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Optimal Time to Change Premiums ∗†‡

Erhan Bayraktar § H. Vincent Poor¶

Abstract

The claim arrival process to an insurance company is modeled by a compound Poisson
process whose intensity and/or jump size distribution changes at an unobservable time with
a known distribution. It is in the insurance company’s interest to detect the change time as
soon as possible in order to re-evaluate a new fair value for premiums to keep its profit level
the same. This is equivalent to a problem in which the intensity and the jump size change at
the same time but the intensity changes to a random variable with a know distribution. This
problem becomes an optimal stopping problem for a Markovian sufficient statistic. Here, a
special case of this problem is solved, in which the rate of the arrivals moves up to one of
two possible values, and the Markovian sufficient statistic is two-dimensional.

1 Introduction

In insurance risk theory, the claim arrivals are modeled by a compound Poisson process. The
total claim up to time t is given by

Xt = X0 +

Nt∑

k=1

Yk, t ≥ 0, (1.1)

where the number of claims up to time t, Nt, is a Poisson process with intensity λ0. The claim
size process (Yk)k∈N is assumed to consist of independent and identically distributed Rd valued
random variables with distribution function ν0. In order to compensate for the liabilities the
insurance company has to pay out, it collects premiums at a such rate that it has a fair chance
of survival.

In this paper, we will study the model in (1.1) with two types of regime shift. At time θa the
intensity of the Poisson process changes from λ0 to λ1, and at time θb, the distribution of the
claim size changes from ν0 to ν1. (These measures are assumed to be absolutely continuous with
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respect to each other.) Both θa and θb are unknown at time 0, and they are unobservable. It is
in the insurance company’s interest to detect the change time or the disorder time θ , θa∧ θb =
min{θa, θb} as soon as possible and to re-evaluate a new fair value for premiums in order to keep
the profit level the same.

We assume that the times of regime shift are independent of each other and that they have
an exponential prior distribution

P{θi > t} = (1− πi)e−λit, i ∈ {a, b}, t ≥ 0,

for λi > 0. At time θ, we do not know what the intensity is for sure: it is either λ0 (a change
has occurred in the distribution of the claim size) or λ1 (a change occurred in the intensity). In
fact at time θ, the value of intensity changes from λ0 to the random variable Λ where

Λ =

{
λ1 with probability λa

λa+λb

λ0 with probability λb

λa+λb
.

(1.2)

At time θ the distribution of the claim size changes from ν0 to ν, where

ν =
λa

λa + λb
ν0 +

λb

λa + λb
ν1. (1.3)

Now consider a related more general problem in which at the disorder time θ the compound
process introduced in (1.1) changes its intensity from µ ∈ R+ to a random variable Λ (at first
we will first allow the distribution of this random variable to be as general as possible) and
the distribution of the claim sizes change from β0 to β1 (these two measures are assumed to be
absolutely continuous with respect to each other). The distribution of θ is given by

P{θ = 0} = π, P{θ > t|θ > 0} = e−λt, t ≥ 0. (1.4)

The random variables Λ and θ are independent.

In this more general problem the aim is to detect the unknown and unobservable time θ as
quickly as possible given the observations from the incoming claims. More precisely, we would
like to find a stopping time τ of the observation process that minimizes the penalty function

Rτ (π) , P{τ < θ}+ cE[τ − θ]+, (1.5)

which is the sum of the frequency of P(τ < θ) false alarms and the expected cost cE [(τ − θ)+]
of detection delay.

We are interested in solving this more general problem for three reasons. First, setting π = 0,
λ = λa + λb, µ = λ0, β0 = ν0 and β1 = ν, and the distribution of Λ to be the Bernoulli
distribution in (1.2) we see that solving this more general problem also leads to a solution of
the main problem introduced in the second paragraph. Second, in the general problem if we
set Λ to be a constant, then we obtain a version of the main problem in which the rate change
and change of the distribution of the claim sizes occur simultaneously. This case was analyzed
by Dayanik and Sezer (2006) and Gapeev (2005). Finally, the more general problem represents
a situation in which the insurance company has only some apriori information about the post
disorder rate λ1, but the company can not pin λ1 down to a constant because it might only
have very few claims after the regime change occurs. In fact, the company wants to detect the
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regime change as soon as possible, so there is not really any time to collect data to estimate λ1.
This change detection problem when the underlying process X is a (simple) Poisson process was
recently analyzed by Bayraktar et al. (2006). This corresponds to setting β0 = ν0 and β1 = ν0
in the current setting.

The compound/simple Poisson disorder problem is one of the rare instances in which a stochas-
tic control problem with partial information can be handled. The (simple) Poisson disorder
problem with linear penalty for delay was partially solved by Galchuk and Rozovsky (1971),
Davis (1976) and Davis and Wan (1977). This problem later was solved by Peskir and Shiryaev
(2002). Bayraktar and Dayanik (2006) solved the simple Poisson disorder problem for exponen-
tial penalty for delay, and Bayraktar et al. (2005) solved the standard Poisson disorder problem.
These results were recently extended by Dayanik and Sezer (2006) (using the results developed
in Bayraktar et al. (2006)) and Gapeev (2005) for compound Poisson procesesses. On the other
hand Bayraktar et al. (2006) solved the simple Poisson disorder problem when the post disorder
rate is a random variable and Bayraktar and Sezer (2006) solved this problem for the case with
a Phase-type disorder distribution.

We will first show that our problem is equivalent to an optimal stopping problem for a Marko-
vian sufficient statistic. As in Bayraktar et al. (2006) it turns out that the dimension of the
sufficient statistic is finite dimensional if the distribution of the random variable Λ is discrete
with finitely many atoms. We will study the case of a binary distribution in more detail. In
particular, we will analyze the case when the post-disorder rate only goes up. We are able to
show that the intuition that a decision would sound the alarm only at the times when it observes
an arrival does not in general hold, see Remark 5.1. This intuition becomes relevant only when
λ and c are small enough, i.e. when the disorder intensity and delay penalty are small. By per-
forming a sample path analysis we are able to find the optimal stopping time exactly for most
of the range of parameters. For the rest of the parameter range we provide upper and lower
bounds on the optimal stopping time. To show the existence of the optimal stopping problem
for the cases when we can not determine it exactly we make use of the characterization of the
value function of the optimal stopping time as the fixed point of a functional operator, as in
Bayraktar et al. (2006). We use this approach since the free boundary problems associated with
our problem turns out to be quite difficult to manage as it involves integro-differential equations
and the failure of the smooth fit principle is expected. This characterization can be used to
calculate the value function through an iterative procedure. From this characterization we are
able to infer that the free boundaries are decreasing convex curves located at the corner of R2

+.
Using our sample path analysis, we are able to determine a certain subset of the free boundary
exactly.

The rest of the paper is organized as follows. In Section 2, we give a more precise probabilistic
description of the disorder problem and introduce a reference probability measure P0 under which
the observations are coming from a compound Poisson process whose jump distribution does
not change over time. In Section 3, we show that the disorder problem can be transformed
into an optimal stopping problem for a Markovian sufficient statistic. The Markovian sufficient
statistic may not be finite dimensional and we show in this section that it is finite dimensional
when the distribution of the post disorder rate has finitely many atoms. In Section 4, we find
the autonomous sufficient statistic for any Bernoulli distribution. Also we set up an optimal
stopping problem for a Bernoulli sufficient statistic when the post disorder rate can only move
up. Section 5 contains some of our main results in which by performing a sample path analysis
we either find the optimal stopping time exactly or provide upper and lower bounds. We also
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show that the optimal stopping time is finite P0-almost surely. Section 6 provides a useful
characterization of the value function as a limit of a sequence of other value functions. Since the
proofs of the results in this section are similar to the ones in Bayraktar et al. (2006) we omit
them, except the result in which we show that the optimal stopping time we constructed is the
smallest optimal stopping time and a few other that we prefer to keep for readers convenience.

2 A Reference Probability Measure

We will first introduce a reference probability measure P0 under which the observations have
a simpler form, namely they come from a compound Poisson process whose rate and jump
distribution do not change over time. Next, we will construct the model that we briefly described
in the introduction in the paragraph before (1.4).

Let us start with a probability space (Ω,F ,P0) and consider a standard Poisson process
N = {Nt : t ≥ 0} with rate µ; independent and identically distributed strictly positive random
variables Y1, Y2, ... with a common distribution β0 on R

d independent of the Poisson process; a
random variable θ independent of the previously described stochastic elements on this probability
space whose distribution is given by

P0{θ = 0} = π, P0{θ > t|θ > 0} = e−λt, t ≥ 0; (2.1)

a random variable Λ independent of the other stochastic elements whose distribution is γ(·).
This distribution charges only the positive real numbers. We will assume that

m(k) ,

∫

R+

(v − µ)kγ(dv) < ∞, k ∈ N0. (2.2)

Let the process X = {Xt : t ≥ 0} be the compound Poisson process defined as in (1.1) and
F = {Ft}t≥0 be the natural filtration of X. We will also define an initial enlargement of F,
G = {Gt}t≥0 by setting Gt , Ft ∨ σ{θ,Λ}. Gt is the information available to a genie at time
t that also observes the realizations of the disorder time θ and post-disorder rate Λ. Let β1(·)
be a probability measure on R

d which is absolutely continuous with respect to β0(·). We will
denote by r the Radon-Nikodym derivative

r(y) ,
dβ1
dβ0

(y), y ∈ R
d. (2.3)

The process

Zt ,
Lt

Lθ
1{τ≤t} + 1{τ>t}, t ≥ 0, (2.4)

is a G-martingale where

Lt , e−(Λ−µ)t
Nt∏

k=1

[
Λ

µ
r(Yk)

]
. (2.5)

The positive martingale Z defines a new probability measure P on every (Ω,Gt), t ≥ 0 by

dP

dP0

∣∣∣∣
Gt

= Zt, t ≥ 0. (2.6)

Note that since Z0 = 1, P and P0 agree on G0 = σ{θ,Λ}, i.e. the random variables θ and Λ
are independent and have the same distribution under both P and P0. On the other hand using
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the Girsanov Theorem for jump processes (see e.g Cont and Tankov (2004), Dayanik and Sezer
(2006)) we conclude that the process X is a (P,G)-compound Poisson process whose arrival rate
µ and jump distribution β0 changes at time θ to Λ and β1, respectively. In other words, on the
probability space (Ω,F ,P), we have exactly the model posited in the Introduction section in the
paragraph between (1.3) and (1.4).

3 Markovian Sufficient Statistics

In this section, we will show that the stopping problem posed in (1.5) can be formulated as
an optimal stopping problem for a Markovian sufficient statistic, which is in general infinite
dimensional. In the following sections we will see that depending on the structure of the prior
of Λ the sufficient statistic can be finite dimensional.

Let us denote all the F-stopping times by S and introduce the F-adapted processes

Πt , P{θ ≤ t|Ft}, and Φ
(k)
t ,

E
[
(Λ− µ)k1{θ≤t}|Ft

]

1−Πt
, k ∈ N, t ≥ 0. (3.1)

Πt is the a posteriori probability process and is the updated probability that the disorder hap-
pened at or before time t given all the information up to time t. Φ(k) can be read as an odds-ratio
process, and in fact Φ(0) = Πt

1−Πt
.

Using Proposition 2.1 in Bayraktar et al. (2005) we can write the Bayes error in (1.5) as

Rτ (π) = 1− π + c(1 − π)E0

[∫ τ

0
e−λt

(
Φ
(0)
t −

λ

c

)
dt

]
, τ ∈ S, (3.2)

where the expectation E0 is taken under the reference probability measure P0. As we can
see from (3.2), finding an optimal stopping time for the quickest detection problem would be
considerably easier if the process Φ(0) is Markovian and its natural filtration coincides with
the filtration generated by the observations. In that case we would just have to solve a one-
dimensional optimal stopping problem. This is not true, however, unless Λ has only one possible
value to take. The following lemma shows that the whole sequence {Φ(k)}k∈N is a Markovian
sufficient statistic for our detection problem. This result also will help us develop sufficient
conditions under which a finite dimensional sufficient statistic exists.

Lemma 3.1 Let m(k) be as in (2.2). Then the dynamics of Φ(k) can be written as

dΦ
(k)
t = (λ(m(k) +Φ

(k)
t )− Φ

(k+1)
t )dt+Φ

(k)
t−

∫

y∈Rd

(r(y)− 1)p(dtdy) + Φ
(k+1)
t−

1

µ

∫

y∈Rd

r(y)p(dtdy),

(3.3)

with Φ
(k)
0 = π

1−πm
(k), in which p is the point process defined by

p((0, t] ×A) ,
∞∑

k=1

1{σk≤t}1{Yk∈A}, t ≥ 0, A ∈ B(Rd). (3.4)

Proof: Using Bayes’ formula, and the independence of the stochastic elements θ, Λ and X
we can write

Φ(k) =
E0

[
(Λ− µ)kZt1{θ≤t}|Ft

]

(1−Πt)E0[Zt|Ft]
= U

(k)
t + V

(k)
t (3.5)
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in which

U
(k)
t ,

π

1− π
eλt

∫

R+

(ν − µ)kLν
t γ(dν), and (3.6)

V
(k)
t ,

∫ t

0

∫

R+

λeλ(t−u)L
ν
t

Lν
u

(ν − µ)kγ(dν)du. (3.7)

Here we have used the notation

Lν
t , e−(ν−µ)t

Nt∏

k=1

[
ν

µ
r(Yk)

]
, ν ∈ R+. (3.8)

To derive (3.5) we have used (2.4), (3.1) and the identity

1−Πt =
(1− π)e−λt

E0[Zt|Ft]
,

which we can derive using the independence of θ and X under P0.

The process Lν is the unique locally bounded solution of the equation (see e.g. Elliott (1982))

dLν
t = Lν

t−

[
−(ν − µ)dt+

∫

y∈Rd

(
ν

µ
r(y)− 1

)
p(dtdy)

]
, (3.9)

with L0 = 1. Using (3.9) and the change of variable formula it is easy to obtain

dU
(k)
t = (λU

(k)
t − U

(k+1)
t )dt+

∫

y∈Rd

(
(r(y)− 1)U

(k)
t +

r(y)

µ
U

(k+1)
t

)
p(dtdy), (3.10)

with U
(k)
0 = π

1−πm
(k), and

dV
(k)
t = (λm(k) − V

(k+1)
t + λV

(k)
t )dt+

∫

y∈Rd

(
(r(y)− 1)V

(k)
t +

r(y)

µ
V

(k+1)
t

)
p(dtdy). (3.11)

with V k
0 = 0. Now (3.3) follows from (3.5). �

Lemma 3.1 shows that 1)Φ(0) is not a Markov process, and 2) the sequence {Φ(k)}k∈N has the
Markovian property and its natural filtration is the same as F. The following corollary gives a
sufficient condition that the distribution of the post-disorder rate γ must satisfy in order for the
sufficient statistic to be finite dimensional.

Corollary 3.1 If γ is a discrete distribution with only k atoms then {Φ(0),Φ(1), · · · ,Φ(k−1)} is
a k-dimensional Markovian sufficient statistic.

Proof: This follows from the same line of arguments used in the proof of Corollary 3.3 in
Bayraktar et al. (2006). Here, we will give it not only for readers conveneience but also because
the notation we introduce here will be used later. Let us denote by ν1, · · · , νk the atoms of the
distribution γ and define

p(v) ,
k∏

k=1

(v − νi + µ) ≡ vk +
k−1∑

i=0

civ
i, v ∈ R, (3.12)
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for some suitable numbers c0, ..., ck−1. Observe that the random variable

p(Λ− µ) = (Λ− µ)k +

k−1∑

i=0

ci(Λ− µ)i = 0, a.s.

The last identity together with (3.1) implies that

Φ
(k)
t +

k−1∑

i=0

ciΦ
(i)
t = 0, P− a.s. (3.13)

Now, it can be seen from the form of the penalty function in (3.2) and the dynamics in (3.3)
that {Φ(0),Φ(1), · · · ,Φ(k−1)} is a k-dimensional Markovian sufficient statistic. �

In the remainder of the paper we will assume that the distribution for the post-disorder rate
Λ has Bernoulli distribution.

4 Post-Disorder Rate with Bernoulli Distribution

In this section we will assume that the random variable Λ takes either the value µ1 > 0 or µ2 > 0,
i.e. γ({µ1, µ2}) = 1. From (3.13) it follows that Φ(2) = (µ1+µ2−2µ)Φ(1)− (µ1−µ)(µ2−µ)Φ(0).
According to Lemma 3.1, the pair (Φ(0),Φ(1)) satisfies

dΦ
(0)
t = (λ(1 + Φ

(0)
t )− Φ

(1)
t )dt+Φ

(0)
t−

∫

y∈Rd

(r(y)− 1)p(dtdy) + Φ
(1)
t−

1

µ

∫

y∈Rd

r(y)p(dtdy)

dΦ
(1)
t = (λm(1) + (λ− (µ1 + µ2 − 2µ))Φ

(1)
t + (µ1 − µ)(µ2 − µ)Φ

(0)
t )dt

+Φ
(1)
t−

∫

y∈Rd

(r(y)− 1)p(dtdy) + ((µ1 + µ2 − 2µ)Φ
(1)
t− − (µ1 − µ)(µ2 − µ)Φ

(0)
t− )

1

µ

∫

y∈Rd

r(y)p(dtdy)

(4.1)

with initial conditions Φ
(0)
0 = π

1−π and Φ
(1)
0 = π

1−πm
(1).

Instead of the sufficient statistic (Φ(0),Φ(1)), it will be more convenient to work with

Φ̃
(0)
t ,

P {Λ = µ1, θ ≤ t|Ft}

P{θ > t|Ft}
and Φ̃

(1)
t ,

P {Λ = µ2, θ ≤ t|Ft}

P{θ > t|Ft}
. (4.2)

In fact the following a one-to-one relationship between these two pairs holds

Φ̃
(0)
t =

(µ2 − µ)Φ
(0)
t − Φ

(1)
t

µ2 − µ1
and Φ̃

(1)
t =

(µ1 − µ)Φ
(0)
t − Φ

(1)
t

µ1 − µ2
. (4.3)

The dynamics of this new sufficient statistic are autonomous as can be seen from

dΦ̃
(0)
t =

{
λ(µ2 − µ−m(1))

µ2 − µ1
+ (λ− µ1 + µ)Φ̃

(0)
t

}
dt+ Φ̃

(0)
t−

∫

y∈Rd

[(
1 +

µ1 − µ

µ

)
r(y)− 1

]
p(dtdy)

dΦ̃
(1)
t =

{
λ(µ1 − µ−m(1))

µ1 − µ2
+ (λ− µ2 + µ)Φ̃

(1)
t

}
dt+ Φ̃

(1)
t−

∫

y∈Rd

[(
1 +

µ2 − µ

µ

)
r(y)− 1

]
p(dtdy)

(4.4)
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When the number of atoms of the distribution γ is more than two, we expect that sufficient
statistics defined similarly will also be autonomous.

The sufficient statistic we introduced in (4.2) has a natural interpretation and is similar in
flavor to particle filters: these are the normalized probabilities that are assigned to each atom
µi and these are updated continuously between the times of the observations, since not having
an observation in fact reveals some information about the intensity of the underlying Poisson
process. Indeed from (4.4) we observe that the sufficient statistic (Φ̃(0), Φ̃(1)) solves an ordinary
differential equation between the observations, and the terms that involve the counting process
p are inactive. When there is an observation, these normalized probabilities jump depending
on the jump size of the observation. We will see the optimal alarm mechanism is to sound the
alarm as soon as the sufficient statistic touches or jumps above a convex and decreasing curve in
R
2
+, if the sufficient statistic starts below this curve. Otherwise it is optimal to sound the alarm

immediately. Since the jump distribution also changes at the time of disorder, not only the
timing of the observations but also the magnitude of the observations is informative. Therefore,
it is reasonable to expect that we are able to construct a more acute alarm in this case than the
case in which the observations are coming from a simple Poisson process where the jump size
does not carry any information.

In the case when the post disorder rate could go both up and down by one unit, i.e., µ1 = µ−1
and µ2 = µ+ 1, then the dynamics in (4.4) become

dΦ̃
(0)
t =

{
λ(1−m)

2
+ (λ+ 1)Φ̃

(0)
t

}
dt+ Φ̃

(0)
t−

∫

y∈Rd

[(
1−

1

µ

)
r(y)− 1

]
p(dtdy)

dΦ̃
(1)
t =

{
λ(1 +m)

2
+ (λ− 1)Φ̃

(1)
t

}
dt+ Φ̃

(1)
t−

∫

y∈Rd

[(
1 +

1

µ

)
r(y)− 1

]
p(dtdy),

(4.5)

in which m = m1 = P{Λ = µ + 1} − P{Λ = µ − 1} ∈ [−1, 1]. Observe that when an arrival

comes, Φ̃
(0)
t jumps down and Φ̃(1) jumps up. Assumingm ∈ (−1, 1) then Φ̃

(0)
t is always increasing

between the observations. Φ̃(1), on the other hand, can be increasing or mean reverting depending
on the value of λ. Note that the values m = −1 or m = 1 correspond to the degenerate cases in
which the post-disorder rate is known and the sufficient statistic becomes one-dimensional.

On the other hand, in the case when the post disorder rate could only go up by one or two
units, i.e., µ1 = µ+ 1 and µ2 = µ+ 2, then the dynamics in (4.4) become

dΦ̃
(0)
t =

{
λ(2−m) + (λ− 1)Φ̃

(0)
t

}
dt+ Φ̃

(0)
t−

∫

y∈Rd

[(
1 +

1

µ

)
r(y)− 1

]
p(dtdy),

dΦ̃
(1)
t =

{
λ(m− 1) + (λ− 2)Φ̃

(1)
t

}
dt+ Φ̃

(1)
t−

∫

y∈Rd

[(
1 +

2

µ

)
r(y)− 1

]
p(dtdy),

(4.6)

in which m = 2P{λ = µ + 2} + P{λ = µ + 1} ∈ [1, 2]. Here the initial conditions are Φ̃
(0)
0 =

(2 −m) π
1−π and Φ̃

(1)
0 = (m − 1) π

1−π . We will assume that m ∈ (1, 2) as otherwise the problem
degenerates into a one-dimensional one. In the next section we will see that the intuition that a
decision would sound the alarm only at the times when it observes an arrival does not in general
hold; see Remark 5.1. This intuition becomes relevant only when λ and c are small enough,

i.e. when the disorder intensity and delay penalty are small. If λ ≥ 2 then both Φ̃
(0)
t and Φ̃

(1)
t

increase between the jumps, because the rate of disorder is high enough despite the fact that

there have been no arrivals. When λ ∈ [1, 2), Φ̃
(0)
t increases between the jumps and Φ̃

(1)
t is mean
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reverting. When λ ∈ (0, 1), both Φ̃
(0)
t and Φ̃

(1)
t have mean reverting paths between arrivals.

Since the post disorder arrival rate can only move up, both Φ̃
(0)
t and Φ̃

(1)
t have an upward jump

when there is an observation.

In the remainder of the paper we analyze the case when the sufficient statistic is of the form
(4.6). Note that in this case the penalty function in (3.2) becomes

Rτ (π) = 1− π + c(1− π)E0

[∫ τ

0
e−λt

(
Φ̃
(0)
t + Φ̃

(1)
t −

λ

c

)
dt

]
, τ ∈ S. (4.7)

Let us define

x(t, x0) ,

{
−λ(2−m)

λ−1 + e(λ−1)t
[
x0 +

λ(2−m)
λ−1

]
, λ 6= 1,

x0 + (2−m)t, λ = 1,
and

y(t, y0) ,

{
−λ(m−1)

λ−2 + e(λ−2)t
[
y0 +

λ(m−1)
λ−2

]
λ 6= 2,

y0 + 2(m− 1)t λ = 2.

(4.8)

Note that x and y satisfy the semigroup property, i.e., for every t ∈ R and s ∈ R,

x(t+ s, x0) = x(s, x(t, x0)) and y(t+ s, x0) = y(s, y(t, x0)). (4.9)

Let us denote by σn the jump times of the process X. Then we get

Φ̃
(0)
t = x(t− σn, Φ̃

(0)
σn

) and Φ̃
(1)
t = y(t− σn, Φ̃

(1)
σn

), σn ≤ t < σn+1,

Φ̃(0)
σn

=

(
1 +

1

µ

)
r(Yn)Φ̃

(0)
σn− and Φ̃(1)

σn
=

(
1 +

2

µ

)
r(Yn)Φ̃

(1)
σn− n ∈ N0.

(4.10)

The minimum of the Bayes risk in (4.7) is given by;

U(π) = inf
τ∈S

Rτ (π) = (1− π) + c(1− π)V

(
(2−m)

π

1− π
, (m− 1)

π

1 − π

)
, (4.11)

in which V is defined as the value function of the optimal stopping problem for a two-dimensional
Markov process

V (φ0, φ1) , inf
τ∈S

E
φ0,φ1

0

[∫ τ

0
e−λtg

(
Φ̃t

)
dt

]
, Φ̃t , (Φ̃

(0)
t , Φ̃

(1)
t ), (4.12)

with a running cost function

g(φ0, φ1) = φ0 + φ1 −
λ

c
. (4.13)

Here, Eφ0,φ1

0 is the conditional P0 expectation given that Φ̃
(0)
0 = φ0 and Φ̃

(1)
0 = φ1.

5 Upper and Lower Bounds on the Optimal Stopping Time

Unlike the optimal stopping problem for Itô diffusions, analyzing the sample path behavior of
the piece-wise deterministic Markov process Φ̃ , (Φ̃1, Φ̃2), we are able to determine the optimal
stopping time for most parameter values. For remaining parameter values we are able to provide
some lower bound and an upper bounds on the optimal stopping time.
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All the results in this section assume that an optimal stopping time exists and it is given by

τ∗(φ0, φ1) , inf{t ≥ 0 : V (Φ̃t) = 0, Φ̃0 = (φ0, φ1)}. (5.1)

In Section 6, we verify that this assumption in fact holds. With (5.1) we will call the region

Γ , {(φ0, φ1) ∈ R
2
+ : v(φ0, φ1) = 0}, C , R

2
+\Γ, (5.2)

the optimal stopping region. Let us start this section with a simple observation.

Lemma 5.1 Let us define

τ l , inf{t ≥ 0 : Φ̃
(0)
t + Φ̃

(1)
t ≥ λ/c}. (5.3)

If there is an optimal stopping time for the problem in (4.12), let us denote it by τ∗, then τ∗ ≥ τ l.

Proof: Let τ ∈ S be any stopping rule. Then

E
φ0,φ1

0

[∫ τ∨τ l

0
e−λtg(Φ̃t)dt

]
= E

φ0,φ1

0

[∫ τ

0
e−λtg(Φ̃t)dt

]
+ E

φ0,φ1

0

[
1{τ l>τ}

∫ τ l

τ
e−λtg(Φ̃t)dt

]

≤ E
φ0,φ1

0

[∫ τ

0
e−λtg(Φ̃t)dt

]
, (φ0, φ1) ∈ R

2
+.

(5.4)

Here τ ∨ τ l = max{τ, τ l}. �

When the rate of disorder or c in (1.5) are large enough, then in fact the lower bound τ l

is optimal as the following proposition illustrates, i.e. the free boundary corresponding to the
two-dimensional optimal stopping problem in (4.12) can be determined completely. This is a
very special instance of a multi-dimensional optimal stopping problem where an explicit deter-
mination of the free boundary is possible.

Proposition 5.1 If (i) λ ≥ 2, or, (ii) λ ∈ [1, 2) and c ≥ 2 − λ, or, (iii) λ ∈ (0, 1) and
c ≥ max (2− λ, 1− λ), then the stopping rule τ l of (5.3) is optimal for the problem in (4.12).

Proof: (i) Let us first consider the case λ ≥ 2. It is clear from the dynamics of the sufficient

statistic in (4.6) that the sample paths of Φ̃
(0)
t and Φ̃

(1)
t are increasing functions of time. Therefore

the process Φ̃ does not return to the region {(φ0, φ1) ∈ R
2
+ : φ0 + φ1 ≤ λ/c}. Thus for every

stopping time τ ∈ S

E
φ0,φ1

0

[∫ τ

0
e−λtg(Φ̃t)dt

]
≥ E

φ0,φ1

0

[∫ τ∨τ l

0
e−λtg(Φ̃t)dt

]

= E
φ0,φ1

0

[∫ τ l

0
e−λtg(Φ̃t)dt

]
+ E

φ0,φ1

0

[
1{τ≥τ l}

∫ τ

τ l
e−λtg(Φ̃t)dt

]
≥ E

φ0,φ1

0

[∫ τ l

0
e−λtg(Φ̃t)dt

]

(5.5)

(ii) If λ ∈ [1, 2) then any sample path of Φ̃(0) is still an increasing function of t, but the same is
not true anymore for the sample paths of Φ̃(1). The paths of Φ̃(1) increase with jumps; between
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the jumps the paths are mean reverting to the level λ(m − 1)/(2 − λ). However, since the
processes Φ̃(0) and Φ̃(1) can only increase by jumps we have that

Φ̃
(0)
t ≥ x(t, φ0) and Φ̃

(1)
t ≥ y(t, φ1), t ≥ 0. (5.6)

Therefore

V (φ0, φ1) ≥ inf
τ∈S

E
φ0,φ1

0

[∫ τ

0
e−λt

(
x(t, φ0) + y(t, φ1)−

λ

c

)
dt

]
. (5.7)

Clearly if for any (φ0, φ1) if the right hand side of (5.7) is zero, then V = 0, since we also know
that V ≤ 0. This can be used to find a superset of the continuation region. However, as we
shall see shortly this superset coincides with the advantageous region

C0 , {(φ0, φ1) ∈ R
2
+ : φ0 + φ1 ≤ λ/c}. (5.8)

Observe that it is not optimal to stop before Φ̃ leaves the region C0.

Let us take a look at the derivative of the integrand on the righthand side in (5.7),

d

dt
[x(t, φ0) + y(t, φ1)] = (λ− 1)x(t, φ0) + (λ− 2)y(t, φ1) + λ. (5.9)

The righthand side of (5.9) vanishes if the curve t → (x(t, φ0), y(t, φ1)) meets the line

l : (λ− 1)x+ (λ− 2)y + λ = 0. (5.10)

Note that since λ ∈ [1, 2) the y-intercept of the line is such that λ
2−λ ≥ λ. Since l is increasing

and c ≥ 2 − λ, the intersection of l with the set C0 is empty. Observe also that every t →
(x(t, φ0), y(t, φ1)) starting at (φ0, φ1) is decreasing and the derivative in (5.9) is increasing.
Therefore, t → (x(t, φ0), y(t, φ1)) meets the line l at most once for any (φ0, φ1) ∈ R+.





Furthermore, if t → (x(t, φ0), y(t, φ1)) meets l at tl = tl(φ0, φ1), then the function

t → x(t, φ0) + y(t, φ1) is decreasing on [0, tl] and increasing on [tl,∞). If t → (x(t, φ0)

y(t, φ1)) does not intersect l, then the function t → x(t, φ0) + y(t, φ1) is increasing on

[0,∞).

(5.11)

Since the line l does not meet the region C0 for every (φ0, φ1) ∈ l we have that φ0+φ1 ≥ λ/c.
Now (5.11) implies that x(t, φ0) + y(t, φ1) −

λ
c > 0 for (φ0, φ1) ∈ R

2
+ − C0 and t ≥ 0. This

implies that the righthand side of (5.7) is zero, which in turn implies that V (φ0, φ1) = 0 for all
(φ0, φ1) ∈ R

2
+ − C0.

(iii) If λ ∈ (0, 1), then both of the paths of x(t, φ0) and y(t, φ1) are mean reverting. Because
of our assumption on c the line l in (5.10) does not intersect with C0 and lies entirely above this
region. Let us denote the region between l and C0 by

Sh , {(φ0, φ1) ∈ R
2
+ : φ0 + φ1 − λ/c > 0, (λ− 1)φ0 + (λ− 2)φ1 + λ < 0}. (5.12)

From (5.9) it follows that x(t, φ0) + y(t, φ1) > λ/c if (φ0, φ1) ∈ Sh. Therefore, the path t →
(x(t, φ0), y(t, φ1)) never enters the region C0 if (φ0, φ1) /∈ C0. Therefore, the righthand side of
(5.7) is zero, which in turn implies that V (φ0, φ1) = 0 for any (φ0, φ1) ∈ R

2
+ − C0. �
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Proposition 5.2 Assume λ ∈ [1, 2) and c ∈ (0, 2 − λ). Let us define

D , {(φ0, φ1) ∈ R
2
+ : φ0 ≤ φ∗

0, φ0+φ1 ≤ ξ}∪{(φ0, φ1) ∈ R
2
+ : φ0 > φ∗

0, φ0+φ1 ≤ λ/c}, (5.13)

in which (φ∗
0, φ

∗
1) , (λ(−1 + (2− λ)/c), λ(1 + (λ− 1)/c)) and

ξ = y

(
−t∗, λ

(
λ− 1

c
+ 1

))
, where x

(
−t∗, λ

(
2− λ

c
− 1

))
= 0.

Then the region D is a superset of the optimal stopping region.

Proof: Let us note that (5.7) implies that

V (φ0, φ1) ≥ inf
t∈[0,∞]

[∫ t

0
e−λs

(
x(s, φ0) + y(s, φ1)−

λ

c

)
ds

]
. (5.14)

Because of the assumption on c the line in (5.10) intersects the region C0 defined in (5.8). Note
that l and the boundary x+ y − λ/c = 0 of the region C0 intersect at (φ∗

0, φ
∗
1). By running the

time “backwards”, we can find ξ and t∗ such that

(0, ξ) = (x(−t∗, φ∗
0), y(−t∗, φ∗

1)). (5.15)

By the semi-group property (see (4.9)), we have

x(t∗, 0) = x(t∗, x(−t∗, φ∗
0)) = x(t∗ + (−t∗), φ∗

0) = x(0, φ∗
0) = φ∗

0,

and,
y(t∗, ξ) = y(t∗, x(−t∗, φ∗

1)) = y(t∗ + (−t∗), φ∗
1) = y(0, φ∗

1) = φ∗
1.

So, the curve t → (x(t, 0), y(t, ξ)), t ≥ 0, meets line l at (φ∗
0, φ

∗
1), and tl in (5.11) equals to t∗.

This implies that

x(t, 0) + y(t, ξ) ≥ x(t∗, 0) + y(t∗, ξ) = φ∗
0 + φ∗

1 =
λ

c
,

and in particular ξ ≥ λ/c. Now we will show that when λ and c are chosen as in the statement
of the proposition it is optimal to stop outside the region D.

The curve t → (x(t, 0), y(t, ξ)) divides R2
+ into two connected components containing C0 and

the region
M , R

2
+ −D) ∩ {(x, y) ∈ R

2
+ : (λ− 1)x+ (λ− 2)y + λ < 0} (5.16)

respectively. Every curve t → (x(t, φ0), y(t, φ1)), t ≥ 0 starting at (φ0, φ1) ∈ M will stay in M ,
since from the semi-group property (4.9) it follows that two distinct curves t → (x(t, φa

0), y(t, φ
a
1))

and t → (x(t, φb
0), y(t, φ

b
1)) do not intersect. Therefore, t → (x(t, φ0), y(t, φ1)), t ≥ 0, (φ0, φ1) ∈

M intersects the line l in (5.10) away from C0 and (5.11) implies that x(t, φ0) + y(t, φ1) > λ/c
for any (φ0, φ1) ∈ M . Now, from (5.14) we conclude that V = 0 since the infimum on the
right-hand-side is equal to 0 from the arguments above and we already know that V ≤ 0.

On the other hand, if (φ0, φ1) ∈ (R2
+ − D) ∩ {(x, y) ∈ R

2
+ : (λ − 1)x + (λ − 2)y + λ ≥ 0},

the curve t → (x(t, φ0), y(t, φ1)), t ≥ 0 does not intersect the line l; therefore, the function
t → x(t, φ0) + y(t, φ1) is increasing and

x(t, φ0) + y(t, φ1) > x(0, φ0) + y(0, φ1) ≥ φ0 + φ1 ≥ ξ ≥
λ

c
, 0 < t < ∞.

Again, the infimum on the right-hand-side of (5.14) is equal to zero, which implies that V = 0.

�
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Remark 5.1 If λ ∈ [1, 2) and c ∈ (0, 2 − λ), then the following line segment is a subset of the
free boundary

H ,

{
(φ0, φ1) ∈ R

2
+ : φ0 + φ1 −

λ

c
= 0, φ1 ≤ φ∗

1

}
. (5.17)

This set in fact in the entrance boundary of the stopping region (the boundary through which the
path t → (x(t, φ0), y(t, φ1)) enters the stopping region).

Proposition 5.3 Assume that λ ∈ (0, 1) and that 0 < c ≤ (2−λ)(1−λ)
3−λ−m . If furthermore c ≥ 2 1−λ

3−m ,
then

P ,

{
(φ0, φ1) ∈ R

2
+ : φ0 +

1

2
φ1 +

3

2
−

1

2
m−

1

c
≥ 0, φ0 + φ1 −

λ

c
≥ 0

}
, (5.18)

is a subset of the optimal stopping region.

If on the other hand, 0 < c < 2 1−λ
3−m , then the first time time (Φ̃(0), Φ̃(1)) reaches the set,

R ,

{
(φ0, φ1) ∈ R

2
+ : φ0 +

1

2
φ1 +

3

2
−

1

2
m−

1

c
≥ 0

}
, (5.19)

is an upper bound on the optimal stopping time.

Proof: When 0 < c ≤ (2−λ)(1−λ)
3−λ−m , then the line l ∩ R

2
+ lies entirely in C0. The paths,

t → x(t, φ0, φ1), t ≥ 0, that do not originate in C0 enter into this region through the boundary
{(φ0, φ1) ∈ R

2
+ : φ0 + φ1 = λ/c} and once they cross into C0 they never leave it again since

x(t, φ0) + y(t, φ0) < φ0 + φ1 < λ/c for any point (φ0, φ1) ∈ C0 ∩ {(φ0, φ1) ∈ R
2
+ : (λ − 1)φ0 +

(λ − 2)φ1 + λ < 0}, which follows from (5.9). Therefore the infimum on the right-hand-side of
(5.14) is attained by either t = 0 or t = ∞ if (φ0, φ1) ∈ R

2
+ − C0. Either one never stops, pays

a penalty for being outside C0 for a while and then enjoys being in this region ad infinitum, or
stops immediately because the cost of the initial penalty is deterrent enough. Since

∫ ∞

0

(
x(t, φ0) + y(t, φ1)−

λ

c

)
dt = φ0 +

1

2
φ1 +

3

2
−

1

2
m−

1

c
, (5.20)

the infimum on the right-hand-side of (5.14) is attained by t = 0 if (φ0, φ1) ∈ P , which in turn
implies that V (φ0, φ1) = 0 for any (φ0, φ1) ∈ P . Observe that, if 0 < c < 2 1−λ

3−m then P = R.
�

Remark 5.2 Observe that if λ ∈ (0, 1) and 2 1−λ
3−m ≤ c ≤ (2−λ)(1−λ)

3−λ−m , then the following line
segment is a subset of the free boundary;

F ,

{
(φ0, φ1) ∈ R

2
+ : φ0 + φ1 −

λ

c
= 0, φ1 ≤ 2

(
−
1− λ

c
+

3−m

2

)}
. (5.21)

This region is in the exit boundary of the stopping region (i.e., the boundary through which the
path t → (x(t, φ0), y(t, φ1)) exits from the stopping region).

Proposition 5.4 Assume that λ ∈ (0, 1) and that

(2− λ)(1 − λ)

3− λ−m
< c < max (2− λ, 1− λ) . (5.22)

Then the region D defined in Proposition 5.2 is a superset of the optimal stopping region.
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Proof: From the assumption on the parameters λ and c it follows that the mean reversion

level M =
(
λ(2−m)
1−λ , λ(m−1)

2−λ

)
of the path t → (x(t, φ0), y(t, φ1)), t ≥ 0, is in the region [0, λ/c] ×

[0, λ/c] − C0. Also, one can easily check that M ∈ l, in which l is as in (5.10). Line l and
the boundary of the region C0 intersect at (φ∗

0, φ
∗
1). Because c > (2 − λ)(1 − λ)/(3 − λ − m),

the equation (as an equation in the t-variable) x(t, 0) = φ∗
0 has a positive solution, t∗ and

y0 = y(−t∗, φ∗
1) > 0. The rest of the proof follows by using the same arguments as in the proof

of Proposition 5.2.

�

Remark 5.3 Observe that if λ ∈ (0, 1) and c satisfies (5.22), then the following line segment is
a subset of the free boundary

A ,

{
(φ0, φ1) ∈ R

2
+ : φ0 + φ1 −

λ

c
= 0, φ1 ≤ λ

(
1−

1− λ

c

)}
. (5.23)

Moreover, this set is a subset of entrance boundary of the stopping region.

Remark 5.4 If the assumptions of Proposition 5.3 are satisfied, then it is optimal to sound
the alarm only at arrival times of the observation. This corresponds to the case when the mean
reversion level of the paths t → (x(t, φ0), y(t, φ1)) is inside the advantageous region C0, which
is defined in (5.8). Otherwise, since the paths of the sufficient statistic, t → Φ̃t, may reach the
stopping region continuously or via jumps, it might be optimal to declare the alarm between two
observations.

We will close this section by proving that the optimal stopping time τ∗ is finite almost surely.

Proposition 5.5 Let η be a positive number such that the region {(φ0, φ1) : φ0 + φ1 ≥ η} is a
subset of the stopping region. (The existence of η is guaranteed by Propositions 5.1-5.4). Let us

denote the hitting time of this region by τu. Then E
φ0,φ1

0 [τu] ≤ η(2 + 1/µ). This implies that τ∗

is finite P0 almost surely.

Proof: Since the compensator of p(dtdy) (defined in (3.4)) is equal to µβ0(y) we can write
the dynamics of Φ̃(0) in (4.6) as

Φ̃
(0)
t∧τu = Φ̃

(0)
0 +

∫ t∧τu

0

{
λ(2−m) + (λ− 1)Φ̃

(0)
t

}
dt+

∫ t∧τu

0
µΦ̃

(0)
t−

∫

y∈Rd

[(
1 +

1

µ

)
r(y)− 1

]
β0(dy)ds

+

∫ t∧τu

0
Φ̃
(0)
t−

∫

y∈Rd

[(
1 +

1

µ

)
r(y)− 1

]
q(dsdy)

= Φ̃
(0)
0 +

∫ t∧τu

0

{
λ(2−m) + λΦ̃

(0)
t

}
ds+

∫ t∧τu

0
Φ̃
(0)
t−

∫

y∈Rd

[(
1 +

1

µ

)
r(y)− 1

]
q(dsdy),

(5.24)

in which q(dtdy) , p(dtdy)− µβ0(y) Here, we have used the fact that
∫
y∈Rd

+

r(y)β0(y) = 1. The
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integral with respect to q(dtdy) is an F martingale under the measure P0, since

E
φ0,φ1

[∫ t∧τu

0
µΦ̃

(0)
t−

∫

y∈Rd

∣∣∣∣
(
1 +

1

µ

)
r(y)− 1

∣∣∣∣β0(dy)ds
]
≤ E

φ0,φ1

0

[∫ t∧τu

0

(
2 +

1

µ

)
Φ̃
(0)
s−ds

]

≤ t

(
2 +

1

µ
η

)
.

Therefore

E
φ0,φ1

0

[
Φ̃
(0)
t∧τu

]
= φ0 + E

φ0,φ1

0

[∫ t∧τu

0

{
λ(2−m) + λΦ̃

(0)
t

}
ds

]
≥ λ(2 −m)Eφ0,φ1

0 [t ∧ τu] .

On the other hand,

Φ̃
(0)
t∧τu ≤ max

(
η,

(
1 +

1

µ

)
r(YNt∧τu

)Φ̃
(0)
t∧τu−

)
≤ η

(
1 +

(
1 +

1

µ

)
r(YNt∧τu

)

)
,

almost surely; therefore

E
φ0,φ1

0 [t ∧ τu] ≤
1

λ(2−m)
E
φ0,φ1

0

[
Φ̃
(0)
t∧τu

]
≤ E

φ0,φ1

0

[
η

(
1 +

(
1 +

1

µ

)
r(Y1)

)]

= η

(
2 +

1

µ

)
.

The result follows after an application of the monotone convergence theorem. �

In what follows we will consider the cases in which the parameters do not satisfy the hypothesis
of Proposition 5.1 and construct a sequence of functions iteratively, using an appropriately
defined functional operator, that converges to the value function exponentially fast.

6 Optimal Stopping Time and Properties of the Value Function

and the Stopping Boundary

The usual starting point to calculate the value function in ( 4.12) and find the optimal stopping
time would be to try to characterize the value function as the unique solution of the free boundary
problem

min{(A− λ)v(ϕ) + g(ϕ),−v(ϕ)} = 0, (6.1)

in which the differential operator is the inifinitesimal generator of the Markov process (Φ̃(0), Φ̃(1))
and whose action on a test function f is given by

Af(φ0, φ1) =
∂f

∂φ0
(φ0, φ1) [λ(2−m) + (λ− 1)φ0] +

∂f

∂φ1
(φ0, φ1) [λ(m− 1) + (λ− 2)φ1]

+ µ

∫

y∈Rd

[
f

((
1 +

1

µ

)
r(y)φ0,

(
1 +

2

µ

)
r(y)φ1

)
− f(φ0, φ1)

]
β0(dy).

(6.2)

The solution of the free boundary problem (6.1) may be identified by using certain boundary
conditions (the smooth fit principle). The smooth fit is expected to fail for (6.1) at the exit
boundary of the stopping region. See e.g. Bayraktar et al. (2005), Bayraktar and Dayanik
(2006) for failure of the smooth fit principle when the infinitesimal generator A is a differential
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delay operator (these papers consider one dimensional free boundary problems). Instead of the
characterization of the value function as a solution of quasi-variational inequalities, we will use a
new characterization of the value function of the optimal stopping problem in (4.12). Specifically,
we will construct a sequence of functions iteratively, using an appropriately defined functional
operator, that converges to the value function exponentially fast. This will let us show that τ∗

in (5.1) is the optimal stopping time. We will also be able to show the concavity of the value
function and the convexity of the free boundary.

6.1 Optimal Stopping with Time Horizon σn

In this section, we will approximate the value function V with a sequence of optimal stopping
problems. Let us denote

Vn(φ0, φ1) , inf
τ∈S

E
φ0,φ1

0

[∫ τ∧σn

0
e−λtg

(
Φ̃
(0)
t , Φ̃

(1)
t

)
dt

]
(6.3)

where (φ0, φ1) ∈ R
2
+, n ∈ N, and σn is the nth jump time of the process X. Observe that

(Vn)n∈N is decreasing and satisfies −1/c < Vn < 0. Since (σn)n≥1 is an almost surely increasing
sequence, (Vn)n≥1 is decreasing. Therefore limn Vn exists. It is also immediate that Vn ≥ V . In
fact we can say more about the limit of the sequence (Vn)n≥1 as the next proposition illustrates.

Proposition 6.1 Vn(φ0, φ1) converges to V uniformly in (φ0, φ1) ∈ R
2
+. In fact the rate of

convergence is exponential as the following equation illustrates:

−
1

c

(
µ

µ+ λ

)n

≥ Vn(φ0, φ1)− V (φ0, φ1) ≥ 0. (6.4)

Proof:

E
φ0,φ1

0

[∫ τ

0
e−λtg

(
Φ̃t

)
dt

]
= E

φ0,φ1

0

[∫ τ∧σn

0
e−λtg

(
Φ̃t

)
dt

]
+ E

φ0,φ1

0

[
1{τ≥σn}

∫ τ

σn

e−λtg(Φ̃t)dt

]

(6.5)

The first term on the right-hand-side of (6.5) is greater than Vn. Since g(·, ·) > −λ/c we can
show that the second term is greater than

−
λ

c
E
φ0,φ1

0

[
1{τ≥σn}

∫ τ

σn

e−λsds

]
≥ −

1

c
E
φ0,φ1

0

[
e−λσn

]
≥ −

1

c

(
µ

λ+ µ

)n

. (6.6)

To show the last inequality we have used the fact that σn is a sum of n independent and identically
distributed exponential random variables with rate µ (i.e. σn has the Erlang distribution). �

Next, we will show that Vn can be determined using an iterative algorithm. To this end we
introduce the following operators acting on bounded Borel functions f : R2

+ → R

Jf(t, φ0, φ1) , E
φ0,φ1

0

[ ∫ t∧σ1

0
e−λsg(Φ̃(0)

s , Φ̃(1)
s )ds + 1{t≥σ1}e

−λσ1f(Φ̃(0)
σ1

, Φ̃(1)
σ1

)

]
, t ∈ [0,∞],

(6.7)

Jtf(φ0, φ1) , inf
s∈[t,∞]

Jf(s, φ0, φ1), t ∈ [0,∞]. (6.8)
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Recall that under P0, σ1 (the first time an observation arrives) has the exponential distribution
with rate µ. Using Fubini’s theorem we can write (6.7) as

Jf(t, φ0, φ1) =

∫ t

0
e−(λ+µ)s (g + µ · Sf) (x(s, φ0), y(s, φ1))ds, t ∈ [0,∞], (6.9)

in which x and y are the functions defined in (4.8) and S is the linear operator

Sf(φ0, φ1) =

∫

Rd

f

((
1 +

1

µ

)
r(y)φ0,

(
1 +

2

µ

)
r(y)φ1

)
β0(dy). (6.10)

Below we list a few useful properties of the operator J0.

Lemma 6.1 For every bounded Borel function f : R2
+ → R, the mapping J0f is bounded. If f

is a concave function, then J0f is also a concave function. If f1 ≤ f2 are real value bounded
Borel functions, then J0f1 ≤ J0f2. That is, the operator J0 preserves boundedness, concavity
and ordering.

Proof: Let us define ‖f‖ , sup(φ0,φ1)∈R2
+
|f(φ0, φ1)| < ∞. Since g(·) ≥ g(0, 0) = λ/c and

‖S(f)‖ ≤ ‖f‖ we can write (6.9) as

Jf(t, φ0, φ1) ≥ −

(
λ

c
+ µ‖f‖

)∫ ∞

0
e−(λ+µ)sds = −

(
λ

c
+ µ‖f‖

)
1

λ+ µ
.

Since we also have J0f(φ0, φ1) ≤ J(0, φ0, φ1) = 0, we obtain

−

(
λ

c
+ µ‖f‖

)
1

λ+ µ
≤ J0f(φ0, φ1) ≤ 0, (6.11)

which proves the first assertion.

The second assertion follows since S(f)(·, ·) defined in (6.10) is concave if f is concave, and
the functions φ0 → x(t, φ0) and φ1 → y(t, φ1) are linear for every t ≥ 0. The preservation of
ordering follows immediately from (6.9). �

Corollary 6.1 Let us define vn : R2
+ → R by

v0 = 0 and vn = J0vn−1. (6.12)

Then, for every n ∈ N, vn is bounded and concave, and −1/c ≤ vn+1 ≤ vn ≤ 0. Therefore
v = limn→∞ vn, exists, and is bounded and concave. Both vn and v are continuous (not only
in the interior of R2

+), they are increasing in each of their arguments, and their left and right
partial derivatives are bounded on every compact subset of R2

+.

Proposition 6.2 For every n ∈ N, vn defined in Corollary 6.1 is equal to Vn of (6.3). For
ε > 0, let us denote

rεn(φ0, φ1) , inf{t ∈ (0,∞] : Jvn(t, (φ0, φ1)) ≤ J0vn(φ0, φ1) + ε}. (6.13)
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And let us define a sequence of stopping times by Sε
1 , rε0(Φ̃) ∧ σ1 and

Sε
n+1 ,

{
r
ε/2
n (Φ̃) if σ1 ≥ r

ε/2
n (Φ̃)

σ1 + S
ε/2
n ◦ θσ1

otherwise.
(6.14)

Here θs is the shift operator on Ω, i.e., Xt ◦ θs = Xs+t. Then Sε
n is ε optimal, i.e.,

E
φ0,φ1

0

[∫ Sε
n

0
e−λtg(Φ̃t)dt

]
≤ vn(φ0, φ1) + ε. (6.15)

6.2 Optimal Stopping Time

Proposition 6.3 τ∗ defined in (5.1) the smallest optimal stopping time for (4.12).

We will divide the proof of this theorem into several lemmas. The following lemma shows
that if there exists an optimal stopping time it is necessarily greater than or equal to τ∗.

Lemma 6.2

V (φ0, φ1) = inf
τ≥τ∗

E
φ0,φ1

0

[∫ τ

0
e−λsg(Φ̃s)ds

]
. (6.16)

Proposition 6.4 We have v(φ0, φ1) = V (φ0, φ1) for every (φ0, φ1) ∈ R
2
+. Moreover, V is the

largest nonpositive solution U of the equation U = J0U .

As an immediate corollary to Propositions 6.1 and 6.4 and Propositions 5.1-5.4, which con-
struct bounds on the optimal stopping region, we can state the following:

Corollary 6.2 Let us define the optimal stopping regions

Γn , {(φ0, φ1) ∈ R
2
+ : vn(φ0, φ1) = 0}, Cn , R

2
+\Γn, n ∈ N, (6.17)

and recall that
Γ = {(φ0, φ1) ∈ R

2
+ : v(φ0, φ1) = 0}, C , R

2
+\Γ. (6.18)

There are decreasing, convex and continuous mappings γn : R+ → R+, n ∈ N, and γ : R+ → R+

such that

Γn = {(φ0, φ1) ∈ R+ : φ1 ≥ γn(φ0)}, ∈ N and Γ = {(φ0, φ1) ∈ R+ : φ1 ≥ γ(φ0)}. (6.19)

The sequence {γn(φ0)}n∈N is increasing and γ(φ0) = lim ↑ γn(φ0) for every φ0 ∈ R+. If there
are paths t → (x(t, φ0), y(t, φ1)), t ≥ 0, (φ0, φ1) ∈ C0, that exit C0, then there exists ξ ∈ [0, λ/c)
(the value of ξ depends on the parameter values) such that γn(φ0) = γ(φ0) = λ/c−φ0 for φ0 ≥ ξ,
i.e., the free boundary coincides with the boundary of the region C0 defined in (5.8). In fact if
(i) λ ≥ 2, or, (ii) λ ∈ [1, 2) and c ≥ 2 − λ, or, (iii) λ ∈ (0, 1) and c ≥ max (2− λ, 1− λ) then
ξ = 0. If (iv) λ ∈ [1, 2) and c ∈ (0, 2 − λ), (v) λ ∈ (0, 1) and (2 − λ)(1 − λ)/(3 − λ − m) <
c < max (2− λ, 1− λ), then ξ = λ(−1 + (2 − λ)/c). If on the other hand, λ ∈ (0, 1) and
c ≥ 2(1− λ)/(3 −m) < c ≤ (2− λ)(1− λ)/(3 − λ−m), then ξ = (2− λ)/c+m− 3.
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Lemma 6.3 Let f : R2
+ 7→ R be a bounded function. For every t ∈ R+ and (φ0, φ1) ∈ R

2
+,

Jtf(φ0, φ1) = Jf(t, (φ0, φ1)) + e−(λ+µ)t J0f
(
x(t, φ0), y(t, φ1))

)
. (6.20)

Remark 6.1 Since V is bounded, and V = J0V by Proposition 6.4, we have

JtV (φ0, φ1) = JV (t, (φ0, φ1)) + e−(λ+µ)t V
(
x(t, φ0), y(t, φ1))

)
, t ∈ R+ (6.21)

for every (φ0, φ1) ∈ R
2
+.

Let us define the F-stopping times

Uε , inf{t ≥ 0 : V (Φ̃t) ≥ −ε}, ε ≥ 0. (6.22)

By Remark 6.1, we have

V
(
Φ̃Uε

)
≥ −ε on the event {Uε < ∞} . (6.23)

Proposition 6.5 Let Mt , e−λtV (Φ̃t) +
∫ t
0 e

−λsg(Φ̃s)ds, t ≥ 0. For every n ∈ N, ε ≥ 0, and

(φ0, φ1) ∈ R
2
+, we have E

φ0,φ1

0 [M0] = E
φ0,φ1

0 [MUε∧σn
], i.e.,

V (φ0, φ1) = E
φ0,φ1

0

[
e−λ(Uε∧σn)V (Φ̃Uε∧σn

) +

∫ Uε∧σn

0
e−λsg(Φ̃s)ds

]
. (6.24)

Proof of Proposition 6.3 First we will show that τ∗ is an optimal stopping time. It is enough
to show that for every ε ≥ 0, the stopping time Uε in (6.22) is an ε-optimal stopping time for
the optimal stopping problem (4.12), i.e.,

E
φ0,φ1

0

[∫ Uε

0
e−λsg(Φ̃s)ds

]
≤ V (φ0, φ1) + ε, for every (φ0, φ1) ∈ R

2
+.

Note that the sequence of random variables

∫ Uε∧σn

0
e−λsg(Φ̃s)ds+ e−λ(Uε∧σn)V (Φ̃Uε∧σn

) ≥ −

∫ ∞

0
e−λs λ

c
ds −

1

c
= −

2

c

is bounded from below. By (6.24) and Fatou’s Lemma, we have

V (φ0, φ1) = lim inf
n→∞

E
φ0,φ1

0

[∫ Uε∧σn

0
e−λsg(Φ̃s)ds + e−λ(Uε∧σn)V (Φ̃Uε∧σn

)

]

≥ E
φ0,φ1

0

[
lim inf
n→∞

(∫ Uε∧σn

0
e−λsg(Φ̃s)ds + e−λ(Uε∧σn)V (Φ̃Uε∧σn

)

)]

= E
φ0,φ1

0

[∫ Uε

0
e−λsg(Φ̃s)ds + 1{Uε<∞}e

−λUεV (Φ̃Uε
)

]

≥ E
φ0,φ1

0

[∫ Uε

0
e−λsg(Φ̃s)ds

]
− ε Eφ0,φ1

0

[
1{Uε<∞}e

−λUε

]
by (6.23)

≥ E
φ0,φ1

0

[∫ Uε

0
e−λsg(Φ̃s)ds

]
− ε
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for every (φ0, φ1) ∈ R
2
+. This shows that Uε is an ε-optimal stopping time.

Now we will show that τ∗ is the smallest optimal stopping time. Let us define

τ̃ ,

{
τ, if τ ≥ τ∗,

τ + τ∗ ◦ θτ , if τ < τ∗.
(6.25)

Then the stopping time τ̃ satisfies

E
φ0,φ1

0

[∫ τ̃

0
e−λsg(Φ̃s)ds

]
= E

φ0,φ1

0

[∫ τ

0
e−λsg(Φ̃s)ds +

∫ τ̃

τ
e−λsg(Φ̃s)ds

]

= E
φ0,φ1

0

[∫ τ

0
e−λsg(Φ̃s)ds + e−λτ

∫ τ∗◦θτ

0
e−λsg(Φ̃s+τ )ds

]

= E
φ0,φ1

0

[∫ τ

0
e−λsg(Φ̃s)ds + e−λτV (Φ̃τ )

]

≤ E
φ0,φ1

0

[∫ τ

0
e−λsg(Φ̃s)ds

]
.

(6.26)

Here the third equality follows from the strong Markov property of the process Φ̃. Now the
proof immediately follows. �.

6.3 Structure of the Optimal Stopping Times

Finally, let us describe here the structure of the optimal stopping times. For this purpose we
will need the following lemma.

Lemma 6.4 Let

rn(φ0, φ1) = inf
{
s ∈ (0,∞] : Jvn

(
s, (φ0, φ1)

)
= J0vn(φ0, φ1)

}
(6.27)

be the same as rεn(φ0, φ1) in Proposition 6.2 with ε = 0. Then

rn(φ0, φ1) = inf
{
t > 0 : vn+1

(
x(t, φ0), y(t, φ1)

)
= 0

}
(inf ∅ ≡ ∞). (6.28)

Proof: Let us fix (φ0, φ1) ∈ R
2
+, and denote rn(φ0, φ1) by rn. We have Jvn(rn, (φ0, φ1)) =

J0vn(φ0, φ1) = Jrnvn(φ0, φ1).

Suppose first that rn < ∞. Since J0vn = vn+1, taking t = rn and w = vn in (6.20) gives

Jvn(rn, (φ0, φ1)) = Jrnvn(φ0, φ1) = Jvn(rn, (φ0, φ1)) + e−(λ+µ)rnvn+1(x(rn, φ0), y(rn, φ1)).

Therefore, vn+1(x(rn, φ0), y(rn, φ1)) = 0.

If 0 < t < rn, then Jvn(t, (φ0, φ1)) > J0vn(φ0, φ1) = Jrnvn(φ0, φ1) = Jtvn(φ0, φ1) since
u 7→ Juvn(φ0, φ1) is nondecreasing. Taking t ∈ (0, rn) and w = vn in (6.20) imply

J0vn(φ0, φ1) = Jtvn(φ0, φ1) = Jvn(t, (φ0, φ1)) + e−(λ+µ)tvn+1(x(t, φ0), y(t, φ1)).

Therefore, vn+1(x(t, φ0), y(t, φ1)) < 0 for every t ∈ (0, rn), and (6.28) follows.
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Suppose now that rn = ∞. Then we have vn+1(x(t, φ0), y(t, φ1)) < 0 for every t ∈ (0,∞) by
the same argument in the last paragraph above. Hence, {t > 0 : vn+1(x(t, φ0), y(t, φ1)) = 0} = ∅,
and (6.28) still holds. �

By Proposition 6.3, the set Γ is the optimal stopping region for the optimal stopping problem
(4.12). Namely, stopping at the first hitting time U0 = inf{t ∈ R+ : Φ̃t ∈ Γ} of the process
Φ̃ = (Φ̃(0), Φ̃(1)) to the set Γ is optimal for (4.12).

Similarly, we shall call each set Γn, n ∈ N a stopping region for the family of the optimal
stopping problems in (6.3). However, unlike the case above, we need the first n stopping regions,
Γ1, . . . ,Γn, in order to describe an optimal stopping time for the optimal stopping problem in
(6.3) (the optimal stopping times are not hitting times of a certain set). Using Corollary 6.4, the
optimal stopping time Sn ≡ S0

n in Proposition 6.2 for Vn of (6.3) may be described as follows:
Stop if the process Φ̃ hits Γn before X jumps. If X jumps before Φ̃ reaches Γn, then wait, and
stop if Φ̃ hits Γn−1 before the next jump of X, and so on. If the rule is not met before (n− 1)st
jump of X, then stop at the earliest of the hitting time of Γ1 and the next jump time of X.

7 Conclusion

We have solved a change detection problem for a compound Poisson process in which the intensity
and the jump size change at the same time but the intensity changes to a random variable with
a known distribution. This problem becomes an optimal stopping problem for a Markovian
sufficient statistic. We have analyzed a special case of this problem, in which the rate of the
arrivals moves up to one of two possible values, and the Markovian sufficient statistic is two-
dimensional, in more detail. We have shown that the intuition that a decision would sound the
alarm only at the times when it observes an arrival does not in general hold, see Remark 5.1.
This intuition becomes relevant only when the disorder intensity and delay penalty are small.
Performing a sample path analysis we have been able to find the optimal stopping time exactly
for most of the range of parameters, and tight upper and lower bounds for the rest of the
parameter range. This work has applications in insurance risk, in which the subject Poisson
process can be viewed as the claim arrivals process for an insurance company.
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