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Abstract

A discrete-time financial market model is considered with a sequence

of investors whose preferences are described by concave strictly increasing

functions defined on the positive axis. Under suitable conditions we show

that, whenever their absolute risk-aversion tends to infinity, the respective

utility indifference prices of a given bounded contingent claim converge to

the superreplication price.
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1 Introduction

The utility indifference price (also called Hodges-Neuberger price or reservation

price) for the seller of a contingent claim has been introduced by Hodges and

Neuberger (1989). It is the minimal amount a seller should add to his or her

initial wealth so as to reach an expected utility when delivering the claim which

is greater than or equal to the one he or she would have obtained trading in

the basic assets only. This kind of price has been studied, among others, by

El Karoui and Rouge (2000), Bouchard (2000), Collin-Dufresne and Hugonnier

(2004) and Delbaen et al. (2002) in various contexts.

The last mentioned article concentrated on the case of exponential utility

with risk-aversion parameter α > 0, i.e. where the investor’s preferences are

given by the utility function Uα(x) = −e−αx, x ∈ R. It has been proved

that the utility indifference price of a (sufficiently integrable) contingent claim

converges to its superreplication price as α → ∞. The superreplication price is

the minimal initial wealth needed for hedging the claim without risk; this is thus

a utility-free pricing concept. A related result under proportional transaction

costs is presented in Bouchard et al. (2001).

In the present paper a sequence of investors is considered. Preferences of

investor n are expressed via the choice of his or her concave strictly increasing

utility function Un. We treat the case dom(Un) = (0,∞). It is shown in

discrete-time market models that (under appropriate technical conditions) the

convergence of utility indifference prices to the superreplication price takes place

for bounded contingent claims when the absolute risk-aversion −U ′′
n/U ′

n of the

respective agents tends to infinity. The convergence of the respective optimal

strategies in this context was studied in Summer (2002).

In Carassus and Rásonyi (2005) the convergence of utility prices (reservation

price and Davis price) was shown when Un tend to some limiting utility function

U∞. We remark here that the superreplication price can be considered as the
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utility indifference price for the function

U∞(y) := −∞, y < x, U∞(y) := 0, y ≥ x,

where x is the agent’s initial capital, see section 4 for details. So we will use the

ideas of that paper, though those techniques are not directly applicable since

they are based on smoothness of U∞.

In section 2 we set up our model and give formal definitions of the concepts

involved. Section 3 sums up a few facts about utility maximization which we

will need in the sequel, based on Rásonyi and Stettner (2005b). Section 4 proves

the main result.

2 Definitions, assumptions and results

Let (Ω,F , (Ft)0≤t≤T , P ) be a discrete-time filtered probability space with time

horizon T ∈ N. We assume that F0 coincides with the family of P -zero sets.

Let {St, 0 ≤ t ≤ T} be a d-dimensional adapted process representing the

discounted (by some numéraire) price of d securities in a given economy. The

notation ∆St := St−St−1 will often be used. Denote by Dt(ω) the smallest affine

hyperplane containing the support of the (regular) conditional distribution of

∆St with respect to Ft−1, see Proposition 8.1 of Rásonyi and Stettner (2005a)

for more information about the random set Dt.

Trading strategies are given by d-dimensional processes {φt, 1 ≤ t ≤ T}

which are supposed to be predictable (i.e. φt is Ft−1-measurable). The class of

all such strategies is denoted by Φ. Denote by L∞, L∞
+ the sets of bounded,

nonnegative bounded random variables, respectively, equipped with the supre-

mum norm ‖ · ‖∞. Trading is assumed to be self-financing, so the value process

of a portfolio φ ∈ Φ is

V z,φ
t := z +

t
∑

j=1

〈φt, ∆Sj〉,

where z is the initial capital of the agent in consideration and 〈·, ·〉 denotes scalar

product in R
d.
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The following absence of arbitrage condition is standard:

(NA) : ∀φ ∈ Φ (V 0,φ
T ≥ 0 a.s. ⇒ V 0,φ

T = 0 a.s.).

However, we need to assume a certain strengthening of the above concept hence

an alternative characterization is provided in the Proposition below. Let Ξt

denote the set of Ft-measurable d-dimensional random variables,

Ξ̃t := {ξ ∈ Ξt : ξ ∈ Dt+1 a.s., |ξ| = 1 on {Dt+1 6= {0}}}.

Proposition 2.1 (NA) holds iff there exist Ft-measurable random variables

βt, 0 ≤ t ≤ T − 1 such that

(1) ess. inf
ξ∈Ξ̃t

P (〈ξ, ∆St+1〉 < −βt|Ft) > 0 a.s. on {Dt+1 6= {0}}.

Proof. The direction (NA) ⇒ (1) is Proposition 3.3 of Rásonyi and Stettner

(2005a). The other direction is clear from the implication (g) ⇒ (a) in Theorem

3 of Jacod and Shiryaev (1998). ✷

The following condition is called “uniform no-arbitrage” and was introduced

by Schäl (2000).

Assumption 2.2 There exists a constant β > 0 such that for 0 ≤ t ≤ T − 1

ess. inf
ξ∈Ξ̃t

P (〈ξ, ∆St+1〉 < −β|Ft) > 0 a.s. on {Dt+1 6= {0}}.

Let G ∈ L∞
+ be a random variable which will be interpreted as the payoff of

some derivative security at time T . Now the concept of superreplication price

is formally introduced as the minimal initial wealth needed for hedging without

risk the given contingent claim:

π(G) := inf{z ∈ R : V z,φ
T ≥ G for some φ ∈ Φ}.

We refer to Karatzas and Cvitanić (1993), El Karoui and Quenez (1995), Kramkov

(1996) and Föllmer and Kabanov (1998) for more information about this notion.

We go on incorporating a sequence of agents in our model with concave

utility functions Un. The functions rn below express the absolute risk-aversion

of the respective agents.
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Assumption 2.3 Suppose that Un : R+ → R, n ∈ N is a sequence of concave

strictly increasing twice continuously differentiable functions such that

∀x ∈ (0,∞) rn(x) := −
U ′′

n (x)

U ′
n(x)

→ ∞, n → ∞.

Example 2.4 Typical examples are the sequences Un(x) = −e−γnx, x > 0

where 0 < γn and γn → ∞ or the utility functions with derivatives U ′
n(x) =

e−γnx2

, x > 0 where 0 < γn and γn → ∞.

Define for each x ≥ π(G):

A(G, x) := {φ ∈ Φ : V x,φ
T ≥ G a.s.}.

In this case the set A(G, x) admits an alternative characterization, see Propo-

sition 2.7 below.

Define the supremum of expected utility at the terminal date when delivering

claim G, starting from initial wealth x ∈ (0,∞) :

un(G, x) := sup
φ∈A(G,x)

EUn(V x,φ
T − G),(2)

where we assumed that the expectations exist (it will be shown that under the

hypotheses of our main result this is indeed the case).

Definition 2.5 The utility indifference price pn(G, x) is defined as

pn(G, x) = inf{z ∈ R : un(G, x + z) ≥ un(0, x)}.

We wish to find conditions on S and Un which guarantee that pn(G, x)

tends to π(G) whenever Assumption 2.3 holds. Our main result is the following

Theorem, see also Remark 4.4 for possible generalizations.

Theorem 2.6 Suppose that x ∈ (0,∞), S is bounded, Assumptions 2.2 and 2.3

hold. Then the utility indifference prices pn(G, x) are well-defined and converge

to π(G) as n → ∞.
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Before closing this section, an alternative characterization of the superreplica-

tion price and A(G, x) is provided. Take any G ∈ L∞
+ . Define

πT (G) := G,

πt(G) = ess. inf{X : σ(X) ⊂ Ft,∃φ ∈ Ξt such that

X + 〈φ,∆St+1〉 ≥ πt+1(G) a.s.},

for 0 ≤ t ≤ T − 1. Note that π0(G) can be chosen constant, by the triviality of

F0.

Proposition 2.7 We have

π0(G) = π(G).

Furthermore, A(G, x) can be characterized as

(3) {φ ∈ Φ : V x,φ
t ≥ πt(G) a.s., 0 ≤ t ≤ T}.

Proof. Take x and φ such that V x,φ
T ≥ Ga.s. Let us prove by induction that

for all t, V x,φ
t ≥ πt(G) a.s. This holds true trivially for t = T . Assume it is true

for t + 1, then

V x,φ
t + 〈φt+1, ∆St+1〉 ≥ πt+1(G) a.s,

and thus V x,φ
t ≥ πt(G) a.s. This proves (3) (the other inclusion being trivial).

Applying the preceding argument for t = 0 and taking the infimum, we get

π(G) ≥ π0(G) by definition of π(G). In order to show the other inequality, fix

ε > 0. There exist Xt−1, {φt, 1 ≤ t ≤ T} such that Xt−1 is Ft−1-measurable,

φt ∈ Ξt−1 and

Xt−1 + 〈φt, ∆St〉 ≥ πt(G) a.s.

πt−1(G) + ε/T > Xt−1 a.s.

which implies that

πt−1(G) + ε/T + 〈φt, ∆St〉 ≥ πt(G) a.s.

Summing over all t = 1, . . . , T ,

π0(G) + ε +

T
∑

t=1

〈φt, ∆St〉 ≥ G a.s.
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follows and therefore

π0(G) + ε ≥ π(G),

so letting ε → 0 proves the first statement of the Proposition. ✷

3 Utility maximization

We evoke a few facts about utility maximization, based on the paper Rásonyi

and Stettner (2005b). Fix a concave nondecrasing function U : (0,∞) → R.

Define

Ξx
t := {ξ ∈ Ξt : x + 〈ξ,∆St+1〉 ≥ 0 a.s.}.

Theorem 3.1 Let St ∈ L∞, 0 ≤ t ≤ T and supppose that Assumption 2.2

holds. Then the functions Ut below are well-defined for all x ≥ 0,

UT (x) := U(x), Ut(x) = ess. sup
ξ∈Ξx

t

E(Ut+1(x + 〈ξ, ∆St〉)|Ft),

and there exist (finite-valued) random variables Jt such that

Ut(x) ≤ Jtx, x ∈ (0,∞), 0 ≤ t ≤ T.

Consequently, u(G, x) is well-defined and finite for all G ∈ L∞ and x > π(G).

Furthermore, there exists φ∗(x) = φ∗(G, x) ∈ A(G, x) such that

u(G, x) = EU(V
x,φ∗(x)
T − G).

In fact, φ∗(x) can be constructed in such a manner that it satisfies

φ∗
t (x) ∈ Dt, a.s., 1 ≤ t ≤ T.

Proof. The estimations for Ut can be found in the proof of Proposition 13 of

Rásonyi and Stettner (2005b); Theorem 3 and Theorem 1 of the same paper

implies the rest. ✷

Lemma 3.2 Take any strategy φ ∈ A(G, x) satisfying φt ∈ Dt, 1 ≤ t ≤ T − 1.

There exist increasing functions Mt(x) ≥ 0 such that

V x,φ
t ≤ Mt(x).
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Proof. For t = 0 take M0(x) := x. Suppose that the statement has been shown

up to t − 1. We claim that

(4) |φt| ≤
V x,φ

t−1

β
.

Indeed, define

A :=

{

|φt| >
V x,φ

t−1

β

}

∈ Ft−1, B :=

{

〈
φt

|φt|
, ∆St〉 < −β

}

.

Clearly, {V x,φ
t < 0} ⊃ A ∩ B and

P (A ∩ B) = E[E[IA∩B |Ft−1]] = E[IA[E(IB |Ft−1)]].

By Assumption 2.2, P (B|Ft−1) > 0, thus P (A) > 0 would contradict φ ∈

A(G, x) (note that πt(G) ≥ 0 and see Proposition 2.7), we get that (4) holds.

Thus by the induction hypothesis

V x,φ
t ≤ Mt−1(x) + ‖∆St‖∞Mt−1(x)/β =: Mt(x),

which defines a suitable Mt(x). ✷

4 Proof of the main result

Denote by L0 the set of all real-valued random variables on (Ω,F , P ) equipped

with the topology of convergence in probability. The notation L0
+ stands for

the set of nonnegative random variables. Define for z ∈ R

Kz := {V z,φ
T : φ ∈ Φ}.

We recall the following fundamental fact, see Kabanov and Stricker (2001) or

Schachermayer (1992) for a proof.

Theorem 4.1 Under (NA), the set Kz − L0
+ is closed in probability. ✷

Lemma 4.2 Let B ∈ L0 such that B /∈ Kz −L0
+. Then there exists ε > 0 such

that

inf
θ∈Kz

P (θ ≤ B − ε) ≥ ε.
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Proof. Suppose that the statement is false. Then for all n there is θn ∈ Kz such

that

P (θn ≤ B − 1/n) ≤ 1/n,

hence for κn := [θn − (B − 1/n)]I{θn>B−1/n} ∈ L0
+:

P (θn − κn = B − 1/n) ≥ 1 − 1/n.

This implies θn − κn → B in probability, hence B ∈ Kz − L0
+ = Kz − L0

+, a

contradiction. ✷

Lemma 4.3 Suppose that Un, n ∈ N satisfy Assumption 2.3 as well as

∀n ∈ N Un(x) = 0, U ′
n(x) = 1,

for some fixed x ∈ (0,∞). Then

∀y < x Un(y) → −∞, n → ∞, ∀y ≥ x Un(y) → 0, n → ∞.

Proof. First take y < x. As U ′
n is decreasing, U ′

n(u) ≥ U ′
n(x) = 1, for u ≤ x,

hence rn(u) ≤ −U ′′
n (u). Necessarily

U ′
n(y) = U ′

n(x) −

∫ x

y

U ′′
n (u)du ≥ 1 +

∫ x

y

rn(u)du → ∞,

as n → ∞, by the Fatou-lemma. Also

Un(y) = Un(x) −

∫ x

y

U ′
n(u)du → −∞,

by the same reasoning, using the previous convergence observation.

Now for any y ≥ x we claim that U ′
n(y) → 0. If this were not the case, along

a subsequence nk, for all k

U ′
nk

(y) ≥ α > 0.

Then by monotonicity U ′
nk

(u) ≥ α, for all u ≤ y, so rn(u) → ∞ implies that

−U ′′
nk

(u) → ∞, k → ∞, u ≤ y. Then necessarily

0 ≤ U ′
nk

(y) = U ′
nk

(x) +

∫ y

x

U ′′
nk

(u)du = 1 +

∫ y

x

U ′′
nk

(u)du → −∞,

a contradiction proving the second assertion of this Lemma. ✷
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Proof of Theorem 2.6. Fix x > 0. As we have already pointed out in Theorem

3.1, un(G, x) is well-defined and finite. It is also easy to see that ran(u(G, ·)) =

ran(u(0, ·)), so the pn(G, x) are well-defined (in the sense that the infimum is

taken over a nonempty set).

Notice that Assumption 2.3 remains true if we replace each Un by αnUn +βn

for some αn > 0, βn ∈ R. Also, the utility indifference prices defined by these

new functions are the same as the ones defined by the original Un. Hence by

choosing αn := 1/U ′
n(x) and βn := −Un(x)/U ′

n(x), we may and will suppose

that for all n ∈ N

(5) Un(x) = 0, U ′
n(x) = 1.

Fix π(G) < y < x + π(G). Then

x + G /∈ Ky − L0
+,

by the definition of the superreplication price. Take 0 < ε given by Lemma 4.2

appplied with B := x + G and z = y. Notice that the function MT (x) figuring

in Lemma 3.2 does not depend on the particular choice of the strategy φ and

hence can be chosen uniformly for all φ∗
n(y), n ∈ N, where φ∗

n(y) is the optimal

strategy for the problem (2) with initial capital y (see Theorem 3.1). Define the

sets

An := {ω ∈ Ω : V
y,φ∗

n
(y)

T (ω) ≤ x + G(ω) − ε}.

As for all n, 1 ≤ t ≤ T − 1, φ∗
n,t(y) ∈ Dt, Lemma 4.2 says that P (An) ≥ ε. We

get

un(G, y) = EUn(V
y,φ∗

n
(y)

T − G)(6)

≤ EIAn
Un(x − ε) + EIAC

n
Un(MT (y))

≤ P (An)Un(x − ε) + Un(MT (y) + x)P (AC
n )

≤ εUn(x − ε) + Un(MT (y) + x) → −∞,

by Lemma 4.3. For the last inequality we used the fact that Un(x−ε) ≤ Un(x) =

0 and that Un(z) ≥ 0 for all z ≥ x.
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We also see from (5) and the definition of un(0, x) that

(7) lim inf
n→∞

un(0, x) ≥ lim inf
n→∞

Un(x) = 0.

One may easily check that

(8) pn(G, x) ≤ π(G).

Indeed, for any δ > 0 we may take a strategy φ̂(δ) ∈ A(G, π(G) + δ) such that

V
π(G)+δ,φ̂(δ)
T ≥ G.

Then, as Un is non decreasing,

un(0, x) ≤ sup
φ∈A(0,x)

EUn(V
x+π(G)+δ,φ+φ̂(δ)
T − G)

≤ sup
φ∈A(G,x+π(G)+δ)

EUn(V
x+π(G)+δ,φ
T − G) = un(G, x + π(G) + δ),

so by the definition of the utility indifference price pn(G, x) ≤ π(G) + δ and (8)

follows by letting δ → 0.

Now it remains to prove

(9) lim inf
n→∞

pn(G, x) ≥ π(G).

Suppose that this fails, i.e. for some x > η > 0 and a subsequence nk

pnk
(G, x) ≤ π(G) − η

holds, for all k ∈ N. Again, by Definition 2.5,

unk
(G, x + π(G) − η) ≥ unk

(0, x),

the left-hand side tends to −∞ by (6) applied to y = x + π(G) − η and the

liminf of the right-hand side is nonnegative by (7), a contradiction proving (9)

and hence the Theorem. ✷

Remark 4.4 It is possible to extend Theorem 2.6 to certain unbounded price pro-

cesses and relax Assumption 2.2, too. Define W as the set of random variables

with finite moments of all orders. Suppose ∆St ∈ W, 1/βt−1 ∈ W, 1 ≤ t ≤ T
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and Assumption 2.3. Then pn(G, x) tends to π(G). Indeed, Theorem 3.1 follows

again from Theorem 3 and Proposition 13 of Rásonyi and Stettner (2005b), and

Lemma 3.2 can be shown with random variables Mt(x) ∈ W instead of con-

stants, in the same way. Then the same argument works, just like in (6) we

get

un(G, y) ≤ εUn(x − ε) + EIAC
n
Un(MT (y) + x).

Here

IAC
n
Un(x + MT (y)) ≤ IAC

n
[Un(x) + U ′

n(x)(MT (y))] ≤ MT (y),

and this is integrable (in fact, lies in W), hence an application of the Fatou-

lemma shows un(G, y) → −∞ for π(G) < y < π(G) + x. The rest of the proof

is identical.
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