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Abstract

This paper introduces an evolutionary dynamics based on imitate the better realization
(IBR) rule. Under this rule, agents in a population game imitate the strategy of a
randomly chosen opponent whenever the opponent‘s realized payoff is higher than
their own. Such behavior generates an ordinal mean dynamics which is polynomial
in strategy utilization frequencies. We demonstrate that while the dynamics does not
possess Nash stationarity or payoff monotonicity, under it pure strategies iteratively
strictly dominated by pure strategies are eliminated and strict equilibria are locally
stable. We investigate the relationship between the dynamics based on the IBR rule
and the replicator dynamics. In trivial cases, the two dynamics are topologically
equivalent. In Rock-Paper-Scissors games we conjecture that both dynamics exhibit
the same types of behavior, but the partitions of the game set do not coincide. In other
cases, the IBR dynamics exhibits behaviors that are impossible under the replicator
dynamics.

1 Introduction

When information about the available strategies and their payoffs is limited, it may be
reasonable for players in a population game to copy the behavior of their opponents if
it yields or at least seems to yield better payoffs. Such copying gives rise to a family of
imitative revision protocols, in which a player’s decision to switch strategies depends on
some summary of the relative performance of a random sample of opponents the player
gets to observe.

The two components that comprise any imitative protocol are the sampling procedure
which determines the candidates to be imitated, and the conditional imitation rate which
describes the likelihood of imitation given the information about the candidates’ strategies
and payoffs. With respect to the payoff information one can distinguish between protocols
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that rely on average payoffs and ones that only depend on realized payoffs from a small
number of matches.

This paper studies the imitative protocol with the fewest information requirements.
A player who gets a revision opportunity observes one opponent from the population at
random and switches to that opponent’s strategy whenever the opponent’s realized payoff
is higher than his or her own. This revision rule labeled imitate the better realization (IBR)
was first studied in Izquierdo and Izquierdo (2013) in the context of two-strategy games.
(We elaborate on their results in Section 3.) It gives rise to ordinal mean dynamics since
it ignores the magnitudes of payoff differences, and the resulting dynamics is polynomial
in strategy utilization frequencies.

The disregard of the payoff differences deprives the dynamics of some common car-
dinal properties. For instance, the Nash equilibria of the base game need not be the rest
points of the dynamics, and the average payoffs need not improve along the solution
trajectories. At a rest point, instead of equilibrating the average payoffs of the surviving
strategies, the dynamics balances the flows to and from each surviving strategy.

Despite not being monotone in average payoffs, the dynamics still eliminates pure
strategies iteratively dominated by pure strategies. Weakly dominated strategies and
pure strategies dominated by mixed strategies, on the contrary, may survive. In addition,
we demonstrate that strict equilbria are locally stable.

The dynamics generated by the IBR rule in many cases qualitatively resembles the
replicator dynamics, which can be derived from the pairwise proportional imitation rule
of Schlag (1998). Under the PPI rule a revising agent observes one opponent from the
population at random and switches to that opponent’s strategy at a rate proportional to
the payoff advantage of that strategy. Thus, both the IBR and the PPI rule are based on
comparisons of realized payoffs, but the magnitudes of payoffs matter only under the
latter rule.

In two-strategy games the IBR dynamics and the replicator dynamics are topologically
equivalent: they have the same number of rest points, and their stability and convergence
properties are the same. In the Rock-Paper-Scissors games both dynamics exhibit one of
the three possible behaviors: global convergence to the rest point, global convergence to
the boundary, or closed orbits around the rest point1, but these behaviors need to be the
same. In other cases, for instance in Zeeman’s game, the number of interior rest points the
two dynamics possess is different.

The study of ordinal imitative dynamics originated with Hofbauer (1995) and Schlag
(1998), in which the imitate if better (IB) dynamics – the average payoff counterpart of
imitate the better realization – were introduced and their main properties established. In
particular, Hofbauer (1995) demonstrates that in the Rock-Paper-Scissors games the IB
dynamics behaves similarly to the replicator dynamics. A surprising result is that IB need

1In the first two cases we make a conjecture about global behavior based on local stability analysis and
simulations. In the third case we prove the statement formally.
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not eliminate dominated strategies.
Finally, put in the larger context, the imitate the better realization rule can be viewed as

an analogue of the word-of-mouth communication model (Ellison and Fudenberg (1993))
for strategic environments: agents can learn about the relative merits of strategies from
others’ experiences, but need not be able to find out the exact advantage of a particular
strategy. For instance, one can learn about a better route from a neighbor or a better mode
of behavior from an elder.

2 The Imitate the Better Realization protocol and its properties

Suppose that a continuum of agents of mass 1 are randomly matched to play a symmetric
two-player game with the payoff matrix A. Let S = {1, . . . ,n} be the set of strategies, and
for i, j ∈ S letπi j be the payoff of strategy i against strategy j. At any instant, the population
state x = (x1, x2, . . . , xn) describes the proportion of players choosing each strategy. The set
of all such population states is the (n − 1)-dimensional simplex ∆ = {x |∑n

i=1 xi = 1, xi ≥ 0}.
Assume that the agents do not know the structure of the game, they are not aware of

all the available strategies, and they don’t keep the record of the strategies they used in
the past or the payoffs they received in their previous interactions. In addition, they don’t
know the current population state and they are not capable of correctly anticipating the
way it will evolve. The only piece of information they possess and are able to retain is
their current payoff, and the only way they can learn about alternative modes of behavior
is by observing the strategies of others.

The only objective of the agents compatible with these assumptions is maximizing
their current payoffs. As usual in a population setting, they are only able to switch their
strategies infrequently, and once a strategy revision opportunity arises, the revising agent
observes one opponent from the population at random and switches to that opponent‘s
strategy whenever the opponent‘s realized payoff is higher than his or her own.

Effectively, the revising agent gets to compare their current payoff to a sample payoff
of some other strategy without learning the circumstance under which that sample payoff
was obtained. Thus agents cannot distinguish between strategies that perform better on
average and favorable circumstances in which worse strategies outperform better ones.
Besides, upon switching to the candidate strategy the agent’s payoff may differ from the
sample payoff he or she got to observe. As a result, such “blind” imitation may not be
improving in terms of average payoffs, and yet it eliminates dominated strategies.

Given this imitate the better realization revision protocol, the switch rate ρi j from strategy
i to strategy j can be expressed as the probability that a payoff drawn from the j-th row of
the payoff matrix A exceeds a payoff drawn from the i-th row, with the population state x

3



serving as the probability distribution:

(IBR) ρi j(x,A) = x j

n∑

k=1

xk

n∑

m=1

xm1{π jk>πim}

The population setting offers the following interpretation: the realized payoff of a revising
agent playing strategy i equals πim with probability xm for m ∈ S. Such an agent would
observe a payoff realization π jk for strategy j with probability x jxk for k ∈ S. Summing
over m and k and counting the cases in which the payoff to the candidate strategy j is
better yields the probability of switching ρi j(x,A).

A stochastic process that emerges when agents in the population independently receive
revision opportunities can be approximated by its mean dynamics which describes the
expected change in the proportion of agents playing each strategy (Benaı̈m and Weibull
(2003)). The mean dynamics of the process governed by imitation of the better realization
is

ẋi =

n∑

j=1

x jρ ji(x,A) − xi

n∑

j=1

ρi j(x,A)

(IBRD) = xi

n∑

j=1

x j




n∑

k=1

xk

n∑

m=1

xm(1{π jk<πim} − 1{π jk>πim})




Thus in general the IBR dynamics is a quartic polynomial in n variables {x1, x2, . . . , xn},
but in certain cases, as shown in the next subsection, it reduces to the replicator dynam-
ics which is cubic in xi and is the mean dynamics for a number of more information-
demanding imitative rules (Imitation via pairwise comparisons of Helbing (1992) and
Schlag (1998), imitation driven by dissatisfaction of Björnerstedt and Weibull (1996), and
imitation of success of Hofbauer (1995), see also Section 5.4.2 in Sandholm (2010)).

2.1 Relation to the replicator dynamics

The connection between the IBR dynamics and the replicator dynamics can be estab-
lished via the pairwise proportional imitation protocol (PPI) introduced in Schlag (1998).
Under the PPI the revising agent observes one opponent from the population at ran-
dom and imitates that opponent’s strategy at a rate proportional to its payoff advantage.
Compared to the PPI rule based on realized payoffs, the IBR rule suppresses any payoff
differences, thus under the IBR rule all conditional switch rates to strategies that exhibit
higher outcomes are the same, whereas under the PPI rule the switch rate is higher the
higher the outcome.

Under the PPI rule based on realized payoffs, an agent whose strategy i yields payoff
πim for some m ∈ S switches to strategy j if the observed payoff realization π jk exceeds
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πim, with a conditional switch rate proportional to the payoff advantage of j, which is
[π jk − πim]+. Accounting for the likelihood of each payoff realization π jk one can express
the switch rate from strategy i to strategy j as

(PPIR) ρi j(x,A) = x j

n∑

k=1

xk

n∑

m=1

xm[π jk − πim]+

The PPI rule based on average payoffs generates the switch rates in the form

(PPIA) ρi j(x,A) = x j[π j − πi]+

where x j is the probability of sampling an agent whose strategy is j, and the term [π j−πi]+

is the (average) payoff advantage of strategy j over i. Due to linearity of average payoffs
in strategy utilization frequencies xi, both kinds of proportional imitation generate the
replicator dynamics as their mean dynamics (Theorem 3 of Schlag (1998)):

(RD) ẋi = xi (πi − π̄)

The difference in the conditional switch rates under the IBR and the PPI rules leads to
a significant dissimilarity in the resulting mean dynamics. The rest points of the replicator
dynamics are the restricted equilibria of the underlying game, so the average payoffs to all
active strategies are the same and the agents have no incentives to switch between them.
The rest points of the IBR dynamics, on the other hand, are “ordinal restricted equilibria”
in which the net flow for each strategy is zero. Yet it is possible that the flows between
the active strategies are positive at a rest point, and the average payoffs to strategies need
not be the same. Thus in general, the sets of the rest points for the replicator and the
IBR dynamics do not coincide. However, as the following proposition states, when the
cardinality of the set of payoffs is low the IBR dynamics coincides with the replicator
dynamics up to a constant change of speed.

Proposition 1. If the payoffmatrix A contains only two distinct payoffs, the IBR dynamics reduces
to the replicator dynamics up to a constant change of speed.

Proof. Suppose WLOG that the set of payoffs is {πi j} = {0, k} for some k > 0. Then for
any pair of strategy profiles involving the strategies i and j the conditional switch rates
from i to j under the IBR rule are proportional to those under the PPI rule. For any
i, j, k,m ∈ {1, 2, . . . ,n} the following holds:

[π jk − πim]+ = k · 1{π jk>πim},

therefore ρPPI
i j (x,A) = k · ρIBR

ij (x,A), so the IBR dynamics is the replicator dynamics scaled

by 1
k . �
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The converse of Proposition 1 need not be true. Example 1 contains a game with four
distinct payoffs in which both protocols generate the same dynamics.

Example 1. Consider the coordination game with the payoff matrix
(

4 1
3 2

)

Both the IBR and the PPI protocols generate the same dynamics: ẋ = x(1 − x)(2x − 1). Under the
PPI rule an agent with payoff π22 = 2 who observes a candidate with payoff π11 = 4 is twice as
likely to switch to strategy 1 than an agent with payoff π21 = 3, but at the same time an agent with
payoff π12 = 1 is twice as likely to switch to strategy 2 when he or she observes a candidate with
payoff π21 = 3 rather than a candidate with payoff π22 = 2. These higher switch rates annihilate
each other, so in the end the flows between the strategies are identical to those under the IBR rule,
when all switch rates upon observing a better outcome are the same. �

Section 4.1 presents another example in which the two dynamics draw closer: in the
standard Rock-Paper-Scissors game the IBR dynamics can be obtained from the replicator
dynamics by a positive non-constant change of speed. But Example 1 and the standard
RPS game are an exception to the general rule.

2.2 Payoffmonotonicity and payoff positivity

In this section it is shown that the IBR dynamics need not preserve such cardinal
properties as payoff monotonicity and payoff positivity. Payoff monotonicity (Nachbar
(1990)) requires that the order of growth rates be the same as the order of average payoffs
(if πi > π j then ẋi

xi
>

ẋ j

x j
). Payoff positivity (Nachbar (1990)) is a weaker requirement that

a strategy have a positive growth rate if and only if its payoff is higher than the average
payoff in the population. Weak payoff positivity (Weibull (1995)) is an even weaker
requirement that among the strategies with above-average payoffs there is one with a
positive growth rate. The next example demonstrates that all these properties are violated
for the IBR dynamics even in two-strategy games:

Example 2. Consider the coordination game with the payoff matrix A

A =

(
10 0
3 3

)

Let x be the frequency of the first (top) strategy in the population. The mixed strategy equilibrium
in game A is x∗ = 0.3, and for all x > x∗ the average payoff of the first strategy is higher than that
of the second strategy. But the IBR dynamics for A is

ẋ = x(1 − x)(2x − 1),
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so for all x < 0.5 the proportion of agents playing the first strategy is decreasing. Thus, for instance,
when x = 0.4π1 = 4 > 3 = π2, but ẋ(0.4) < 0, and so the IBR dynamics is neither payoffmonotone
nor payoff positive. �

Depending on the payoffs, any state x∗ ∈ (0, 1) can be the mixed Nash equilibrium of
the game which has the same order of payoffs as game A from the Example 2. Yet for all
such games the IBR dynamics selects x = 0.5 as the rest point, so the monotonicity and
positivity properties are violated precisely at the states between x∗ and 0.5.

When the population state is between x∗ and 0.5, the first strategy already has a higher
average payoff yet the majority of agents playing it receive the lowest payoff and thus
would treat switching to the other strategy as an improvement. The switches in the
opposite direction are less likely since the agents currently playing the second strategy
would only imitate the minority of strategy 1 agents who currently receive the overall
highest payoff. In the remainder of the state space the vector fields of the IBR dynamics
and the replicator dynamics point in the same direction. For this to happen, a strategy
with a higher average payoff needs to guarantee a better payoff for a larger share of agents
than the other strategy.

This intuition also paves the way for the next result: elimination of dominated strate-
gies. If strategy 1 dominates strategy 2, then at any interior population state there will be
a positive flow from 2 to 1, and the net inflow from any other strategy would be higher
for 1 than for 2. Together these effects result in the ultimate extinction of strategy 2.

2.3 Elimination of dominated strategies

This section sharpens the results on elimination of dominated strategies for imitative
dynamics. As established by Nachbar (1990) and Samuelson and Zhang (1992), “cardinal”
imitative dynamics, including the replicator dynamics, eliminate pure strategies (itera-
tively) dominated by other pure strategies due to payoff monotonicity. The IBR dynamics,
on the contrary, is a non-monotone imitative dynamics which still eliminates such domi-
nated strategies. In terms of the comparison between the PPI and the IBR rules, this result
means that imitation alone can be sufficient for the elimination of dominated strategies.
In addition, Hofbauer and Sandholm (2011) demonstrate that under most dynamics not
based on imitation dominated pure strategies can survive, in part because the agents in a
population setting may be unable to recognize dominated strategies and thus avoid them.
In the case of the IBR dynamics, the available payoff information is also insufficient to
identify dominated strategies, and yet the agent switch away from them in the course of
the play.

Proposition 2. If a strategy is (iteratively) dominated by another pure strategy, then it is eliminated
along any interior solution of the IBR dynamics.

Proof. Suppose that strategy j is dominated by strategy i. Fix k ∈ {1, . . . ,n}, by dominance
πik > π jk. Take a strategy p , i, j and consider all possible strategy profiles (p, q) that might

7



arise in a match involving an agent playing this strategy. For a fixed q ∈ {1, . . . ,n} the
payoff πpq would fall into one of these three categories:

1. πpq ≤ π jk < πik, in which case there is an inflow into each strategy: (xpxqxk)xi into
strategy i and (xpxqxk)x j into j. Let Pkxi and Pkx j denote the total flows in this case.

2. π jk < πpq ≤ πik, so there is outflow from strategy j and inflow into strategy i, with
total flows expressed as some Qkxi and Qkx j.

3. π jk < πik < πpq, so there is outflow from both strategies, with total outflow expressed
by Rkxi and Rkx j.

In addition, there is net inflow Txix j from strategy j to i which includes at least the terms
x2

kxix j.
In terms of these flow components the change in the population proportion for the

strategies i and j can be expressed as

ẋi =

n∑

k=1

(Pkxi + Qkxi − Rkxi) + Txix j

ẋ j =

n∑

k=1

(
Pkx j −Qkx j − Rkx j

)
− Txix j

and so the change in the difference d in growth rates of the two strategies is always positive:

ḋ =
ẋi

xi
− ẋ j

x j
= 2

n∑

k=1

Qk + T(xi + x j) > 0

Therefore, using the standard method (see, for instance, Proposition 1 in Viossat (2015)),
d→ +∞ as t→∞, and thus strategy j is eliminated.

In the restricted game in which strategy j is eliminated, one can apply the same
reasoning to demonstrate that any strategy that becomes dominated will be eliminated as
well. Thus by continuity of the IBR dynamics in the neighborhood of the edge opposite
to the vertex x j = 1 in the original game (this edge corresponds to the simplex of the
restricted game) the dynamics will select against the iteratively dominated strategies. See
game A2 in the example 3 for an illustration to this argument. �

With a slight adjustment (πik > π jk would hold for at least one k, but not necessary all
k ∈ {1, . . . ,n}) the argument can be applied to weakly dominated strategies as well, but one
should only consider weakly dominated strategies after all strictly dominated strategies
are eliminated. Otherwise, a strategy that is weakly dominated only with respect to
a strictly dominated strategy may survive, as illustrated by game A1 in the following
example.
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Example 3. Consider2 the games A1 and A2

A1 =




1 1 2
1 1 1
0 0 0


 A2 =




3 2 0
2 1 3
1 0 2




Figure 1: Some solution trajectories in games A1 (left) and A2 (right).

In the game A1 strategy 3 is dominated by both 1 and 2, strategy 2 is weakly dominated by 1,
but once strategy 3 is eliminated, both 1 and 2 coexist.

From the perspective of an agent playing strategy 3 the remaining two strategies are equally
good. The only case when strategy 1 gains advantage over strategy 2 is when an agent playing
strategy 2 gets to imitate someone playing 1 against 3. The probability of observing such a candidate
is x1x3, so the switch rate from strategy 2 to strategy 1 is low near the pure state x3 = 1 and near
the edge x3 = 0. It is relatively high near the center of the simplex where the expression x1x2x3 is
maximized.

In the game A2 strategy 3 is dominated by strategy 2, and after strategy 3 is eliminated, strategy
2 is dominated by strategy 1. In this game the solution trajectories originating near the pure state
x3 = 1 first move in the direction of the pure state x2 = 1, since when most agents choose strategy
3 almost no one gets to imitate strategy 1 as the majority of strategy 1 agents receive the lowest
payoff. But after the population state gets sufficiently close to x2 = 1 and the strategy 3 becomes
almost extinct, agents begin to realize the advantage of 1 over 2. �

Another example that complements the result of Proposition 2 demonstrates that a
strategy dominated by mixed strategies may survive.

Example 4. Consider the games A3 and A4 with α ∈ (1, 4):

2The figures in this and other examples are generated in EvoDyn-3s. See Izquierdo et al. (2018).
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A3 =




4 4 1
α α α
1 1 4


 A4 =




1 1 4
α α α
4 4 1




Compared to game A3, the order of payoffs in game A4 is reversed. In both games strategy 2 is
always the second best, and when α < 2.5, it is dominated by a mixed strategy of 1 and 3.

The IBR dynamics in game A3 is

ẋ = x(1 − x)(1 − 2z)
ẏ = y(z − x)(1 − 2z)
ż = z(1 − z)(2z − 1)

where x, y, and z are the proportions of strategies 1, 2, and 3, respectively. When exactly half of
the population (z = 1

2 ) chooses strategy 3, strategy 2 can survive. In the game A3, strategy 2 is
otherwise eliminated: strategy 1 is better than 2 when z < 1

2 , while 3 is better than 2 when z > 1
2 .

Figure 2: Some solution trajectories in games A3 (left) and A4 (right). The critical region is
z = 1

2 .

In game A4 with the reversed order of payoffs the critical region z = 1
2 becomes absorbing, which

suggests that strategy 2 survives along any trajectory originating in the interior of the state space.�

2.4 Stability of strict equilibria

We conclude this section with a stability property for strict equilibria. If a strategy i is
the unique best response to itself, then in the neighborhood of a pure state xi = 1 any agent
who currently employs a strategy j , i would be most likely matched against an opponent
playing strategy i, and upon receiving a revision opportunity would most likely observe a
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candidate earning πii and as a consequence switch to i. The behavior of such agents would
create an inflow into the strategy i which is of higher order than any potential outflow
caused by payoff advantages of other strategies over i, so the proportion of agents playing
i would increase, making the state xi = 1 a stable rest point.

Proposition 3. Strict symmetric equilibria are locally stable with a basin of attraction that includes
all states with xi > 1 − 1√

2
.

Proof. Suppose that the strategy profile (i, i) is a strict equilibrium. To show that it is locally
stable it is enough to demonstrate that ẋi > 0 in some neighborhood of the pure state xi = 1
as this implies that the function L(x) = xi is a strict local Lyapunov function for the state
xi = 1. To do so, construct the lower bound on ẋi by considering a game with the lowest
net inflow into the strategy i.

Let xi = 1 − ε. Since (i, i) is a strict equilibrium, for any j , i we have πii > π ji, so
strategy i would be imitated by any agent who currently obtains π ji and who observes a
candidate obtainingπii. Such switches to strategy i create an inflow of x3

i

∑
j,i x j = (1−ε)3ε,

which is a lower bound on the inflow into strategy i.
To obtain a lower bound on ẋi, assume that in all other cases strategy i performs worse

than its alternatives, i.e. πim < π jk for any m ∈ S and j, k , i and πik < π ji for any j, k , i. In
the former case the outflow from strategy i is

∑n
m=1 xixm

∑
j,k,i x jxk = (1 − ε)ε2, and in the

latter it is
∑

k,i xixk
∑

j,i x jxi = (1 − ε)2ε2. The sum of these two components is the upper
bound on the outflow from strategy i.

Subtracting the highest outflow from the lowest inflow yields the desired lower bound:

ẋi =

n∑

j=1

x jρ ji(x,A) − xi

n∑

j=1

ρi j(x,A)

= xi

n∑

j=1

x j

n∑

k=1

xk

n∑

m=1

xm1{π jk<πim} − xi

n∑

j=1

x j

n∑

k=1

xk

n∑

m=1

xm1{π jk>πim}

≥ x3
i

∑

j,i

x j1{π ji<πii} − xi

n∑

m=1

xm

∑

j,k,i

x jxk1{π jk>πim} − x2
i

∑

k,i

xk

∑

j,i

x j1{πik<π ji}

≥ (1 − ε)3ε − (1 − ε)ε2 − (1 − ε)2ε2

≥ ε(1 − ε)
(
1 − 4ε + 2ε2

)

≥ 0 when ε < 1 − 1√
2
.

Thus whenever ε < 1− 1√
2

the trajectory from an initial condition with xi = 1−ε converges
to xi = 1, so any strict symmetric equilibrium is locally stable. �
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3 Two-strategy games

In this section we completely characterize the behavior of the IBR dynamics for two-
strategy games. This topic was first studied in Izquierdo and Izquierdo (2013), in which
the dynamics is used to approximate the behavior of a finite population of agents who
employ the IBR rule in the Hawk-Dove game. Izquierdo and Izquierdo (2013) also derive
the general IBR equation for two-strategy games. Our paper complements their findings by
identifying all possible rest points of the dynamics, and by demonstrating its equivalence
to the replicator dynamics in terms of the number of rest points and the local behavior
around them.

For two-strategy games with two distinct payoffs the IBR dynamics and the replicator
dynamics coincide. The table below presents all possible cases with 3 or 4 distinct payoffs,
grouped by the game type: D – game with a dominant strategy, W – game with a weakly
dominant strategy, C – coordination game, A – anticoordination game.

D1 D2 D3 D4 D5 D6(
4 3
2 1

) (
4 3
1 2

) (
4 2
3 1

) (
3 4
2 1

) (
3 4
1 2

) (
2 4
1 3

)

D7 D8 D9 D10 D11 D12(
3 3
2 1

) (
3 3
1 2

) (
3 2
2 1

) (
2 3
1 2

) (
3 2
1 1

) (
2 3
1 1

)

W1 W2 W3 W4 W5 W6(
3 2
3 1

) (
2 3
1 3

) (
3 2
1 2

) (
2 3
2 1

) (
3 1
2 1

) (
1 3
1 2

)

C1 C2 C3 C4 C5 C6(
4 2
1 3

) (
4 1
3 2

) (
4 1
2 3

) (
3 2
1 3

) (
3 1
2 2

) (
3 1
1 2

)

A1 A2 A3 A4 A5 A6(
2 4
3 1

) (
1 4
3 2

) (
1 4
2 3

) (
2 3
3 1

) (
1 3
2 2

) (
1 3
2 1

)

Table 1: types of two-strategy games with 3 or 4 distinct payoffs

In games with a (weakly) dominant strategy the set of rest points is {0, 1}, and trajectories
from any interior state converge to state x = 1.

12



types mean dynamics
D1,D2,D4,D5,D7,D8,D11,D12 ẋ = x(1 − x)
D3,D6 ẋ = x(1 − x)[x2 + (1 − x)2]
D9 ẋ = x(1 − x)[x + (1 − x)2]
D10 ẋ = x(1 − x)[x2 + (1 − x)]
W1,W6 ẋ = x(1 − x)3

W2,W5 ẋ = x3(1 − x)
W3 ẋ = x2(1 − x)(1 + x)
W4 ẋ = x(1 − x)2(1 + x)

Table 2: the mean dynamics for the games with (weakly) dominant strategies

In coordination games the set of rest points is {0, 1−
√

2
2 ,

3−√5
2 , 1

2 , 1}. The interior rest points
are repelling, and trajectories from the interior states converge to the boundary states.

types mean dynamics interior RP

C1 ẋ = x(1 − x)[−2x2 + 4x − 1] x = 1 −
√

2
2 ≈ 0.293

C2,C3,C5 ẋ = x(1 − x)[2x − 1] x = 1
2

C4,C6 ẋ = x(1 − x)[−x2 + 3x − 1] x = 3−√5
2 ≈ 0.382

Table 3: the mean dynamics for coordination games

In anticoordination games the set of rest points is {0, 1
2 ,
√

5−1
2 , 1√

2
, 1}. Essentially, the rest

points in coordination and anticoordination games are the same save for the order of the
strategies. The trajectories from the interior states converge to the interior rest point.

types mean dynamics interior RP
A1 ẋ = x(1 − x)[1 − 2x2] x = 1√

2
≈ 0.707

A2,A3,A5 ẋ = x(1 − x)[1 − 2x] x = 1
2

A4,A6 ẋ = x(1 − x)[−x2 − x + 1] x =
√

5−1
2 ≈ 0.618

Table 4: the mean dynamics for anticoordination games

Thus, the IBR dynamics exhibits the same properties as the replicator dynamics: in
games with a dominant strategy both dynamics select it; in coordination games trajectories
from the interior converge to one of the two pure states, while in anticoordination games
trajectories converge to the interior rest point.

As a corollary, this characterization also describes the behavior of the IBR dynamics
on the boundary of the state space in a three-strategy game, since once one of the three
strategies becomes extinct it is never reintroduced. Thus each boundary of the two-
dimensional simplex can only have at most one rest point, unless the whole boundary
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is the rest area (which is possible in degenerate cases). Besides, this characterization
shows that the interior rest points of the dynamics can only take one of the five possible
values, and suggests that similar sets of rest points can be identified for games with more
strategies.

4 Rock-Paper-Scissors games

4.1 Symmetric RPS games

First consider the symmetric RPS game with the payoff matrix A and a, b > 0.

A =




0 −a b
b 0 −a
−a b 0




For any values of the payoff parameters the game A induces the same order of payoffs as
the standard RPS game, for which the replicator dynamics is

ẋ = x(z − y),
ẏ = y(x − z),
ż = z(y − x),

where x, y, and z are the shares of agents playing Rock, Paper, and Scissors, respectively.
The mean dynamics in game A generated by the IBR protocol is

ẋ = x(z − y)(1 − xy − xz − yz),
ẏ = y(x − z)(1 − xy − xz − yz),
ż = z(y − x)(1 − xy − xz − yz)

Thus in the standard RPS game the IBR dynamics is the replicator dynamics with speed
adjusted by the positive non-constant function (1 − xy − xz − yz). This relationship helps
identify the global behavior of the IBR dynamics in symmetric RPS games.

Proposition 4. In all symmetric RPS games the trajectories under the IBR dynamics are closed
orbits around the unique interior rest point ( 1

3 ,
1
3 ,

1
3 ).

Proof. Clearly, the only interior solution to the system (RPS) is x∗ = y∗ = z∗ = 1
3 .

Since the IBR dynamics is the speed-adjusted replicator dynamics for this game, the
Lyapunov function H(x) = x∗ log x

x∗+y∗ log y
y∗+z∗ log z

z∗ (introduced in Theorem 6 in Zeeman
(1980)) would be constant along the solutions of the IBR dynamics for all symmetric RPS
games. �
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Intuitively, in the standard RPS game the average payoff to a strategy (the information
about the candidate strategy that a player receives under the proportional imitation rule
based on the average payoffs) is equivalent to learning about the difference in shares of
winners and losers under that strategy. So the average payoff under the PPI rule is higher
whenever the likelihood of switching under the IBR rule is higher.

4.2 Ordered RPS games

In general under the replicator dynamics the behavior of the system in the Rock-Paper-
Scissors game solely depends on the determinant of the payoff matrix A. If det A = 0,
the solution trajectories form closed orbits around the interior steady state. If det A > 0,
the interior steady state is a global attractor, whereas if det A < 0 it is repelling (Zeeman
(1980)).

Under the IBR dynamics we conjecture3 that the global behavior of the system can be
one of the same three types: either all solutions converge to the interior steady state, or
form closed orbits around it, or converge to the boundary. The difference is, the behavior
depends on the order of payoffs, so for a fixed RPS game one can have any combination
of behaviors under the replicator and the IBR dynamics.

In Table 5 we consider the nine possible orderings over the payoffs in the RPS game.
In all cases Rock yields the highest positive payoff.

A1 =




0 -3 3
2 0 -2
-1 1 0


 A2 =




0 -2 3
2 0 -1
-3 1 0


 A3 =




0 -1 3
2 0 -3
-2 1 0




B1 =




0 -3 3
1 0 -1
-2 2 0


 B2 =




0 -1 3
1 0 -2
-3 2 0


 B3 =




0 -2 3
1 0 -3
-1 2 0




C1 =




0 -1 3
2 0 -2
-3 1 0


 C2 =




0 -3 3
2 0 -1
-2 1 0


 C3 =




0 -2 3
2 0 -3
-1 1 0




Table 5: The interior steady state is repelling in A1-A3, an attractor in B1-B3, and a center
in C1-C3.

Each B game is obtained from an A game with the same index by reversing the order
of payoffs and subsequently relabelling the strategies. This procedure reverses the flows
along the solution trajectories, so the repelling rest points in games of type A become
attractors in games of type B. The next proposition states this result formally.

3We provide the proof of that statement for the closed orbits case, and state it as a conjecture for the
remaining two cases based on simulations.
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Figure 3: Some solution trajectories for games A1, B3, and C2.

Proposition 5. i) The unique interior rest point in any A game is repelling.
ii) For any i ∈ {1, 2, 3} the game Bi can be obtained from the game (−Ai) by relabeling the strategies.

Proof. i) The statement is proved for the game A1 by direct computation. The proofs for
games A2 and A3 are similar.

The IBR dynamics in game A1 can be written as

F(x, y, z) =



ẋ
ẏ
ż


 =




x(z − y)(x2 + y + z)
y(x − z)(x2 + y + z) + yz(y − x)(x + z)
z(y − x)(x2 + y + z) − yz(y − x)(x + z)




To identify the interior rest points notice that ẋ = 0 requires y = z, in which case ẏ = 0
reduces to

(x − y)
(
x2 + 2y − y(x + y)

)
= 0.

Plugging in x = 1 − 2y results in the equation

(1 − 3y)
(
5y2 − 3y + 1

)
= 0,

with the only real solution y = 1
3 . Thus the unique interior rest point of the system F is

( 1
3 ,

1
3 ,

1
3 ).

To identify the local behavior of the system F around the interior steady state, project
it from R3 onto ∆3, the two-dimensional simplex, to obtain the system

F̂(x, y) =

(
x(1 − x − 2y)(x2 − x + 1)

y(2x + y − 1)(y2 − y + 1) + 2xy(y − x)(1 − x − y)

)
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The Jacobian of this system evaluated at the rest point ( 1
3 ,

1
3 ) is

DF̂
(1
3
,

1
3

)
=

1
27

(−7 −14
12 9

)

with the eigenvalues 1±2i
√

26
27 . Since both eigenvalues have positive real parts the rest point

is repelling.
ii) To see the relationship between A1 and B1, write the matrices A1,−A1, and B1 side by
side:

A1 =




0 -3 3
2 0 -2
-1 1 0


 −A1 =




0 3 -3
-2 0 2
1 -1 0


 B1 =




0 -3 3
1 0 -1
-2 2 0




The game B1 can be obtained from (−A1) by relabeling strategies 2 and 3. Formally the
IBR dynamics in game B1 can be written as

G(x, y, z) =



ẋ
ẏ
ż


 =




x(z − y)(x2 + y + z)
y(x − z)(x2 + y + z) − yz(x − z)(x + y)
z(y − x)(x2 + y + z) + yz(x − z)(x + y)




so −F(x, y, z) = G(x, z, y). Thus the system G is the time-reversed system F, so the eigenval-
ues of the Jacobian evaluated at the interior rest point of Ĝ both have negative real parts,
and that rest point is an attractor. �

Games of type C require a different approach, since in them the eigenvalues of the
Jacobian at the interior rest point are purely imaginary, so the local stability analysis using
the Jacobian does not produce an unambiguous result. However, this obstacle can be
overcome once one notices that up to the strategy labels, reversing the order in any C
game results in the same game.

Proposition 6. The unique interior rest point in any C game is a center, and any trajectory from
the interior forms a closed orbit around it.

Proof. The proposition is proved for the game C2. The proof for games C1 and C3 is similar.
Observe that the negative of the game C2 is C2 with strategies 2 and 3 interchanged.

C2 =




0 -3 3
2 0 -1
-2 1 0


 −C2 =




0 3 -3
-2 0 1
2 -1 0
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Formally, the IBR dynamics in C2

H(x, y, z) =



ẋ
ẏ
ż


 =




x(z − y)(x2 + y + z)
y(x − z)(x2 + y + z) − yz(x2 − xy − xz − yz)
z(y − x)(x2 + y + z) + yz(x2 − xy − xz − yz)




has the property −H(x, y, z) = H(x, z, y).
To identify the interior rest points of the system H observe that ẋ = 0 requires z = y,

so that x = 1 − y − z = 1 − 2y. Plugging the expressions for x and z into ẏ = 0 yields the
equation

1 − 6y + 16y2 − 19y3 = 0,

which only has one root y ≈ 0.374 in the interval [0, 1]. Thus x∗ ≈ (0.252, 0.374, 0.374) is the
unique interior rest point of the system H.

To show that the solution trajectories originating in the interior of the simplex form
closed orbits around the rest point x∗, we first show that any such solution circles around
x∗ and then apply the “self-negating” property to conclude that any circular solution
trajectory must be indeed a closed orbit.

Formally, the IBR dynamics in C2

H(x, y, z) =

0
BBBBBBB@
ẋ
ẏ
ż

1
CCCCCCCA =

0
BBBBBBB@

x(z � y)(x2 + y + z)
y(x � z)(x2 + y + z) � yz(x2 � xy � xz � yz)
z(y � x)(x2 + y + z) + yz(x2 � xy � xz � yz)

1
CCCCCCCA

has the property �H(x, y, z) = H(x, z, y).
To identify the interior rest points of the system H observe that ẋ = 0 requires z = y, so that

x = 1 � y � z = 1 � 2y. Plugging the expressions for x and z into ẏ = 0 yields the equation

1 � 6y + 16y2 � 19y3 = 0,

which only has one root y ⇡ 0.374 in the interval [0, 1]. Thus x⇤ ⇡ (0.252, 0.374, 0.374) is the unique
interior rest point of the system H.

To show that the solution trajectories originating in the interior of the simplex form closed
orbits around the rest point x⇤, we first show that any such solution circles around x⇤ and then
apply the “self-negating” property to conclude that any circular solution trajectory must be indeed
a closed orbit.

x = 1

y = 1 z = 1ẋ = 0

ẏ = 0ż = 0 x⇤�

1 6

3 4

2 5

x = 1

y = 1 z = 1ẋ = 0

ẏ = 0ż = 0 x⇤�

�

�
� �

�

�

Figure 4: Left: the nullclines divide the simplex into 6 regions. Right: solution trajectories from
the marked points have to remain within the red areas.

Observe that the x-nullcline is the x-bisector, while the y-nullcline and z-nullcline originate at
states y = 1 and z = 1, respectively, pass through the interior rest point x⇤ and hit the opposite
edges of the simplex. Together the nullclines divide the simplex into six regions: x is decreasing
in regions 1, 2, and 3, and increasing in regions 4, 5, and 6; y is decreasing in 3, 4, and 5, and
increasing in 6, 1, and 2; z is decreasing in regions 5, 6, and 1, and increasing in regions 2, 3, and 4.

Given the signs of the nullclines, the possible directions of motion in each of the six regions are
restricted to a particular 60-degree wedge. For instance, in region 1, x and z must be decreasing,
while y is increasing, so a solution originating from a point inside region 1 can only move toward
the boundary z = 0 or the nullcline ż = 0. But as the solution gets closer to the boundary, the
speed ż approaches 0, while the speeds ẋ and ẏ are bounded away from 0 within the red area that
restricts the feasible directions of motion (Formally, as z ! 0, ẋ ! �xy(x2 + y); ẏ ! xy(x2 + y);
ż! 0, so near the edge z = 0 the direction of motion is almost parallel to the edge.) Thus a solution
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Figure 4: Left: the nullclines divide the simplex into 6 regions. Right: solution trajectories
from the marked points have to remain within the red areas.

Observe that the x-nullcline is the x-bisector, while the y-nullcline and z-nullcline
originate at states y = 1 and z = 1, respectively, pass through the interior rest point x∗ and
hit the opposite edges of the simplex. Together the nullclines divide the simplex into six
regions: x is decreasing in regions 1, 2, and 3, and increasing in regions 4, 5, and 6; y is
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decreasing in 3, 4, and 5, and increasing in 6, 1, and 2; z is decreasing in regions 5, 6, and
1, and increasing in regions 2, 3, and 4.

Given the signs of the nullclines, the possible directions of motion in each of the six
regions are restricted to a particular 60-degree wedge. For instance, in region 1, x and z
must be decreasing, while y is increasing, so a solution originating from a point inside
region 1 can only move toward the boundary z = 0 or the nullcline ż = 0. But as the
solution gets closer to the boundary, the speed ż approaches 0, while the speeds ẋ and
ẏ are bounded away from 0 within the red area that restricts the feasible directions of
motion (Formally, as z→ 0, ẋ→ −xy(x2 + y); ẏ→ xy(x2 + y); ż→ 0, so near the edge z = 0
the direction of motion is almost parallel to the edge.) Thus a solution originating inside
region 1 has to exit it via the z-nullcline. Similarly, the solutions originating in regions 3
and 5 have to escape them via the x- and the y-nullclines, correspondingly.

Solutions originating in region 2 cannot reach the boundary as z must be increasing.
But it is not immediately obvious that they cannot hit the rest point x∗. To exclude this
possibility, one has to show that the y-component of every point in the region 2 is at least
as high as the y-component of x∗, so that x∗ can not be reached as y must be increasing.
This will be the case if the slope of the z-nullcline at x∗ is not lower than the slope of the
line y = const. To compute that slope, simplify the system H to

H(x, y, z) =



ẋ
ẏ
ż


 =




x(z − y)(x2 + y + z)
y(x − z)(x2 + y + z2) + 2xy2z
z(y − x)(x2 + y2 + z) − 2xyz2




so that the equation for the z-nullcline becomes (y − x)(x2 + y2 + z) − 2xyz = 0. Using
z = 1− x− y, apply the Implicit Function Theorem to compute the slope of the z-nullcline:

dy
dx

=
x2 + y2 + z − (y − x)(2x − 1) + 2yz − 2xy
x2 + y2 + z + (y − x)(2y − 1) − 2xz + 2xy

The rest point x∗ is characterized by z = y and x = 1 − 2y, so the slope of the z-nullcline at
x∗ can be expressed solely in terms of y:

dy
dx
|x=x∗ =

(1 − 2y)2 + y2 + y − (3y − 1)(1 − 4y) + 2y2 − 2y(1 − 2y)
(1 − 2y)2 + y2 + y + (3y − 1)(2y − 1)

=
23y2 − 12y + 2
11y2 − 8y + 2

> 0

Thus at the rest point x∗ the z-nullcline has a positive slope, whereas the slope of the line
y = const is 0 (in standard coordinates). Therefore at any point in the interior of region 2,
y > y(x∗), and the trajectories originating in that region have to escape it via the y-nullcline.

Similarly, in region 4 the slope of the x-nullcline z − y = 0 equal to − 1
2 exceeds the
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slope of the line z = const equal to −1, and in the region 6 the slope of the y-nullcline
(x − z)(x2 + y + z2) + 2xyz = 0 is

dy
dx

= −2
x2 + y + z2 + (x − z)2 + 2yz − 2xy

x2 + y + z2 + (x − z)(1 − 2z) + 2xz − 2xy

so that at x∗ it becomes

dy
dx
|x=x∗ = −2

17y2 − 10y + 2
11y2 − 8y + 2

< 0

whereas the line x = const is vertical. Hence the trajectories originating in both regions 4
and 6 have to escape them via the nullclines. Therefore the solution trajectory from any
interior initial condition circles around the interior rest point x∗ by sequentially entering
and exiting each of the six regions via the nullclines.

x = 1

y = 1 z = 1

x⇤�

x1
x0

x�1

Figure 5: The solution trajectory from x0 (blue) and the time-reversed solution trajectory from x0
(red).

x-bisector between the rest point x⇤ and the state x = 1. Suppose that once this solution completes
a loop around the rest point, it hits the x-bisector again at some point x1, whereas if one were
to reverse the flow it would hit the bisector at a point x�1. The “self-negating” property of C2
implies that the mirror image of the phase portrait of the negative of C2 is the phase portrait of
C2 (the x-bisector being the axis of symmetry). In particular, the mirror image of the segment of
the solution trajectory between x�1 and x0 has to be the segment between x0 and x1. Therefore
x�1 = x1, but that is only possible if x�1 = x0 = x1, as otherwise x�1 and x1 must be on the opposite
sides of x0. Therefore all solution trajectories must form closed orbits around x⇤. ⌅

The Proposition 4.3 suggests that if a three-strategy game has the “self-negating” property,
the solution trajectories and the time-reversed solution trajectories “meet”, which implies that the
trajectories form closed orbits around an interior steady state. This observation provides a link
between self-negating games under the IBR dynamics and zero-sum games under the replicator
dynamics, since in the latter case interior rest points also cannot be asymptotically stable (Akin
and Losert (1984)). However, in games with more than three strategies one might not get as much
mileage out of self-negation. With only three strategies, the self-negating property implies an
axisymmetric phase portrait, since there must be a pair of strategies that is relabeled when the
order of payo↵s is reversed. With four or more strategies it is possible that more than one pair of
strategies are relabeled, and it is not entirely clear what this possibility implies.

5. Other examples

In this section we provide two more examples that relate the IBR and the replicator dynamics.
First, we show that the game from the example 1 of Zeeman (1980) admits two interior rest points
under the IBR dynamics. Such behavior is impossible under the replicator dynamics, under which
in non-degenerate games there can be at most one interior rest point (Theorem 3 in Zeeman (1980)).
This result suggests that under the IBR dynamics there are more classes of game dynamics than
under the replicator dynamics. Second, we construct a self-negating game in which the interior
is split into two regions, one containing closed orbits around the interior rest point, and the other
being a basin of attraction for a pure rest point. Up to the position of the rest point, both dynamics
are equivalent.
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Figure 5: The solution trajectory from x0 (blue) and the time-reversed solution trajectory
from x0 (red).

The final step of the proof is to show that every solution trajectory is a closed orbit.
Since all trajectories circle around x∗, it suffices to consider a solution originating at some
point x0 on the x-bisector between the rest point x∗ and the state x = 1. Suppose that once
this solution completes a loop around the rest point, it hits the x-bisector again at some
point x1, whereas if one were to reverse the flow it would hit the bisector at a point x−1.
The “self-negating” property of C2 implies that the mirror image of the phase portrait of
the negative of C2 is the phase portrait of C2 (the x-bisector being the axis of symmetry).
In particular, the mirror image of the segment of the solution trajectory between x−1 and
x0 has to be the segment between x0 and x1. Therefore x−1 = x1, but that is only possible
if x−1 = x0 = x1, as otherwise x−1 and x1 must be on the opposite sides of x0. Therefore all
solution trajectories must form closed orbits around x∗. �
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The Proposition 6 suggests that if a three-strategy game has the “self-negating” prop-
erty, the solution trajectories and the time-reversed solution trajectories “meet”, which
implies that the trajectories form closed orbits around an interior steady state. This obser-
vation provides a link between self-negating games under the IBR dynamics and zero-sum
games under the replicator dynamics. In a zero-sum game with an interior equilibrium,
every interior solution trajectory is confined to a level set of a Kullback-Leibler divergence
function (see Sec. 9.1.1 of Sandholm (2010)). This means the rest point is Lyapunov
stable but not asymptotically stable, and that other interior solution trajectories do not
converge. The latter need not be the case under the IBR dynamics: game W in Example
5 is a self-negating game, in which some interior solution trajectories form closed orbits,
while others converge to a pure rest point.

In games with more than three strategies one might not get as much mileage out of self-
negation. With only three strategies, the self-negating property implies an axisymmetric
phase portrait, since there must be a pair of strategies that is relabeled when the order of
payoffs is reversed. With four or more strategies it is possible that more than one pair of
strategies are relabeled, and it is not entirely clear what this possibility implies.

5 Other examples

In this section we provide two more examples that relate the IBR and the replicator
dynamics. First, we show that the game from the example 1 of Zeeman (1980) admits
two interior rest points under the IBR dynamics. Such behavior is impossible under the
replicator dynamics, under which in non-degenerate games there can be at most one
interior rest point (Theorem 3 in Zeeman (1980)). Second, we construct a self-negating
game in which the interior is split into two regions, one containing closed orbits around
the interior rest point, and the other being a basin of attraction for a pure rest point. Up to
the position of the rest point, both dynamics are equivalent.

Example 5. Consider the games Z and W:

Z =




0 6 -4
-3 0 5
-1 3 0


 W =




0 4 3
1 3 5
3 2 6




Game Z is the game from the Example 1 in Zeeman (1980). The IBR dynamics in it

ẋ = x(1 − x)
(
x2 + y − z

)
− 2x2yz

ẏ = −y(1 − y)
(
x + y2 − z

)
+ 2x2yz

ż = z(x − y)
(
z − x2 − y2

)
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yields two distinct interior rest points z1 = ( 1
3 ,

1
3 ,

1
3 ) and z2 ≈ (0.575, 0.088, 0.338). At z1 the

relevant eigenvalues are 1
27

(
−1 ± 2i

√
5
)
, so this rest point is stable, whereas at z2 the eigenvalues

are 0.41 and -0.041, so it is unstable.

Figure 6: Some solution trajectories in games Z (left) and W (right).

Game W has the self-negating property, so there are closed orbits around the interior rest point, but
a part of the interior of the simplex is the basin of attraction of the state x3 = 1. In the time-reversed
game x1 = 1 becomes the attractor, while the interior rest point preserves its region with the closed
orbits.

6 Conclusion

This paper investigated the properties of an imitative rule that ignores any cardinal
information about the game’s payoffs. Agents switch to strategies which they perceive as
better based on the comparison of their realized payoffs to that of a random member of
the population. Since this behavioral rule bears a similarity to the pairwise proportional
imitation of Schlag (1998), the resulting ordinal imitative dynamics begs comparison with
the replicator dynamics arising from the PPI.

We demonstrate that while the IBR dynamics does not possess the payoff monotonicity
and Nash stationarity properties of the replicator dynamics in general, the two dynamics
are topologically equivalent in two-strategy games. We also conjecture that they generate
the same types of behavior in Rock-Paper-Scissors games. In other cases, the IBR dynamics
can generate behavior that is impossible under the replicator dynamics.

Better understanding the relationship between the two dynamics and investigating the
self-negating property in games with more than three strategies would be the two most
important directions for future research.
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