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1 Introduction

Two-sided, many-to-one matching models have been used to study assignment problems

where agents can be divided, from the very beginning, into two disjoint subsets: the set

of institutions and the set of individuals. The fundamental question of these assignment

problems consists of matching each firm, on one side, with a group of workers, on the

other side (we follow the convention of generically referring to institutions as firms and

to individuals as workers). The problem arises because each firm has preferences over

acceptable subsets of workers and each worker has preferences over acceptable firms. Many

economic problems with indivisibilities conform to this description. Entry-level professional

labor markets and the admission of students to colleges are well-known examples.1 A

matching is called stable if all agents have acceptable partners and there is no unmatched

worker-firm pair who both would prefer to be matched to each other rather than staying

with their current partners.

The “college admissions model with substitutable preferences” is the name given by Roth

and Sotomayor (1990) to the most general many-to-one model with ordinal preferences in

which stable matchings exist. Firms are restricted to have substitutable preferences over

subsets of workers; namely, all firms want to employ a worker even if other workers become

unavailable (Kelso and Crawford (1982) were the first to use this property in a more general

model with money). Under this hypothesis the deferred-acceptance algorithms produce

either the firms-optimal stable matching or the workers-optimal stable matching, depending

on whether the firms or the workers make the offers. The deferred-acceptance algorithm

was first proposed by Gale and Shapley (1962) for the marriage model (the one-to-one

matching model). It can also be straightforwardly applied to the college admissions problem

by reducing it to the marriage model.2 The firms (workers)-optimal stable matching is

unanimously considered by all firms (respectively, workers) to be the best among all stable

matchings.

A more specific many-to-one model, called the “college admissions problem” by Gale

and Shapley (1962), supposes that firms have a maximum number of positions to be filled

(their quota), and that each firm, given its ranking of individual workers, orders subsets

1See Roth and Sotomayor (1990) for a detailed description of these two problems as well as for a masterful
presentation and analysis of two-sided matching models.

2Roth and Sotomayor (Section 6.1, 1990) adapted the algorithm to the more general many-to-one model
with substitutable preferences; this adapted version is the one that we will present in Section 2 and we will
use in the proof of the Proposition.
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of workers in a “responsive” manner; namely, for any two subsets that differ in only one

student, a college prefers the subset containing the most-preferred student. In this model

the set of stable matchings satisfies many desirable properties (observe that the marriage

model is a particular instance of the “college admissions problem” when all firms have quota

one). The first type of properties are more theoretical in nature and are related with its

lattice structure. The second type of properties have more practical implications and they

are related with the strategic incentives of agents participating in centralized markets. In

these markets, a mechanism requires each agent to report a preference and associates a

matching with the reported preference profile (a mechanism is stable if it selects, for each

preference profile, a stable matching). Roth (1984, 1986, 1990, and 1991), Mongell and

Roth (1991), Roth and Xing (1994), and Romero-Medina (1998) are examples of papers

studying these incentives in particular matching problems like entry-level professional labor

markets, student admissions at colleges, and American sororities. However, whether or

not a matching is stable depends on the preferences of agents and, since they are private

information, agents have to be asked for them; hence, untruthful reports might arise. This

is the reason why the matching literature has intensively studied the strategic properties of

stable mechanisms. In particular, Dubins and Freedman (1981) shows that in the “college

admissions problem” the deferred-acceptance algorithm in which workers make offers is

group strategy-proof for the workers.3 This means that for the mechanism that selects

for each preference profile its corresponding workers-optimal stable matching, no group of

workers can never benefit by reporting untruthfully their preference relations. This is an

important property and it becomes critical if the market has to be redesigned, in which

case the declared preference profile conveys very valuable information.

It is known that this group strategy-proofness property is not necessarily true when the

preferences of firms are substitutable. The purpose of this paper is to consider a weaker con-

dition than responsiveness, called quota q−separability, that together with substitutability
implies that the property that the workers-optimal stable mechanism is group strategy-

proof for the workers holds for this more general many-to-one matching model. We have

3To be precise, they show it for the marriage model, but their result can be extended to the college
admissions problem. Some results concerning stability in the college admissions problem are immediate
consequences of the fact that they hold for the marriage model. Each college is split into as many pieces as
positions it has, so transforming the original many-to-one model into a one-to-one model. Responsiveness
allows then the translation of stability from one model to another. See Roth and Sotomayor (1990) for a
complete description of this procedure as well as for its applications. Observe that this reduction is possible

only if preferences are responsive.
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already showed that if firms have substitutable and quota q−separable preferences then,
(a) the set of unmatched agents is the same in all stable matchings (Martínez, Massó,

Neme, and Oviedo, 2000) and (b) the set of stable matchings has a lattice structure with

respect to two natural binary operations (Martínez, Massó, Neme, and Oviedo, 2001). A

firm is said to have “separable” preferences over subsets of workers if its partition between

acceptable and unacceptable workers has the property that only adding acceptable workers

makes any given subset of workers a better one. However, in many applications such as the

entry-level professional labor markets, separability does not seem very reasonable because

firms usually have fewer openings (their quota) than the number of “good” workers looking

for a job. In these cases it seems reasonable to restrict the preferences of firms in such a way

that the separability condition operates only up to their quota, considering unacceptable

all subsets with higher cardinality. Moreover, while responsiveness seems to be the relevant

property for extending an ordered list of individual students to preferences over all subsets

of students, it is too restrictive to capture some degree of complementarity among workers,

which can be very natural in other settings. The quota q−separability condition permits
greater flexibility in going from orders on individuals to orders on subsets, making the

model more applicable. For instance, candidates for a job can be grouped together by areas

of specialization. A firm with quota two may consider as the best subset of workers not the

set consisting of the first two candidates according to its ranking of individuals (they may

have both the same specialization) but rather the subset composed of the first and fourth

candidates in the individual ranking (i.e.; the first in each area of specialization).

As is the case for the college admissions problem, the proof of the property that (in

this more general many-to-one matching model) the workers-optimal stable mechanism is

group strategy-proof for the workers uses the following result (known in the literature as

the Blocking Lemma): Suppose that the set of workers who strictly prefer an individually

rational matching to the workers-optimal stable matching is nonempty. Then, we can

always find a firm and a worker (a blocking pair of the individually rational matching) with

the following properties: (a) the firm was hiring another worker who strictly prefers the

individually rational matching to the workers-optimal stable matching and (b) the worker

(member of the blocking pair) considers the workers-optimal stable matching to be at least

as good as the individually rational matching. Furthermore, and in order to prove the

Blocking Lemma, we also show that the workers-optimal stable matching is weakly Pareto

optimal for the workers; namely, there is no individually rational matching that all workers

strictly prefer to the workers-optimal stable matching.
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Since our many-to-one matching model includes (as a particular subclass) the college

admissions problem, all negative results concerning strategic incentives of agents of the

latter model carry over to the former one. In particular, the workers-optimal stable mech-

anism is not group strategy-proof for the firms (it is not even strategy-proof for them) and

there is no stable and strategy-proof mechanism. In addition, the workers-optimal stable

mechanism is, on the domain of substitutable and quota q−separable preference profiles,
the unique stable and group strategy-proof mechanism for the workers since it is already

the unique one in the college admissions problem.

The paper is organized as follows. In Section 2, we present the preliminary notation

and definitions. In Section 3, we present our results for the many-to-one matching model

in which firms have substitutable and quota q−separable preferences. We state that the
workers-optimal stable mechanism is group strategy-proof for the workers (Theorem) and

that the workers-optimal stable matching is weakly Pareto optimal for the workers (Propo-

sition). Furthermore, we state (without proof) that the Blocking Lemma holds as well.

In Section 4, we exhibit an example showing that none of these three results hold if the

preferences of firms are substitutable but not quota q−separable. Finally, the Appendix in
Section 5 contains the proof of the Theorem and the Proposition.

2 Preliminaries

There are two disjoint sets of agents, a set of n firms F = {f1, ..., fn} and a set ofm workers
W = {w1, ..., wm}. Generic elements of both sets are denoted, respectively, by f , f , and ef ,
and by w, w, and ew. Each worker w ∈W has a strict, transitive, and complete preference

relation P (w) over F ∪ {∅}, and each firm f ∈ F has a strict, transitive, and complete

preference relation P (f) over 2W . Preference profiles are (n+m)-tuples of preference

relations and they are represented by P = (P (f1) , ..., P (fn) ;P (w1) , ..., P (wm)). Given

a preference relation of a firm P (f), the subsets of workers preferred to the empty set

by f are called acceptable. Similarly, given a preference relation of a worker P (w), the

firms preferred by w to the empty set are called acceptable. Therefore, we allow for the

possibility that a firm may prefer not to hire any worker rather than to hire unacceptable

subsets of workers and that a worker may prefer to remain unemployed rather than to work

for an unacceptable firm. To describe preference relations in a concise manner, and since

only acceptable partners matter, we write acceptable partners in the order of decreasing
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preference. For instance,

P (fi) : w1w3, w2, w1

P (wj) : f1, f3

means that {w1, w3}P (fi) {w2}P (fi) {w1}P (fi) ∅ and f1P (wj) f3P (wj) ∅.
A market is a triple (F,W,P ), where F is a set of firms, W is a set of workers, and P is

a preference profile. Given a market (F,W,P ) the assignment problem consists of matching

workers with firms, keeping the bilateral nature of their relationship and allowing for the

possibility that both firms and workers may remain unmatched. Formally,

Definition 1 A matching µ is a mapping from the set F ∪W into the set of all subsets

of F ∪W such that for all w ∈W and all f ∈ F :

1. Either |µ (w)| = 1 and µ (w) ⊆ F or else µ (w) = ∅.

2. µ (f) ∈ 2W .

3. µ (w) = {f} if and only if w ∈ µ (f) .

Condition 1 says that a worker is either matched to at most one firm, or remains

unmatched. Condition 2 says that a firm either hires a subset of workers, or is unmatched.

Finally, condition 3 states the bilateral nature of a matching: firm f hires worker w if and

only if worker w works for firm f . We say that f is unmatched in a matching µ if µ (f) = ∅
and that w is unmatched in a matching µ if µ (w) = ∅. Otherwise, they are matched.
A matching µ is said to be one-to-one if each firm hires at most one worker; namely,

Condition 2 is replaced by: Either |µ (f)| = 1 and µ (f) ⊆W or else µ (f) = ∅. The model
in which all matchings are one-to-one is also known as the marriage model. The model in

which all matchings are many-to-one (i.e., satisfy Definition 1), and firms have responsive

preferences,4 is known as the college admissions problem (Gale and Shapley, 1962). To

represent matchings concisely we follow the widespread notation where, for instance, given

F = {f1, f2, f3} and W = {w1, w2, w3, w4},
f1 f2 f3 ∅

µ w3w4 w1 ∅ w2

4Roughly, for any two subsets of workers that differ in only one worker a firm prefers the subset containing
the most-preferred worker. See Roth and Sotomayor (1990) for a precise and formal definition of responsive
preferences.
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means that firm f1 is matched to workers w3 and w4, firm f2 is matched to worker

w1, and firm f3 and worker w2 are unmatched. Given a matching µ and two subsets

F 0 ⊆ F and W 0 ⊆ W we denote by µ (F 0) and µ (W 0) the sets {w ∈W | µ (w) ∈ F 0} and
{f ∈ F | ∃w ∈W 0 such that w ∈ µ (f)}, respectively.
Let P be a preference profile. Given a set of workers S ⊆ W , let Ch (S, P (f)) denote

firm f ’s most-preferred subset of S according to its preference ordering P (f). Generically

we refer to this set as the choice set.

A matching µ is blocked by worker w if ∅P (w)µ (w). A matching µ is blocked by firm
f if µ (f) 6= Ch (µ (f) , P (f)). A matching is individually rational if it is not blocked by
any individual agent. We denote by IR (P ) the set of individually rational matchings. A

matching µ is blocked by a firm-worker pair (f,w) ifw /∈ µ (f), w ∈ Ch (µ (f) ∪ {w} , P (f)),
and fP (w)µ (w).

Definition 2 A matching µ is stable if it is not blocked by any individual agent or any
firm-worker pair.

Given a preference profile P , we denote the set of stable matchings by S (P ). It is

easy to construct examples of preference profiles with the property that the set of stable

matchings is empty. These examples share the feature that at least one firm regards a

subset of workers as complements. This is the reason why the literature has focused on the

restriction where workers are regarded as substitutes.

Definition 3 A firm f ’s preference relation P (f) satisfies substitutability if for any set S
containing workers w and w0 (w 6= w0), if w ∈ Ch (S, P (f)) then w ∈ Ch (S\ {w0} , P (f)).

A preference profile P is substitutable if for each firm f , the preference relation P (f)

satisfies substitutability. Kelso and Crawford (1982) shows that (in a more general model

with money) if all firms have substitutable preferences then: (1) the set of stable matchings

is non-empty, and (2) firms unanimously agree that a stable matching µF is the best stable

matching. Roth (1984) extends these results and shows that if all firms have substitutable

preferences then: (3) workers unanimously agree that a stable matching µW is the best

stable matching,5 and (4) the optimal stable matching for one side is the worst stable

5The matchings µF and µW are called, respectively, the firms-optimal stable matching and the workers-

optimal stable matching. We are following the convention of extending preferences from the original sets
(2W and F ∪ {∅}) to the set of matchings. However, we now have to consider weak preference relations
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matching for the other side. That is, S (P ) 6= ∅ and for all µ ∈ S (P ) we have that
µFR (f)µR (f)µW for all f ∈ F and µWR (w)µR (w)µF for all w ∈W .
The deferred-acceptance algorithm, originally defined by Gale and Shapley (1962) for

the marriage model, produces either µF or µW depending on who makes the offers. At any

step of the algorithm in which firms make offers, a firm proposes itself to the choice set

of the set of workers who have not already rejected it during the previous steps, while a

worker accepts the offer of the best firm among the set of current offers plus the one made

by the firm provisionally matched in the previous step (if any). The algorithm stops at the

step at which all offers are accepted; the (provisional) matching then becomes definite and

it is the firms-optimal stable matching µF . Symmetrically, at any step of the algorithm

in which workers make offers, a worker proposes himself to the best firm among the set of

firms that have not already rejected him during the previous steps, while a firm accepts the

choice set of the set of current offers plus that of the workers provisionally matched in the

previous step (if any). The algorithm stops at the step at which all offers are accepted; the

(provisional) matching then becomes definite and it is the workers-optimal stable matching

µW .

A firm f has separable preferences if the division between good workers ({w}P (f) ∅)
and bad workers (∅P (f) {w}) guides the ordering of subsets in the sense that adding a good
worker leads to a better set, while adding a bad worker leads to a worse set.6 Formally,

Definition 4 A firm f ’s preference relation P (f) satisfies separability if for all S ⊆ W
and w /∈ S we have that (S ∪ {w})P (f)S if and only if {w}P (f)∅.

A preference profile P is separable if for each firm f , the preference relation P (f) satisfies

separability.

Remark 1 All separable preference relations are substitutable. To see this, just note that if
P (f) is separable then, for every S ⊆W , Ch (S, P (f)) = {w ∈ S | {w}P (f) ∅}. Moreover,
since the matchings µ and µ0 may associate to an agent the same partner. These preference relations will
be denoted by R (f) and R (w). For instance, to say that all firms prefer µF to any stable µ means that for
every f ∈ F we have that µFR (f)µ for all stable µ (that is, either µF (f) = µ (f) or else µF (f)P (f)µ (f)).

6This condition has been extensively used in social choice; see, for instance, Barberà, Sonnenschein,
and Zhou (1991). In the matching literature, Sönmez (1996), Dutta and Massó (1997), Martínez, Massó,
Neme, and Oviedo (2000) and (2001) have used it to study, respectively, strategy-proof implementation,

the stability of matchings when workers also care about their colleagues, the set of unmatched agents in
different stable matchings, and the lattice structure of the set of stable matchings.
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the preference relation

P (f) : w1, w1w2, w2

shows that not all substitutable preference relations are separable.

Sönmez (1996) shows that if firms have separable preferences then there exists a unique

stable matching. A simple way to construct this unique stable matching µ is as follows:

for each w ∈W , let µ (w) be the maximal element, according to P (w), on the set of firms
for which w is an acceptable worker, i.e., {f ∈ F | {w}P (f) ∅}. The stability of µ follows
directly from separability of firms’ preferences.

Here, we assume that each firm f has, in addition to substitutable and separable pref-

erences, a maximum number of positions to be filled: its quota qf . This limitation may

arise from, for example, technological, legal, or budgetary reasons. Since we are interested

in stable matchings, we introduce this restriction by incorporating it into the preference

relation of the firm. The college admissions model with responsive preferences (Gale and

Shapley, 1962) incorporates the quota restriction of each college by imposing a limit on the

number of students that a college may admit . However, from the point of view of stability,

this is equivalent to supposing that all sets of students with cardinality larger than the

quota are unacceptable for the college. Therefore, even if the number of good workers for

firm f is larger than its quota qf , all sets of workers with cardinality strictly larger than qf
will be unacceptable. Formally,

Definition 5 A firm f ’s preference relation P (f) over sets of workers is qf−separable if:
(a) for all S (W such that |S| < qf and w /∈ S we have that (S ∪ {w})P (f)S if and only
if {w}P (f)∅, and (b) ∅P (f)S for all S such that |S| > qf .7

We denote by q = (qf)f∈F the list of quotas and we say that a preference profile P is
quota q−separable if each P (f) is quota qf−separable. In principle firms may have different
quotas. The case where all firms have quota 1−separable preferences is equivalent, from
the point of view of the set of stable matchings, to the marriage model. Hence, our set-up

includes the marriage model as a particular case.

7For the purpose of studying the set of stable matchings, condition (b) in this definition could be replaced
by the following condition: |Ch (S, P (f))| ≤ qf for all S such that |S| > qf . We choose condition (b) since
it is simpler. Sönmez (1996) uses an alternative approach which consists in deleting condition (b) in the
definition but then requiring in the definition of a matching that |µ (f)| ≤ qf for all f ∈ F . Notice that
then the set of separable preferences is quota qf−separable for all qf .
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The two preference relations over 2{w1,w2,w3}

P (f) : w1w2, w1w3, w2w3, w1, w2, w3

P
¡
f
¢
: w1w2w3, w1w2, w1w3, w2w3, w1, w2, w3

illustrate the fact that, in general and given a list of quotas q, the sets of separable and quota

q−separable preferences are unrelated. Firm f ’s preference relation is 2−separable but not
separable, since ∅P (f) {w1, w2, w3} and all workers are good, while firm f ’s preference

relation is separable but not quota 2−separable.
Moreover, the preference relation over 2{w1,w2,w3,w4}

P (f) : w1w2, w3w4, w1w3, w1w4, w2w3, w2w4, w1, w2, w3, w4

illustrates the fact that quota q−separability does not imply substitutability. To see this,
notice that the preference relation P (f) is quota 2−separable but it is not substitutable
since w1 ∈ Ch ({w1, w2, w3, w4} , P (f)) = {w1, w2}, but w1 /∈ Ch ({w1, w3, w4} , P (f)) =
{w3, w4}. However, it is easy to see that all quota (m− 1)−separable preferences are
substitutable.

The preference relation P (f) over 2{w1,w2,w3}

P (f) : w1w2w3, w1w3, w1w2, w2w3, w1, w2, w3

illustrates the fact that the set of responsive preferences is a strict subset of the set of

quota qf−separable and substitutable preferences, since P (f) is quota 3−separable and
substitutable but it is not responsive because {w1, w3}P (f) {w1, w2} but {w2}P (f) {w3}.
The following example shows that even if all firms have quota q−separable preferences

the set of stable matchings may be empty.

Example 1 Let F = {f1, f2} and W = {w1, w2, w3, w4} be the two sets of agents with
the preference profile P , where

P (f1) : w3w4, w2w4, w1w2, w1w3, w2w3, w1w4, w1, w2, w3, w4,

P (f2) : w3, w4,

P (w1) : f1,

P (w2) : f1,

P (w3) : f1, f2,

P (w4) : f2, f1.
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Notice that P is quota (2, 1)−separable. However, P (f1) is not substitutable since w3 ∈
Ch (W,P (f1)) but w3 /∈ Ch (W\ {w4} , P (f1)). It can be verified that S (P ) = ∅.
The Venn diagram of Figure 1 summarizes these relations.
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3 Results

Some markets are decentralized: workers and firms are themselves responsible for looking for

acceptable partners. However, in many assignment problems, like entry-level professional

labor markets and students admissions at colleges, matches are proposed by centralized

stable procedures (in some markets they are suggested while in others they are imposed).

Whether or not a matching is stable depends on the preference profile. But preferences

are private information. Therefore, a centralized market consists of a clearing-house that,

after asking each agent to report a preference relation, proposes a matching. This defines a

mechanism. Formally, let bP be a domain of preference profiles and letM be the set of all

matchings. A mechanism h : bP →M maps each preference profile P ∈ bP to a matching
h (P ) ∈ M. Therefore, h (P ) (f) is the set of workers assigned to f and h (P ) (w) is the

firm assigned to w (if any) at preference profile P ∈ bP by mechanism h. A mechanism

h : bP →M is stable if for all P ∈ bP, h(P ) ∈ S(P ).
Let S be the set of substitutable and quota q−separable preference relations of firms

over 2W and let T be the set of all preference relations of workers over F ∪ {∅}. The
set of all substitutable and quota q−separable preference profiles can be written as the
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set P = Sn × T m, where n and m are the number of firms and workers, respectively. To

emphasize the role of a subset of workerscW we write the preference profile P as
¡
PcW , P−cW¢.

Therefore, given cW ⊆ W , P ∈ P, and bPcW ∈ T |cW | we write ³ bPcW , P−cW´ to denote the
preference profile P where the preference relations PcW ∈ T |cW | have been replaced by bPcW ∈
T |cW |. Mechanisms require each agent to report some preference relation. A mechanism is

manipulable by a group of workers if its members can obtain better partners by revealing

their preference relations untruthfully. A mechanism is group strategy-proof for the workers

if it is not manipulable by any group of workers. Formally,

Definition 6 A mechanism h : bP →M is group strategy-proof for the workers if for
all preference profiles P ∈ P, all subsets of workers cW ⊆ W , all reports bPcW ∈ T |cW |, and
for all w ∈ cW ,

h (P ) (w)R (w)h
³ bPcW , P−cW´ (w) .

Assume that bP is a subset of substitutable preference profiles. We say that h : bP →M
is the workers-optimal stable mechanism if it always selects the workers-optimal stable

matching; that is, for all P ∈ bP, h (P ) is the workers-optimal stable matching relative to
P . We are now ready to state the main result of the paper.

Theorem (Group Strategy-proofness) On the domain of substitutable and quota q−separable
preference profiles, the workers-optimal stable mechanism h : P → M is group strategy-

proof for the workers.

Proof See the Appendix.

The proof of the Theorem is based on an extension of a result (known in the literature as

the Blocking Lemma) whose proof uses the fact that the workers-optimal stable matching

satisfies a weak Pareto optimality property. We now explain and present these two results.

For the marriage model, Roth (1982) shows that optimal stable matchings have an even

stronger optimality property: there is no individually rational matching that all agents of

one side of the market strictly prefer to their corresponding optimal stable matching. Roth

(1985) partly extends this result to the college admissions problem. He shows (using the

result concerning the marriage model) that this weak Pareto optimality property holds for

the students (the “one side” of the market); moreover, he also shows that the property in

general fails for the colleges (the “many side” of the market). In the next section we exhibit

an example (Example 2) where firms have substitutable preferences and the weak Pareto
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optimality property does not even hold for the workers; that is, there is an individually

rational matching strictly preferred by all workers (our “one side” of the market) to the

workers-optimal stable matching. However, the proposition below states that if firms pref-

erences are also quota q−separable, the weak Pareto optimality for the workers is recovered.
In our case, though, the proof is genuinely many-to-one since it can not be based on the

fact that the result holds for the marriage model.

Proposition (Weak Pareto Optimality) Let P be a substitutable and quota q−separable
preference profile. Then, there is no individually rational matching µ such that µ(w)P (w)µW (w)

for all w ∈W .
Proof See the Appendix.

In the proof of the Theorem (as is the case for the marriage model), the Blocking Lemma

plays a fundamental role. This lemma states that if the set of workers who strictly prefer

an individually rational matching µ to µW is nonempty then, we can always find a blocking

pair (f, w) of µ with the property that f was hiring at µ a worker strictly preferring µ to

µW and w considers µW being at least as good as µ. Gale and Sotomayor (1985) proved

the Blocking Lemma for the marriage model. Next, we state that a Blocking Lemma also

holds for the more general many-to-one model with substitutable and quota q−separable
preferences.8

Lemma (Blocking Lemma) Let P be a substitutable and quota q−separable preference
profile and let µ ∈ IR (P ). Denote by W 0 = {w ∈W | µ (w)P (w)µW (w)} the set of
workers who strictly prefer µ to µW . If W

0 is nonempty, then there exist f ∈ µ(W 0) and
w ∈W\W 0 such that the pair (f,w) blocks µ.

The proof of the Blocking Lemma is very involved and long; therefore, it is omitted (see

Martínez, Massó, Neme, and Oviedo (2004) for the complete proof). Again, observe that

the Proposition plays a key role in its proof by guaranteeing that W\W 0 6= ∅.

4 Example

Example 2 below shows that the conclusions of the Theorem, the Proposition and the

Lemma are all false without the quota q−separability assumption.
8In the marriage model the Blocking Lemma also plays a fundamental role in the proof of the Strong

Stability Theorem of Demange, Gale, and Sotomayor (1987).
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Example 2 Let F = {f1, f2, f3} andW = {w1, w2, w3, w4} be the two sets of agents with
the substitutable preference profile P such that

P (f1) : w1w2, w2, w1, w4,

P (f2) : w3, w2w4, w1w2, w4, w1, w2,

P (f3) : w4, w1, w3,

P (w1) : f2, f3, f1,

P (w2) : f2, f1,

P (w3) : f3, f2,

P (w4) : f2, f1, f3.

The workers-optimal stable matching is

f1 f2 f3

µW w1w2 w3 w4.

The individually rational matching

f1 f2 f3

µ w4 w1w2 w3

has the property that µ(w)P (w)µW (w) for all w ∈W . Hence, the conclusion of the Propo-
sition fails without the quota q−separability assumption. The conclusion of the Blocking
Lemma also fails because µ is not stable since the (unique) pair (f2, w4) blocks µ, but

w4 ∈ W 0 because µ (w4) = f1P (w4) f3 = µW (w4). Finally, consider the (substitutable)

preference relations bPW ∈ T 4, where
bP (w1) : f2,bP (w2) : f2,bP (w3) : f3,bP (w4) : f1.

Let h be the workers-optimal stable mechanism defined on the domain of substitutable

preference profiles. Then, h
³ bPW , P−W´ = µP (w)µW = h (P ) for all w ∈ W , implying

that h is not group strategy-proof for the workers on the domain of only substitutable

preferences.
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5 Appendix

Proof of the Proposition Let P be a substitutable and quota q−separable preference
profile and assume that µ ∈ IR (P ) and

µ(w)P (w)µW (w) for all w ∈W. (1)

Since µW is also individually rational, µ (w) 6= ∅ for all w ∈ W . Therefore, µ (W ) is
nonempty.

Claim A µ (W ) = µW (W ).

Proof Let f ∈ µ (W ). Then f = µ (w) for some w. Observe that µW (f) ∈ 2W\ {∅}.
Otherwise (µW (f) = ∅), by the individual rationality of µ and the quota qf−separability
of P (f), {w}P (f) ∅, implying that (f,w) blocks µW , contradicting its stability. Thus,

µ (W ) ⊆ µW (W ) . (2)

Since all workers are matched at µ, we already know that
P

f∈µ(W ) |µ (f)| = |W |. To see
that the same property holds for µW , assume

P
f∈µ(W ) |µW (f)| < |W |. Thus, there exists

f ∈ F such that
¯̄
µW

¡
f
¢¯̄
<
¯̄
µ
¡
f
¢¯̄ ≤ qf , implying that we can find w ∈ µ ¡f¢ \µW ¡f¢.

Since µ ∈ IR (P ), w ∈ Ch ¡µ ¡f¢ , P ¡f¢¢, yielding, by the quota qf−separability of P ¡f¢,
{w}P ¡f¢ ∅. Thus, because ¯̄µW ¡f¢¯̄ < qf ,

w ∈ Ch ¡µW ¡f¢ ∪ {w} , P ¡f¢¢ . (3)

The fact that f = µ (w)P (w)µW (w) and (3) imply that
¡
f, w

¢
blocks µW , contradicting

its stability. Thus, X
f∈µ(W )

|µW (f)| = |W | . (4)

Hence, |W | ≥ Pf∈F |µW (f)| =
P

f∈µ(W ) |µW (f)| +
P

f∈F\µ(W ) |µW (f)|, implying, by (4),
that

P
f∈F\µ(W ) |µW (f)| = 0. Thus, if f ∈ F\µ (W ) then µW (f) = ∅, which means that

f /∈ µW (W ), implying that F\µ (W ) ⊆ F\µW (W ). Hence, µW (W ) ⊆ µ (W ) and, by (2),

µ (W ) = µW (W ) . (5)

Claim A is proved.

Claim B µW (µ (W )) =W.
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Proof Assume otherwise; that is, there exists w0 ∈ W such that w0 /∈ µW (µ (W )). Since
µW (W ) = µ (W ), µW (w

0) = ∅. Thus,X
f∈µ(W )

|µW (f)| < |W | =
X

f∈µ(W )
|µ (f)| ,

where the equality follows from (1). Thus, there exists f ∈ µ (W ) such that ¯̄µW ¡f¢¯̄ <¯̄
µ
¡
f
¢¯̄ ≤ qf , implying that we can find w ∈ µ ¡f¢ \µW ¡f¢. By (1), f = µ (w)P (w)µW (w)

and by the quota qf−separability of P
¡
f
¢
and the individual rationality of µ,

¡
f,w

¢
blocks

µW , in contradiction with its stability. Thus,

µW (µ (W )) =W. (6)

Claim B is proved.

Consider now the last step of the deferred-acceptance algorithm where workers make

offers (and which yields, as its outcome, matching µW ). Let w be a worker who makes an

offer to an acceptable firm f in the last step of the algorithm. If f rejects some worker w0,
then this worker is unmatched in µW , since we are considering the last step of the algorithm.

This contradicts Claim B. Thus, f does not reject any worker. By the substitutability of

P (f) and (1),

µW (f) = Ch(Sf,w ∪ {w}, P (f)) = Ch(Sf,w, P (f)) ∪ {w} ⊇ µ (f) ∪ {w} ,

where Sf,w = {w ∈ W\ {w} | w makes an offer to f during the algorithm}. The last
inclusion holds because µ(f) ⊆ Sf,w ((1) implies that all w ∈ µ (f) make an offer to f
during the algorithm). Thus,

µW (f) ⊇ µ (f) ∪ {w} . (7)

Then, since w /∈ µ (f), we have that qf ≥ |µW (f)| ≥ |µ (f)| + 1 and thus, |µ (f)| < qf . If
|µ(f)| > 0, then we can find w ∈ µ(f) ∩ µW (f), contradicting (1). Thus, |µ(f)| = 0 which
implies that µ(f) = ∅. The inclusion in (7) says that w ∈ µW (f) holds. Hence, we obtain
a contradiction, since f ∈ µW (W ) and f /∈ µ (W ) imply that Claim A does not hold.

Proof of the Theorem The statement of the Theorem follows immediately from the

following Claim.

Claim Let P be a substitutable and quota q−separable preference profile and let bP differ
from P in that some nonempty subset cW of workers have different preference relations.

Then, there is no matching µ ∈ S( bP ) such that µP (w)µW by all w ∈cW.
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Proof Assume otherwise; that is, there exists a nonempty subset of workers cW and a

matching µ ∈ S( bP ) such that for all w ∈ cW, µ(w)P (w)µW (w). We first show that µ ∈
IR (P ). Since µ ∈ S( bP ) and bP (i) = P (i) for all i ∈ (F ∪W ) \cW , then µ is individually
rational for all i /∈ cW . Moreover, if w ∈ cW then µ(w)P (w)µW (w)R(w)∅. Hence, µ ∈
IR (P ). Since all matchings µ0 ∈ S (P ) have the property that µWR (w)µ0 for all w ∈ W
and there exists at least one w ∈ cW with µ(w)P (w)µW (w), we conclude that µ /∈ S (P ) .
Since cW 6= ∅ and because ∅ 6= cW ⊆ W 0 = {w ∈W | µ(w)P (w)µW (w)} we can apply the
Blocking Lemma. Thus, there is a pair (f,w), where f ∈ µ(W 0) and w ∈ W\W 0, that
blocks µ in P , but w ∈ W\W 0 implies that bP (w) = P (w). Thus, (f, w) blocks µ in bP ,
contradicting that µ ∈ S( bP ).
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