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A SHORT AND CONSTRUCTIVE PROOF OF
TARSKTI’'S FIXED-POINT THEOREM

FEDERICO ECHENIQUE

ABSTRACT. I give short and constructive proofs of Tarski’s fixed-
point theorem, and of Zhou’s extension of Tarski’s fixed-point the-
orem to set-valued maps.

1. INTRODUCTION

I give short and constructive proofs of two related fixed-point the-
orems. The first is Tarski’s fixed-point theorem: If F' is a monotone
function on a non-empty complete lattice, the set of fixed points of F
forms a non-empty complete lattice. The second is Zhou’s [J] extension
of Tarski’s fixed-point theorem to set-valued functions: If ¢ : X — 2%
is monotone—when 2% is endowed with the induced set order—the
set of fixed-points of ¢ forms a non-empty complete lattice. Zhou’s
extension is important in the theory of games with strategic comple-
mentarities (see, for example, [6] or [§]).

When F' is continuous as well as monotone, my proof is very simple
(see Section #). The proof when F is continuous is thus useful for
teaching game theory—if one wishes to prove a fixed-point theorem,
but finds Kakutani’s too involved, one can teach Tarski’s. ||

Tarski’s [5] original proof is beautiful and elegant, but non-constructive
and somewhat uninformative. Cousot and Cousot [I] give a construc-
tive proof of Tarski’s fixed-point theorem. But their proof is long and
quite involved. I present a simpler, and succinct, proof. On the other
hand, Cousot and Cousot obtain certain sub-products from their ap-
proach that I do not obtain; I shall only be concerned with Tarski’s
fixed-point theorem, and its extension to set-valued functions.

The extension to set-valued functions was developed by Smithson [4]
and Zhou [9]. Earlier, Vives [7] proved a stronger version of the exten-
sion, which applied to games with strict strategic complementarities.

Date: October 6, 2004.
I thank Charles Blair, William Thomson, an associated editor and a referee for
their helpful suggestions.
T have taught Tarski’s Theorem with F continuous to Caltech undergraduates.
1



2 F. ECHENIQUE

I give a constructive proof of Zhou’s version of the result. Smithson
has a weaker monotonicity requirement than Zhou, but Smithson does
not obtain a lattice structure of the set of fixed-points. In addition,
Smithson needs a continuity assumption.

2. DEFINITIONS

An in-depth discussion of the following concepts can be found in [6].
A set X endowed with a partial order < is denoted (X, <); (X, <) is a
complete lattice if, for all nonempty B C X, the greatest lower bound
A x B and the least upper bound \/y B exist in X. If A C X, say that
A is a subcomplete sublattice of (X, <) if, for all nonempty B C A,
AxB €A and \/ B € A.

Note that (A, <) may be a complete lattice, even if A is not a sub-
lattice of (A, <). So, for A" C A, \/ 4 A" may differ from \/ A".

Say that A C X is smaller than B C X in the induced set order
(denoted A C B) if

(xeAjye B)= (xANye€ A,z VyeE B).

The induced set order is a partial order on the set of sublattices of X.

Denote by =< the usual linear order on ordinal numbers.

Let (X, <x) be a lattice and (Y, <y) be a partially ordered set. A
function F' : X — Y is monotone if ¥ <x y implies F(z) <y F(y).
Say that a set-valued map ¢ : X — 2% is monotone if it is monotone
when (X)) is ordered by the induced set order.

3. RESuLTS

Let (X, <) be a complete lattice and F': X — X be monotone. The
set of fixed points of F'is E(F) ={x € X : = F(x)}.

Lemma 1. (E£(F), <) has a smallest element.

Proof. Let n be an ordinal number with cardinality greater than X, let
¢ =n+ 1. Define f: £ — X by transfinite recursion as f(0) = Ay X,
and

F8) =\ {F(f(2):a < B}

for g > 0.

That (8 < a) = (f(#) < f(a)) is immediate from the definition
of f. Then, for all « € n, it follows that f(a +1) = F(f(a)), as
f(B) < f(a), for all § < «, and F' is monotone. Since 7 has cardinality
greater than X, there is v € 7 such that f(v) = f(y+1). Let v be the
smallest such v; v is well-defined because any set of ordinal numbers
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has a smallest element (see [3] for an informal introduction to ordinal
numbers). Let e = f(y). Then e = F(e). So e € E(F).

I shall prove that e is the smallest element in (£(F),<). Let e €
E(F), and consider the proposition P, : f(a) < e. Proposition P,
implies that f(a+1) = F(f(a)) < F(e) = e. By transfinite induction,

then, e <e. O

A version of Lemma il is also crucial in [I]’s proof of Tarski’s fixed-
point theorem. It was apparently first proved in [2]; my proof is more
direct than the one in [2].

Theorem 2. (£(F), <) is a non-empty complete lattice.

Proof. By Lemmal, £(F) is nonempty. Let E C £(F) be nonempty.
I'shall find \/g(p E.

Let x = \/y E, and let Y = {z € X : < z} be the set of upper
bounds on E. If z € Y, then, for all e € E, e < F(2), as e = F(e) <
F(z). Thus F(Y) CY. Let G = Fly. Then G maps Y into Y, and G
is monotone.

By Lemmal, (£(G), <) has a smallest element. By definition of G,
this smallest element is \/¢ ) E.

The construction of Ag ) E is symmetric. O

My proof is constructive in the sense that it gives a procedure for
finding a fixed point—and if F is a collection of fixed points, for finding
Ve E and Agpy E. The proof in [I] is constructive in this sense
as well. As both proofs use ordinal numbers, there are notions of
constructiveness that neither my proof or [I]’s would satisty.

Let ¢ : X — 2% be a set-valued map such that, for all z € X,
©(x) is a non-empty subcomplete sublattice of X. Suppose that ¢ is
monotone. The set of fixed points of v is E(p) ={z € X : x € p(x)}.

Lemma 3. (£(p), <) has a smallest element.

Proof. Let F(xz) = Ay ¢(x). Note that, for all z, F(z) € ¢(x), and
that F' is monotone. By Lemma I, there is a smallest element, say e
of (E£(F),<). Note that e = F'(e) € p(e), so e € E(ip).

I shall prove that e is the smallest element in (£(¢), <). Let e € E(p).
Let f be as in the proof of Lemma I, Consider the proposition P, :
f(a) <e. Proposition P, implies that f(a+1) = F(f(a)) < F(e) <e,
as F'(e) = Ayxple), and e € p(e). By transfinite induction, then,
e<e. U
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Theorem 4. (£(p), <) is a non-empty complete lattice.

Proof. Lemma |_§: implies that £(y) is nonempty. I shall prove that it is
a complete lattice.

Let E C £(p) be nonempty. I shall prove that V¢, E exists.

Let =\ E,and let Y ={z € X : 2z < z}. Define ¢y : Y — 2" by
$(z) = Y N(2).

First, I show ¢(z) # (). Note that x < z implies that, for all e € F,
there is 2. € p(z) with e < Z., as e € ¢(e) and ¢ is monotone. But
©(z) is subcomplete, and thus

v < \/ % € o(2),

eck

so Y(z) # 0.

Second, I show that ¢ is monotone. Let z < Z/) and fix y € ¥(z)
and y € ¥(2'). The mapping ¢ is monotone, so y Ay’ € ¢(z) and
yVy € ¢(). Fore € E, e € ¢(e) implies e V (y Ay') € ¢(z). But
yNy €Y, sop(z)deV(yAy)=yAy. Similarly, eV (y V') € p(2')
and y Vy' € Y implies y Vy € ¥(2'). Thusy Ay € ¥(z) and yVy €
b))

Third, ¥(z) is a subcomplete sublattice because (z) = Y N ¢(2)
and ¢(z) is a subcomplete sublattice.

Thus, 1 satisfies the hypothesis of Lemma |§: Let e* € £(¢)) be the
smallest 1)-fixed point. If e € £(¢p) is an upper bound on F, then e € Y
and thus e € £(). Then e* <e. But e* € E(p), so e* = /g, E.

The proof that /\5(@ E exists is symmetric. 0

4. CONTINUOUS F'

The proof of Tarski’s Theorem is elementary when F is order-continuous,
in addition to monotone.

First, the proof of Lemma i1} goes as follows: Let z = Ay X be the
smallest point in X, and let {x,} be the sequence of F-iterates from x;
so &, = F(x,_1) and g = x. Since F is monotone, {x,} is a monotone
sequence, and thus converges to a point e. The continuity of F' implies
that e is a fixed point, as xo,11 = F(x2,), and both {zs,} and {za,:1}
converge to e. Further, if e is any other fixed point of F', x < e, and
z, < e implies z,41 = F(x,) < F(e) = e. By induction, e is the
smallest fixed point.

Second, Lemma 1} is used to prove Tarski’s Theorem as in the proof
of Theorem 21 above.
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