
Math. Meth. Oper. Res. (2006) 63: 427–433
DOI 10.1007/s00186-006-0065-5

ORIGINAL ARTICLE

Ulrich Faigle · Walter Kern · Jeroen Kuipers

Computing an element in the lexicographic
kernel of a game

Received: 9 March 2005 / Accepted: 12 July 2005 / Published online: 25 May 2006
© Springer-Verlag 2006

Abstract The lexicographic kernel of a game lexicographically maximizes the
surplusses si j (rather than the excesses as would the nucleolus) and is contained in
both the least core and the kernel. We show that an element in the lexicographic ker-
nel can be computed efficiently, provided we can efficiently compute the surplusses
si j (x) corresponding to a given allocation x . This approach improves the results
in Faigle et al. (in Int J Game Theory 30:79–98, 2001) and allows us to determine
a kernel element without appealing to Maschler transfers in the execution of the
algorithm.

Keywords Kernel · Lexicographic · Computational complexity

AMS Classification 90C27 · 90D12

1 Introduction

The kernel of a cooperative game, introduced by Davis and Maschler (1965), is a
perhaps less intuitive solution concept than Schmeidler’s (1969) nucleolus. Yet, it is

We thank the referees for clarifying the presentation of the proof of Proposition 2.1.

U. Faigle (B)
Zentrum für Angewandte Informatik, Universität zu Köln,
Weyertal 80, 50931 Koln, Germany
E-mail: faigle@zpr.uni-koeln.de

W. Kern
Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente,
P.O. Box 217, 7500 AE, Enschede, Netherlands

J. Kuipers
Department of Mathematics, Maastricht University,
P.O. Box 616, 6200 MD, Maastricht, Netherlands

428 U. Faigle et al.

closely related to the idea of the nucleolus. In fact, the nucleolus is a special element
in the kernel, which lexicographically maximizes the excesses of a game, while the
kernel generally tries to balance the surplusses (namely the relative excesses) of
players against one another. Thus G. Kalai (see Ex. 4.9 in Maschler and Peleg 1976;
Yarom 1981) suggested to combine the characteristic features of the kernel and the
nucleolus and study the lexicographic kernel, which lexicographically maximizes
the vector of surplusses.

It is interesting to note, however, that the lexicographic kernel does not nec-
essarily contain the nucleolus, (cf. Maschler and Peleg 1976; Yarom 1981). On
the other hand, there are many games whose nucleolus coincides with the lexico-
graphic kernel (see, e.g. Faigle et al. 2001). This motivates us to investigate the
computational aspects of the lexicographic kernel in its own right.

The lexicographic kernel is a polytope which (similar to the nucleolus) is con-
tained in the intersection of the least core with the kernel. In contrast to the nucleo-
lus, it is a “geometrical locus” (Yarom 1981) in the sense that it is completely
determined by the (least) core as a subset of the euclidian space. Yarom (1981)
investigates continuity aspects of this solution concept and presents a bargaining
procedure converging to the lexicographic kernel.

The purpose of our work here is to present an algorithm that computes an ele-
ment in the lexicographic kernel (in a finite number of steps). Our approach is
closely related to the one we used in Faigle et al. (2001) for finding an element in
the kernel. Under weak assumptions, concerning the efficient computability of the
surplusses, the algorithm is efficient (i.e. has polynomial running time). The algo-
rithm presented here offers a substantial improvement with respect to the algorithm
(and its analysis) derived in Faigle et al. (2001): As the lexicographic kernel is a
subset of the kernel, we are now able to completely eliminate Maschler’s transfer
steps (cf. Stearns 1968) for the computation of a kernel element.

2 Basic definitions

We consider (cooperative) games (N , c), where N = {1, . . . , n} is the set of play-
ers and c : 2N → R a cost function, assigning a cost c(S) to every coalition S ⊆ N .
We assume throughout that c(∅) = 0.

Remark Mutatis mutandis, our results below hold of course also for cooperative
profit games. We prefer the cost model for its intuitive appeal.

An (efficient) allocation is a vector x ∈ R
n satisfying x(N) = c(N), where we

use the standard shorthand notation

x(S) =
∑

i∈S

xi for all S ⊆ N.

We let X = {x ∈ R
N | x(N) = c(N)} denote the set of allocations. Relative to a

given x ∈ X , the excess of a coalition S ⊆ N is defined as

e(S, x) = c(S) − x(S).

The minimum (non-trivial) excess is then given by

emin(x) = min
S �=∅,N

e(S, x).

Computing an element in the lexicographic kernel of a game 429

A related notion is the surplus si j (x) of player i against player j , where

si j (x) = min{e(S, x) | S ⊆ N , i ∈ S, j �∈ S}.
With these notions, we are ready to introduce the following solution concepts. For
ε ∈ R, the ε-core is defined as

ε-core(c) = {x ∈ X | emin(x) ≥ ε}.
Thus ε = 0 yields the well-known core. If ε is the unique maximum number for
which the ε-core is nonempty, we obtain the so-called least core.

The pre-kernel K(c) is defined as

K(c) = {x ∈ X | si j (x) = s ji (x) ∀i �= j}.
Relative to any given allocation x ∈ X , let us arrange the surplusses si j (x) in non-
decreasing order to form the n(n − 1)-dimensional vector θ(x). The lexicographic
kernel is defined as the set of all allocations that lexicographically maximize θ(x)
over all allocations, i.e.,

Klex(c) = {x ∈ X | θ(x) � θ(y) for all y ∈ X},
where θ(x) � θ(y) means that θ(x) is lexicographically larger than or equals θ(y).

Recall that the pre-nucleolus η(c) is the unique allocation x ∈ X that lexico-
graphically maximizes the (2n − 2)-dimensional vector obtained by arranging the
non-trivial excesses e(S, x), ∅ �= S �= N , in nondecreasing order.

Remark An allocation x ∈ X is called individually rational if x(i) ≤ c({i}) for all
i ∈ N . Restricting oneself to the set

X∗ = {x ∈ X | x(i) ≤ c({i}) ∀i ∈ N }
of individually rational allocations, one arrives at slightly modified solution con-
cepts. For example, the nucleolus resp. the lexicographic kernel is obtained by
replacing X with X∗ in the definitions above. From our point of view, however,
there is no reason (other than tradition) to restrict ourselves to X∗, i.e. to distinguish
between singleton coalitions and others a priori. We therefore work with the above
“pre-solution concepts”. It is straightforward to modify the algorithm we present
in Sect. 4 so that it computes elements in the lexicographic kernel.

As is well-known, the (pre-)nucleolus is contained in the intersection of the
(pre-)kernel with the least core. A similar relation was observed in Maschler and
Peleg (1976) for the lexicographic kernel. To make this note more self-contained,
we present it with an explicit proof.

Proposition 2.1 Klex(c) ⊆ K(c) ∩ least core (c).

Proof The inclusion Klex(c) ⊆ least core (c), follows directly from the defini-
tions. To prove Klex(c) ⊆ K(c), assume x ∈ Klex(c) and order the surplusses
non-decreasingly:

si1 j1(x) ≤ · · · ≤ sim jm (x).

430 U. Faigle et al.

Suppose that x �∈ K(c) holds. So there exists a smallest index k such that the pair
(i, j) = (ik, jk) satisfies si j (x) < s ji (x), say, si j (x) = s ji (x) − 2α for some
α > 0. We now execute a transfer of size α and pass from x to the allocation

x = x + αe j − αei

(with ei and e j being the i-th resp. j-th unit vector in R
n). We claim that the

α-transfer yields a lexicographically larger vector of surplusses, contradicting our
assumption that x ∈ Klex(c).

Indeed, the transfer yields si j (x) = si j (x) + α > si j (x). Suppose that never-
theless the claim is false and there exist players �, m, however, such that

s�m(x) ≤ si j (x) and s�m(x) < s�m(x) .

Letting S (with � ∈ S and m /∈ S) be such that s�m(x) = c(S) − x(S), we then
must have j ∈ S and i /∈ S and, therefore,

s ji (x) ≤ s�m(x) ≤ si j (x) = s ji (x) − 2α = s ji (x) − α ,

which is a contradiction. �

3 Our computational model

In principle, a game (N, c) can be described by a complete list of all 2n cost
values c(S), S ⊆ N . Relative to this notion of input size most computational
game-theoretic problems are trivially easy (efficiently solvable). However, mea-
suring the input size this way is often not adequate. For example, in the case of a
minimum spanning tree game we are not given such a list of 2n cost values, but
rather a weighted graph on n + 1 vertices, from which we can easily infer the cost
c(S) for any given coalition S ⊆ N .

For this reason, a more adequate (and more interesting) model is used (cf. Faigle
et al. 2001 for more details and additional motivation, more general background on
computational complexity can be found, e.g. in Faigle (2002) or Schrijver (1986).
We consider a fixed class C of games. Each game (N, c) ∈ C has a compact descrip-
tion in terms of

• The finite set N = {1, . . . , n} of players
• An upper bound 〈c〉 on the maximum size of a cost value, i.e. 〈c〉 ≥ maxS⊆N

〈c(S)〉.
• An algorithm (“oracle”) which, on input S ⊆ N , computes the corresponding

cost c(S).

(Here, we assume that all costs c(S) are rational numbers. The size 〈r〉 of a
rational number r = p/q is the number of bits necessary to represent p and q in
binary.)

We consider algorithms for the class C. The input for such an algorithm A is a
game (N, c) ∈ C, presented via the player set N , the upper bound 〈c〉 and access to
the oracle for computing the cost values. There may also be additional input such
as, e.g., an allocation x of size (encoding length) 〈x〉. The running time of A is
measured in terms of the number of elementary (bit) operations plus calls to the

Computing an element in the lexicographic kernel of a game 431

oracle for computing certain c-values. Correspondingly, we say that A is efficient,
if the number of elementary operations and oracle calls is polynomially bounded
in n, 〈c〉 and 〈x〉. (See Faigle et al. 2001 for a concrete example.)

For certain classes of games (e.g. minimum spanning tree games, cf. Faigle
et al.1997), computing emin(x) or si j (x) for a given allocation x is NP-hard. For
such classes of games we can hardly expect to be able to compute the nucleo-
lus or elements in the (lexicographic) kernel efficiently. We therefore make the
assumption (CCM) below on the computational complexity of minimal surplus
computation relative to the class C of games:

There exists an efficient algorithm A which, on input (CCM)
(N , c) ∈ C and allocation x ∈ X , efficiently computes
the number emin(x).

As shown in Faigle et al. (2001), this assumption is tantamount to the efficient
computability of the surplusses si j (x). Furthermore, not only the surplusses si j (x)
can be computed efficiently, but we can also identify in polynomial time a coalition
S ⊆ N containing i , but not j , with c(S) − x(S) = si j (x).

Computing emin(x) can be done efficiently, for example, when c (and hence
c−x) is submodular (cf. Schrijver 2000). Hence (CCM) holds, for example, for any
class of convex games. A concrete example is provided, e.g. by Mediggo’s (1987)
tree games. There are, however, also non-convex games that satisfy (CCM). An
interesting case is, e.g. the class of (non-bipartite) matching games (cf. Kurn and
Paulusma 2003).

4 The lexicographic pre-kernel

We consider a fixed class C of games. The purpose of this section is a proof of our
main result:

Theorem 4.1 If C satisfies (CCM), the problem of computing an element in the
lexicographic pre-kernel is efficiently solvable (for games in C).

To establish the validity of Theorem 4.1, let (N, c) ∈ C be an arbitrary instance
of the computational problem. Denoting by I the set of pairs (i, j) of players i �= j ,
consider the optimization problem

ε1 := max ε
si j (x) ≥ ε, (i, j) ∈ I

x ∈ X.
(1)

Observe that a constraint si j (x) ≥ ε actually corresponds to 2n−2 linear constraints
of the form

c(S) − x(S) ≥ ε.

So (1) is a linear program and its set of feasible solutions (x, ε) forms a polyhedron
P ⊆ R

n+1.
Given a vector (x, ε) ∈ R

n+1, (CCM) allows us to check efficiently whether
(x, ε) ∈ P holds true. Moreover, in case (x, ε) �∈ P , we can efficiently determine

432 U. Faigle et al.

a corresponding violated inequality, i.e. a linear inequality from the constraints in
(1) that is violated by (x, ε).

Indeed, assume that, say, si j (x) < ε holds for some (i, j) ∈ I . As pointed out
at the end of Sect. 3, (CCM) also allows us to compute efficiently a corresponding
coalition S ⊆ N with i ∈ S, j �∈ S and e(S, x) = si j (x). Then

c(S) − x(S) ≥ ε

is one of the constraints in (1) that is violated by (x, ε).
This observation, together with standard results on the ellipsoid method (cf.

also Faigle et al. 2001), yields an efficient algorithm for solving (1). Note that (1)
is feasible and bounded, so optimal solutions exist. (The corresponding optimal ε1
defines the least core.)

Our next step is to identify the set I1 ⊆ I of pairs (i, j) for which the constraint
si j (x) ≥ ε1 is necessarily tight whenever (x, ε1) is an optimal solution of (1). This
is straightforward: For each (i1, j1) ∈ I , we solve

εi1 j1 := max ε
si1 j1(x) ≥ ε

si j (x) ≥ ε1 (i, j) ∈ I\{(i1, j1)}
x ∈ X.

(2)

and include (i1, j1) into I1 if and only if εi1, j1 = ε1. (Note that εi1, j1 ≥ ε1 holds
in general.)

By definition, each (i1, j1) ∈ I thus admits a corresponding x = x(i1, j1) such
that si j (x) ≥ ε1, for all (i, j) and si1, j1(x) = ε1 if and only if (i1, j1) ∈ I1. Taking
the average

x = 1

|I |
∑

(i, j)∈I

x(i, j),

we obtain an allocation x ∈ X . Due to the concavity of the si j , this vector x solves
(1) with si j (x) ≥ ε1 being tight exactly when (i, j) ∈ I1. So we conclude that
indeed I1 is the set of pairs for which the constraint si j (x) ≥ ε in (1) is necessarily
tight at an optimum solution (x, ε1) of (1).

Having computed I1 ⊆ I , we proceed to solve

ε2 := max ε
si j (x) ≥ ε1 (i, j) ∈ I1
si j (x) ≥ ε (i, j) ∈ I\I1

x ∈ X.

(3)

with optimum ε2 > ε1 and determine a corresponding set I2 in a similar way.
After at most r = O(n2) iterations, we end with a complete description of the
lexicographic pre-kernel

Klex = {x ∈ X | si j (x) ≥ εk, (i, j) ∈ Ik, k = 1, . . . , r}
and some x ∈ Klex (obtained while computing εr and Ir).

There is one problem left. To prove efficiency of our algorithm, we have to
analyze the size of the numbers ε1, . . . , εr that we compute iteratively. But this

Computing an element in the lexicographic kernel of a game 433

is easy by using the following a posteriori argument. Relative to the partition
I = I1 ∪ · · · ∪ Ir that we have constructed, the values ε1, . . . , εr are uniquely
determined by the solution of the following lexicographic maximization problem

lex− max (ε1, . . . , εr)
s.t. si j (x) ≥ εk, (i, j) ∈ Ik, k = 1, . . . , r

x ∈ X

with n + r variables x1, . . . , xn , ε1, . . . , εr . The optimum is attained at a vertex
of the feasible set P . Such a vertex has components polynomially bounded in the
dimension n + r = O(n2) and the maximum size of a coefficient in the system of
inequalities describing P . Hence, in particular, the optimum values ε1, . . . , εr are
polynomially bounded in n and 〈c〉, as required.

So Theorem 4.1 is proved.

References

1. Davis M, Maschler M (1965) The kernel of a cooperative game. Naval Logistics Quaterly
12 (1965), 223–259

2. Faigle U, Fekete SP, Hochstättler W, Kern W (1997) On the complexity of testing core
membership for min cost spanning tree games. Int J Game Theory 26:361–366

3. Faigle U, Kern W, Kuipers J (2001) On the computation of the nucleolus of a cooperative
game. Int J Game Theory 30:79–98

4. Faigle U, Kern W, Still G (2002) Algorithmic principles of mathematical programming.
Kluwer, Dordrecht

5. Justman M(1977) Iterative processes with “nucleolar” restrictions. Int J Game Theory 6:
189–212

6. Kern W, Paulusma D (2003) Matching games: the least core and the nucleolus. Math Oper
Res 28:294–308

7. Maschler M, Peleg B (1975) Stable sets and stable points of set valued dynamic systems
with applications to game theory. SIAM J Control Optim 14:985–995

8. Megiddo N (1987) Computational complexity of the game theory approach to cost allocation
for a tree. Math Oper Res 3:89–196

9. Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math
17:1163–1170

10. Schrijver A (1986) Theory of linear and integer programming. Wiley, Newark
11. Schrijver A (2006) A combinatorial algorithm for minimizing submodular functions in

strongly polynomial time. J Comb Theory B80:346–355
12. Stearns RE (1968) Convergent transfer schemes for n-person games. Trans Am Math Soc

134:449–459
13. Yarom M (1981) The lexicographic kernel of a cooperative game. Math Oper Res 6:88–100

