
                               
                            

               

Vector and matrix apportionment problems
and separable convex integer optimization
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Abstract The problems of (bi-)proportional rounding of a nonnegative vector or
matrix, resp., are written as particular separable convex integer minimization pro-
blems. Allowing any convex (separable) objective function we use the notions of
vector and matrix apportionment problems. As a broader class of problems we consi-
der separable convex integer minimization under linear equality restrictions Ax = b
with any totally unimodular coefficient matrix A. By the total unimodularity Fenchel
duality applies, despite the integer restrictions of the variables. The biproportional
algorithm of Balinski and Demange (Math Program 45:193–210, 1989) is genera-
lized and derives from the dual optimization problem. Also, a primal augmentation
algorithm is stated. Finally, for the smaller class of matrix apportionment problems we
discuss the alternating scaling algorithm, which is a discrete variant of the well-known
Iterative Proportional Fitting procedure.
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1 Introduction

A separable objective function is of the form

F(x) =
∑

e∈E

fe(xe),

where x = (xe)e∈E ∈ R
E is a (column) vector variable whose components we label,

for convenience, by the elements e of some finite set E , and fe (for e ∈ E) are real
functions of a real variable. By Z we denote the set of all integers, and by Z

E the
set of all integer vectors in R

E . Let µ = (µe)e∈E ∈ Z
E be a positive vector, i.e. its

components are positive integers, which will define a componentwise upper bound
for the vector variable x . We assume that each function fe is a convex function on the
interval [ 0, µe].

Let A be a given totally unimodular V × E matrix, where V is another finite set (so
the rows of A are labelled by the elements v ∈ V and the columns of A are labelled
by the elements e ∈ E). Recall that total unimodularity of A means that all square
submatrices of A have determinants −1, 0, or +1. In particular, all the entries of A
are in {−1, 0,+1}. Let b ∈ Z

V be given such that linear system

Ax = b, 0 ≤ x ≤ µ, (1.1)

has a solution for x ∈ R
E and hence also a solution x (0) ∈ Z

E (cf. Schrijver 1999,
Theorem 19.3). Note that ‘≤’ between vectors stands for the usual componentwise
semi-ordering. So 0 ≤ x ≤ µ means 0 ≤ xe ≤ µe for all e ∈ E . We will consider the
integer extremum problem,

minimize F(x) =
∑

e∈E

fe(xe) (1.2)

subject to x = (xe)e∈E ∈ Z
E , 0 ≤ x ≤ µ, Ax = b. (1.3)

Clearly, only the values of fe at the integers points in {0, 1, . . . , µe} enter into the
problem, and the convexity of fe enters only by its Z-convexity (cf. Hemmeke 2003),
i.e. the increments� fe(n) = fe(n)− fe(n −1) are nondecreasing in n ∈ {1, . . . , µe}.
For technical reasons we extend the definition of the increments to n = 0 and n =
µe + 1 by

� fe(n) =
⎧
⎨

⎩

−∞, if n = 0,
fe(n) − fe(n − 1), if 1 ≤ n ≤ µe,

+∞, if n = µe + 1.
(1.4)

So, without loss of generality, we may assume the convex functions fe to be piecewise
linear,

fe(t)= fe(n−1)+� fe(n) (t − (n − 1)) , if n−1 ≤ t ≤ n and n ∈ {1, . . . , µe}.
(1.5)

In fact, since the slopes � fe(n) are nondecreasing in n, the function fe from (1.5) is
convex on [ 0, µe]. Two special cases are of particular interest.
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Vector apportionment problem
A simple special case is given when V is a one-point set, E = {1, . . . , p}, and
A = [1, . . . , 1]. The contraints in (1.3) then read as

x = (x1, . . . , x p)
′ ∈ Z

p, 0 ≤ x ≤ µ,

p∑

j=1

x j = h (1.6)

for a given positive integer h, the “house size”. Trivially, consistency of (1.1) means
here that h ≤ ∑p

j=1 µ j . A problem of minimizing (1.2) (with E = {1, . . . , p}) subject
to (1.6) will be referred to as a vector apportionment problem. For this problem, but
without upper bounds µ j , the optimal solutions were characterized in Saaty (1970,
p. 184), and for special functions f j the problem was treated by Te Riele (1978) and
Thépot (1986).

The problem of proportional rounding of a positive vector can be written as a vector
apportionment problem (cf. Gaffke and Pukelsheim 2007), which we scetch next. Let
s(n), n = 1, 2, 3, . . . , be a given sequence of “sign-posts” defining the rounding law,

0 < s(1) < s(2) < s(3) < . . . , and n − 1 ≤ s(n) ≤ n for all n ≥ 1

(actually, we thereby restrict to the case of a pervious rounding law in that s(1) > 0).
For a given nonnegative real t , a nonnegative integer n is a rounding of t , for short:
n ∈ round(t), iff s(n) ≤ t ≤ s(n + 1), where s(0) := 0. Let w = (w1, . . . , wp)

′
be a positive real vector and h a positive integer. A nonnegative integer vector x =
(x1, . . . , x p)

′ is said to solve the proportional rounding problem PR(w, h) iff there
exists a real ρ > 0 such that

x j ∈ round(ρ w j ) for all j = 1, . . . , p, and
p∑

j=1

x j = h.

By definition of “round” this means, setting λ = log ρ, that the nonnegative integer
vector x and the real scalar λ satisfy

log
s(x j )

w j
≤ λ ≤ log

s(x j + 1)

w j
for all j = 1, . . . , p, and

p∑

j=1

x j = h.

By Theorem 2.3 in Sect. 2, the solutions of PR(w, h) coincide with the optimal solu-
tions of the vector apportionment problem with functions

f j (n) =
n∑

k=1

log
s(k)

w j
(n = 0, 1, 2, . . .), 1 ≤ j ≤ p,

whence f j (0) = 0 and � f j (n) = log
s(n)

w j
(n = 1, 2, . . .), 1 ≤ j ≤ p. ��

   



136                      

Matrix apportionment problem
Another particular (but more difficult) case is given when V = {R1, . . . , Rk,C1, . . . ,

C�}, a set of size k + �, where k ≥ 2 and � ≥ 2, E is a nonempty subset of the set of
all (ordered) pairs (i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ �, and A = (av,e)v∈V, e∈E is given by

av,e =
⎧
⎨

⎩

1, if v = Ri and e = (i, j) for some j .
1, if v = C j and e = (i, j) for some i .
0, else.

(1.7)

That is, A is the vertex-edge incidence matrix of a bipartite (undirected) graph with
vertices R1, . . . , Rk and C1, . . . ,C�, and there is an edge between Ri and C j iff
(i, j) ∈ E . Thus A is totally unimodular (cf. Schrijver 1999, Sect. 19.3, Example 1).
The contraints in (1.3) turn into

x = (xi, j )(i, j)∈E ∈ Z
E , 0 ≤ x ≤ µ, xi,+ = ri ∀ i, x+, j = c j ∀ j, (1.8)

where we have used the notation

xi,+ =
∑

j : (i, j)∈E

xi, j , x+, j =
∑

i : (i, j)∈E

xi, j ,

and where b = (r1, . . . , rk, c1, . . . , c�)′, the ri and c j being given positive integers.
Of course, it is assumed that

∑k
i=1 ri = ∑�

j=1 c j = h, the house size. A problem of
minimizing (1.2) under (1.8) will be referred to as a matrix apportionment problem.

The problem of biproportional rounding of a nonnegative matrix can be written as
a matrix apportionment problem (cf. Gaffke and Pukelsheim 2007), which we scetch
next. As above, let s(n), n = 1, 2, 3, . . . , be a given sequence of “sign-posts” defining
the rounding law. Let w = (

wi, j
)

1≤i≤k
1≤ j≤�

be a given nonnegative real matrix.

A nonnegative integer matrix x = (
xi, j

)
1≤i≤k
1≤ j≤�

is said to solve the biproportional

rounding problem BPR(w, r, c) (where r = (r1, . . . , rk)
′ and c = (c1, . . . , c�)′), iff

there exist positive reals ρ1, . . . , ρk and γ1, . . . , γ� such that

xi, j ∈ round
(
ρiwi, jγ j

)
for all i, j , and

�∑

j=1

xi. j = ri ∀ i,
k∑

i=1

xi, j = c j ∀ j.

Setting αi = log ρi and β j = log γ j , and E = {(i, j) : wi, j > 0}, the condition
rewrites as

log
s(xi, j )

wi, j
≤ αi + β j ≤ log

s(xi, j + 1)

wi, j
for all (i, j) ∈ E and

xi,+ = ri ∀ i, x+, j = c j ∀ j, and xi, j = 0 ∀ (i, j) 	∈ E .

By Theorem 2.3 in Sect. 2, the solutions of BPR(w, r, c) coincide with the optimal
solutions of the matrix apportionment problem with functions
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fi, j (n) =
n∑

k=1

log
s(k)

wi, j
(n = 0, 1, 2, . . .), (i, j) ∈ E,

whence fi, j (0) = 0 and � fi, j (n) = log
s(n)

wi, j
, (n = 1, 2, . . .), (i, j) ∈ E .

��
There is a considerable body of literature on separable convex programming (inte-
ger or continuous) with linear constraints, providing efficient algorithms for solu-
tion (cf. Hochbaum and Shantikumar 1990). These results are still to be exploited
for (bi)proportional rounding purposes. More general nonlinear integer optimization
problems are considered in Hemmecke (2003) and in Murota et al. (2004). We will
concentrate on separable convex integer programming problems under totally unimo-
dular linear equations. The main goal of our paper is to show by duality theory, how the
Balinski–Demange algorithm and the alternating scaling procedure (both originally
stated for biproportional rounding problems) emerge as dual algorithms, while they
are generalized to broader problem classes. Besides that, a primal algorithm emerges
which is based on an augmentation oracle. Possibly, the primal algorithm can be wor-
ked out to become polynomially efficient by using ideas and results of Hochbaum
and Shantikumar (1990), Schulz and Weismantel (1999), and De Loera et al. (2006);
however, this is not a topic of the present paper.

Our paper is organized as follows. In Sect. 2 a characterization of the optimal solu-
tions to the primal integer problem (1.2)–(1.3) is given offering a basis for the primal
algorithm outlined in Sect. 3. A duality result is derived in Sect. 4, and a conceptual
dual algorithm is formulated in Sect. 5. In Sects. 6 and 7 we concentrate on the two
instances mentioned above, vector and matrix apportionment problems. For vector
apportionment problems, the dual algorithm coincides with the one of Happacher and
Pukelsheim (1996, p. 378; 2000, p. 154), and Dorfleitner and Klein (1999). For matrix
apportionment problems, the dual algorithm is akin to the one described by Balinski
and Demange (1989), and by Balinski and Rachev (1997, Sect. 5), see also Balinski
(2006) and Rote and Zachariasen (2007). Section 8 is concerned with an alternative
dual method, the alternating scaling algorithm, which requires relatively low computa-
tional effort. However, in general it may fail to find the optimum due to nonsmoothness
of the dual objective function. Despite this deficiency, the alternating scaling method
is a useful heuristics which provides a nearly optimal solution, and in many instances
even an optimal solution.

2 The primal problem

We address problem (1.2)–(1.3) under the assumptions stated in Sect. 1. For the (totally
unimodular) matrix A its nullspace and the orthogonal complement of the latter, which
is the range of the transposed A′, will be of particular interest,

N (A) =
{

x ∈ R
E : Ax = 0

}
,

R(A′) =
{

y ∈ R
E : ∃ λ ∈ R

V with y = A′λ
}
.
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The support of a vector x = (xe)e∈E ∈ R
E is defined by

supp(x) = { e ∈ E : xe 	= 0 }.

Below we will have to further classify the supporting indices of a vector x = (xe)e∈E ∈
R

E by introducing

E+(x) = {e ∈ E : xe > 0 } and E−(x) = {e ∈ E : xe < 0 }.

Let L be a linear subspace of R
E . An elementary vector of L is defined to be a nonzero

vector z ∈ L which has minimal support within L \ {0}, i.e. 0 	= z ∈ L and for all
0 	= x ∈ L :

supp(x) ⊆ supp(z) implies supp(x) = supp(z),

cf. Rockafellar (1972, pp. 203–204). The elementary vectors of N (A) are called
circuits of A in Sturmfels and Thomas (1997), p. 364. From Lemma 2.10 of that paper
it is not difficult to see that, by the total unimodularity of the matrix A, the following
holds.

Lemma 2.1 If z is an elementary vector of N (A) then, for some positive scalar γ ,
the vector γ z has all components in {−1, 0,+1}.
We will call an elementary vector of N (A) which has all components equal to ±1
or zero an elementary sign vector of N (A). Using the results of Graver (1975) it can
be shown that the elementary sign vectors of N (A) constitute the Graver basis of A
which is defined as follows (and actually refers to any integer matrix A). The Graver
basis of A consists of all vectors which are minimal in the set of all nonzero integer
vectors of N (A) w.r.t. the semi-ordering “�” defined by:

x = (xe)e∈E � y = (ye)e∈E ⇐⇒ xe ye ≥ 0 and |xe| ≤ |ye| for all e ∈ E

(cf. Hemmecke 2003, p. 1). A slightly weaker notion we will also use is that of a sign
vector of N (A), which is any nonzero vector of N (A) having all components equal
to ±1 or zero. For a sign vector z = (ze)e∈E of N (A) we obviously have

E+(z) = {e ∈ E : ze = +1 } and E−(z) = {e ∈ E : ze = −1 }.

Lemma 2.2 Let ce ∈ R ∪ {−∞} and de ∈ R ∪ {+∞} with ce ≤ de for all e ∈ E be
given. Then one and only one of the following two alternatives (a) and (b) holds:

(a) There exists a vector y = (ye)e∈E ∈ R(A′) with ce ≤ ye ≤ de for all e ∈ E.
(b) There exists a sign vector z of N (A) such that

∑

e∈E−(z)
ce >

∑

e∈E+(z)
de.

Moreover, condition (b) is equivalent to the following condition (b∗) :
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(b∗) There exists an elementary sign vector z of N (A) such that

∑

e∈E−(z)
ce >

∑

e∈E+(z)
de.

��

The result of Lemma 2.2 is a fairly direct consequence from Rockafellar (1972,
Theorem 22.6), and our Lemma 2.1 (see the proof of Theorem 7.1 in Gaffke and
Pukelsheim 2007). It can also be derived from strong duality in linear programming.

Note that the inequality in (b) and (b∗) of Lemma 2.2 in particular implies that
ce > −∞ for all e ∈ E−(z) and de < +∞ for all e ∈ E+(z).

Our next theorem gives two equivalent characterizations of an optimal solution to
problem (1.2)–(1.3). They are not new: the first characterization shows the elementary
sign vectors of N (A) to constitute a universal test set, which follows from more general
results of Hemmecke (2003). The second characterization is of dual (Lagrangian)
type; for the more special case of a network matrix A (node-arc incidence matrix) this
coincides with a result in Sun et al. (1993, Proposition 2.3). However, for the reader’s
convenience, we will give a short proof of our theorem by means of Lemmas 2.1 and
2.2. Recall the definition in (1.4) of the increments � fe(n), n ∈ {0, 1, . . . , µe + 1},
which are nondecreasing in n.

Theorem 2.3 Let x∗ = (
x∗

e

)
e∈E be a feasible solution to problem (1.2)–(1.3) (i.e. x∗

satisfies (1.3)). The following three conditions (i), (ii), and (iii) are equivalent:

(i) x∗ is an optimal solution to problem (1.2)–(1.3).
(ii) For all elementary sign vectors z of N (A) with E+(z) ⊆ {e : x∗

e < µe} and
E−(z) ⊆ {e : x∗

e > 0} one has F(x∗) ≤ F(x∗ + z).
(iii) There exists a vector y∗ = (y∗

e )e∈E ∈ R(A′) such that

� fe(x
∗
e ) ≤ y∗

e ≤ � fe(x
∗
e + 1) ∀ e ∈ E .

Proof (i) �⇒ (ii) Assume (i). Let z = (ze)e∈E be an elementary sign vector of
N (A) such that E+(z) ⊆ {e : x∗

e < µe} and E−(z) ⊆ {e : x∗
e > 0}. Then x∗ + z is

again feasible for problem (1.2)–(1.3), and thus F(x∗) ≤ F(x∗ + z).
(ii) �⇒ (iii) Assume (ii). Let z = (ze)e∈E be an elementary sign vector of N (A)
such that E+(z) ⊆ {e : x∗

e < µe} and E−(z) ⊆ {e : x∗
e > 0}. Then,

0 ≤ F(x∗ + z) − F(x∗) =
∑

e∈E

(
fe(x

∗
e + ze)− fe(x

∗
e )

)

=
∑

e∈E+(z)

(
fe(x

∗
e + 1)− fe(x

∗
e )

) +
∑

e∈E−(z)

(
fe(x

∗
e − 1)− fe(x

∗
e )

)

=
∑

e∈E+(z)
� fe(x

∗
e + 1) −

∑

e∈E−(z)
� fe(x

∗
e ),
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which shows that ∑

e∈E−(z)
� fe(x

∗
e ) ≤

∑

e∈E+(z)
� fe(x

∗
e + 1). (2.1)

Inequality (2.1) remains true for any elementary sign vector z of N (A), since if one
or both of the inclusions E+(z) ⊆ {e : x∗

e < µe} and E−(z) ⊆ {e : x∗
e > 0} are not

satisfied then the right-hand side of (2.1) becomes +∞ or the left hand side of (2.1)
becomes −∞. Now Lemma 2.2 applies to

ce = � fe(x
∗
e ) and de = � fe(x

∗
e + 1) (e ∈ E)

and shows that alternative (a) of that lemma must hold, which is condition (iii).
(iii) �⇒ (i) Assume (iii) for some y∗ ∈ R(A′). Let x = (xe)e∈E be any feasible
point to problem (1.2)–(1.3). By the convexity of the functions fe we have for every
e ∈ E ,

fe(xe)− fe(x
∗
e ) ≥ � fe(x

∗
e + 1) (xe − x∗

e ) ≥ y∗
e (xe − x∗

e ), if xe ≥ x∗
e ,

fe(xe)− fe(x
∗
e ) ≥ � fe(x

∗
e ) (xe − x∗

e ) ≥ y∗
e (xe − x∗

e ), if xe < x∗
e .

Summing over e ∈ E , and observing that y∗ = A′λ∗ for some λ∗ ∈ R
V and Ax =

Ax∗ = b, we obtain

F(x) − F(x∗) ≥ (A′λ∗)′(x − x∗) = λ∗′
(Ax − Ax∗) = 0.

Thus, F(x∗) ≤ F(x) for every feasible point x to problem (1.2)–(1.3). ��

3 Primal augmentation algorithm

Suppose that we have an algorithm, let us call it an Oracle X, which decides between
the alternatives (a) and (b) of Lemma 2.2. More precisely, for any given input values
ce and de (e ∈ E), as in Lemma 2.2, suppose that Oracle X either returns a vector
y ∈ R(A′) with ce ≤ ye ≤ de ∀ e ∈ E , or it returns a sign vector z of N (A) such that

∑

e∈E−(z)
ce >

∑

e∈E+(z)
de.

By linear programming methods it is possible to construct an Oracle X of polynomially
(in #V and #E) bounded running time. For vector and matrix apportionment problems
specific Oracles X will be given in Sects. 6 and 7.

An Oracle X provides an augmentation algorithm for problem (1.2)–(1.3) : if x =
(xe)e∈E is a feasible point, then we apply the oracle to

ce = � fe(xe) and de = � fe(xe + 1) ∀ e ∈ E .
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If the oracle yields a point y ∈ R(A′) satisfying

ce ≤ ye ≤ de ∀ e ∈ E,

then, by Theorem 2.3, x is optimal. If the oracle yields a sign vector z = (ze)e∈E of
N (A) such that

∑

e∈E−(z)
ce >

∑

e∈E+(z)
de,

then the new point x̃ = x + z is again feasible and F (̃x) < F(x), since

F(x)− F (̃x) =
∑

e∈E−(z)
� fe(xe)−

∑

e∈E+(z)
� fe(xe + 1)

=
∑

e∈E−(z)
ce −

∑

e∈E+(z)
de > 0.

4 The dual problem

Strong duality of convex programming applies to the primal problem (1.2)–(1.3),
despite the integer restriction in (1.3). This is due to the total unimodularity of the
matrix A. For, as pointed out in Sect. 1, the (convex) functions fe may be taken to be
the piecewise linear functions from (1.5). Doing so, we consider the relaxed version
of the primal problem by removing the integer restriction,

minimize F(x) =
∑

e∈E

fe(xe) (4.1)

subject to x = (xe)e∈E ∈ R
E , 0 ≤ x ≤ µ, Ax = b, (4.2)

which is a convex separable piecewise-linear program as studied in Fourer (1985).
In fact, by the total unimodularity of A (and since b and µ are integer vectors), an
optimal solution to the relaxed problem (4.1)–(4.2) is close to an optimal solution to
the integer problem (1.2)–(1.3), and the two problems share the same optimal value.
So, the integer problem and the relaxed version are nearly equivalent. This is shown
by the following lemma.

Lemma 4.1 Let fe (e ∈ E) be the piecewise linear convex functions from (1.5). If x∗
is an optimal solution to the relaxed problem (4.1)–(4.2) then there exists a rounding
of the noninteger components of x∗ to one of the neighbouring integers such that the
obtained (rounded) point x∗∗ is again an optimal solution to problem (4.1)–(4.2) and
thus also an optimal solution to the primal integer problem (1.2)–(1.3).

Proof Let x∗ = (x∗
e )e∈E be an optimal solution to problem (4.1)–(4.2) (which exists by

compactness of the feasible region (4.2) and by continuity of the objective function F).
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Let a∗
e = �x∗

e � (the greatest integer not exceeding x∗
e ), ξ∗

e = x∗
e − a∗

e , a∗ = (a∗
e )e∈E ,

and ξ∗ = (ξ∗
e )e∈E . Then ξ∗ belongs to the polytope defined by

P = {
ξ ∈ R

E : 0 ≤ ξ ≤ σ, Aξ = d
}
,

where σ = (σe)e∈E and d are given by

σe =
{

1, if a∗
e < x∗

e
0, if a∗

e = x∗
e
, d = b − Aa∗.

Note that d has integer components. Since A is totally unimodular, each vertex of the
polytope P is an integer vector (cf. Schrijver 1999, Theorem 19.3), and thus a vector
of zeros and ones. The function ξ �−→ F(a∗ + ξ) is linear on P and therefore attains
its minimum at some vertex of P . So there is a vector ξ∗∗ of zeros and ones in P such
that

F(a∗ + ξ∗∗) ≤ F(a∗ + ξ∗) = F(x∗).

Hence x∗∗ = a∗ + ξ∗∗ is also an optimal solution to problem (4.1)–(4.2) and x∗∗ is
an integer vector. ��
Consider the conjugate function of the piecewise linear convex function fe,

ge(t) = max { ξ t − fe(ξ) : 0 ≤ ξ ≤ µe}
= max { n t − fe(n) : n = 0, 1, . . . , µe} ∀ t ∈ R. (4.3)

More explicitely: ge is a convex piecewise-linear function on R whose breakpoints are
the slopes of fe and whose slopes are the breakpoints of fe (cf. Fourer 1985, Sect. 4),

ge(t) = n t − fe(n), if t ∈ Ie(n) and n ∈ {0, 1, . . . , µe}, (4.4)

with intervals Ie(n) =
⎧
⎨

⎩

(−∞, � fe(1) ], if n = 0,
[� fe(n), � fe(n + 1) ], if 1 ≤ n < µe,

[� fe(µe), ∞), if n = µe.
(4.5)

The dual objective function is given by (cf. Fourer 1985, Sect. 5),

G(λ) = b′λ −
∑

e∈E

ge(ye), where y = (ye)e∈E = A′λ, ∀ λ ∈ R
V (4.6)

and the dual problem is to maximize G(λ) over λ ∈ R
V . Note that G(λ) depends on

λ only through y = A′λ ∈ R(A′), since b = Ax (0) for some x (0) ∈ R
E and hence

b′λ = x (0)
′
y. Also, by (4.4), we may write G as

G(λ) = (b − Aν)′λ + F(ν), with ν = (νe)e∈E such that

νe ∈ {0, 1, . . . , µe} and ye ∈ Ie(νe) ∀ e ∈ E (where y = A′λ). (4.7)
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Now, strong duality can directly be verified:

Theorem 4.2 The minimum value min F(x) of the primal problem (1.2)–(1.3) equals
the maximum value max G(λ) of the dual problem and that maximum value is attained.
If x∗ is a point satisfying (1.3) and λ∗ ∈ R

V , then a necessary and sufficient condition
for x∗ to be an optimal solution to problem (1.2)–(1.3) and λ∗ to be a maximizer of G
is that y∗ = A′λ∗ satisfies

� fe(x
∗
e ) ≤ y∗

e ≤ � fe(x
∗
e + 1) ∀ e ∈ E .

Proof Let x be a feasible point to problem (1.2)–(1.3) and let λ ∈ R
V , y = A′λ. By

(4.3) and (4.4)–(4.5), for any e ∈ E ,

ge(ye) ≥ xe ye − fe(xe)

with equality if and only if � fe(xe) ≤ ye ≤ � fe(xe + 1). Hence, by (4.6),

G(λ) ≤ b′λ − x ′y + F(x)

with equality if and only if

� fe(xe) ≤ ye ≤ � fe(xe + 1) ∀ e ∈ E . (4.8)

But x ′y = x ′ A′λ = (Ax)′λ = b′λ, and we have thus obtained: G(λ) ≤ F(x) with
equality if and only if (4.8) holds. Together with Theorem 2.3 the result follows. ��
The dual algorithm for maximizing G(λ) to be established below utilizes that, by (4.7),
the function G(λ) is linear on each polyhedral subset

�(ν) = {
λ ∈ R

V : (A′λ)e ∈ Ie(νe) ∀ e ∈ E
}

for any fixed ν = (νe)e∈E , νe ∈ {0, 1, . . . , µe} (e ∈ E). Solving the linear program of
maximizing G(λ) over�(ν) for a fixed ν will produce a solution λ̂, with ŷe = (A′̂λ)e
hitting the left or the right boundary of Ie(νe) for some (or several) e ∈ E . If e ∈ E and
ŷe equals the left boundary of Ie(νe), then we are free to replace νe by νe − 1. If e ∈ E
and ŷe equals the right boundary of Ie(νe), then we are free to replace νe by νe + 1.
The goal is to assign these changes of the νe in such a way that the (integer) vector

θ = θ(ν) = b − Aν

decreases in its l1-norm, δ(θ) = ∑
v∈V |θv|. Then, by repeating the procedure, we will

end up with a vector ν∗ of integers ν∗
e ∈ {0, 1, . . . , µe} (e ∈ E), such that θ∗ = 0, i.e.

Aν∗ = b, and a vector λ∗ ∈ �(ν∗). That is, ν∗ is feasible for the primal problem (1.2)–
(1.3) and G(λ∗) = F(ν∗), hence ν∗ and λ∗ are optimal solutions to the primal and the
dual problem, resp. In fact, the goal can be achieved, in principle, as we show next.
Moreover, it turns out that in each linear programming step (for fixed ν) it suffices to
compute a weak Pareto solution λ̂ rather than an optimal solution to the linear program
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maximize θ(ν)′λ subject to λ ∈ �(ν).

By a weak Pareto solution we mean the following.

Definition 4.3 Let θ = (θv)v∈V ∈ R
V be a given nonzero vector and � ⊆ R

V a
given nonempty subset. Consider the problem

maximize θ ′λ subject to λ ∈ �. (4.9)

Define V + = {v ∈ V : θv > 0} and V − = {v ∈ V : θv < 0}. A point λ̂ = (̂λv)v∈V ∈
� is said to be a weak Pareto solution to (4.9) iff there is no λ = (λv)v∈V ∈ � such
that

λv > λ̂v ∀ v ∈ V + and λv < λ̂v ∀ v ∈ V −.

��
Lemma 4.4 Let θ = (θv)v∈V ∈ R

V be a nonzero vector, and let ce ∈ R ∪ {−∞},
de ∈ R ∪ {+∞} with ce ≤ de for all e ∈ E. Consider the linear program

maximize θ ′λ subject to ce ≤ ye ≤ de ∀ e ∈ E, where y = A′λ. (4.10)

As in Definition 4.3 we denote

V + = {v ∈ V : θv > 0}, V − = {v ∈ V : θv < 0}, and also V 0 = {v ∈ V : θv = 0}.

Let λ̂ be a feasible point to (4.10), and ŷ = A′̂λ. Define E= = {e ∈ E : ce = de},
and

E+(̂λ) = {e ∈ E\E= : ŷe = de} , E−(̂λ) = {e ∈ E\E= : ŷe = ce},
and E0(̂λ) = { e ∈ E\E= : ce < ŷe < de}.

Then: λ̂ is a weak Pareto solution to (4.10) if and only if there exists a vector σ =
(σe)e∈E with components σe ∈ {−1, 0,+1} (for all e ∈ E), and such that:

σe ≥ 0 ∀ e ∈ E+(̂λ), σe ≤ 0 ∀ e ∈ E−(̂λ), σe = 0 ∀ e ∈ E0(̂λ);
the vector Aσ = a = (av)v∈V is nonzero, av ∈ {−1, 0,+1} ∀ v ∈ V ,

and av ≥ 0 ∀ v ∈ V +, av ≤ 0 ∀ v ∈ V −, av = 0 ∀ v ∈ V 0.

Proof The vector λ̂ is not a weak Pareto solution to (4.10) if and only if there exists a
vector ξ = (ξv)v∈V such that, denoting η = (ηe)e∈E = A′ξ ,

ξv > 0 ∀ v ∈ V +, ξv < 0 ∀ v ∈ V −,
ηe ≤ 0 ∀ e ∈ E+(̂λ), ηe ≥ 0 ∀ e ∈ E−(̂λ), ηe = 0 ∀ e ∈ E=.

This can also be expressed by saying that λ̂ is not a weak Pareto solution to (4.10) if
and only if the following condition (a) holds.
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(a) There exists a vector

(
ξ

η

)
∈ R

( [
IV

A′
])

such that ξv ∈ ( 0, ∞) ∀ v ∈ V +, ξv ∈ (−∞, 0 ) ∀ v ∈ V −, ξv ∈ R ∀ v ∈ V 0,

ηe ∈ (−∞, 0 ] ∀ e ∈ E+(̂λ), ηe ∈ [ 0, ∞) ∀ e ∈ E−(̂λ), ηe ∈ {0} ∀ e ∈ E=,
ηe ∈ R ∀ e ∈ E0(̂λ).

So, by Theorem 22.6 in Rockafellar (1972), the vector λ̂ is a weak Pareto solution
to (4.10) if and only if the alternative condition (b) holds.

(b) There exists an elementary vector

(
a
ω

)
of N ( [IV , A] ), where a = (av)v∈V

and ω = (ωe)e∈E , such that

∑

v∈V +
av ( 0, ∞) +

∑

v∈V −
av (−∞, 0 ) +

∑

v∈V 0

av R +
∑

e∈E+ (̂λ)
ωe (−∞, 0 ]

+
∑

e∈E− (̂λ)
ωe [ 0, ∞) +

∑

e∈E=
ωe {0} +

∑

e∈E0 (̂λ)

ωe R > 0. (4.11)

This is converted into the format stated in the assertion. Namely (4.11) means

av ≥ 0 ∀ v ∈ V +, av ≤ 0 ∀ v ∈ V −, av = 0 ∀ v ∈ V 0,

ωe ≤ 0 ∀ e ∈ E+(̂λ), ωe ≥ 0 ∀ e ∈ E−(̂λ), ωe = 0 ∀ e ∈ E0(̂λ),

and the vector a = (av)v∈V is nonzero.

Since A is totally unimodular, so is the matrix [IV , A] (cf. Schrijver 1999, p. 267).

Hence, by Lemma 2.1, in condition (b) the elementary vector

(
a
ω

)
of N ( [IV , A] )

can be chosen to have all its components in {−1, 0,+1}. Furthermore, by

0 = [IV , A]

(
a
ω

)
= a + Aω,

and taking σ = −ω, we have a = Aσ . Now condition (b) emerges in the required
format. ��
Remark Below, we will mostly be concerned with a linear program (4.10) whose
maximum value is finite, i.e. the feasible region of (4.10) is nonempty and the objective
linear function is bounded above on that region. Then, necessarily, θ ∈ R(A). For,
suppose θ 	∈ R(A). Then θ = θ (1) + θ (2) with θ (1) ∈ R(A) and θ (2) ∈ N (A′),
θ (2) 	= 0. Choose any feasible point λ to (4.10). Then, for an arbitrary scalar t > 0,
the point λ+ tθ (2) is again feasible and

θ ′ (λ+ tθ (2)) = θ ′λ + t θ (2)
′
θ (2) −→ ∞ for t → ∞,

which is a contradiction.
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5 Dual algorithm

Suppose that we have an algorithm, we call it an Oracle Y, which achieves the follo-
wing.

Oracle Y
Let a problem (4.10) be given (with θ 	= 0) such that its maximum value is finite. Let
a feasible point λ be given. Then Oracle Y returns a weak Pareto solution λ̂ to (4.10)
and a vector σ = (σe)e∈E according to Lemma 4.4.

By linear programming methods it should be possible to construct an Oracle Y with
polynomially (in #E and #V ) bounded running time. For vector and matrix appor-
tionment problems specific Oracles Y will be described in Sects. 6 and 7. However,
the dual algorithm below (based on an Oracle Y) for solving the dual and the primal
problem of Theorem 4.2 will call Oracle Y up to δ(b − Aν0) times, where ν0 is deter-
mined by the starting point λ0. So the method will benefit from a foregoing heuristics,
as the alternating scaling algorithm in case of a matrix apportionment problem (see
Sect. 8), which provides a starting point λ0 such that the l1-distance δ(b − Aν0) is
small or moderate.

Conceptual dual algorithm (needs an Oracle Y)

(o) Start with any λ ∈ R
V . Let y = (ye)e∈E = A′λ. For each e ∈ E compute a

νe ∈ {0, 1, . . . , µe} such that ye ∈ Ie(νe), and let ν = (νe)e∈E and θ = b − Aν.
(i) If θ = 0 then λ and ν are optimal solutions to the dual and the primal problem,
resp. Otherwise (θ 	= 0) go to (ii).
(ii) Apply Oracle Y to problem (4.10) with ce and de being the left and the right
boundary point, resp., of Ie(νe) (e ∈ E). So we get a weak Pareto solution λ̂ to (4.10)
and a vector σ = (σe)e∈E according to Lemma 4.4. Set ŷ = A′̂λ, ν̂ = ν + σ , and
θ̂ = b − Aν̂. By the properties of σ we have

ν̂e ∈ {0, 1, . . . , µe} and ŷe ∈ Ie (̂νe) ∀ e ∈ E,

and moreover, since θ = b − Aν and θ̂ = θ − a, where a = (av)v∈V = Aσ :

δ(θ̂) =
∑

v∈V

|θ̂v| =
∑

v∈V +
(θv − av) +

∑

v∈V −
(av − θv)

=
∑

v∈V

|θv| −
∑

v∈V

|av| ≤
∑

v∈V

|θv| − 1 = δ(θ)− 1.

Replace λ by λ̂, ν by ν̂, θ by θ̂ and go to step (i).
Since δ(θ), the l1-norm of the integer vector θ , is decreased each time by (ii) the

algorithm will terminate after finitely many cycles with optimal solutions to the dual
and the primal problem.
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6 Vector apportionment problems

Let V be a one-point set, E = {1, . . . , p}, where p ≥ 2, and A = [1, . . . , 1], i.e. the
primal problem reads as

minimize F(x) =
p∑

j=1

f j (x j ) (6.1)

subject to x = (x1, . . . , x p)
′ ∈ Z

p, 0 ≤ x ≤ µ,

p∑

j=1

x j = h, (6.2)

where µ = (µ1, . . . , µp)
′ is a given positive integer vector and h (the house size),

is a given positive integer such that
∑p

j=1 µ j ≥ h. Obviously, the elementary sign
vectors z of N (A) are those having exactly one component equal to +1, exactly one
component equal to −1, and the remaining components equal to zero. So conditions
(ii) and (iii) of Theorem 2.3, characterizing the optimality of a feasible point x∗, say
the same, namely:

max
1≤i≤p

� fi (x
∗
i ) ≤ min

1≤ j≤p
� f j (x

∗
j + 1),

cp. Saaty (1970, p. 184). Let c j ∈ R ∪ {−∞} and d j ∈ R ∪ {∞} with c j ≤ d j

(1 ≤ j ≤ p), be given. An Oracle X which decides between alternatives (a) and (b)
of Lemma 2.2 is easily established:

Oracle X
Compute max1≤i≤p ci and min1≤ j≤p d j ; if the former does not exceed the latter then
choose a real λ between the max and the min, and y = (λ, . . . λ)′ satisfies (a) of
Lemma 2.2. Otherwise, find an i0 and a j0 such that ci0 > d j0 ; then the elementary
sign vector z of N (A) with zi0 = −1, z j0 = 1, and z j = 0 else, satisfies (b) of
Lemma 2.2. ��

The dual objective function G from Sect. 4 is a function of a scalar variable λ ∈ R

and (4.7) rewrites as

G(λ) =
⎛

⎝h −
p∑

j=1

ν j

⎞

⎠ λ + F(ν),

if λ ∈ I j (ν j ) and ν j ∈ {0, 1, . . . , µ j }, ∀ j = 1, . . . , p.

An Oracle Y is simple to establish since θ and λ in (4.10) are scalars, and the linear
program (4.10) becomes:

maximize θ λ s.t. c j ≤ λ ≤ d j ∀ j = 1, . . . , p,
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where θ is a given nonzero real number and c j , d j (1 ≤ j ≤ p), are as above. Assume
that the maximum value of that linear program is finite, i.e.

max
1≤i≤p

ci ≤ min
1≤ j≤p

d j ,

min
1≤ j≤p

d j < +∞ if θ > 0, and max
1≤i≤p

ci > −∞ if θ < 0.

Oracle Y
A weak Pareto solution is the same as an optimal solution, which is given by

λ̂ =
{

d j0 = min j d j , if θ > 0,
ci0 = maxi ci , if θ < 0,

and a vector σ = (σ1, . . . , σp)
′ according to Lemma 4.4 is given by

σ j0 = +1 and σ j = 0 ∀ j 	= j0, in case θ > 0,

σi0 = −1 and σ j = 0 ∀ j 	= i0, in case θ < 0.

��
The resulting dual algorithm was studied by Happacher and Pukelsheim (1996, p. 378)
and Dorfleitner and Klein (1999), and implemented in the Java program Bazi
(www.uni-augsburg.de/bazi). A favourable choice of the initial value for λ was sug-
gested by Happacher and Pukelsheim (2000, p. 154).

7 Matrix apportionment problems

Let V = {R1, . . . , Rk,C1, . . . ,C�} a set of k + � elements, where k ≥ 2 and � ≥ 2,
and let E be a given nonempty subset of the set of all (ordered) pairs (i, j) (1 ≤
i ≤ k, 1 ≤ j ≤ �). That is, (V, E) constitutes a bipartite (undirected) graph. Let
A = (av,e)v∈V, e∈E be its vertex-edge incidence matrix, whose entries av,e are defined
by (1.7). Let b = (r1, . . . , rk, c1, . . . , c�)′ and µ = (µi, j )(i, j)∈E be given (column)
vectors of positive integers ri , c j , and µi, j , such that the feasible region (1.8) is
nonempty (which implies, of course, that

∑k
i=1 ri = ∑�

j=1 c j = h, the house size).
The elementary sign vectors z = (zi, j )(i, j)∈E of N (A) correspond to the elementary
cycles in the bipartite graph (V, E) (cf. Rockafellar 1972, p. 204). Therefore we will
call those vectors z elementary cycle vectors, the precise definition of which is as
follows. A vector z = (zi, j )(i, j)∈E is an elementary cycle vector iff there are an
integer n ≥ 2, pairwise distinct i0, i1, . . . , in−1 ∈ {1, . . . , k}, and pairwise distinct
j1, . . . , jn ∈ {1, . . . , �} such that, with in := i0 and some s ∈ {±1}, one has

(im, jm+1) ∈ E (0 ≤ m ≤ n − 1) (im, jm) ∈ E (1 ≤ m ≤ n), and

zi, j =
⎧
⎨

⎩

s, if i = im , j = jm+1, 0 ≤ m ≤ n − 1
−s, if i = im , j = jm , 1 ≤ m ≤ n

0, else
∀ (i, j) ∈ E . (7.1)
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Here we write vectors λ ∈ R
V as

λ = (α′, β ′)′, where α = (α1, . . . , αk)
′ ∈ R

k and β = (β1, . . . , β�)
′ ∈ R

�.

The linear subspace R(A′) of R
E consists of all vectors y = (yi, j )(i, j)∈E such that

yi, j = αi + β j ∀ (i, j) ∈ E for some α1, . . . , αk, β1, . . . , β� ∈ R.

Let ci, j ∈ R ∪ {−∞} and di, j ∈ R ∪ {+∞} with ci, j ≤ di, j , for all (i, j) ∈ E , be
given. The alternatives (a) and (b∗) of Lemma 2.2 rewrite as follows.

(a) There exist real numbers α1, . . . , αk and β1, . . . , β� such that

ci, j ≤ αi + β j ≤ di, j ∀ (i, j) ∈ E .

(b∗) There exists an elementary cycle vector z = (zi, j )(i, j)∈E such that

∑

(i, j)∈E−(z)
ci, j >

∑

(i, j)∈E+(z)
di, j ,

where E+(z) = {(i, j) ∈ E : zi, j =+1} and E−(z) = {(i, j) ∈ E : zi, j =−1}.
The Oracle X described next is an adapted version of the Compatible Tension Algo-
rithm from graph theory (cf. Berge 1991, pp. 94–96).

Oracle X
Given: ci, j ∈ R ∪ {−∞} and di, j ∈ R ∪ {+∞} with ci, j ≤ di, j , for all (i, j) ∈ E .
(o) Start with any α1, . . . , αk, β1, . . . , β� ∈ R such that αi +β j ≤ di, j ∀ (i, j) ∈ E .
Let y = (αi + β j )(i, j)∈E .
(i) Consider the set of noncompatible components of y,

Enc(y) = {
(i, j) ∈ E : αi + β j < ci, j

}
.

If Enc(y) = ∅ then y satisfies alternative (a).
Otherwise, choose an (i0, j0) ∈ Enc(y) and go to (ii).
(ii) Apply the following labelling process to the elements of V = {R1, . . . , Rk,C1, . . . ,

C�}, where, after the initial step (L0), the steps (L1) and (L2) are cycled through until
Ri0 is labelled or no further labelling is possible.

(L0) Label C j0 .
(L1) If (i, j) ∈ E such that C j is labelled, Ri is unlabelled, and αi + β j = di, j then

Ri is labelled and gets the label C j .
(L2) If (i, j) ∈ E such that Ri is labelled, C j is unlabelled, and αi +β j ≤ ci, j , then

C j is labelled and gets the label Ri .

Let I = {i : Ri is labelled } and I = {1, . . . , k}\I ;
J = { j : C j is labelled} and J = {1, . . . , �}\J.

If i0 ∈ I , i.e. Ri0 is labelled, then go to (iii). Otherwise, i.e. Ri0 is unlabelled, then go
to (iv).
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(iii) (if i0 ∈ I ). Backtracking from Ri0 to C j0 according to labels yields a finite
sequence

i0, j1, i1, j2, . . . , in−1, jn = j0

for some n ≥ 2, pairwise distinct i0, i1, . . . , in−1 ∈ I , pairwise distinct j1, . . . , jn ∈ J ,
and such that Rim is labelled by C jm+1 (0 ≤ m ≤ n − 1) and C jm is labelled by Rim

(1 ≤ m ≤ n − 1). That is, we have (im, jm+1) ∈ E (0 ≤ m ≤ n − 1), (im, jm) ∈ E
(1 ≤ m ≤ n − 1), and

αim + β jm+1 = dim , jm+1 (0 ≤ m ≤ n − 1), αim + β jm ≤ cim , jm (1 ≤ m ≤ n − 1);

we also have (i0, j0) ∈ E and αi0 + β j0 < ci0, j0 . Define the elementary cycle vector
z = (

zi, j
)
(i, j)∈E by (7.1) with s = +1 (and in := i0). Then,

∑

(i, j)∈E−(z)
ci, j =

n∑

m=1

cim , jm >

n∑

m=1

(
αim + β jm

)
(note: in = i0, jn = j0),

∑

(i, j)∈E+(z)
di, j =

n−1∑

m=0

dim , jm+1 =
n−1∑

m=0

(
αim + β jm+1

) =
n∑

m=1

(
αim + β jm

)
,

and hence

∑

(i, j)∈E−(z)
ci, j >

∑

(i, j)∈E+(z)
di, j .

So the elementary cycle vector z satisfies alternative (b∗).
(iv) (if i0 ∈ I ). By (L1) and (L2) of the labelling process from (ii) we have, for
(i, j) ∈ E ,

αi + β j < di, j if i ∈ I , j ∈ J , and αi + β j > ci, j if i ∈ I, j ∈ J .

Define ε1 = min{ di, j − (αi + β j ) : (i, j) ∈ E, i ∈ I , j ∈ J } and ε2 =
min{αi + β j − ci, j : (i, j) ∈ E, i ∈ I, j ∈ J }, with the usual conventions
+∞ − γ = +∞, γ − (−∞) = +∞ (for any real number γ ) and min ∅ = +∞.
Clearly, 0 < ε1, ε2 ≤ +∞. If ε1 < +∞ or ε2 < +∞ then define ε = min{ε1, ε2},
Otherwise (if ε1 = ε2 = +∞) define ε = ci0, j0 −(αi0 +β j0). Define for all 1 ≤ i ≤ k,
1 ≤ j ≤ �,

α̃i =
{
αi − ε, if i ∈ I

αi , if i ∈ I
, β̃ j =

{
β j + ε, if j ∈ J

β j , if j ∈ J
,
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and ỹ = (̃αi + β̃ j )(i, j)∈E . Then, for all (i, j) ∈ E ,

α̃i + β̃ j =
⎧
⎨

⎩

αi + β j − ε, if (i, j) ∈ I × J ,
αi + β j + ε, if (i, j) ∈ I × J ,
αi + β j , else.

So, by the choice of ε, the vector ỹ = (̃αi + β̃ j )(i, j)∈E again satisfies α̃i + β̃ j ≤ di, j

∀ (i, j) ∈ E and, moreover,

Enc(ỹ) = {
(i, j) ∈ E : α̃i + β̃ j < ci, j

} ⊆ Enc(y).

If (i0, j0) 	∈ Enc(ỹ) then replace the αi , the β j , and y by the α̃i , the β̃ j , and ỹ, resp.,
and return to step (i). Otherwise (if (i0, j0) ∈ Enc(ỹ)) then replace the αi , the β j , and
y by the α̃i , the β̃ j , and ỹ, resp., and return to step (ii) (note that the labelling process
in (ii) needs not be started afresh, but the labelling obtained previously may be kept
and additional labelling occurs due to the construction of the new point ỹ). ��
Note: A rough analysis shows that Oracle X has running time O

(
(k + �) (#E)2

)
. ��

Let us consider the dual problem. The objective function G from (4.7) turns into

G(α, β) =
k∑

i=1

(ri − νi,+)αi +
�∑

j=1

(c j − ν+, j )β j + F(ν),

if αi + β j ∈ Ii, j (νi, j ) and νi, j ∈ {0, 1, . . . , µi, j } ∀ (i, j) ∈ E , (7.2)

where for ν = (νi, j )(i, j)∈E we have denoted νi,+ = ∑
j : (i, j)∈E νi, j and ν+, j =∑

i : (i, j)∈E νi, j , and the intervals Ii, j (νi, j ) are from (4.5). For establishing an Oracle Y,
we firstly describe the weak Pareto solutions to a linear program (4.10) for the present
situation.

Lemma 7.1 Let θ = (φ′, ψ ′)′ ∈ R
k+�, θ 	= 0, where φ = (φ1, . . . , φk)

′ ∈ R
k

and ψ = (ψ1, . . . , ψ�)
′ ∈ R

�, and let ci, j ∈ R ∪ {−∞} and di, j ∈ R ∪ {+∞}
with ci, j ≤ di, j for all (i, j) ∈ E. Consider the linear program in the variable
λ = (α′, β ′)′ ∈ R

k+�,

maximize θ ′λ = φ′α + ψ ′β subject to ci, j ≤ αi + β j ≤ di, j ∀ (i, j) ∈ E .

Define I + = {i : φi > 0}, I − = {i : φi < 0}, J+ = { j : ψ j > 0}, and
J− = { j : ψ j < 0}. Let λ̂ = (̂α′, β̂ ′)′ be a feasible point to the linear program.
Define a directed graph D(̂λ) with vertex set V = {R1, . . . , Rk,C1, . . . ,C�} and
whose arcs are given as follows:
There is an arc with initial point Ri and end point C j iff (i, j) ∈ E and α̂i + β̂ j = di, j ;

there is an arc with initial point C j and end point Ri iff (i, j) ∈ E and α̂i + β̂ j = ci, j .
Then: λ̂ is a weak Pareto solution to the linear program if and only if in D(̂λ) there
is a directed path from some vertex of {Ri : i ∈ I +} ∪ {C j : j ∈ J−} to some vertex
of {Ri : i ∈ I −} ∪ {C j : j ∈ J+}.
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Proof 1. Assume that λ̂ is a weak Pareto solution. Suppose that there does not exist
a pair v,w of vertices v ∈ {Ri : i ∈ I +} ∪ {C j : j ∈ J−} and w ∈ {Ri : i ∈
I −}∪{C j : j ∈ J+} such that there is a directed path in D(̂λ) fromv tow. Consider the
subset V1 of all verticesw ∈ V such thatw ∈ {Ri : i ∈ I +}∪{C j : j ∈ J−} or there
exists a directed path in D(̂λ) from some vertex v ∈ {Ri : i ∈ I +} ∪ {C j : j ∈ J−}
to w. So, in particular, Ri 	∈ V1 for all i ∈ I − and C j 	∈ V1 for all j ∈ J+. Moreover,
we have:

If (i, j) ∈ E , Ri ∈ V1, and C j 	∈ V1 then α̂i + β̂ j < di, j ;

if (i, j) ∈ E , Ri 	∈ V1, and C j ∈ V1 then α̂i + β̂ j > ci, j .

So we can choose a positive real ε such that

ε ≤ di, j − (̂αi + β̂ j ) for all (i, j) ∈ E with Ri ∈ V1 and C j 	∈ V1,

ε ≤ α̂i + β̂ j − ci, j for all (i, j) ∈ E with Ri 	∈ V1 and C j ∈ V1.

Define a new point λ = (α′, β ′)′ ∈ R
k+� by

αi =
{
α̂i + ε/2, if Ri ∈ V1
α̂i − ε/2, else

, β j =
{
β̂ j − ε/2, if C j ∈ V1,
β̂ j + ε/2, else.

Then, by the choice of ε, the point λ is feasible to the linear program. Moreover,
consider the positive components of the coefficient vector θ which are φi for i ∈ I +
andψ j for j ∈ J+, and consider the negative components of θ which are φi for i ∈ I −
and ψ j for j ∈ J−. If i ∈ I + then Ri ∈ V1 and hence αi = α̂i + ε/2 > α̂i ; if j ∈ J+
then C j 	∈ V1 and hence β j = β̂ j + ε/2 > β̂ j ; if i ∈ I − then Ri 	∈ V1 and hence
αi = α̂i − ε/2 < α̂i ; if j ∈ J− then C j ∈ V1 and hence β j = β̃ j − ε/2 < β̂ j . This
shows that the point λ̂ is not a weak Pareto solution, contradicting the assumption.
2. Assume that there exist v ∈ {Ri : i ∈ I +} ∪ {C j : j ∈ J−} and w ∈ {Ri : i ∈
I −} ∪ {C j : j ∈ J+} and a directed path in D(̂λ) from v to w. We distinguish the
four cases:

(i) v = Rp and w = Rq for some p ∈ I + and q ∈ I −;
(ii) v = Rp and w = Cq for some p ∈ I + and q ∈ J+;

(iii) v = C p and w = Rq for some p ∈ J− and q ∈ I −;
(iv) v = C p and w = Cq for some p ∈ J− and q ∈ J+.

In either cases we can conclude that λ̂ is a weak Pareto solution; examplarily we show
this for case (i), while the other three cases are handled analogously.
Case (i): There is a finite sequence Ri1 ,C j1 , Ri2 , . . . ,C jn−1 , Rin , where n ≥ 2, such
that i1 = p, in = q, and there is an arc in D(̂λ) from each vertex of the sequence
(except the last) to its successor. That is,

(im, jm) ∈ E and α̂im + β̂ jm = dim , jm , 1 ≤ m ≤ n − 1,

(im+1, jm) ∈ E and α̂im+1 + β̂ jm = cim+1, jm , 1 ≤ m ≤ n − 1.
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For any point λ = (α′, β ′)′ feasible to the linear program we have thus

αp − αq =
n−1∑

m=1

(αim + β jm ) −
n−1∑

m=1

(αim+1 + β jm ) ≤
n−1∑

m=1

dim , jm −
n−1∑

m=1

cim+1, jm ,

and equality holds for λ = λ̂. So there cannot exist a feasible point λ such thatαp > α̂p

and αq < α̂q , and therefore λ̂ is a weak Pareto solution (recall that φp is a positive
component of θ and φq is a negative component of θ ). ��
The Oracle Y given next achieves the following.
Given a linear program as in Lemma 7.1 which is assumed to have a finite maximum
value, and given a feasible point λ = (α′, β ′)′ to that linear program. Then, a weak
Pareto solution λ̂ = (̂α′, β̂ ′)′ to the linear program and a directed path in D(̂λ)
according to Lemma 7.1 is found. From this a vector σ = (σi, j )(i, j)∈E according to
Lemma 4.4. is obtained by

σi, j =
⎧
⎨

⎩

+1, if the path contains an arc from Ri to C j

−1, if the path contains an arc from C j to Ri

0, else
∀ (i, j) ∈ E . (7.3)

Remark If the maximum value of the linear program from Lemma 7.1 is finite, then:

I + ∪ J− 	= ∅ and I − ∪ J+ 	= ∅, (7.4)

which can be seen as follows. By the final remark in Sect. 4, θ = (φ′, ψ ′)′ ∈ R(A),
and hence

∑k
i=1 φi = ∑�

j=1 ψ j , which we can rewrite as

∑

I +
φi −

∑

J−
ψ j =

∑

J+
ψ j −

∑

I −
φi ,

and that value is positive since θ 	= 0. Hence (7.4) follows. ��
Oracle Y
Given the linear program from Lemma 7.1 which is assumed to have a finite maximum
value, and given a feasible point λ = (α′, β ′)′ to that program. Let I +, I −, J+, and
J− be defined as in Lemma 7.1.
(i) Apply the following labelling process to the elements of V = {R1, . . . , Rk,C1, . . . ,

C�}, where, after the initial step (L0), the steps (L1) and (L2) are cycled through until
some Ri∗ with i∗ ∈ I − is labelled, or some C j∗ with j∗ ∈ J+ is labelled, or no further
labelling is possible.

(L0) Label all Ri for i ∈ I + and label all C j for j ∈ J−.
(L1) If (i, j) ∈ E is such that Ri is labelled, C j is unlabelled, and αi + β j = di, j

then C j is labelled and gets the label Ri .
(L2) If (i, j) ∈ E is such that C j is labelled, Ri is unlabelled, and αi + β j = ci, j

then Ri is labelled and gets the label C j .
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Let I = {i : Ri is labelled } and I = {1, . . . , k}\I ;
J = { j : C j is labelled } and J = {1, . . . , �}\J.

If I ∩ I − 	= ∅ or J ∩ J+ 	= ∅ then go to (ii). Otherwise go to (iii).
(ii) (if I ∩ I − 	= ∅ or J ∩ J+ 	= ∅)
Backtracking from some Ri∗ with i∗ ∈ I ∩ I − or from some C j∗ with j∗ ∈ J ∩ J+
according to labels yields a directed path in D(λ) from some vertex v ∈ {Ri : i ∈
I +} ∪ {C j : j ∈ J−} to that vertexw = Ri∗ orw = C j∗ . By Lemma 7.1, λ is a weak
Pareto solution. Choose σ by (7.3).
(iii) (if I ∩ I − = J ∩ J+ = ∅). By (L1) and (L2) from (ii) we have:

If (i, j) ∈ E , i ∈ I , j ∈ J then αi + β j < di. j ;

if (i, j) ∈ E , i ∈ I , j ∈ J then αi + β j > ci. j .

Let ε1 = min
{

di, j − (αi + β j ) : (i, j) ∈ E, i ∈ I, j ∈ J
}

and
ε2 = min

{
αi + β j − ci, j : (i, j) ∈ E, i ∈ I , j ∈ J

}
,

where the usual conventions +∞ − t = +∞, t − (−∞) = +∞ (for a real t), and
min ∅ = +∞ are used. Clearly, 0 < ε1 ≤ +∞ and 0 < ε2 ≤ +∞. Not both of them
are equal to +∞ which can be seen as follows. Suppose that ε1 = ε2 = +∞. For an
arbitrary real ε > 0 define α̃ = (̃α1, . . . , α̃k) and β̃ = (β̃1, . . . , β̃�) by

α̃i =
{
αi + ε, if i ∈ I
αi , if i ∈ I

, and β̃ j =
{
β j − ε, if j ∈ J
β j , if j ∈ J

. (7.5)

Then

α̃i + β̃ j =
⎧
⎨

⎩

αi + β j + ε, if (i, j) ∈ I × J
αi + β j − ε, if (i, j) ∈ I × J
αi + β j , else

∀ (i, j) ∈ E, (7.6)

and thus λ̃ = (̃α′, β̃ ′)′ is again feasible to the linear program. Now,

θ ′̃λ = φ′α̃ + ψ ′β̃ = θ ′λ + ε

(
∑

I

φi −
∑

J

ψ j

)
.

Since I ∩ I − = ∅ and J ∩ J+ = ∅ (and I + ⊆ I , J− ⊆ J ), we have

∑

I

φi −
∑

J

ψ j =
∑

I +
φi −

∑

J−
ψ j ,

and that value is positive by (7.4). So θ ′̃λ gets arbitrarily large by choosing ε arbitrarily
large, which is a contradiction. Thus, ε1 < +∞ or ε2 < +∞. Let ε = min{ε1, ε2},
and again define α̃ and β̃ by (7.5) which entails (7.6). By the choice of ε the point λ̃ =
(̃α′, β̃ ′)′ is again feasible to the linear program and, moreover, there is an (i, j) ∈ E
with i ∈ I , j ∈ J , and α̃i + β̃ j = di, j , or there is an (i, j) ∈ E with i ∈ I , j ∈ J , and
α̃i + β̃ j = ci, j . Replace α and β by α̃ and β̃, resp., and return to step (i) (note that
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the labelling process needs not be started afresh, but the previously obtained labelling
may be kept and additional labelling occurs). ��
Note: A rough analysis shows that Oracle Y has running time O ((k + �) #E ). ��
The Oracle Y and the resulting dual algorithm include (and generalize) the method
for biproportional rounding of matrices of Balinski and Demange (1989, pp. 205ff.),
see also Balinski and Rachev (1997, pp. 20ff.), and Rote and Zachariasen (2007).

8 Dual alternating scaling algorithm

Let us consider still another approach for matrix apportionment problems, to maximize
the dual objective function G(α, β) from (7.2) over (α, β) ∈ R

k+�. The approach is
simple as well as tempting: use the alternating maximization procedure, i.e. maximize
first over α for a fixed β, then maximize over β while keeping the before obtained
α fixed, and so on. The name “alternating scaling algorithm” comes from bipropor-
tional rounding in its original multiplicative formulation (cf. Gaffke and Pukelsheim
2007), which includes the variables αi and β j via multipliers ρi = exp(αi ) and γ j =
exp(β j ).

As we will show next, each maximization “half-step” consists in solving k or �,
resp., vector apportionment problems and their duals as discussed in Sect. 6. However,
the function G is nondifferentiable, and thus the sequence of points (α, β) generated
might not converge to a maximizer of G (cf. Bazaraa et al. 1993, pp. 285–287). In
fact, we shall demonstrate by example that the alternating maximization procedure
may stall at a nonoptimal point (α(0), β(0)). Despite this deficiency, the method can be
used as a first optimization part to approach the optimum, then followed by the dual
algorithm from Sects. 5 and 7.

Let us examine the half-steps of the alternating procedure in detail. We restrict atten-
tion to a first half-step, a second half-step is analogous. Let β = (β1, . . . , β�)

′ ∈ R
� be

considered fixed and consider G(α, β) from (7.2) as a function of α = (α1, . . . , αk)
′ ∈

R
k . For each i ∈ {1, . . . , k}, we denote E(i) = { j : (i, j) ∈ E} which is nonempty

since the feasible region (1.8) is assumed to be nonempty. Writing

�∑

j=1

(c j − ν+, j )β j = c′β −
k∑

i=1

∑

j∈E(i)

νi, jβ j ,

and observing the definition (4.5) of the intervals Ii, j (νi, j ), we can rewrite (7.2) as

G(α, β) = c′β +
k∑

i=1

⎡

⎣

⎛

⎝ri −
∑

j∈E(i)

νi, j

⎞

⎠αi +
∑

j∈E(i)

(
fi, j (νi, j )− νi, jβ j

)
⎤

⎦,

if � fi, j (νi, j )− β j ≤ αi ≤ � fi, j (νi, j + 1)− β j

and νi, j ∈ {0, 1, . . . , µi, j } ∀ (i, j) ∈ E .
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Introducing the functions

fi, j,β(t) = fi, j (t) − β j t, t ∈ [ 0, µi, j ] (i, j) ∈ E,

we have � fi, j,β(n) = � fi, j (n)− β j for all n = 0, 1, . . . , µi, j + 1, and thus

G(α, β) = c′β +
k∑

i=1

Gi,β(αi ), where for each i = 1, . . . , k :

Gi,β(αi ) =
⎛

⎝ri −
∑

j∈E(i)

νi, j

⎞

⎠αi +
∑

j∈E(i)

fi, j,β(νi, j ),

if � fi, j,β(νi, j ) ≤ αi ≤ � fi, j,β(νi, j + 1), νi, j ∈ {0, 1, . . . , µi, j } ∀ j ∈ E(i).

We see, firstly, that maximizing G(α, β) over α ∈ R
k can be done by maximizing

separately for each i = 1, . . . , k the function Gi,β(αi ) over αi ∈ R, and secondly, in
view of Sect. 6, that for each i the function Gi,β is just the dual objective function to
the vector apportionment problem,

minimize Fi,β(xi ) =
∑

j∈E(i)

fi, j,β(xi, j )

subject to xi = (xi, j ) j∈E(i) ∈ Z
E(i), 0 ≤ xi, j ≤ µi, j ∀ j ∈ E(i),

∑

j∈E(i)

xi, j = ri

(note that i is considered fixed). So, solving each of the k vector apportionment pro-
blems, yields a maximizerα of G( ·, β) along with an x = (xi, j )(i, j)∈E ∈ Z

E satisfying
0 ≤ x ≤ µ, one half of the equality restrictions, i.e. xi,+ = ri for all i , and

� fi, j (xi, j ) ≤ αi + β j ≤ � fi, j (xi, j + 1) ∀ (i, j) ∈ E . (8.1)

Analogously, a second half-step of maximizing G(α, β) over β ∈ R
� for a fixed α

(obtained from the foregoing first half-step) means to solve � vector apportionment
problems. This yields a maximizing β and (another) integer point x = (xi, j )i, j∈E ∈
Z

E satisfying 0 ≤ x ≤ µ, the other half of the equality restrictions, i.e. x+, j = c j for
all j , and (8.1). If it happens that the point x obtained in a half-step satisfies all the
equality restrictions, xi,+ = ri for all i and x+, j = c j for all j , then by Theorem 4.2
the point x and the point (α, β) at hand are optimal solutions to the primal and the dual
problem, resp. However, as remarked above, that occurrence cannot be guaranteed in
general. Below, we will give a negative example, built by an artificial instance of
biproportional rounding.

For biproportional rounding of a positive matrix W = (wi, j ) 1≤i≤k
1≤ j≤�

the functions

fi. j , 1 ≤ i ≤ k, 1 ≤ j ≤ �, are such that

fi, j (0) = 0, and � fi, j (n) = log
s(n)

wi, j
(n = 1, . . . , µi, j ),
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where 0 < s(1) < s(2) < s(3) < · · · is a given sign-post sequence. The primal
problem is to

minimize
k∑

i=1

�∑

j=1

fi, j (xi, j )

subject to xi, j ∈ Z, xi, j ≥ 0 ∀ i, j, xi,+ = ri ∀ i, x+, j = c j ∀ j,

where r1, . . . , rk and c1, . . . , c� are given positive integers. Note that here no up-
per bound µ occurs, i.e. µ may be any integer vector whose components are large
enough to define redundant upper bounds. For popular sign-post sequences the alter-
nating algorithm was implemented in the Java program Bazi (www.uni-augsburg.de/
bazi), along with a hybrid algorithm where the alternating method is followed by the
Balinski–Demange method.

Example 8.1 Consider the biproportional rounding problem with k = � = 5, ri = 1
(1 ≤ i ≤ 5), c j = 1 (1 ≤ j ≤ 5), and

W =

⎛

⎜⎜⎜⎜⎝

s(1) s(1) ε ε ε

s(1) s(1) ε ε ε

s(1) s(1) ε ε ε

ε ε s(1) s(1) s(1)
ε ε s(1) s(1) s(1)

⎞

⎟⎟⎟⎟⎠
for some 0 < ε < s(1).

We start the dual alternating method with initial pointsα(0)=β(0)= 0 = (0, 0, 0, 0, 0).
The first half-step of maximizing G(α, 0) over α has solutions α(1) characterized by
(8.1) with some nonnegative integer point x = (xi, j )1≤i, j≤5 such that xi,+ = 1 for
all i = 1, . . . , 5, i.e. x is a 0-1-matrix with precisely one 1 in each row. Now (8.1)
rewrites as

max
1≤ j≤5

log
s(xi, j )

wi, j
≤ α

(1)
i ≤ min

1≤ j≤5
log

s(xi, j + 1)

wi, j
for all i = 1, . . . , 5,

where we define s(0) = 0 and log(0) = −∞. We conclude that α(1) = 0 (uniquely),
and x is such that

x =
(

B1 03×3
02×2 B2

)
(8.2)

with any 0–1-matrices B1 (3 × 2) and B2 (2 × 3) which have precisely one 1 entry in
each row.

The second half-step is thus to maximize G(0, β) over β. The solutions β(1) are
characterized by (8.1) with some nonnegative integer point x = (xi, j )1≤i, j≤5 such
that x+, j = 1 for all j = 1, . . . , 5, i.e. x is a 0-1-matrix with precisely one 1 in each
column. Since (8.1) rewrites as

max
1≤i≤5

log
s(xi, j )

wi, j
≤ β

(1)
j ≤ min

1≤i≤5
log

s(xi, j + 1)

wi, j
for all j = 1, . . . , 5,
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we conclude that β(1) = 0 (uniquely), and x is such that

x =
(

C1 03×3
02×2 C2

)
(8.3)

with any 0–1-matrices C1 (3 × 2) and C2 (2 × 3) with precisely one 1 entry in each
column.

So the procedure stalls at the point (α, β) = (0, 0), which is nonoptimal: for any
possible choices of B1, B2 the matrix x from (8.2) does not satisfy the column sums
equations, and for any possible choice of C1,C2 the matrix x from (8.3). does not
satisfy the row sums equations. So there is no feasible point x∗ to the primal problem
such that (8.1) holds for (α, β) = (0, 0). Thus, by Theorem 4.2, the point (0, 0) is
nonoptimal.

For example, for standard rounding, i.e. s(n) = n − 1
2 (n = 1, 2, 3, . . .), and

ε = 0.2 an optimal dual solution (α∗, β∗) is given by

α∗
1 = α∗

2 = α∗
3 = log(2.5), α∗

4 = α∗
5 = 0,

β∗
1 = β∗

2 = log(0.4), β∗
3 = β∗

4 = β∗
5 = 0,

and one optimal primal solution (among a total of 36 optimal solutions) is given by

x∗ =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

⎞

⎟⎟⎟⎟⎠
,

which can easily be verified by checking the optimality condition (8.1) for the (feasible)
pair x∗ and (α∗, β∗).
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