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Abstract
We study optimal strategies in two-player stochastic games that are played on a finite 
graph, equipped with a general payoff function. The existence of optimal strate-
gies that do not make use of memory and randomisation is a desirable property that 
vastly simplifies the algorithmic analysis of such games. Our main theorem gives 
a sufficient condition for the maximizer to possess such a simple optimal strategy. 
The condition is imposed on the payoff function, saying the payoff does not depend 
on any finite prefix (shift-invariant) and combining two trajectories does not give 
higher payoff than the payoff of the parts (submixing). The core technical property 
that enables the proof of the main theorem is that of the existence of �-subgame-
perfect strategies when the payoff function is shift-invariant. Furthermore, the same 
techniques can be used to prove a finite-memory transfer-type theorem: namely that 
for shift-invariant and submixing payoff functions, the existence of optimal finite-
memory strategies in one-player games for the minimizer implies the existence of 
the same in two-player games. We show that numerous classical payoff functions are 
submixing and shift-invariant.

Keywords  Stochastic games · Half positional · Epsilon subgame perfect strategies · 
Finite memory optimal strategies · Shift-invariant · Submixing

1  Introduction

The games that we study are played between two players on a finite graph. Every 
vertex of the graph belongs to one of the players, the one that decides which edge 
should be taken next. The result of such a play is an infinite path in the graph. The 
objective of the game is given using a payoff function, which maps infinite paths to 
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real numbers. The maximizer or Player 1, wants to maximize the payoff, while his 
adversary (the minimizer) wants the opposite.

The study of such games has been an active area of research for a few decades, 
in a variety communities; especially in that of theoretical computer science and 
economics. They are used to model simplified adversarial (zero-sum) situations. In 
computer science they are used in verifying properties of systems, but also as a very 
beneficial theoretical tool in logic and automata theory.

In this paper we consider stochastic games, a more general model where in every 
step, after an action is chosen, there is a probability distribution on the set of verti-
ces according to which the next vertex is chosen. In this scenario, Player 1 wants to 
maximize the expected payoff, and his adversary to minimize it.

Well-known examples of games played on graphs are the discounted games, 
mean-payoff games, games equipped with the limsup payoff function and parity 
games. These four classes of games share a common property: both players have 
very simple optimal strategies, namely optimal strategies that are both determinis-
tic and stationary. These are strategies that guarantee maximal expected payoff and 
choose actions deterministically (without randomisation) and this deterministic 
choice depends only on the current vertex (it does not use memory). When games 
admit such strategies for the maximizer they are called half-positional, when they 
admit such strategies for both players they are called positional. This property is 
highly desirable and it is often the starting point for further algorithmic analysis.

The broad purpose of the present paper is to study what is the common quality of 
games that makes it possible for them to admit deterministic and stationary optimal 
strategies.

1.1 � Context

There have been numerous papers about the existence of deterministic and station-
ary optimal strategies in games with different payoff functions. Shapley proved that 
stochastic games with discounted payoff function are positional using an operator 
approach (Shapley 1953). Derman showed the positionality of one-player games 
with expected mean-payoff reward, using an Abelian theorem and a reduction to 
discounted games (Derman 1962). Gilette extended Derman’s result to two-player 
games (Gilette 1957) but his proof was found to be wrong and corrected by Liggett 
and Lippman (1969). The positionality of one-player parity games was addressed in 
Courcoubetis and Yannakakis (1990) and later on extended to two-player games in 
Chatterejee et al. (2003); Zielonka (2004). Counter games were extensively studied 
in Brázdil et al. (2010) and several examples of positional counter games are given. 
There are also several examples of one-player and two-player positional games in 
Gimbert (2007); Zielonka (2010). A whole zoology of half-positional games is 
presented in Kopczynski (2009) and another example is given by mean-payoff co-
Büchi games (Chatterjee et al. 2005). The proofs of these various results are quite 
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heterogeneous, making it difficult to find a common property that explains why they 
are positional or half-positional.

Some effort has been made to better understand conditions that make games 
(half) positional, which has made apparent that payoff functions that are shift-invari-
ant and submixing play a crucial role. Our contributions lie in this direction.

1.2 � Contributions

The results of the present paper can be summarised as follows.
First, the main theorem says that a sufficient condition for the game to be half-

positional is for the payoff function to be shift-invariant and submixing. We give an 
informal explanation of this condition. Payoff functions f map infinite paths of the 
graph

to real numbers. A payoff function is shift-invariant if it does not depend on finite 
prefixes, in other words

for any finite prefix p, i.e. we can shift the trajectory to the left without changing the 
payoff. A payoff function is submixing on the other hand, if for any two infinite paths

shuffling (or combining) them such as

does not give better payoff, that is:

Theorem 1.1  Games equipped with a payoff function that is shift-invariant and sub-
mixing are half-positional.

As mentioned above, half-positional games are those where the maximizer has 
a simple kind of strategy that is optimal. There is nothing special about this player, 
if instead of the submixing condition, we define an “inverse” submixing condition, 
namely one that requires that the combined payoff is larger than the minimum of the 
parts, we would have an analogous theorem that proves the existence of simple opti-
mal strategies for the minimizer. Furthermore there are payoff functions for which 
both versions of the submixing condition hold, and for these games the theorem 

s0s1s2s3 ⋯

f (p s0s1s2s3 ⋯) = f (s0s1s2s3 ⋯),

s0s1s2s3 ⋯

t0t1t2t3 ⋯

s0s1s2s3s4 s5s6s7s8 ⋯

t0t1 t2t3t4t5t6t7t8 ⋯

f (s0s1s2t0t1s3s4t2t3t4t5t6s5s6s7s8t7t8 ⋯) ≤ max{f (s0s1s2 ⋯), f (t0t1t2 ⋯)}.
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proves positionality. The conditions in the statement of the theorem are not neces-
sary; we will provide examples and discuss this fact.

The conclusion of the theorem, however, cannot be made stronger in the follow-
ing sense: There are examples of games equipped with shift-invariant and submix-
ing payoff functions where the minimizer does not have simple optimal strategies. 
For instance, consider the game with only two states s, t both controlled by the mini-
mizer, and actions such that the underlying graph is a complete directed graph. The 
minimizer wins the game if and only if both states are visited infinitely often, and 
furthermore the blocks of contiguous visits to s have unbounded length. In other 
words, if the outcome is:

then the sequence n1, n2,… has to be unbounded for the minimizer to win. The pay-
off function described above is shift-invariant and submixing, yet the optimal strat-
egy of the minimizer either has to use randomisation, or infinite memory to remem-
ber how long was the longest block of contiguous visits to s.

The proof of Theorem  1.1 is by induction on number of edges, it uses Lévy’s 
0-1 law, as well as the following crucial property of the games under consideration. 
Namely that games equipped with a payoff function that is both bounded and Borel-
measurable admit �-subgame-perfect strategies, for every 𝜖 > 0 . A proof of this fact 
can be found in Mashiah-Yaakovi (2015).

A second contribution comes as a corollary of the techniques developed for the 
main theorem. It is a transfer-type theorem that lifts the existence of optimal finite-
memory strategies in one-player games (also known as Markov decision processes, 
or MDPs) to the same for two-player games.

Theorem 1.2  Let f be a payoff function that is both shift-invariant and submixing. 
Assume that in all games equipped with f and fully controlled by the minimizer, the 
minimizer has optimal strategies with finite memory. Then the minimizer has the 
same in all games equipped with f.

Furthermore this theorem is proved by effectively constructing the optimal strat-
egy which calls the optimal strategies in one-player games, thereby showing how to 
make optimal strategies for the minimizer in case of submixing payoffs, and maxi-
mizer in case of inverse-submixing payoffs in two-player games, by reusing optimal 
strategies in Markov decision processes, or one-player games.

1.3 � Related work

For one-player games it was proved by the first author that every one-player game 
equipped with a payoff function that is both shift-invariant and submixing is posi-
tional (Gimbert 2007). This result was successfully used in Brázdil et al. (2010) to 
prove positionality of counter games. A weaker form of this condition was presented 

s⋯ s
⏟⏟⏟

n1 times

t⋯ t
⏟⏟⏟

m1 times

s⋯ s
⏟⏟⏟

n2 times

⋯ ,
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in Gimbert and Zielonka (2004) to prove positionality of deterministic games (i.e. 
games where transition probabilities are equal to 0 or 1, not stochastic). Kopczyn-
ski proved that two-player deterministic games equipped with a shift-invariant and 
submixing payoff function that takes only two values is half-positional (Kopczynski 
2006).

A result of Zielonka (2010) provides a necessary and sufficient condition for the 
positionality of one-player games. The condition is expressed in terms of the exist-
ence of particular optimal strategies in multi-armed bandit games. When trying to 
prove the positionality for a particular payoff function, the condition in Zielonka 
(2010) is harder to check than the submixing property which is purely syntactic.

Some results on finite-memory determinacy have been obtained in Bouyer et al. 
(2020), with different requirements: the size of the memory should be independent 
from the arena, whereas in this paper we do not make such an assumption.

The pre-print version of this present paper (Gimbert and Kelmendi 2014) has 
already been used in a number of works, mostly pertaining to algorithmic game 
theory community. We mention the papers that we are aware of. In Chatterjee and 
Doyen (2016), Chatterjee and Doyen study payoff functions that are a conjunction 
of mean-payoff objectives, and prove that they are in co-NP for finite-memory strat-
egies. They use Theorem  1.1; and for Theorem  4.1 they observe that in the spe-
cial case of finite-memory strategies there is a simple combinatorial proof, which 
bypasses the use of martingale theory. In Basset et al. (2018) the authors consider 
arbitrary boolean combination of expected mean-payoff objectives and the main 
theorem of the present paper appears as Theorem  1, and is the starting point of 
their further algorithmic analysis. Games played on finite graphs where the infor-
mation flow is perturbed by non-deterministic signalling delays are considered in 
Berwanger and van den Bogaard (2015), where submixing and shift-invariant payoff 
functions play a central rôle. Our result is also used by Mayr, Schewe, Totzke and 
Wojtczak on their proof of the fact that games with energy-parity objectives and 
almost-sure semantics lie in NP ∩ co-NP (Mayr et al. 2021).

1.4 � Organisation of the paper

We fix the notation and give the relevant definitions in Sect. 2, where one can also 
find an overview of the proof. We give examples of shift-invariant and submixing 
payoff functions in Sect. 3, as well as show how the Theorem 1.1 can be used to 
recover numerous classical determinacy results. In Sect.  4, we define reset strate-
gies as a method of obtaining �-subgame-perfect strategies, which exist due to Theo-
rem 4.1. The proof of the main theorem, Theorem 1.1, is given in Sect. 5, and that of 
the transfer theorem for finite-memory strategies, Theorem 1.2, in Sect. 6.
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2 � Preliminaries

The purpose of this section is to introduce the basic notions that we need about 
stochastic games with perfect information, that is the definitions of: games, payoff 
functions, strategies and values.

2.1 � Games

A game is specified by the arena and the payoff function. While the arena deter-
mines how the game is played, the payoff function specifies the objectives that the 
players want to reach.

We use the following notations throughout the paper. Let S be a finite set. The set 
of finite (respectively infinite) sequences on S is denoted S∗ (respectively S� ). A prob-
ability distribution on S is a function � ∶ S → [0, 1] such that 

∑
s∈S �(s) = 1 . The set of 

probability distributions on S , we denote by Δ(S).

Definition 2.1  (Arena) A stochastic arena with perfect information is a tuple:

where

•	 S is a finite set of states (that is nodes of the graph) partitioned in two sets (S1, S2),
•	 A is a finite set of actions,
•	 for each state s ∈ S , a non-empty set A(s) ⊆ A of actions available in s,
•	 and transition probabilities p ∶ S × A → Δ(S).

An arena is fully controlled by the minimizer if A(s) is a singleton for every s ∈ S1.
An infinite play in an arena A is an infinite sequence p = s0a1s1a2 ⋯ ∈ (SA)� such 

that for every n ∈ ℕ , an+1 ∈ A(sn) . A finite play in A is a finite sequence in S(AS)∗ 
which is the prefix of an infinite play.

With each infinite play is associated a payoff computed by a payoff function. Player 1 
(the maximizer) wants to maximize the expected payoff while Player 2 (the minimizer) 
has the exact opposite preference. Formally, a payoff function for the arena A is a 
bounded and Borel-measurable function

which associates with each infinite play h a payoff f (h).

Definition 2.2  (Stochastic game with perfect information) A stochastic game with 
perfect information is a pair

(
S, S1, S2, A, (A(s))s∈S, p

)

f ∶ (SA)� → ℝ

(A, f )
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where A is an arena and f  a payoff function for the arena A.

2.2 � Strategies

A strategy in an arena A for Player 1 is a function

such that for any finite play s0a1 ⋯ sn , and every action a ∈ A , if 𝜎(s0a1 ⋯ sn)(a) > 0 
then the action a belongs to A(sn) , i.e. the played action is available. Strategies for 
Player  2 are defined similarly and are typically denoted � . General strategies can 
have infinite memory as well as randomise among the available actions at every 
step. We are interested in a very simple sub-class of strategies, namely those that do 
not use any memory, or randomisation.

Definition 2.3  (Deterministic and stationary strategies) A strategy � for Player 1 is 
deterministic if for every finite play h ∈ (SA)∗S1 and action a ∈ A,

A strategy � is stationary if �(h) only depends on the last state of h. In other words � 
is stationary if for every state t ∈ S1 and for every finite play h = s0a1 ⋯ akt,

Given an initial state s ∈ S and strategies � and � for players 1 and 2 respectively, 
the set of infinite plays that start at state s is naturally equipped with a sigma-field and 
a probability measure denoted ℙ�,�

s
 that are defined as follows. Given a finite play h and 

an action a, the set of infinite plays h(AS)� and ha(SA)� are cylinders that we abu-
sively denote h and ha. The sigma-field is the one generated by cylinders and ℙ�,�

s
 is the 

unique probability measure on the set of infinite plays that start at s such that for every 
finite play h that ends in state t, for every action a ∈ A and state r ∈ S,

For n ∈ ℕ , we denote Sn and An the random variables defined by

� ∶ (SA)∗S1 → Δ(A)

𝜎(h)(a) > 0 ⇔ 𝜎(h)(a) = 1.

�(h) = �(t).

(1)ℙ
�,�
s
(ha ∣ h) =

{
�(h)(a) if t ∈ S1,

�(h)(a) if t ∈ S2,

(2)ℙ
�,�
s
(har ∣ ha) = p(t, a, r).

Sn(s0a1s1 ⋯)
���

= sn,

An(s0a1s1 ⋯)
���

= an.
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2.3 � Values and optimal strategies

Let G be a game with a bounded measurable payoff function f  . The expected payoff 
associated with an initial state s and two strategies � and � is the expected value of 
f  under ℙ�,�

s
 , denoted ��,�

s

[
f
]
 . The maxmin and minmax values of a state s ∈ S in the 

game G are:

By definition of maxmin and minmax , for every state s ∈ S , 
maxmin (G)(s) ≤ minmax (G)(s) . As a corollary of the Martin’s determinacy theo-
rem for Blackwell games (Martin 1998, Section 1), the converse inequality holds as 
well:

Theorem  2.4  (Martin’s second determinacy theorem, (Martin 1998,  Section  1)) 
Let G be a game with a Borel-measurable and bounded payoff function f  . Then for 
every state s ∈ S:

This common value is called the value of state s in the game G and denoted val (G)(s)

.

The existence of a value guarantees the existence of �-optimal strategies for both 
players and every 𝜖 > 0.

Definition 2.5  (Optimal and �-optimal strategies) Let G be a game, 𝜖 > 0 and � a 
strategy for Player 1. Then � is �-optimal if for every strategy � and every state s ∈ S

,

The definition for Player  2 is symmetric. A 0-optimal strategy is simply called 
optimal.

A stronger class of �-optimal strategies are �-subgame-perfect strategies, which 
are strategies that are not only �-optimal from the initial state s but stay �-optimal 
throughout the game. More precisely, given a finite play h = s0 ⋯ sn and a function g 
whose domain is the set of (in)finite plays, by g[h] we denote the function g shifted 
by h:

maxmin (G)(s)
���

= sup
�

inf
�

�
�,�
s

[
f
]
,

minmax (G)(s)
���

= inf
�

sup
�

�
�,�
s

[
f
]
.

val (G)(s)
���

= maxmin (G)(s) = minmax (G)(s).

�
�,�
s

[
f
]
≥ minmax (G)(s) − �.

g[h](t0a1t1 ⋯)
���

=

{
g(ha1t1 ⋯) if sn = t0,

g(t0a1t1 ⋯) otherwise.
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Definition 2.6  (�-Subgame-perfect strategy) Let G be a game equipped with a pay-
off function f  . A strategy 𝜎̂ for Player 1 is said to be �-subgame-perfect if for every 
finite play h ∶= s0 ⋯ sn,

2.4 � Shift‑invariant and submixing

Without loss of generality we can assume that there is a finite set C (colours assigned 
to the states of the game) such that the payoff function f is a function

that is Borel-measurable and bounded. We define the two conditions with respect to 
such payoff functions.

Definition 2.7  (Shift-invariant) The payoff function f is shift-invariant if and only if 
for all finite prefixes p ∈ C

∗ and trajectories u ∈ C
�,

Note that shift-invariance is a stronger condition than saying: if one can get 
u� ∈ C

� from u ∈ C
� by replacing finitely many letters then f (u) = f (u�) . Some-

times in the literature this stronger condition is called “prefix-independent” or 
“tail-measurable”. Intuitively shift-invariant payoff functions are such that they 
only measure asymptotic properties, and do not talk about indices.

A factorisation of u ∈ C
� is a sequence u1, u2,… of non-empty finite words 

(i.e. elements of C+ ) such that

For u, v,w ∈ C
� , we say that w is a shuffle of u and v if there are respective factori-

sations u1, u2,… , and v1, v2,… such that

Definition 2.8  (Submixing) The payoff function f is submixing if and only if for all 
u, v,w ∈ C

� such that w is a shuffle of u and v we have

inf
𝜏

�
̂𝜎[h],𝜏

sn

[
f [h]

]
≥ sup

𝜎

inf
𝜏

�
𝜎,𝜏
sn

[
f [h]

]
− 𝜖.

f ∶ C
�

→ ℝ,

f (p u) = f (u).

u = u1u2u3 ⋯ .

w = u1 v1 u2 v2 ⋯ .

f (w) ≤ max{f (u), f (v)}.
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The submixing condition says that one cannot shuffle two losing trajectories 
to make a winning one. This requirement simplifies the kind of strategies that 
the players need.

The submixing condition is not symmetric over the players, and it implies dif-
ferent results for different players (notice the difference between Theorems 1.1 
and 1.2). We define the inverse-submixing condition which is its reflection about 
the players:

Definition 2.9  (Inverse-submixing) The payoff function f is inverse-submixing if and 
only if for all u, v,w ∈ C

� such that w is a shuffle of u and v we have

There are payoff functions that are both submixing and inverse-submixing 
(e.g. the parity function); for such payoffs Theorem 1.1 implies simple optimal 
strategies for both players, i.e. positionality.

3 � Applications and examples

In this section we give a variety of examples of payoff functions that are shift-
invariant and submixing, some of them very well-known, others less so. Thus we 
unify a number of classical positional determinacy results and also sketch how 
straightforward it is to apply Theorem 1.1 to novel payoff functions. Furthermore, 
we comment on the hypothesis of Theorem  1.1: Are the conditions necessary? 
What do they imply about the optimal strategies of the minimizer? Under what 
operations is this class of payoff functions closed? We start by listing a few well-
known examples.

3.1 � Unification of classical results

The mean-payoff function has been introduced by Gilette (1957). It measures aver-
age performances. Each state s ∈ S is labeled with an immediate reward r(s) ∈ ℝ . 
With an infinite play s0a1s1 ⋯ is associated an infinite sequence of rewards 
r0 = r(s0), r1 = r(s1),… and the payoff is:

The discounted payoff has been introduced by Shapley (1953). It measures long-
term performances with an inflation rate: immediate rewards are discounted. 
Each state s is labeled not only with an immediate reward r(s) ∈ ℝ but also with 
a discount factor 0 ≤ 𝜆(s) < 1 . With an infinite play h labeled with the sequence 
(r0, �0)(r1, �1)⋯ ∈ (ℝ × [0, 1))� of daily payoffs and discount factors is associated 
the payoff:

f (w) ≥ min{f (u), f (v)}.

fmean(r0r1 ⋯)
���

= lim sup
n

1

n + 1

n∑

i=0

ri.
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The parity condition is used in automata theory and logics (Grädel et al. 2002). Each 
state s is labeled with some color c(s) ∈ {0,… , d} . The payoff is 1 if the highest 
color seen infinitely often is even, and 0 otherwise. For c0c1 ⋯ ∈ {0,… , d}�,

The limsup payoff function has been used in the theory of gambling games (Maitra 
and Sudderth 1996). States are labeled with immediate rewards and the payoff is the 
limit supremum of the rewards:

The liminf payoff function can be defined similarly.
The two following propositions follow easily from Theorem 1.1.

Proposition 3.1  The payoff functions flsup , flinf , fpar and fmean are shift-invariant and 
submixing. Moreover flsup , flinf , and fpar are inverse-submixing as well.

Proposition 3.2  In every two-player stochastic game equipped with the parity, lim-
sup, liminf, mean or discounted payoff function, Player 1 has a deterministic and 
stationary strategy which is optimal. The same is true for Player 2 for the parity, 
limsup and liminf payoff.

One comment should be made about the discounted payoff function: while it is not 
shift-invariant, it is possible to reduce games equipped with this function to games with 
the mean-payoff function, by interpreting discount factors as stopping probabilities as 
was done in the seminal paper of Shapley (1953).

Thus we have unified a number of classical results, thereby giving a common rea-
son for the half-positionality of seemingly unrelated games. The approaches that can 
be found in the literature for proving that these games are (half-)positional are diverse, 
as one can see, for example, by consulting the papers (Courcoubetis and Yannakakis 
1990) and Maitra and Sudderth (1996) that show positionality for parity games and 
limsup games, respectively. The existence of deterministic and stationary optimal strat-
egies in mean-payoff games has a colourful history attached. The first proof was given 
by Gilette (1957) based on a variant of Hardy and Littlewood theorem. Later on, Ligget 
and Lippman found the variant to be wrong and proposed an alternative proof based 
on the existence of Blackwell optimal strategies plus a uniform boundedness result of 
Brown (Liggett and Lippman 1969). For one-player games, Bierth (1987) gave a proof 
using martingales and elementary linear algebra while (Vrieze et al. 1983) provided a 
proof based on linear programming and a modern proof can be found in Neyman and 
Sorin (2003) based on a reduction to discounted games and the use of analytical tools. 

fdisc
(
(r0, �0)(r1, �1)⋯

) ���

= r0 + �0r1 + �0�1r2 +⋯ .

fpar(c0c1 ⋯)
���

=

{
0 if lim supn cn is even,

1 otherwise.

flsup(r0r1 ⋯)
���

= lim sup
n

rn.
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For two-player games, a proof based on a transfer theorem from one-player to two-
player games can be found in Gimbert (2006); Gimbert and Zielonka (2009, 2016).

3.2 � Other examples

We mention a few more recent examples of games.
One-counter stochastic games have been introduced in Brázdil et al. (2010), in these 

games each state s ∈ S is labeled by a relative integer c(s) ∈ ℤ . Three different winning 
conditions were defined and studied in Brázdil et al. (2010):

The winning conditions given by (3) and (4) are clearly shift-invariant, it is further-
more plain that they are also submixing. The positive average condition defined 
by  (5) is a variant of mean-payoff payoff, which may be more suitable to model 
quality of service constraints or decision makers with a loss aversion. One can nat-
urally define a payoff function fposavg , that outputs 1 if the condition holds, and 0 
otherwise.

Although fposavg seems similar to the fmean function, maximizing the expected 
value of fposavg and doing the same for fmean , are two different goals. For example, a 
positive average maximizer prefers seeing the sequence 1, 1, 1,… for sure rather than 
seeing with equal probability 1

2
 the sequences 0, 0, 0,… or 3, 3, 3,… while a mean-

value maximizer prefers the second situation to the first one. To the best knowl-
edge of the authors, the classical techniques developed in Bierth (1987); Neyman 
and Sorin (2003); Vrieze et al. (1983) cannot be used to prove positionality of games 
equipped with the positive average condition. However, since fposavg can be defined 
as the composition of the submixing function fmean with an increasing function, it is 
submixing itself. As a consequence of the main theorem of the present paper, it then 
follows that games that are equipped with fposavg are half-positional.

Further relatively recent examples can be derived as variants of generalized mean 
payoff games, that were introduced in Chatterjee et al. (2010). Let us explain them in 
turn. In mean-payoff co-Büchi games, the states are labeled by immediate rewards, 
and a distinguished subset of the states are called the Büchi states. The payoff of 
Player 1 is −∞ if Büchi states are visited infinitely often and the mean-payoff value 
of the rewards otherwise. One can easily check that such a payoff mapping is shift-
invariant and submixing. Although we do not explicitly handle payoff mappings that 
take infinite values, it is possible to approximate the payoff function by replacing 
−∞ by arbitrary small values to prove half-positionality of mean-payoff co-Büchi 
games.

(3)lim sup
n

∑

0≤i≤n

ci = +∞

(4)lim sup
n

∑

0≤i≤n

ci = −∞

(5)fmean(c0c1 …) > 0
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Another variant is that of optimistic generalized mean-payoff games. In these 
games, each state is labeled by a fixed number of immediate rewards 

(
r(1),… , r(k)

)
 , 

which define as many mean payoff conditions 
(
f 1
mean

,… , f k
mean

)
 . The winning condi-

tion is:

It is an exercise to show that this winning condition is submixing. More generally, if 
f1,… , fn are submixing payoff mappings then max{f1,… , fn} is submixing as well. 
As a consequence of this observation and Theorem 1.1, games with the optimistic 
generalized mean-payoff condition are half-positional. Such games are not positional 
however. One can show that the minimizer requires (finite) memory. Intuitively, he 
needs to use the memory to remember which dimensions have to be decreased, in 
order to render the condition false.

The generalized mean-payoff games of Chatterjee et al. (2010), (where the win-
ning condition is as in (6), but with a universal instead of a existential quantifier), 
however are not submixing.

One final but interesting example of a payoff function that is shift-invariant, sub-
mixing, and even inverse-submixing (hence positional for both players in two-play-
ers games) is the positive frequency payoff. Every state is labeled by a color from a 
finite set C, each of which has a payoff u(c). An infinite play generates an infinite 
word of colors:

For a color c and n ∈ ℕ define #(c, c0c1 ⋯ cn) to be the number of occurrences of the 
color c in the prefix c0c1 ⋯ cn . The frequency of the color c in w is defined as:

and the payoff

Other examples can be found in Gimbert (2007); Kopczynski (2009); Gimbert 
(2006), and in the papers cited in the introduction.

3.3 � The class of shift‑invariant and submixing functions

In this section we have already used two operators under which the class of shift-
invariant and submixing functions is closed:

•	 If f1,… , fk are shift-invariant and submixing then so is 

(6)∃i 1 ≤ i ≤ k and f i
mean

(
r
(i)

0
r
(i)

1
…
)
> 0.

w
���

= c0c1c2 ⋯ ,

freq(c,w)
𝖽𝖾𝖿

= lim sup
n→∞

#(c, c0c1 ⋯ cn)

n
,

ffreq(w)
���

= max{u(c) ∶ c ∈ C, freq(c,w) > 0}.
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•	 If f is shift-invariant and submixing, and g is an increasing function then 

 is shift-invariant and submixing.
The proofs are routine.

The class of shift-invariant and submixing functions does not seem to have any 
non-trivial closure property. For example, even though this class is closed under 
max above, it is not closed under addition. That is if f1 and f2 are submixing, then 
f (w) ∶= f1(w) + f2(w) need not be. To see this, consider the example with colors a 
and b, and f1 such that it maps to 1 if a occurs infinitely often, and 0 otherwise, and 
f2 defined symmetrically.

Furthermore, neither condition is necessary in Theorem 1.1: discounted games 
are positional but not shift-invariant, and fmean with lim inf instead of lim sup is 
positional but not submixing. However, as we have seen, this class contains many 
interesting payoff functions, and it is the salient property that allows one to prove 
the existence of positional optimal strategies. Perhaps even more importantly, it 
is typically trivial to check whether a given payoff function is shift-invariant and 
submixing.

4 � �‑Subgame‑perfect strategies

The proof of Theorem  1.1 hinges on a crucial property of games with perfect 
information, namely the fact that they admit �-subgame-perfect strategies, for all 
𝜖 > 0.

Theorem 4.1  Games equipped with a payoff function that is shift-invariant, bounded 
and Borel-measurable, admit �-subgame-perfect strategies, for every 𝜖 > 0.

In this section we sketch the proof of this theorem, by giving a construction 
that takes some �-optimal strategy � and turns it into a 2�-subgame-perfect strat-
egy 𝜎̂ . A full proof can be found in Mashiah-Yaakovi’s paper (Mashiah-Yaakovi 
2015,  Proposition 11) in a more general setting, in the preprint version of the 
current paper (Gimbert and Kelmendi 2014, Section 3), as well as in Flesch et al. 
(2021).

The theorem is completely symmetric about the players, so it is sufficient to 
show that, say, the maximizer has �-subgame-perfect strategies.

An �-optimal strategy � is a strategy that ensures (within � ) the largest payoff 
that it can be ensured from the starting position of the game. As the game pro-
gresses, if the adversary makes a non-optimal move at some point, that allows 

f (w)
���

= max{f1(w),… , fk(w)}.

g◦f
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one to gain more, an �-optimal strategy does not necessarily take advantage of 
this slip up. The �-subgame-perfect strategies are that subset of strategies that do 
take advantage of any such non-optimal action of the adversary. How does one 
turn an �-optimal strategy to an �-subgame-perfect strategy? One simple observa-
tion suffices: if after the non-optimal action is played, � simply forgets the past, 
i.e. resets its memory, then the payoff will be larger. We explain why the strat-
egy that always resets the memory when the adversary has played a non-optimal 
action is 2�-subgame-perfect. First, let us make this construction precise.

A strategy � is not 2�-subgame-perfect if and only if there exists some finite 
play h ∶= s0 ⋯ sn such that

the reset strategy simply resets its memory when this happens. We give the formal 
definitions.

Definition 4.2  The finite play h ∶= s0 ⋯ sn is called a (�, �)-drop if (7) holds. We 
write

It is plain that one can factorise any infinite play that has infinitely many drops, 
into h1h2 ⋯ where each hi is a (�, �)-drop, but no strict prefix of hi is (�, �)-drop. 
For example:

Definition 4.3  We define the date of the most recent (or latest) drop for all s0 ⋯ sn 
inductively as:

where

The date of the most recent drop in the example above looks as follows:

(7)inf
𝜏

�
𝜎[h],𝜏
sn

[
f [h]

]
< sup

𝜎
�

inf
𝜏

�
𝜎
�,𝜏

sn

[
f [h]

]
− 2𝜖;

Δ(�, �)(h) ⇔ h is a(�, �) − drop.

Λ(�, �)(s0)
���

= 0

Λ(�, �)(s0 ⋯ sn)
���

=

{
n if h is a (�, �)-drop

Λ(�, �)(s0 ⋯ sn−1) otherwise,

h
���

= s
𝓁
⋯ sn, and 𝓁

���

= Λ(�, �)(s0 ⋯ sn−1).
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The reset strategy resets its memory whenever a drop occurs, i.e. it keeps the 
memory since the most recent drop:

Definition 4.4  (Reset Strategy) For any strategy � we define the reset strategy 𝜎̂ as:

where

The crux of the proof of Theorem 4.1 is to show that under the strategy 𝜎̂ only 
finitely many resets occur, almost surely. Intuitively, this is because after every (�, �)
-drop, by resetting the memory, the maximizer gains at least some amount � that 
is bounded away from zero. But it is not possible to gain infinitely many times � 
because the payoff function is assumed to be bounded.

One way of formally proving this observation is to use martingale theory. We 
start with a strategy � that is �-optimal. Then one shows that only finitely many 
drops occur almost surely with the strategy 𝜎̂ , and that furthermore the strategy 𝜎̂ 
is itself �-optimal. For the former, Doob’s optional stopping theorem, and forward 
convergence theorem (Williams 1991, Theorem 11.5) are useful. Finally one proves 
that, by construction, if 𝜎̂ is �-optimal, then it is also 2�-subgame-perfect.

There is a technical detail which deserves some comments: to guarantee that 𝜎̂ 
is 2�-subgame-perfect, we need the game to be value-preserving, in the following 
sense.

Definition 4.5  (Value-preserving Game) Let f be a shift-invariant payoff function. A 
game equipped with f is value-preserving for Player 1 if for every state s and every 
action a available in s,

The game is value-preserving for Player  2 if the converse inequality holds from 
every state of the game.

𝜎̂(s0 ⋯ sn) = 𝜎(s
𝓁
⋯ sn),

𝓁
���

= Λ(�, �)(s0 ⋯ sn).

(8)

(
∑

t∈S

p(s, a, t) val (G)(t)

)
≥ val (G)(s).



1195

1 3

Submixing and shift‑invariant stochastic games﻿	

Since f is shift-invariant, inequality  (8) holds when s is controlled by Player  2 
(otherwise Player 2 could guarantee the expected payoff from s to be strictly smaller 
than the value of s). Any game equipped with f can be turned into a value-preserving 
game by deleting the actions available in Player 1 states in case they violate (8). This 
does not change the value of the state of the game, and moreover the �-subgame 
perfect strategies of the new game are also �-subgame perfect in the original game.

The �-optimal strategies that we use, to turn into 2�-subgame-perfect strategies 
𝜎̂ , are guaranteed to exist by Martin’s theorem, Theorem 2.4. However, if in some 
game, one of the players, happens to have an optimal strategy (i.e. a 0-optimal strat-
egy), then via the construction above one can prove the existence of a subgame-
perfect strategy (i.e. a 0-subgame-perfect strategy).

Remark 4.6  In value-preserving games, if � is �-optimal, then the reset strategy 𝜎̂ is 
2�-subgame-perfect. Moreover, if � is optimal, then 𝜎̂ is subgame-perfect.

Another property that is preserved by passing from � to 𝜎̂ is that of finite mem-
ory, that is if the strategy � has finite memory to begin with, so will the strategy 𝜎̂ . 
First we define precisely what we mean by finite memory strategy.

A strategy � is said to have finite memory if it is given using a transducer, namely 
it is a tuple:

The map init and up are used to initialise the memory and update it, as the game 
unfolds: after the finite play s0a0 ⋯ sn has unfolded, the transducer reaches the mem-
ory state mn ∈ M which is defined inductively as:

The output function is used to choose the action that the strategy plays, i.e.

Proposition 4.7  If � is a finite memory strategy, so is 𝜎̂.

Proof  The reset strategy is constructed with respect to � and some 𝜖 > 0 , since it 
depends on (�, �)-drops to reset the memory. We prove the proposition for any � such 
that � is �-optimal.

Let � be a finite memory strategy, that is given by the tuple

M
⏟⏟⏟

a finite set

, init ∶ S → M
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

memory initialiser

, up ∶ M × A × S → M
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

update function

, out ∶ M → Δ(A)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

output function

.

m0

���

= init (s0), and

mk+1

���

= up (mk, ak+1, sk+1).

�(s0 ⋯ sn) = out (mn).

(M, init , up , out ),
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and let � be such that � is �-optimal, which fixes a reset strategy 𝜎̂.
Without loss of generality we can assume that the strategy is such that its mem-

ory state identifies the current state in the game, in other words assume that M can 
be partitioned into:

such that for any finite play s0 ⋯ sn , if m1,… ,mn is the sequence of memory states 
of the transducer of � during this play, then

We gather the subset of memory states where drops occur as follows. For s ∈ S and 
m ∈ Ms , denote by �m the strategy that is the same as � except that the initial mem-
ory state for s is m instead of init (s) . Define the subset of memory states where 
drops occur D ⊂ M as

Construct the finite memory strategy �′ that avoids the memory states in D as fol-
lows. For any s ∈ S and m ∈ Ms ∩D , since � is �-optimal, m ≠ init (s) . In the strat-
egy �′ modify the function up in such a way that all the transitions that lead to m are 
redirected to the state init (s) instead (the memory is reset). Do this simultaneously 
for any pair (s, m) as above. Comparing the definition of 𝜎̂ and �′ we conclude that 
they coincide. 	�  ◻

This proposition, together with the salient property of the reset strategy, namely 
that it is �-subgame-perfect, implies that if there are �-optimal strategies with finite 
memory, then there are also �-subgame-perfect strategies with finite memory. We 
make this statement more precise.

Proposition 4.8  Let G be a game and 𝜖 > 0 . Assume that the game is value-preserv-
ing for Player 1 and that Player 1 has an �-optimal strategy � with finite memory. 
Then Player 1 also has a 2�-subgame-perfect strategy with finite memory, namely 
the reset strategy 𝜎̂ . The same statement holds even if � = 0 , i.e. for optimal strate-
gies. The symmetric statements hold for Player 2.

Proof  From the discussion of this section the strategy 𝜎̂ is 2�-subgame-perfect, 
and Proposition 4.7 implies that it has finite memory. The case � = 0 follows from 
Remark 4.6. 	�  ◻

5 � Half‑positional games

We prove the main theorem:

M =
⨄

s∈S

Ms,

mn ∈ Msn
.

D
���

={m ∈ Ms ∶ s ∈ S and �mis not 2� − optimal from state s}.
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Theorem 1.1  Games equipped with a payoff function that is shift-invariant and sub-
mixing are half-positional.

Neither of the conditions in the statement is necessary, as we saw from the exam-
ples given in Sect. 3. Necessary and sufficient conditions for positionality are known 
for deterministic games (Gimbert and Zielonka 2005). However the shift-invariant 
and submixing conditions are general enough to recover several known classical 
results, and to provide several new examples of games with deterministic stationary 
optimal strategies. Before we proceed with the proof we remark:

Corollary 5.1  Games with payoff functions which are at the same time shift-invari-
ant, submixing and inverse-submixing are positional.

Proof  A symmetric proof to that of Theorem 1.1, the subject of this section, can be 
used to prove a statement like that of Theorem 1.1, where Player 1 is replaced by 
Player 2 and submixing is replaced by inverse-submixing. 	�  ◻

Consider a game G fulfilling the conditions of the theorem. The proof proceeds 
by induction on the actions of the maximizer, that is on the quantity

It proceeds by removing more and more actions of the maximizer and showing that 
at every step the value has not decreased, until we are left with a single choice from 
every state that belongs to the maximizer. The unique choice will then be the posi-
tional optimal strategy.

If N(G) = 0 there is no choice for the maximizer, hence he has a deterministic 
and stationary optimal strategy. If N(G) > 0 there must be a state s̃ ∈ S such that 
Player 1 has at least two actions in s̃ , i.e. A(s̃) has at least two elements. We split the 
game G in two strictly smaller subgames G1 and G2.

Definition 5.2  (Split of a game) Let G be a game with N(G) > 0 and s̃ ∈ S a state of 
G controlled by Player 1 in which there are at least two actions available, i.e. A(s̃) 
has at least two elements. Partition A(s̃) into two non-empty sets: A1 and A2 . Let G1 
and G2 be the games obtained from G by restricting the actions in the state s̃ to A1 
and A2 respectively. Then (G1,G2) is called a split of G on s̃.

The induction step relies on the two results stated in the next theorem. The first 
result says that the value of s̃ in the original game cannot be larger than that of the 
restricted games. The second result shows that Player 1 can play optimally in G 
by selecting one of the subgames and play optimally in it.

Theorem 5.3  Let G be a game equipped with a payoff function that is shift-invariant 
and submixing. Let (G1,G2) a split of G on s̃ . Then

N(G)
���

=
∑

s∈S1

(|A(s)| − 1).
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Assume moreover that val (G1)(s̃) ≥ val (G2)(s̃) . Then, for every s ∈ S,

Theorem 1.1 is a simple corollary of Theorem 5.3.

Proof of Theorem  1.1  The proof is by induction on N(G). If N(G) = 0 there is no 
choice for the maximizer, hence he has a deterministic and stationary optimal strat-
egy. If N(G) > 0 then we choose a split (G1,G2) of G on a pivot state s̃ . By sym-
metry, we can choose a split such that val (G1)(s̃) ≥ val (G2)(s̃) . Then, according to 
(10) in Theorem 5.3, a strategy for Player 1 which is optimal in G1 is also optimal in 
G . By induction hypothesis, there exists a positional optimal strategy in G1 , thus G 
is half-positional. 	�  ◻

The rest of the section is dedicated to the proof of Theorem 5.3. We fix a game 
G and a split (G1,G2) of G on the state s̃ . The inequality

is clear, since Player 1 has more choice in G than he has in G1 and G2 . We witness 
the converse inequality with a strategy for Player 2, called the merge strategy, which 
merges two �-subgame-perfect strategies in the respective smaller games. This is 
done in Sect. 5.3. The definition of the merge strategy hinges on the projection of 
plays in the main game G to plays in the restricted games G1 and G2 , which is done 
in Sect. 5.1. Then we analyse the two possible outcomes: (a) after some date the play 
remains only in game G1 (or only in game G2 ), (b) the play switches infinitely often 
between the two smaller games. This analysis is performed in Sects. 5.4 and  5.5. 
For the latter case (b) we use the submixing property to show that Player 1 cannot 
get a better payoff by switching between the two smaller games that he could get by 
staying in one of the subgames.

5.1 � Projecting a play in G to a couple of plays in the subgames

There is a natural way to project a play h of the game G starting in s̃ to a couple 
of plays h1 and h2 in the restricted games G1 and G2 respectively, starting from s̃ 
as well. The two projections are computed simultaneously and inductively. Initially, 
h = s̃ and both projections h1 and h2 are also equal to s̃ . Each step of the play in G is 
appended to either h1 or h2 , depending on the action a played the last time the state 
s̃ was visited: if a belongs to A1 then the new step is appended to h1 , otherwise it is 
appended to h2.

Before giving the formal definition of �1 and �2 below, we provide an exam-
ple. Consider the game G with a single state s controlled by Player  1 (s is the 
pivot state s̃ ) and the set of actions A = {a1, a2} partitioned into A1 = {a1} 
and A2 = {a2} . Then �1 simply erases the loops on the action a2 : �1(s) = s , 
�1(sa2s) = s , �1(sa2sa1s) = sa1s and for every finite sequence of integers k0,… , km , 

(9)val (G)(s̃) = max{ val (G1)(s̃), val (G2)(s̃)}.

(10)val (G)(s) = val (G1)(s).

val (G)(s̃) ≥ max{ val (G1)(s̃), val (G2)(s̃)}
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�1(s(a2s)
k0a1s(a2s)

k1 … a1s(a2s)
km) = s(a1s)

m . Symmetrically, �2 erases the loops on 
the action a2.

Formally, we define two maps �1 , �2 from finite plays in G starting from s̃ to finite 
plays in G1 and G2 respectively, starting from s̃ as well. Let h = s0a0s1 … sn be a 
finite play in G starting in s̃ and has a continuation of h in G , with one more transi-
tion (sn, a, s) . Let last (has) be the action played in has after the last visit to s̃ i.e.

Then

And �2 is defined symmetrically with respect to A1 and A2.
This definition can be extended to infinite plays in a natural way. Let h = s0a0s1 … 

be an infinite play in G starting in s̃ . Then �1(h) is the limit of the sequence

The projection �1(h) can be either finite or infinite, depending whether the play ulti-
mately stays in G2 or not. If after some time the last action chosen in s̃ is always 
in A2 , all subsequent moves in G are appended to the projection in G2 , while the 
projection to G1 never gets updated and stays finite. In the single-state example pro-
vided above before the formal definition, �1(sa1sa2sa1sa2 …) is the single possible 
infinite play sa1sa1 … in the subgame G1 while �1(sa1sa2sa2sa2 …) is the finite play 
sa1s in G1.

5.2 � Linking the payoff in G to the payoffs in the subgames

The payoff in G can be related to the payoffs in the subgames G1 and G2 . For that 
we introduce the following events in the game G (an event is a measurable subset 
of infinite plays ). Recall that Sn and An are the random variables which output 
respectively the nth state sn and action an when the play is s0a0s1a1 ⋯.

If Stay ≥n(G2) holds, we say that the play stays in G2 after step n whereas if 
Stay

�
(G2) holds, we say that the play ultimately stays in  G2.

Those two events can be described equivalently as a non-update of the projec-
tion to G1 after some point. For that, we make use of the random variables:

last (has) = amax{j∈0…n ∣ sj=s̃}
=

{
a if sn = s̃

last (h) otherwise.

�1(has) =

{
�1(h)as if last (has) ∈ A1

�1(h) if last (has) ∈ A2.

(
�1(s0a0s1 … sn)

)
n∈ℕ

.

Stay ≥n(G2)
���

={∀m ≥ n, last (S0A0 … SmAmSm+1) ∈ A2}

Stay
�
(G2)

���

=
⋃

n∈ℕ

Stay ≥n(G2).



1200	 H. Gimbert, E. Kelmendi 

1 3

We see that Π is simply the identity map outputting the play in G while Πi is essen-
tially equivalent to �i , it is a random variable that maps the infinite play in game G to 
its finite or infinite projection in game Gi . Then

The events Stay ≥n(G1) and Stay
�
(G1) are defined symmetrically. Define the event

The following lemma shows that the payoff in G is tightly related to the payoffs in 
the subgames G1 and G2.

Lemma 5.4  Let f be a shift-invariant and submixing payoff func-
tion. Every infinite play in G belongs to exactly one of the three events 
{Stay

�
(G1), Stay �

(G2), Switch } . Moreover,

Proof  Since both projections in G1 and G2 cannot be finite at the same time then 
(Stay

�
(G1), Stay �

(G2), Switch ) is a partition of the infinite plays in G . If Π1 is 
finite then Π and Π2 share an infinite suffix and the shift-invariance of f implies (11). 
The case where Π2 is finite is symmetric, hence  (12). If both Π1 and Π2 are infi-
nite then the sequence of actions ( last (S0 … SnAnSn+1))n∈ℕ switches infinitely often 
between A1 and A2 thus s̃ is visited infinitely often. Moreover, in this case Π is a 
shuffle of Π1 and Π2 and since f is submixing, (13) follows. 	�  ◻

5.3 � The merge strategy

In light of Lemma 5.4, it is intuitively clear that to play well in G , Player 2 has to 
play well in both subgames G1 and G2 . Fix 𝜖 > 0 . The merge strategy for Player 2 is 
the composition of two strategies �♯1 and 𝜏♯

2
 for Player 2 in the subgames G1 and G2 

respectively. We require 𝜏♯
1
 and 𝜏♯

2
 to be �-subgame-perfect in the corresponding sub-

games; their existence is guaranteed by Theorem 4.1.

Definition 5.5  The merge strategy 𝜏♯ is a strategy in G for Player 2 which ensures 
that Π1 is consistent with 𝜏♯

1
 and Π2 is consistent with 𝜏♯

2
 when the play starts from s̃ . 

Let h be a finite play in G from s̃ and ending in a state controlled by Player 2, then

Π
���

= S0A0S1 ⋯ Π1

���

= �1(S0A0S1 ⋯), Π2

���

= �2(S0A0S1 ⋯).

Stay ≥n(G2) = {Π1 = �1(S0A1 ⋯ Sn)}

Stay
�
(G2) = {Π1 is finite}.

Switch
���

=
(
¬ Stay

�
(G1) ∧ ¬ Stay

�
(G2)

)
= { both Π1 and Π2 are infinite }.

(11)if Stay
�
(G1) holds then f (Π) = f (Π1).

(12)If Stay
�
(G2) holds then f (Π) = f (Π2).

(13)If Switch holds then f (Π) ≤ max( f (Π1) , f (Π2) ).
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The merge strategy is well-defined because in case last (h) ∈ Ai , with i ∈ {1, 2} , 
then both h and �i(h) end with the same state, controlled by Player 2.

In the next two sections, we show that the merge strategy guarantees to Player 
2 some upper-bounds on the expected payoffs, which reflect the bounds given in 
Lemma 5.4 for payoffs of individual plays.

5.4 � On plays consistent with the merge strategy and ultimately staying in G
2

In this section, we show that in case the play ultimately stays in G2 , then the 
expected payoff is upper-bounded by val (G2)(s̃) + 𝜖.

For simplicity, we require � to be small enough so that �2 does not select any 
value-increasing action, in the following sense.

Lemma 5.6  In G2 , fix a state s controlled by Player 2 and an action a available in 
that state. Denote

Then �(s, a) ≥ 0.

In case 𝛿(s, a) > 0 then a is said to be value-increasing in s. In that case, if more-
over � is strictly smaller that �(s, a) , then 𝜏♯

2
 never selects the action a in a play end-

ing in state s.

Proof  Since the payoff function is shift-invariant, and s is controlled by Player 2, 
then �(s, a) ≥ 0 , because after Player 2 chooses a in s, he can proceed with an �′
-optimal strategy from the states t such that p(s, a, t) > 0 , for an arbitrary 𝜖′ > 0 . 
Assume � strictly smaller that �(s, a) . Then 𝜏♯

2
 never selects a in state s, otherwise 

this would contradict the �-subgame perfection of �2 : Player 1 could proceed with 
some (�(s, a) − �)∕2-optimal strategy in G2 and get an expected payoff strictly 
greater than val (G2)(s) + � . 	�  ◻

Lemma 5.7  Assume that f is shift-invariant and � is small enough to guarantee that 
𝜏
♯

2
 never selects any value-increasing action. Let � be a strategy for Player 1 in G 

such that ℙ𝜎,𝜏♯

s̃

(
Stay

𝜔
(G2)

)
> 0 . Then

𝜏
♯(h) =

{
𝜏
♯

1
(𝜋1(h)) if last (h) ∈ A1,

𝜏
♯

2
(𝜋2(h)) if last (h) ∈ A2.

�(s, a) =

(
∑

t∈S

p(s, a, t) val (G2)(t)

)
− val (G2)(s).

(14)�
𝜎,𝜏♯

s̃

[
f ∣ Stay

𝜔
(G2)

]
≤ val (G2)(s̃) + 𝜖.
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Proof  The first ingredient of the proof is the sequence of random variables (Vn)n∈ℕ , 
where Vn denotes the value in G2 of the last state of �2(S0A1 ⋯ Sn) . Since the play 
starts in state s̃,

The value of Vn does not change unless the projection of the play to G2 via �2 does. 
Since Π2 is consistent with 𝜏♯

2
 and since 𝜏♯

2
 never selects any value-increasing action,

The second ingredient in the proof is a stopping time T, defined as follows. For 
every finite play h = s0a0 … sn in G starting in s̃ and consistent with � and 𝜏♯ , denote

in other words, �(h) is the probability that, after the prefix h, the play stays forever 
in G2 i.e. �1 is never updated anymore and stays equal to �1(h) . Fix some 𝜖′ > 0 and 
denote by T the stopping time

with the usual convention min(�) = ∞.
We use the event {T < ∞} as an approximation of the event Stay

�
(G2) by proving

The inequality (15) holds because by definition of � , for every n ∈ ℕ,

We show (16). Fix 𝜖′′ > 0 . By definition of Stay
�
(G2) , there exists n1 ∈ ℕ such that

According to Lévy’s 0-1 law (see e.g. (Williams 1991, Theorem 14.4)), the sequence 
of random variables 

(
𝔼
𝜎,𝜏♯

s̃

[
Stay ≥n1

(G2) ∣ S0,… , Sn
])

n∈ℕ
 almost-surely converges 

to the indicator function 1Stay ≥n1
(G2)

 . Thus,

Since n2 ≥ n1 implies Stay ≥n2
(G2) ⊆ Stay ≥n1

(G2),

V0 = val (G2)(s̃).

(Vn)n∈ℕ is a super martingale.

𝜙(h) = ℙ
𝜎,𝜏♯

s̃

(
Stay ≥n(G2) ∣ h is a prefix of the play

)
,

T = min
{
n ∈ ℕ ∣ �(S0A0 … Sn) ≥ 1 − �

�
}
,

(15)ℙ
𝜎,𝜏♯

s̃

(
Stay

𝜔
(G2) ∣ T < ∞

)
≥ 1 − 𝜖

�

(16)ℙ
𝜎,𝜏♯

s̃

(
T < ∞ ∣ Stay

𝜔
(G2)

)
= 1.

ℙ
𝜎,𝜏♯

s̃

(
Stay ≥n(G2) ∣ T = n

)
≥ 1 − 𝜖

�.

(17)ℙ
𝜎,𝜏♯

s̃

(
Stay ≥n1

(G2) ∣ Stay 𝜔
(G2)

)
≥ 1 − 𝜖

��.

ℙ
𝜎,𝜏♯

s̃

(
∃n2 ≥ n1,𝔼

𝜎,𝜏♯

s̃

[
Stay ≥n1

(G2) ∣ S0,… , Sn2

]
≥ 1 − 𝜖

� | Stay ≥n1
(G2)

)
= 1.

ℙ
𝜎,𝜏♯

s̃

(
∃n2,𝜙(S0,… , Sn2 ) ≥ 1 − 𝜖

� ∣ Stay ≥n1
(G2)

)
= 1.
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Equivalently,

and with (17) we get

This holds for every 𝜖′′ > 0 , hence (16).
Since 𝜖′ > 0 can be chosen arbitrarily small, then according to (15) and (16), to 

show our goal (14), it is enough to establish:

This is well-defined, because  (16) ensures ℙ𝜎,𝜏♯

s̃
(T < ∞) ≥ ℙ

𝜎,𝜏♯

s̃

(
Stay

𝜔
(G2)

)
> 0 , 

and f is bounded.
Since (Vn)n∈ℕ is a bounded super martingale, we can deduce from Doob’s For-

ward Convergence Theorem (Williams 1991, Theorem 11.5) that (Vn)n∈ℕ converges 
almost-surely. We denote VT the random variable equal to (limn Vn) if T = ∞ and Vn 
if T = n.

We deduce (18) from the following three inequalities:

Assuming  (19) and  (20) do hold, then �𝜎,𝜏♯

s̃

[
VT ∣ T < ∞

]
≤ val (G2)(s̃) . Injecting 

this inequality in (21), we get (18), and the lemma is proved.
We prove the three inequalities  (19)–(21). To obtain inequality  (19) we apply 

Doob’s Optional Stopping Theorem (Theorem  10.10 in Williams (1991)) to the 
bounded super-martingale (Vn)n∈ℕ and the stopping time min(T , k) for an arbitrary 
(large) k ∈ ℕ . This implies ��,�♯

s̃
[

Vmin(T ,k)
]

≤ V0 . Then (19) follows by taking the limit 
of this inequality when k → ∞ and using the equality V0 = val (G2)(s̃).

To prove (20), we prove an even stronger statement:

If T = ∞ then, according to (16), the event Stay
�
(G2) does not hold. Thus, accord-

ing to Lemma  5.4, either Stay
�
(G1) or Switch holds. In the first case, Π2 is ulti-

mately constant equal to a play in G2 ending in s̃ and (Vn)n∈ℕ is ultimately constant 
equal to val (G2)(s̃) . In the second case, the play Π2 visits s̃ infinitely often. Since 
(Vn)n converges almost-surely to VT then VT = val (G2)(s̃).

ℙ
𝜎,𝜏♯

s̃

(
T < ∞ ∣ Stay ≥n1

(G2)
)
= 1.

ℙ
𝜎,𝜏♯

s̃

(
T < ∞ ∣ Stay

𝜔
(G2)

)
≥ 1 − 𝜖

��.

(18)�
𝜎,𝜏♯

s̃

[
f ∣ T < ∞

]
≤ val (G2)(s̃) + 𝜖 + 2𝜖� ⋅ ||f ||∞.

(19)�
𝜎,𝜏♯

s̃

[
VT

]
≤ val (G2)(s̃)

(20)�
𝜎,𝜏♯

s̃

[
VT ∣ T = ∞

]
= val (G2)(s̃)

(21)�
𝜎,𝜏♯

s̃

[
f ∣ T < ∞

]
≤ �

𝜎,𝜏♯

s̃

[
VT ∣ T < ∞

]
+ 𝜖 + 2𝜖� ⋅ ||f ||∞.

ℙ
𝜎,𝜏♯

s̃

(
VT = val (G2)(s̃) ∣ T = ∞

)
= 1.
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Finally, we prove (21). Denote hT the random variable defined when T is finite, 
which outputs the prefix of the play of length T, i.e.

and let h such that ℙ𝜎,𝜏♯

s̃

(
hT = h

)
> 0 . Denote t the last state of h. We modify the 

strategy �[h] in G to obtain a strategy �0 in G2 , in the following way. Every finite 
play h2 in G2 is also a finite play in G . In case the last state of h2 is the pivot state s̃ , 
then the lottery �[h](h2) selects an action which is either in A2 or A1 . In the first case 
we say that �[h] keeps playing in G2 while in the second case we say that �[h] exits 
G2 . The strategy �0 coincides with �[h] as long as it keeps playing in G2 . Whenever 
�[h] exits G2 then �0 plays arbitrarily in G2 , for the rest of the play. Then:

The first equality holds because ℙ𝜎,𝜏♯

s̃

(
hT = h

)
> 0 thus, by definition of T, no strict 

prefix h′ of h satisfies �(h�) ≥ 1 − � , hence h is a prefix of the play if and only if 
hT = h . The second equality holds by shift-invariance of f. To prove the first inequal-
ity, we denote X = Stay ≥0(G2) . Since �[h] and �0 coincide on X, and by definition 

of � , ℙ𝜎0,𝜏
♯[h]

t (X) = ℙ
𝜎[h],𝜏♯[h]
t (X) = 𝜙(h) ≥ 1 − 𝜖

� . As a consequence,

The third equality holds because �0 guarantees that the play stays in G2 (i.e. 
Stay ≥0(G2) ) and this implies that 𝜏♯[h] coincides with 𝜏♯

2
[𝜋2(h)] . The second ine-

quality is by �-subgame optimality of 𝜏♯
2
 in G2 . The last equality holds by definition 

of VT.
Since this holds for every possible value h of hT when T < ∞ , and there are at 

most countably many such values, the inequality (21) follows. 	� ◻

hT = S0A0 … ST ,

�
𝜎,𝜏♯

s̃

[
f ∣ hT = h

]
= �

𝜎,𝜏♯

s̃

[
f ∣ h is a prefix of the play

]

= �
𝜎[h],𝜏♯[h]
t

[
f
]

≤ �
𝜎0,𝜏

♯[h]
t

[
f
]
+ 2𝜖� ⋅ ||f ||∞

= �
𝜎0,𝜏

♯

2
[𝜋2(h)]

t

[
f
]
+ 2𝜖� ⋅ ||f ||∞

≤ val (G2)(t) + 𝜖 + 2𝜖� ⋅ ||f ||∞
= �

𝜎,𝜏♯

s̃

[
VT ∣ hT = h

]
+ 𝜖 + 2𝜖� ⋅ ||f ||∞.

�
𝜎[h],𝜏♯[h]
t

[
f
]
≤ �

𝜎[h],𝜏♯[h]
t

[
f1X

]
+ 𝜖

�||f ||∞
= �

𝜎0,𝜏
♯[h]

t

[
f1X

]
+ 𝜖

�||f ||∞
≤ �

𝜎0,𝜏
♯[h]

t

[
f
]
+ 2𝜖�||f ||∞.
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5.5 � On plays consistent with the merge strategy and switching infinitely often 
between the two subgames

In this section, we provide an upper-bound on the payoff of plays which switch infi-
nitely often between G1 and G2.

Lemma 5.8  Assume that f is shift-invariant and submixing. For all strategies �,

Proof  By definition of Switch , if Switch occurs then both projections Π1 and Π2 are 
infinite and visit s̃ infinitely often. According to the inequality (13) in Lemma 5.4, to 
prove (22) it is enough to show, for every i ∈ {1, 2},

By symmetry, it is enough to show (23) when i = 1 . For that, we define a strategy �1 
in G1 such that for every measurable event E1 in the game G1,

The definition of �1 is a cornerstone of the whole proof of Theorem 5.3 and to make 
this definition clear, we provide first before the formal definition of �1 an informal 
description of �1 and an example. Assume Player 1 has to choose the next action 
after a finite play h1 in G1 between two actions a and b. Denote pa(h1) (resp. pb(h1) ) 
the probability that the projection Π1 of the play from G on G1 admits h1a (resp. h1b ) 
as a prefix, when playing � and 𝜏♯ . Then �1(h1) selects the action a with probabil-
ity proportional to pa i.e. equal to pa∕(pa + pb) , while b is selected with probability 
pb∕(pa + pb).

As an example, consider a game with a single state s controlled by Player  1 
(hence 𝜏♯ is trivial) on which there are three loops on actions a, b, c which are par-
titioned into A1 = {a, b} and A2 = {c} . Consider the strategy � in G which plays 
the uniform lottery on {a, b, c} for the first step, and then repeat the corresponding 
letter forever. The corresponding strategy �1 in G1 plays the uniform lottery on {a, b} 
and then repeat the corresponding letter forever. Consider a more involved example 
in the same game but with a different strategy � : this time � initially plays the uni-
form lottery on {a, b, c} . If a (resp. b resp. c) is chosen, then letter b (resp. c resp. a) 
is repeated forever. What is the probability that �1 plays initially the action a? The 
letter a is a prefix of the projection Π1 in G1 in exactly two cases: if in G either the 
letter a or the letter c is picked up first. Otherwise the projection to G1 starts with b. 
Hence �1(s)(a) = 2∕3.

(22)ℙ
𝜎,𝜏♯

s̃

(
f ≤ max{ val (G1)(s̃), val (G2)(s̃)} + 𝜖 | Switch

)
= 1.

(23)
ℙ
𝜎,𝜏♯

s̃

(
f (Πi) ≤ val (Gi)(s̃) + 𝜖 | Πi is infinite and reaches s̃ infinitely often

)
= 1.

(24)ℙ
𝜎1,𝜏

♯

1

s̃

(
E1

)
≥ ℙ

𝜎,𝜏♯

s̃

(
Π1 is infinite and Π1 ∈ E1

)
.
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Formally, the definition of �1 relies on the prefix relation ⪯ and the strict prefix 
relation ≺ over finite or infinite plays. Given a finite play h1 in G1 , we consider the 
events {h1 ⪯ Π1} and {h1 ≺ Π1} . The event h1 ≺ Π1 means that not only h1 appears 
as a prefix of the projection of the play on G1 , but moreover at least one more action 
has been played in G1 after that, i.e. {h1 ≺ Π1} = {∃b ∈ A, h1b ⪯ Π1} . The inclu-
sion {h1 ≺ Π1} ⊆ {h1 ⪯ Π1} implies

This inequality might be strict: for example if Stay ≥0(G2) holds, i.e. if the play 
always stay in G2 , then the event {s̃ ≺ Π1} has probability 0 while the event s̃ ⪯ Π1 
has probability 1.

The strategy �1 in G1 is defined as:

if ℙ𝜎,𝜏♯

s̃

(
h1 ≺ Π1

)
> 0 and otherwise �1(h1) is chosen arbitrarily. Remark that in gen-

eral, �1 is a mixed strategy.
We proceed with the proof of (24). Let � be the set of measurable events E1 in 

G1 for which (24) holds. We prove first that � contains all cylinders h1(SA)� of G1 , 
which relies on the following inequalities:

We abuse the notation and denote h1 the event {h1 is a prefix of the play} . The first 
inequality is by definition of prefixes. Remark that this inequality might be strict, 
in case Π1 is finite i.e. in case the play ultimately stays in G2 . The second inequal-
ity (26) is proved by induction on the length of h1 . When h1 is the single initial state 
s̃ then both terms in (26) are equal to 1, and the inequality is an equality. Let h1ar be 
a finite play in G1 and assume that (26) holds for h1 . There are two cases, depending 
who controls the last state of h1 , denoted t. In case t is controlled by Player 1 then

where the first and last equalities hold by definition of the probability measure, the 
first inequality by induction hypothesis and the second equality is by definition of �1 . 

(25)ℙ
𝜎,𝜏♯

s̃

(
h1 ≺ Π1

)
≤ ℙ

𝜎,𝜏♯

s̃

(
h1 ⪯ Π1

)
.

𝜎1(h1)(a) = ℙ
𝜎,𝜏♯

s̃

(
h1a ⪯ Π1 | h1 ≺ Π1

)
,

(26)
ℙ
𝜎,𝜏♯

s̃

(
Π1 is infinite and Π1 ∈ h1(SA)

𝜔

)
≤ ℙ

𝜎,𝜏♯

s̃

(
h1 ⪯ Π1

)

≤ ℙ
𝜎1,𝜏

♯

1

s̃

(
h1
)
.

(27)

ℙ
𝜎1,𝜏

♯

1

s̃

(
h1ar

)
= ℙ

𝜎1,𝜏
♯

1

s̃

(
h1
)
⋅ 𝜎1(h1)(a) ⋅ p(t, a, r)

≥ ℙ
𝜎,𝜏♯

s̃

(
h1 ⪯ Π1

)
⋅ 𝜎1(h1)(a) ⋅ p(t, a, r)

= ℙ
𝜎,𝜏♯

s̃

(
h1 ⪯ Π1

)
⋅ ℙ

𝜎,𝜏♯

s̃

(
h1a ⪯ Π1 | h1 ≺ Π1

)
⋅ p(t, a, r)

≥ ℙ
𝜎,𝜏♯

s̃

(
h1 ≺ Π1

)
⋅ ℙ

𝜎,𝜏♯

s̃

(
h1a ⪯ Π1 | h1 ≺ Π1

)
⋅ p(t, a, r)

= ℙ
𝜎,𝜏♯

s̃

(
h1a ⪯ Π1

)
⋅ p(t, a, r)

= ℙ
𝜎,𝜏♯

s̃

(
h1ar ⪯ Π1

)
,
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The second inequality  (27) holds because of the inclusion {h1 ≺ Π1} ⊆ {h1 ⪯ Π1} 
already discussed previously [see (25)].

Now we prove the inequality (26), in case t is controlled by Player 2. For every 
finite play h′

1
 in G1 , denote C(h�

1
) the set of finite plays h′ in G starting in s̃ and such 

that �1 projects h′ on h′
1
 , but no strict prefix of h′ is projected on h′

1
.

The first equality is by definition of the probability measure. The first inequality is 
by induction hypothesis. The second equality holds because the event h1 ⪯ Π1 is the 
disjoint union of the events (h�)h�∈C(h1) : if the projection of an infinite play h to G1 
starts with h1 , then there is a single prefix of this play in C(h1) , this is the shortest 
(finite) prefix of h whose projection in G1 is h1 . The last equality holds by a similar 
argument. The third equality is by definition of 𝜏♯ , since ∀h� ∈ C(h1),�1(h

�) = h1 . 
The fourth equality is by definition of the probability measure. The second inequal-
ity (28) relies on the inclusion C(h1ar) ⊆ {h�ar ∣ h� ∈ C(h1)} (the converse inclusion 
actually holds as well but there is no need to prove it). Take h�� ∈ C(h1ar) and write 
h�� = h�a�r� , where a′ and r′ are the last action and state of h′′ and h′ is the remain-
ing prefix. We prove first that �1(h�) = h1 . Denote b the action played in h′′ after 
the last visit to s̃ . Then b belongs to either A1 or A2 and by definition of �1 , in the 
first case �1(h��) = �1(h

�)a�r� while in the second case �1(h��) = �1(h
�) . By minimal-

ity of h′′ among plays projecting on h1ar , we can rule out the second case hence 
�1(h

��) = �1(h
�)a�r� . Since �1(h��) = h1ar then �1(h�) = h1 and a = a� and r = r� . We 

prove by contradiction that h� ∈ C(h1) . Assume otherwise and let h�
�
∈ C(h1) be the 

shortest prefix of h′ which projects on h1 as well and b, q an action and a state such 
that h�

�
bq ⪯ h� . Remark that the action after the last visit to s̃ in the play h′

�
bq is in A2 

(because �1(h��bq) = �1(h
�
�
) ) while in the play h′

�
 it is in A1 (by minimality of h′

�
 ). As 

a consequence, this last visit of the play h′
�
bq to s̃ occurs at the end of h′

�
 and t = s̃ , a 

contradiction since t is controlled by Player 2. Thus h� ∈ C(h1) . This holds for every 
h�� ∈ C(h1ar) , thus we have established the inclusion C(h1ar) ⊆ {h�ar ∣ h� ∈ C(h1)} 
which completes the proof of the inequality (28).

(28)

ℙ
𝜎1,𝜏

♯

1

s̃

(
h1ar

)
= ℙ

𝜎1,𝜏
♯

1

s̃

(
h1
)
⋅ 𝜏

♯

1
(h1)(a) ⋅ p(t, a, r)

≥ ℙ
𝜎,𝜏♯

s̃

(
h1 ⪯ Π1

)
⋅ 𝜏

♯

1
(h1)(a) ⋅ p(t, a, r)

=
∑

h�∈C(h1)

ℙ
𝜎,𝜏♯

s̃

(
h�
)
⋅ 𝜏

♯

1
(h1)(a) ⋅ p(t, a, r)

=
∑

h�∈C(h1)

ℙ
𝜎,𝜏♯

s̃

(
h�
)
⋅ 𝜏

♯(h�)(a) ⋅ p(t, a, r)

=
∑

h�∈C(h1)

ℙ
𝜎,𝜏♯

s̃

(
h�ar

)

≥
∑

h��∈C(h1ar)

ℙ
𝜎,𝜏♯

s̃

(
h��

)

= ℙ
𝜎,𝜏♯

s̃

(
h1ar ⪯ Π1

)
.
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This completes the proof of the inequality  (26) in the second and last case, 
hence (24) holds when E1 is a cylinder.

Observe that � is stable by finite disjoint unions, hence � contains all finite dis-
joint unions of cylinders, which forms a boolean algebra. Moreover � is a monotone 
class, so we can apply the monotone class theorem (see for example (Billingsley 
2008, Theorem 3.4)). This implies that � contains the sigma-field that is generated 
by cylinders, which by definition is the set of all measurable events in the game G1 . 
This completes the proof of (24).

Next we prove that

Observe that due to the fact that 𝜏♯
1
 is �-subgame-perfect and that f is shift-invariant, 

then for all n ∈ ℕ,

and as a consequence,

According to Lévy’s 0-1 law (see e.g. (Williams 1991, Theorem 14.4)), the sequence 
of random variables: (𝔼𝜎1,𝜏

♯

1

s̃

[
f | S0,A0,… , Sn

]
)n∈ℕ converges point-wise to the ran-

dom variable  f (S0A0S1 ⋯) . As a consequence the left hand side of (30) is almost-
surely equal to f and we get (29).

Denote E1 the event

According to (29), ℙ𝜎1,𝜏
♯

1

s̃

(
E1

)
= 0 . We apply (24) to E1 and get

By definition of E1 , this last equality is equivalent to (23) with i = 1 . The proof for 
the case i = 2 is symmetric. 	�  ◻

5.6 � Proof of Theorem 5.3

Proof of Theorem 5.3  To prove the first statement (9) in Theorem 5.3, we combine 
the two lemmas proved in the two previous sections in order to show:

(29)ℙ
𝜎1,𝜏

♯

1

s̃

(
f ≤ lim inf

n
val (G1)(Sn) + 𝜖

)
= 1.

�
𝜎1,𝜏

♯

1

s̃

[
f | S0,A0,… , Sn

]
= �

𝜎1[S0⋯Sn],𝜏
♯

1
[S0⋯Sn]

Sn

[
f
]
≤ val (G1)(Sn) + 𝜖,

(30)lim inf
n

�
𝜎1,𝜏

♯

1

s̃

[
f | S0,A0,… , Sn

]
≤ lim inf

n
val (G1)(Sn) + 𝜖.

E1 = {f > val (G1)(s̃) + 𝜖 and s̃ is reached infinitely often}.

ℙ
𝜎,𝜏♯

s̃

(
Π1 is infinite and Π1 ∈ E1

)
= 0.

(31)∀𝜎,�𝜎,𝜏♯

s̃

[
f
]
≤ max{ val (G1)(s̃), val (G2)(s̃)} + 𝜖.
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The bound  (31) can be obtained as follows. According to Lemma  5.4, the three 
events Stay

�
(G1), Stay �

(G2) and Switch partition the set of infinite plays. In case 
Stay

�
(G1) occurs, Lemma 5.7 guarantees that the expected payoff is no more than 

val (G1)(s̃) + 𝜖 . By symmetry, in case Stay
�
(G2) occurs, the expected payoff is 

no more than val (G2)(s̃) + 𝜖 . And in case Switch occurs, Lemma  5.8 guarantees 
that the payoff is almost-surely no more than max{ val (G1)(s̃), val (G2)(s̃)} + 𝜖 . 
Thus (31) holds. The inequality

is clear, since Player 1 has more choice in G than he has in G1 and G2 . And � can be 
chosen arbitrarily small in (31), hence the first statement (9) of Theorem 5.3.

We proceed with the second statement of Theorem 5.3. Assume that

We have to show (10), i.e.

According to (9), we already know that this equality holds for s̃ , and we shall extend 
it to all states s ∈ S.

Recall that the merge strategy was defined only for plays that start in state s̃ ; we 
enlarge this definition, profiting from the assumption (32). First, extend the defini-
tion of last (h) to any play h that has visited s̃ at least once, in which case last (h) 
denotes the action that is played right after the last visit of h to s̃ . Second, for all 
finite plays h that end in a state controlled by Player 2,

The merge strategy is well-defined because if h never visited s̃ or if last (h) ∈ A1 
then both h and �1(h) end with the same state, controlled by Player 2. And if h has 
visited s̃ at least once and last (h) ∈ A2 then both h and �2(h) end with the same 
state, controlled by Player 2.

We prove that 𝜏♯ guarantees a payoff smaller than val (G1)(s) + � for every state s. 
Fix � a strategy for Player 1 in G , and define �′ to be the strategy that plays like � as 
long as the play does not reach the pivot state s̃ . As soon as the pivot state is reached, 
the strategy �′ switches definitively to a strategy 𝜎♯

1
 that is optimal in the game G1 , 

whose existence is guaranteed by the induction hypothesis. We shall prove that, for 
every s ∈ S,

Since the strategies � and �′ coincide on those plays that never reach s̃ , to get (33) it 
is enough to prove that for every finite play h starting from s and reaching s̃ for the 
first time at the end of h,

val (G)(s̃) ≥ max{ val (G1)(s̃), val (G2)(s̃)}

(32)val (G1)(s̃) ≥ val (G2)(s̃).

∀s ∈ S, val (G)(s) = val (G1)(s).

𝜏
♯(h)

���

=

{
𝜏
♯

1
(𝜋1(h)) if h never visited s̃ or last (h) ∈ A1

𝜏
♯

2
(𝜋2(h)) if h has visited s̃ at least once and last (h) ∈ A2.

(33)�
𝜎,𝜏♯

s

[
f
]
≤ �

𝜎
�,𝜏♯

s

[
f
]
+ 𝜖.
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The inequality (34) holds because

The first and third equalities hold because f is shift-invariant. The first inequality 
holds because the strategy 𝜏♯[h] is �-optimal from state s̃ , for the following reason. 
The strategy 𝜏♯[h] coincides with the strategy obtained by merging 𝜏♯

1
[h] and 𝜏♯

2
 on 

the pivot state s̃ , both of which are �-subgame-perfect in the respective subgames. 
Since  (31) was proved for any merge of two �-subgame-perfect strategies, we can 
apply (31) to the strategy 𝜏♯[h] , and conclude that the latter is �-optimal from state s̃ . 
The second inequality holds because 𝜎♯

1
 is optimal in G1 . The second equality holds 

because 𝜎�[h] = 𝜎
♯

1
 . Finally we have proved (33).

The plays consistent with �′ and 𝜏♯ stay in the subgame G1 . Since 𝜏♯ coincides 
with 𝜏♯

1
 on plays staying in G1 , and since 𝜏♯

1
 is �-optimal in G1 , we can write for all 

s ∈ S:

With (33) this shows that for all s,

This holds for every strategy � and 𝜖 > 0 arbitrarily small, thus 
val (G)(s) ≤ val (G1)(s) , and moreover 𝜏♯ is optimal in G , from every state s. The 
converse inequality is obvious, because Player 1 has more freedom in G than in G1 , 
hence the second statement (10) of Theorem 5.3. 	�  ◻

5.7 � Remarks about the merge strategy

We observe a byproduct of inequality (36) in the proof of Theorem 5.3.

Observation 5.9  The merge strategy 𝜏♯ constructed with �-subgame-perfect pieces is 
2�-optimal in the game G.

(34)�
𝜎,𝜏♯

s

[
f | h

]
≤ �

𝜎
�,𝜏♯

s

[
f | h

]
+ 𝜖.

�
𝜎,𝜏♯

s

[
f | h

]
= �

𝜎[h],𝜏♯[h]
s̃

[
f
]

≤ val (G1)(s̃) + 𝜖

≤ �
𝜎
♯

1
,𝜏

♯

1
[h]

s̃

[
f
]
+ 𝜖

= �
𝜎
�[h],𝜏

♯

1
[h]

s̃

[
f
]
+ 𝜖

= �
𝜎
�,𝜏♯

s

[
f | h

]
+ 𝜖.

(35)�
𝜎
�,𝜏♯

s

[
f
]
= �

𝜎
�,𝜏

♯

1

s

[
f
]
≤ val (G1)(s) + 𝜖.

(36)�
𝜎,𝜏♯

s

[
f
]
≤ val (G1)(s) + 2𝜖.
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After this observation, since the merge strategy is obtained by merging two 
�-subgame-perfect strategies, a natural question to ask is whether 𝜏♯ is 2�-sub-
game-perfect in the G ? The answer is negative; consider the following simple 
example:

The goal of Player 1 is to visit the state t infinitely often (say that if he achieves 
this goal he receives a payoff 1, otherwise 0), and every action is deterministic. 
The blue state is controlled by Player  1, and the red ones by his opponent. In 
the subgame G1 we remove the action s → t . In particular in the game G1 the 
positional strategy 𝜏♯

1
 which chooses u → s and t → s is subgame-perfect. We can 

therefore use it to construct a merge strategy 𝜏♯ . However this merge strategy is 
not 2�-subgame-perfect, since in case Player 1 uses the sub-optimal action s → u , 
his opponent does not profit by taking the self-loop forever.

6 � Finite memory transfer theorem

The construction of the merge strategy in the previous section reveals that games 
that are equipped with shift-invariant and submixing payoffs have the following 
interesting property. While they yield very simple optimal strategies for Player 1, 
they allow his opponent to recombine strategies that work for one-player games 
(also known as Markov decision processes) and use them in a two-player game! 
We give the proof of this theorem that was announced in the “Introduction”:

Theorem 1.2  Let f be a payoff function that is both shift-invariant and submixing. 
Assume that in all games equipped with f and fully controlled by the minimizer, the 
minimizer has optimal strategies with finite memory. Then the minimizer has the 
same in all games equipped with f.

We prove a slightly stronger theorem and derive Theorem 1.2 as a corollary. 
An arena is said to be controlled by Player 2 if in every state that belongs to his 
opponent there is only one action available. (In other words these arenas are one-
player games, or Markov decision processes).

Theorem 6.1  Let f be a shift-invariant and submixing payoff function. If for all 𝜖 > 0 , 
Player 2 has an �-optimal strategy with finite memory in every game controlled by 
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himself, then in every (two-player) game he has an �-subgame-perfect strategy that 
has finite memory.

The statement also holds for � = 0 , that is: if Player 2 has a finite-memory opti-
mal strategy in every game controlled by himself, then in every (two-player) game 
he has a subgame-perfect strategy with finite memory.

Proof  The proof is by induction on actions of G , by defining the smaller games G1 
and G2 as in the proof of the main theorem in the previous section.

We assume w.l.o.g. that G is value-preserving for Player 2, in the sense of Defini-
tion 4.5. If this is not the case initially then we simply remove from G the actions 
available in the states of Player 2 which are not value-preserving, which does not 
change the value of the states of the game. The �-subgame-perfect strategies of 
Player 2 in the value-preserving game are �-subgame-perfect in the original game.

The base of the induction follows from the assumption of the theorem, the induc-
tion hypothesis says that there are two �-subgame perfect strategies 𝜏♯

1
 and 𝜏♯

1
 with 

finite memory, given by the transducers:

for Player 2 in G1 and G2 respectively. The strategy 𝜏♯ obtained by merging 𝜏♯
1
 and 𝜏♯

2
 

is also a finite-memory strategy, whose memory is

The initial memory state in state s is (0, init 1(s), init 2(s)) . The updates on the com-
ponents M1 and M2 are performed with up 1 and up 2 respectively. The first compo-
nent is updated only when the play leaves the pivot state s̃ ; it is switched to 1 or 2 
depending whether Player 1 chooses an action in A1 or A2 . The choice of action, or 
the output, depends on the first component: in memory state (b,m1,m2) the action 
played by the strategy is out b(mb).

According to Observation  5.9, 𝜏♯ is 2�-optimal. According to Proposition  4.8, 
there exists a finite-memory 4�-subgame-perfect strategy in G . Since this holds for 
any 𝜖 > 0 , it concludes the induction step.

The second part of the theorem follows similarly thanks to Proposition 4.8. 	�  ◻

6.1 � On the size of the memory

How large is the memory M
G

 needed by Player 2 to play optimally in some 
G = (A, f ) ? Every deterministic and stationary strategy � ∶ S1 → A for Player 1 in 
G induces a game G

�
 that is controlled by Player 2. Let � be the maximal memory 

size required by Player 2 to play optimally in the games G
�
 . According to the proof 

of the theorem above, the memory M
G

 needed by Player 2 to play optimally in G 
is of size 2 ⋅ |M

G1
| ⋅ |M

G2
| . We can iterate the construction on the same state s̃ and 

(M1, init 1, up 1, out 1) and (M2, init 2, up 2, out 2),

M
���

={1, 2} ×M1 ×M2.
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partition A(s̃) until all actions sets are singletons. For every action a ∈ A(s̃) there is a 
subgame Ga where Player 1 always play action a when reaching s̃ . Denote M

Ga
 the 

memory needed Player 2 to play optimally in the subgame Ga . To play optimally in 
G , it is enough for Player 2 to remember which action in A(s̃) was chosen by Player 1 
last time the play reached s̃ , plus the memory states of its finite memory strategies in 
the subgames Ga, a ∈ A(s̃) , which can be implemented with the memory states

Inductively, Player  2 can play optimally by remembering the last action choices 
in every state controlled by Player  1 as a mapping � ∶ S1 → A , such that 
∀s ∈ S1, �(s) ∈ A(s) , and for every possible such mapping � , the memory state in 
1…� of an optimal strategy in the one-player game G

�
 . That leads to the following 

bound on the memory of Player 2. Enumerate S1 as s1, s2,… , sm then

When � = 1 , i.e. when Player 2 has deterministic and stationary strategies in games 
he controls, then in Gimbert and Zielonka (2005) it is shown that the same holds for 
two player games as well, hence the upper-bound can be downsized to 1 instead of 
|A||S1| . In the general case where � ≥ 2 , we do not have examples where the mem-
ory size required by Player 2 to play optimally has the same order of magnitude as 
the upper bound above.
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