight, hetorogeneity and incomplete information which make the

model truly realistic have not been studied. Existing works point to a limited set of
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strongly efficient network topologies with homogeneous agents, and the inability to sus-

tain strongly efficient networks in equilibrium. We question these results based on two

grounds. On one hand, the assumption of agent homogeneity is hard to justify in most

real-life applications. On the other hand, according to our characterization of strongly

efficient networks with heterogeneous agents and observations in data collected from ex-

isting large networks, networks formed in practical scenarios appear to be consistent to

our predictions. Therefore, we establish a dynamic network formation model to analyze

the network formation process and explain our findings.

In our model, agents meet randomly over time and voluntarily form or sever links

with each other. Link formation requires bilateral consent but severance is unilateral.

An agent’s payoff in a single period is determined by the network topology, her position

in the network, and the individual characteristics, also referred to as types, of all agents

she connects to (including herself). The agents are foresighted in the sense that their

final payoff is a discounted sum of payoffs from each period. In every period, the agents

observe the set of their direct neighbors (the agents they link to) and a public signal

which is an indicator of the formation history.

We establish a Network Convergence Theorem under both complete and incomplete

information on the type vector, which characterizes the set of sustainable networks in

equilibrium for patient agents. Under each environment, we show that a network can be

sustained in equilibrium as long as it provides each agent a positive payoff. As a corollary,

a strongly efficient network is sustainable when every agent’s payoff is positive, which

presents a great contrast to the existing literature. We argue that incomplete information

is an important potential source of inefficiency, which is corroborated by evaluating the

lower bound on agents’ patience to sustain strongly efficient networks. Finally, we use

the connections model to fully characterize the set of strongly efficient networks, whose

topologies bear striking resemblance to networks observed in data. This finding again

confirms our theoretical prediction that strongly efficient networks can be sustained in

equilibrium.

We believe that many more problems regarding dynamic network formation with

foresightedness can be analyzed with the framework developed in this paper. Questions

that can be studied in future work include: (1) how different stochastic meeting processes

affect the level of patience needed for sustaining efficient networks; (2) whether the signal

device can be generalized to transmit information only locally; (3) in a connections

model, how the spatial discount factor affects the set of sustainable networks and the

stability of efficient networks for arbitrary time discounts.
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