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A SHORT AND CONSTRUCTIVE PROOF OF
TARSKI’S FIXED-POINT THEOREM

FEDERICO ECHENIQUE

Abstract. I give short and constructive proofs of Tarski’s fixed-
point theorem, and of Zhou’s extension of Tarski’s fixed-point the-
orem to set-valued maps.

1. Introduction

I give short and constructive proofs of two related fixed-point the-
orems. The first is Tarski’s fixed-point theorem: If F is a monotone
function on a non-empty complete lattice, the set of fixed points of F
forms a non-empty complete lattice. The second is Zhou’s [9] extension
of Tarski’s fixed-point theorem to set-valued functions: If ϕ : X → 2X

is monotone—when 2X is endowed with the induced set order—the
set of fixed-points of ϕ forms a non-empty complete lattice. Zhou’s
extension is important in the theory of games with strategic comple-
mentarities (see, for example, [6] or [8]).

When F is continuous as well as monotone, my proof is very simple
(see Section 4). The proof when F is continuous is thus useful for
teaching game theory—if one wishes to prove a fixed-point theorem,
but finds Kakutani’s too involved, one can teach Tarski’s. 1

Tarski’s [5] original proof is beautiful and elegant, but non-constructive
and somewhat uninformative. Cousot and Cousot [1] give a construc-
tive proof of Tarski’s fixed-point theorem. But their proof is long and
quite involved. I present a simpler, and succinct, proof. On the other
hand, Cousot and Cousot obtain certain sub-products from their ap-
proach that I do not obtain; I shall only be concerned with Tarski’s
fixed-point theorem, and its extension to set-valued functions.

The extension to set-valued functions was developed by Smithson [4]
and Zhou [9]. Earlier, Vives [7] proved a stronger version of the exten-
sion, which applied to games with strict strategic complementarities.
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I give a constructive proof of Zhou’s version of the result. Smithson
has a weaker monotonicity requirement than Zhou, but Smithson does
not obtain a lattice structure of the set of fixed-points. In addition,
Smithson needs a continuity assumption.

2. Definitions

An in-depth discussion of the following concepts can be found in [6].
A set X endowed with a partial order ≤ is denoted 〈X,≤〉; 〈X,≤〉 is a
complete lattice if, for all nonempty B ⊆ X, the greatest lower bound∧

X B and the least upper bound
∨

X B exist in X. If A ⊆ X, say that
A is a subcomplete sublattice of 〈X,≤〉 if, for all nonempty B ⊆ A,∧

X B ∈ A, and
∨

X B ∈ A.
Note that 〈A,≤〉 may be a complete lattice, even if A is not a sub-

lattice of 〈A,≤〉. So, for A′ ⊆ A,
∨

AA
′ may differ from

∨
X A

′.
Say that A ⊆ X is smaller than B ⊆ X in the induced set order

(denoted A v B) if

(x ∈ A, y ∈ B) ⇒ (x ∧ y ∈ A, x ∨ y ∈ B).

The induced set order is a partial order on the set of sublattices of X.
Denote by � the usual linear order on ordinal numbers.
Let 〈X,≤X〉 be a lattice and 〈Y,≤Y 〉 be a partially ordered set. A

function F : X → Y is monotone if x ≤X y implies F (x) ≤Y F (y).
Say that a set-valued map ϕ : X → 2X is monotone if it is monotone
when ϕ(X) is ordered by the induced set order.

3. Results

Let 〈X,≤〉 be a complete lattice and F : X → X be monotone. The
set of fixed points of F is E(F ) = {x ∈ X : x = F (x)}.

Lemma 1. 〈E(F ),≤〉 has a smallest element.

Proof. Let η be an ordinal number with cardinality greater than X, let
ξ = η + 1. Define f : ξ → X by transfinite recursion as f(0) =

∧
X X,

and

f(β) =
∨
X

{F (f(α)) : α < β}

for β > 0.
That (β ≺ α) ⇒ (f(β) ≤ f(α)) is immediate from the definition

of f . Then, for all α ∈ η, it follows that f(α + 1) = F (f(α)), as
f(β) ≤ f(α), for all β < α, and F is monotone. Since η has cardinality
greater than X, there is γ ∈ η such that f(γ) = f(γ+ 1). Let γ be the
smallest such γ; γ is well-defined because any set of ordinal numbers
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has a smallest element (see [3] for an informal introduction to ordinal
numbers). Let e = f(γ). Then e = F (e). So e ∈ E(F ).

I shall prove that e is the smallest element in 〈E(F ),≤〉. Let e ∈
E(F ), and consider the proposition Pα : f(α) ≤ e. Proposition Pα

implies that f(α+ 1) = F (f(α)) ≤ F (e) = e. By transfinite induction,
then, e ≤ e. �

A version of Lemma 1 is also crucial in [1]’s proof of Tarski’s fixed-
point theorem. It was apparently first proved in [2]; my proof is more
direct than the one in [2].

Theorem 2. 〈E(F ),≤〉 is a non-empty complete lattice.

Proof. By Lemma 1, E(F ) is nonempty. Let E ⊆ E(F ) be nonempty.
I shall find

∨
E(F )E.

Let x =
∨

X E, and let Y = {z ∈ X : x ≤ z} be the set of upper
bounds on E. If z ∈ Y , then, for all e ∈ E, e ≤ F (z), as e = F (e) ≤
F (z). Thus F (Y ) ⊆ Y . Let G = F |Y . Then G maps Y into Y , and G
is monotone.

By Lemma 1, 〈E(G),≤〉 has a smallest element. By definition of G,
this smallest element is

∨
E(F )E.

The construction of
∧

E(F )E is symmetric. �

My proof is constructive in the sense that it gives a procedure for
finding a fixed point—and if E is a collection of fixed points, for finding∨

E(F )E and
∧

E(F )E. The proof in [1] is constructive in this sense
as well. As both proofs use ordinal numbers, there are notions of
constructiveness that neither my proof or [1]’s would satisfy.

Let ϕ : X → 2X be a set-valued map such that, for all x ∈ X,
ϕ(x) is a non-empty subcomplete sublattice of X. Suppose that ϕ is
monotone. The set of fixed points of ϕ is E(ϕ) = {x ∈ X : x ∈ ϕ(x)}.

Lemma 3. 〈E(ϕ),≤〉 has a smallest element.

Proof. Let F (x) =
∧

X ϕ(x). Note that, for all x, F (x) ∈ ϕ(x), and
that F is monotone. By Lemma 1, there is a smallest element, say e
of 〈E(F ),≤〉. Note that e = F (e) ∈ ϕ(e), so e ∈ E(ϕ).

I shall prove that e is the smallest element in 〈E(ϕ),≤〉. Let e ∈ E(ϕ).
Let f be as in the proof of Lemma 1. Consider the proposition Pα :
f(α) ≤ e. Proposition Pα implies that f(α+1) = F (f(α)) ≤ F (e) ≤ e,
as F (e) =

∧
X ϕ(e), and e ∈ ϕ(e). By transfinite induction, then,

e ≤ e. �
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Theorem 4. 〈E(ϕ),≤〉 is a non-empty complete lattice.

Proof. Lemma 3 implies that E(ϕ) is nonempty. I shall prove that it is
a complete lattice.

Let E ⊆ E(ϕ) be nonempty. I shall prove that
∨

E(ϕ)E exists.

Let x =
∨

X E, and let Y = {z ∈ X : x ≤ z}. Define ψ : Y → 2Y by
ψ(z) = Y ∩ ϕ(z).

First, I show ψ(z) 6= ∅. Note that x ≤ z implies that, for all e ∈ E,
there is ẑe ∈ ϕ(z) with e ≤ ẑe, as e ∈ ϕ(e) and ϕ is monotone. But
ϕ(z) is subcomplete, and thus

x ≤
∨
e∈E

ẑe ∈ ϕ(z),

so ψ(z) 6= ∅.
Second, I show that ψ is monotone. Let z ≤ z′, and fix y ∈ ψ(z)

and y′ ∈ ψ(z′). The mapping ϕ is monotone, so y ∧ y′ ∈ ϕ(z) and
y ∨ y′ ∈ ϕ(z′). For e ∈ E, e ∈ ϕ(e) implies e ∨ (y ∧ y′) ∈ ϕ(z). But
y∧ y′ ∈ Y , so ϕ(z) 3 e∨ (y ∧ y′) = y∧ y′. Similarly, e∨ (y ∨ y′) ∈ ϕ(z′)
and y ∨ y′ ∈ Y implies y ∨ y′ ∈ ψ(z′). Thus y ∧ y′ ∈ ψ(z) and y ∨ y′ ∈
ψ(z′).

Third, ψ(z) is a subcomplete sublattice because ψ(z) = Y ∩ ϕ(z)
and ϕ(z) is a subcomplete sublattice.

Thus, ψ satisfies the hypothesis of Lemma 3. Let e∗ ∈ E(ψ) be the
smallest ψ-fixed point. If e ∈ E(ϕ) is an upper bound on E, then e ∈ Y
and thus e ∈ E(ψ). Then e∗ ≤ e. But e∗ ∈ E(ϕ), so e∗ =

∨
E(ϕ)E.

The proof that
∧

E(ϕ)E exists is symmetric. �

4. Continuous F

The proof of Tarski’s Theorem is elementary when F is order-continuous,
in addition to monotone.

First, the proof of Lemma 1 goes as follows: Let x =
∧

X X be the
smallest point in X, and let {xn} be the sequence of F -iterates from x;
so xn = F (xn−1) and x0 = x. Since F is monotone, {xn} is a monotone
sequence, and thus converges to a point e. The continuity of F implies
that e is a fixed point, as x2n+1 = F (x2n), and both {x2n} and {x2n+1}
converge to e. Further, if e is any other fixed point of F , x ≤ e, and
xn ≤ e implies xn+1 = F (xn) ≤ F (e) = e. By induction, e is the
smallest fixed point.

Second, Lemma 1 is used to prove Tarski’s Theorem as in the proof
of Theorem 2 above.
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