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Abstract 
 

We consider the single-facility location problem with mixed norms, i.e. the problem of 
minimizing the sum of the distances from a point to a set of fixed points in Rn, where each 
distance can be measured according  to a different p-norm. 

We show how this problem can be expressed into a structured conic format by decomposing 
the nonlinear components of the objective into a series of constraints involving three-
dimensional cones. 

Using the availability of a self-concordant barrier for these cones, we present a polynomial-
time algorithm (a long-step path-following interior-point scheme) to solve the problem up to 
a given accuracy. 

Finally, we report computational results for this algorithm and compare with standard 
nonlinear optimization solvers applied to this problem. 
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1 Introduction

The single-facility location problem with mixed norms belongs to the class
of convex optimization problems, i.e. problems of the form

min f(x)
x ∈ S ⊆ Rn,

where S is a convex set and f is a convex function defined on S. Con-
vex optimization problems have certain advantages over general nonlinear
problems, such as the fact that local minima are always also global minima,
a rich duality theory and - most importantly - efficient iterative methods,
called interior-point methods, able to solve a large class of convex problems
in polynomial time.

These methods were initiated by the work of Karmarkar [13] for the
linear programming problem. Nesterov and Nemirovski introduced later the
notion of self-concordancy [18] in order to derive polynomial-time interior-
point methods for convex optimization. A strictly convex function Φ is
called a ν-self-concordant barrier for a closed convex set S if it is a barrier
for S (i.e. Φ : intS → R and Φ(x) → ∞, as x → ∂S) and, defining the
local norm of a vector v based on the Hessian of Φ at a given point x as
||v||x = (vT Φ′′(x)v)1/2, if the following three conditions hold (see e.g. [20])

• for all x ∈ intS it holds {y : ||y − x||x ≤ 1} ⊆ S,

• for all x ∈ intS and y ∈ intS such that ||y − x||x < 1 it holds

1− ||y − x||x ≤
||v||y
||v||x

≤ 1
1− ||y − x||x

, ∀v 6= 0.

• for all x ∈ intS it holds ||∇Φ(x)||2x ≤ ν

Constant ν is known as the self-concordance parameter of the barrier and
measures its efficiency: indeed, the best interior-point schemes based on the
use of such a barrier can be shown to require O(

√
ν log(1

ε )) iterations to
obtain a solution with ε accuracy.

The first author acknowledges support by the Fonds Spéciaux pour la Recherche (FSR)
and Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA).
This text presents research results of the Belgian Program on Interuniversity Poles of
Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Pro-
gramming. The scientific responsibility is assumed by the authors.
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An important class of convex problems are those in conic format,

min cT x (1)
s.t. Ax = b

x ∈ K,

for some closed convex cone K. Convex programs in conic form have a
strong similarity to linear programs, which correspond to the case K = Rn

+.
This similarity can also be observed when writing down their Lagrangean
dual

max bT y (2)

s.t. AT y + s = c

s ∈ K∗,

where K∗ is the dual cone of K, defined by

K∗ = {z | xT z ≥ 0 ∀x ∈ K} .

Interior-point schemes based on self-concordant barriers were initially
defined for the primal problem alone (or for the dual problem alone), while
primal-dual methods were available for linear programming. In 1997, Nes-
terov and Todd [19] extended the concept of primal-dual algorithms to con-
vex problems in conic form, provided the cone used is assumed to be sym-
metric, i.e. self-dual and homogeneous. The most important elementary
symmetric cones are the nonnegative orthant (leading to linear program-
ming), the second-order cone (leading to convex quadratic programming
or second-order cone optimization) and the cone of positive semidefinite
matrices (leading to semidefinite programming). However, in the case of
non-symmetric cones, no truly primal-dual algorithms (i.e. handling the pri-
mal and the dual problem simultaneously and in a completely symmetric
fashion) have been proposed yet.

2 The location problem with mixed p-norms

2.1 Related previous work on location problems

Wieszfeld [21] presented in 1937 a simple algorithm to solve the single-facility
problem, which started a surge of research on this area. More recently,
interior-point methods have been applied to several types of facility loca-
tion problems. Single-facility location problems based on Euclidean norms
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were first considered, see for example and Andersen et al. [1], although no
complexity result were given. Xue and Ye [22] describe an interior-point
method with polynomial complexity to solve single-facility problems using
Euclidean norms (cast in conic form), and later in [23] generalize their ap-
proach to problems involving arbitrary p-norms with ≥ 1 (mixing different
norms was not considered). Den Hertog et al. [6] analyze the complexity
of the closely related problem of minimizing a sum of p-powers via interior-
point methods.

(Nonconvex) multifacility location problems with forbidden regions are
considered in [8], where several new facilities are introduced due to the
constraint that they may not be placed at a predefined area. In [7] the
authors use the more general concept of gauges to measure the distance
between the points. This approach has the advantage that the distance does
not need to be symmetric and therefore it might reflect better real-world
situation, e.g. movement along or against the current of a river. Carrizosa
and Fliege [4] discuss multifacility location problems and their connection to
goal programming: in essence, a continuous multifacility location problem
can be seen as a particular instance of the non-preemptive goal programming
problem, where the deviation to a given target set is to be minimized.

This paper deals with the complexity of an interior-point applied to
a conic formulation of a convex optimization problem. Location problems
involving multiple facilities being mostly nonconvex (when assignment of the
unknown facilities to fixed facilities to be served is not decided beforehand),
they fall outside the scope of this paper1.

2.2 The single-facility location problem with mixed norms

The single-facility location problem with mixed p-norms considered in this
paper consists of minimizing the distance of one point x ∈ Rn to a certain
number of given facilities Bi ∈ Rn, i = 1, . . . ,m, assuming that the distance
to each facility is measured with a p-norm, which is not necessarily the
standard Euclidean 2-norm (the p-norm of a vector v is defined as ||v||p =
(
∑

i |vi|p)1/p).
A mathematical formulation of the above situation gives the following

unconstrained convex optimization problem

min
x∈Rn

g(x) = min
x∈Rn

m∑
i=1

ci||x−Bi||pi , (3)

1See also the remark about multifacility location problems in the concluding Section 6.
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where pi ≥ 1 and ci > 0 are positive weights for each facility Bi, i = 1, . . . ,m.
Note that the objective above is convex but non-differentiable when x is
equal to one of the facilities Bi, and that p-norms with different values of
p can be mixed in the sum. The special case where pi = 2 for all i can be
solved using second-order cone programming, see for example [2], Chapter
3. and [22]. We also observe than the number of facilities m can be assumed
without loss of generality to be greater or equal to dimension n minus one.
Indeed, if we had m < n− 1, we could immediately restrict the solution to
the affine subspace spanned by the m facilities, which is of dimension m+1,
and therefore convert the problem into a smaller one where dimension n
would become equal to m + 1).

Several applications can be modelled as location problems with specific
norms that measure the distance between given and new points, such as in
transportation [14] or electronic circuit design where cells are placed into
a circuit and pairwise connected with wires [5]. The use of mixed norms
could prove useful in problems where different transportation modes need
to be considered at once (for example, travel distances using air transporta-
tion correspond naturally to Euclidean norms, while distances within cities
featuring a quasi-rectangular network of streets call for the use of 1-norms,
and other types of terrestrial travel time could be modelled with p-norms
using exponents between 1 and 2).

We do not explicitly allow side constraints for our location problem. The
principal objective of this paper is not to model real-world applications, but
merely to show the applicability of our decomposition approach to handle
non-Euclidean norm terms in convex problems. From an algorithmic point
of view, the inclusion of additional linear and norm constraints would be
an easy modification to our model and, while complicating the presentation
of our results, would not really influence the design of our interior-point
method or its complexity analysis, and is therefore omitted here.

We now proceed to express problem 3 in a structured conic format.
Problem (3) is equivalent to the following conic problem involving mixed
p-norms

min
m∑

i=1

citi

s.t. ||x−Bi||pi ≤ ti, i = 1, . . . ,m

(4)

Indeed, introducing the following p-cone, denoted by Pp, as the epigraph of
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the corresponding p-norm

Pp = {(x, t) : ||x||p ≤ t} ⊂ Rn+1

for p ∈ [1,∞), which allows the constraints to be written as (x−Bi, ti) ∈ Ppi ,
we can cast problem (4) in the dual conic form (2) with the convex cone
K∗ = Pp1 × . . . × Ppm . To the best of our knowledge, no self-concordant
barrier in closed form with a low self-concordance parameter is known for the
p-cone at the moment. Xue and Ye considered in their paper [23] the case
pi = p,∀i and – based on [18], Section 5.1.1 – used in their implementation
a self-concordant barrier for the conic hull of the p-unit-ball. This approach
results in a self-concordance parameter of roughly O(200) for each p-cone in
K.

In this paper, we use a different approach: in order to solve this problem
with self-concordant barriers featuring lower parameters, we further decom-
pose each of the Pp cones into smaller cones. Following the approach pre-
sented recently by Nesterov in [17], we model the p-cone using the so-called
power cones. More specifically, we use the following equivalence: (x, t) ∈ Pp

iff ∃ y ∈ Rn
+ such that

n∑
j=1

yj = t, (5)

(yj , t, xj) ∈ Kα, j = 1, . . . , n, (6)

where α = 1/p and the power cone Kα is defined as

Kα = {(z1, z2, z3) ∈ R+ × R+ × R | zα
1 · z1−α

2 ≥ |z3|} . (7)

Indeed, it is readily seen that the inequalities (6) imply

n∑
j=1

|xj |p ≤
n∑

j=1

yj t(p−1) (8)

which combined with (5) imply

n∑
j=1

|xj |p ≤ tp.

The reverse implication is also obvious (choose each yj such that (8) is
satisfied with equality). In other words, a point (x, t) belongs to the p-cone
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if and only if there is a point y ∈ Rn
+ such that (x, t, y) belongs to a direct

product of power cones intersected with a linear subspace.
Using this reformulation for the m p-cones in (4) and substituting ti in the
objective and in the conic constraints, we get the following conic program
in the dual format (2) involving a total of n ·m power cones

min
m∑

i=1

ci

n∑
k=1

yik

yαi
ij ·

(
n∑

k=1

yik

)1−αi

≥ |xj −Bi,j |, i = 1, . . . ,m, j = 1, . . . , n,

(9)

or, equivalently,

min
m∑

i=1

ci

n∑
j=1

yij(
yij ,

(
n∑

k=1

yik

)
, xj −Bij

)
∈ Kαi , i = 1, . . . ,m, j = 1, . . . , n,

(10)

with the cone K(α) = (Kα1 × . . .×Kα1)× . . .× (Kαm × . . .×Kαm) ⊂ R3nm.
We observe that while the original problem (3) contained only n vari-

ables, this reformulation involves n + mn variables, the increase being due
to the additional yij variables needed for each of the mn power cones.

Note that the reformulation procedure we have just described is in line
with one of the general principles behind the conic formulation: all the
nonlinearities of a given (convex) optimization problem should be confined
within the cones, while the linear subspace constraints Ax = b should cap-
ture the linear part of the problem. In this specific case, each non-linearity
of the problem has been broken down to a cone with the smallest possible
dimension: one three-dimensional cone for every power function | · |p present
in the original objective g(x) in (3).

3 A path-following algorithm to solve the location
problem with mixed norms

The cone K(α) in the previous section does not appear to be symmetric
(except when p = 2), and there is no obvious way to model or reformulate
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the cone K(α) as a product of elementary symmetric cones. Therefore
primal-dual methods based on symmetric cones as proposed in [19] are not
applicable. In this section, we present a standard primal path-following
method to solve the location problem with mixed norms.

3.1 A path-following scheme

For a given convex optimization problem

min
x∈S

cT x, (11)

(where the objective is assumed to be linear without loss of generality),
the iterates of path-following interior-point methods follow the central path
more or less closely towards an optimal solution. The central path is defined
as a family of points {x(µ)}, depending on a parameter µ > 0, such that
each x(µ) is the minimizer of the following centering problem

min
x∈R

fµ(x) = min
x∈R

1
µ

cT x + F (x), (12)

where F is a ν-self-concordant barrier for the feasible set S.
Nesterov and Nemirovski ([18]) showed that the central path is well-

defined for all µ > 0 and that indeed limµ↘0 x(µ) = x∗, where x∗ is an
optimal solution of (11). The basic idea of path-following methods is to
solve (12) approximately for a decreasing sequence of µ and thus follow the
central path to an optimal solution.

In this subsection we will present in more details a path-following scheme
designed to solve problem (10), assuming that a ν-self-concordant barrier for
the feasible set of (10) is available.

The Newton step at x for the minimization of the objective fµ(x) in the
unconstrained centering problem (12) is defined as

nµ(x) = −∇2fµ(x)−1 · ∇fµ(x) = −∇2F (x)−1 ·
(

1
µ

c +∇F (x)
)

,

and the Newton decrement, which will be used as a proximity measure to
the central path, is defined as

δµ(x) = ||nµ(x)||x =
(
nµ(x)T · ∇2fµ(x) · nµ(x)

)1/2

=
(
∇fµ(x)T · ∇2fµ(x)−1 · ∇fµ(x)

)1/2

=
(

1
µ

c +∇F (x)
)T

∇2F (x)−1

(
1
µ

c +∇F (x)
)

.
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The path-following method described below is a long-step scheme (also
called large-update scheme, meaning that multiplying factor θ used to de-
crease µ at each outer iteration does not depend on the problem dimensions
n and m) and uses the following parameters

• ε > 0 (desired accuracy on the objective function)

• 0 < εc < 1
4 (proximity to the central path)

• 0 < θ < 1 (decreasing factor for µ)

and requires a feasible starting point x(0) and the corresponding centering
parameter µ0.

k:=0 (outer iteration counter)
i:=0 (inner iteration counter)
while (ν · µk > ε · (1− εc))

1. while (δµk
(x(i)) > εc)

(a) compute Newton direction nµk
(x(i))

(b) do a (damped) Newton step: x(i+1) := x(i) + τ ·
nµk

(x(i)), where τ is a suitable step length

(c) update i := i + 1

end while

2. update µk+1 := θ · µk

3. update k := k + 1

end while

For suitable choices of the parameters and the starting point, it is possi-
ble to prove convergence to an optimal solution in polynomial time, as will
be done in Section 4.

If we want to apply the above presented interior-point scheme to solve
the location problem (3), we need to have available a self-concordant barrier
for the feasible set of the reformulated problem (10).

3.2 A self-concordant barrier for the conic formulation (10)

In the previous subsection we assumed knowledge of a self-concordant barrier
for the feasible set of (10). The complexity of interior-point methods depends
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essentially on the self-concordance parameter of the barrier. Therefore it is
advantageous to have a parameter as low as possible.

The following 4-self-concordant barrier for the power cone Kα can be
found in [17]:

Fα(z1, z2, z3) = − log(z2α
1 z

2(1−α)
2 − z2

3)− log z1 − log z2.

From [16, Section 3], using the fact that any affine transformation of a
self-concordant barrier remains self-concordant with an unchanged parame-
ter and the fact that the sum of barriers for several sets is a self-concordant
barrier for the product of these sets (with a global parameter equal to the
sum of the individual parameters), it follows that the following function
F (x, y) is a 4nm-self-concordant barrier for the feasible set of (10):

F (x, y) =
m∑

i=1

n∑
j=1

Fαi

(
yij ,

n∑
k=1

yik, xj −Bij

)

=−
m∑

i=1

n∑
j=1

log

(yij)2αi ·

(
n∑

k=1

yik

)2(1−αi)

− (xj −Bij)2


−

m∑
i=1

n∑
j=1

log yij − n

m∑
i=1

log
n∑

k=1

yik. (13)

Computing the gradient and Hessian of this barrier will be required to com-
pute Newton directions. This could be done directly from equation (13) or,
more elegantly, by expressing F (x, y) as

F (x, y) = F̃ (u, t, v) (14)

with

F̃ (u, t, v) =
m∑

i=1

n∑
j=1

Fαi (uij , ti, vij)

and (u, t, v) are defined as the following affine transformation of (x, y),

uij = yij ,

ti =
n∑

k=1

yik,

vij = xj −Bij ,
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which can be written more compactly asu
t
v

 = J ·
[
x
y

]
− b (15)

where J is a 3mn× (n + mn) matrix and b a vector with 3mn components.
Using (14) and (15), we have

∇F (x, y) = JT · ∇F̃ (u, t, v) , (16)

∇2F (x, y) = JT · ∇F̃ (u, t, v) · J, (17)

where the gradient and Hessian of F̃ can be easily computed, since the
∇F̃ can be calculated for each 3-dimensional subvector (uij , ti, vij) sepa-
rately, and similarly ∇2F̃ is block-diagonal with nm size-3 blocks.

4 Proof of polynomial complexity for the algo-
rithm

We now proceed to establish the polynomial complexity of our algorithm.

4.1 Estimating the complexity of each iteration

The most computationally expensive part of a path-following algorithm is
the computation of each Newton step, as the solution of a linear system,
whose complexity we now try to estimate. Since this system involves O(mn)
variables, a naive upper bound on the complexity of each Newton step is
O(m3n3) arithmetic operations. However, this estimate ignores the specific
structure of the linear system considered here, which can help decrease the
complexity.

Indeed, the linear system corresponding to a general Newton step has
the form ∇2f ∆x = r for some right-hand side r. Using automatic dif-
ferentiation, the cost of carrying out a Hessian×vector multiplication is at
most ω times the cost of evaluating the function itself, where ω is a constant
smaller than 10 (see [12] for more details). In our case, the function evalua-
tions are O(nm), which is therefore also the complexity of the corresponding
Hessian-vector multiplication. We then use the fact that a conjugate gradi-
ent method applied to a Newton system with Hessian (17) requires no more
than n(m + 1) iterations consisting of such Hessian-vector multiplications.
Therefore, the complexity of an efficient method to solve a general dense
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Newton system based on a O(mn) barrier is at most O(n2m2) arithmetic
operations.

Moreover, the block structure of the Hessian (17) can be further ex-
ploited. Applying a Cholesky factorization after a block elimination using
the Schur complement, it can be show that O(n3m) arithmetic operations
suffice to solve the Newton system (see [3], Appendix C.4), which is better
than O(n2m2) when n ≤ m.

In order to obtain the complete algorithmic complexity of our algorithm,
we now proceed to estimate the iteration complexity of the algorithm pre-
sented in Section 3, as applied to problem (10).

4.2 Estimating the number of outer iterations

We estimate the complexity to obtain a solution x whose objective has
a guaranteed ε absolute accuracy for problem (3), i.e. such that g(x) <
g(x∗) + ε, by using the long-step path-following method described in the
previous section. Using inequality (2.14) in [20],

cT (x− x∗) ≤ µ · ν · (1 + ||x− x(µ)||x(µ)) , (18)

we see that the absolute accuracy of a point x can be bounded by the
distance to the corresponding point on the central path. Note, that for
short-step methods the theoretical bound on the number of iterations is
better (

√
ν instead of ν in (18)). However, we implemented a long-step

method with fixed decrease of µ because it turned out to be superior in
practice, and therefore we will continue our analysis for the long-step scheme.
Furthermore, according to [15, Theorem 3.3] it holds that if δµ(x) ≤ εc

(which is true at the end of each outer iteration), then

||x− x(µ)||x(µ) ≤
δµ(x)

1− δµ(x)
≤ εc

1− εc
.

That means we have an ε-solution if δµ(x) ≤ εc and

µ · ν ·
(

1 +
εc

1− εc

)
= µ · ν ·

(
1

1− εc

)
≤ ε

⇔ µ · ν ≤ ε · (1− εc).

Estimating now the number of outer iterations necessary to reach

µ <
1
ν

ε · (1− εc),
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we use the fact that µk = µ0θ
k so that it suffices to run

log ε(1− εc)− log νµ0

log θ

outer iterations to obtain an ε-solution, provided our iterates are centered
according to δµ(x) < εc after each outer iteration. That means that for our
problem, the number of outer iterations can be bounded by

O
(

log
(

4mn

ε

))
.

4.3 Estimating the number of centering steps

We now continue the complexity analysis by estimating the number of inner
iterations needed for each centering problem. For an initial point x(i) close
to the central path, i.e. δµk

(x(i)) < εc, the number of centering steps towards
the new target point on the central path x(µk+1) in each outer iteration can
be bounded using the self-concordance property of (12) in the following way.

The functional difference to the new target point on the central path

fµk+1
(x(i))− fµk+1

(x(µk+1))

can be bounded (see [20, Section 2.4.3.]) by

1
θ
· (ν +

√
ν).

Moreover, the functional decrease in each inner iteration by applying damped
Newton steps can be guaranteed to be at least a constant as long as δµk+1

(x(i)) ≥
εc. Indeed, if we choose

τ =
1

δµk+1
(x(i)) + 1

such that x(i+1) = x(i) +
nµk+1

(x(i))
δµk+1

(x(i)) + 1
,

it clearly holds that x(i+1) ∈ B(x(i), 1) = {y : ||y − x(i)||x(i) ≤ 1}. We can
then apply [20, Theorem 2.2.2] and get

fµk+1
(x(i))− fµk+1

(x(i+1)) ≥ σ(εc) > 0,

where σ(εc) is an absolute constant depending only on εc. In practice, of
course, other steps lengths may be chosen as long as they decrease the
function value by at least σ(εc).
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Finally, this shows that take at most

1
σ(εc) · θ

(ν +
√

ν)

steps before we obtain a point x(i+1) that is again close to the central path
for the updated µ, i.e.

δµk+1
(x(i)) < εc

and therefore the number of iterations for each inner loop is bounded by
O(mn).

However, this analysis does not hold for the first inner loop because the
initial point x(0) is not necessarily centered (δµ0 can be greater than εc).

4.4 Estimating the number of iterations for the initial cen-
tering

For this part of the analysis, we cannot keep the generality of the previous
sections and have to use some specific information about our problem. In-
deed, let us formulate the centering problem (12) for the special case of the
conic problem (10),

min
x∈Rn

fµ(x, y) (19)

where

fµ(x, y) =
1
µ

m∑
i=1

ci

n∑
j=1

yij + F (x, y)

and F (x, y) is defined as in (13).
We consider now the centering problem (19) and in the following assume

without loss of generality that ci ∈ [cmin, 1], ∀i = 1, . . . ,m, where cmin > 0
and Bij ∈ [0, 1], ∀i, j. Indeed, these assumptions are not restrictive be-
cause by scaling and translating the original data, we can always generate
a problem that satisfies these conditions.

As a given starting point (x(0), y(0)) does not necessarily satisfy the cen-
tering condition that has been imposed in the previous subsection, we have
to estimate the number of iterations needed to generate such a point close to
the central path, i.e. close to the minimizer (x(µ0), y(µ0)) of the centering
problem (19), starting from some initial guess (x(0), y(0)).
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The functional difference of the objective of the centering problem (19)
between (x(0), y(0)) and (x(µ0), y(µ0)) is

fµ0(x
(0), y(0))− fµ0(x(µ0), y(µ0))

=
1
µ0

m∑
i=1

ci

n∑
j=1

y
(0)
ij +F (x(0), y(0))− fµ0(x(µ0), y(µ0)). (20)

Using the same arguments as in the previous subsection, this difference
is responsible for the number of iterations for the first inner loop and we
proceed now to bound it from above.

We choose the following values for the initial iterate:

• µ0 = 1

• x(0) = [1/2, . . . , 1/2]T ∈ Rn

• y(0) = [1, . . . , 1]T ∈ Rnm

and it can be easily checked that the point (x(0), y(0)) is feasible for the
problem (10).

First, we show that
∑m

i=1 ci
∑n

j=1 y
(0)
ij in (20) can be bounded. In fact,

m∑
i=1

ci

n∑
j=1

y
(0)
ij = n ·

m∑
i=1

ci ≤ nm.

As the next step, we need to bound the initial value of the barrier, i.e.
find a C1(m,n) such that F (x(0), y(0)) ≤ C1(m,n).

It can be seen that

F (x(0), y(0)) =−
m∑

i=1

n∑
j=1

log

(y(0)
ij

)2αi

·

(
n∑

k=1

y
(0)
ik

)2(1−αi)

−
(
x

(0)
j −Bij

)2


+ log y

(0)
ij + log

n∑
k=1

y
(0)
ik

]

≤−
m∑

i=1

n∑
j=1

[
log
(

1− 1
4

)
+ log 1 + log n

]

=− nm log
(

3
4
n

)
≤ C1(m,n) = O(mn log(n)).
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In the last step, we need to bound from below the value of the objective
of the initial centering problem (19) in order to estimate the term of (20).
For µ0 = 1 let

−fµ0(x, y) = −
m∑

i=1

ci

n∑
j=1

yij −
m∑

i=1

n∑
j=1

Fαi(x, y)

=
m∑

i=1

hi(x, y)

where

hi(x, y) =− ci

n∑
j=1

yij +
n∑

j=1

log yij + n log

(
n∑

k=1

yik

)

+
n∑

j=1

log

y2αi
ij

(
n∑

k=1

yik

)2−2αi

− (xj −Bij)2


≤− ci

n∑
j=1

yij + (2αi + 1)
n∑

j=1

log (yij) + (2− 2αi + n) log

(
n∑

k=1

yik

)
.

The maximizer of the right-hand side function has to satisfy the following
system of equations,

ci −2αi+1
yi1

−2−2αi+nPn
j=1 yij

= 0
...

...
...

...
ci −2αi+1

yin
−2−2αi+nPn

j=1 yij
= 0

from which it follows
yi1 = · · · = yin =: ϑi

and

ci −
2αi + 1

ϑi
− 2− 2αi + n

ϑin
= 0

⇒ϑi =
(2 + 2/n)(1 + αi)

ci
.
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Therefore,

hi(x, y) ≤ − cin

(
(2 + 2/n)(1 + αi)

ci

)
+ (2αi + 1)

n∑
j=1

log
(

(2 + 2/n)(1 + αi)
ci

)

+ (2− 2αi + n) log
(

n
(2 + 2/n)(1 + αi)

ci

)
= − (2n + 2)(αi + 1) + n(2αi + 1) log

(
(2 + 2/n)(1 + αi)

ci

)
+ (2− 2αi + n) log

(
(2n + 2)(1 + αi)

ci

)
≤ − (2n + 2) + 3n log(6)− (4n + 2) log(cmin) + (n + 2) log(4n + 4)

=O
(
n log(

n

cmin
)
)

for all i = 1, . . . ,m. This implies that fµ0(x, y) can be bounded by a constant
C2(m,n, cmin)

−fµ0(x, y) ≤ C2(m,n, cmin) = O
(
m n log(

n

cmin
)
)

and, in particular, that this holds for (x(µ0), y(µ0)), the last term in (20).
That means the total difference of the objective of the centering problem
(19) between (x(0), y(0)) and (x(µ0), y(µ0)) is no more than

nm− nm log
(

3
4
n

)
+ C2(m,n, cmin) =: C(m,n, cmin) = O

(
m n log(

n

cmin
)
)
.

For the same reasons as in the previous subsection, we can argue that
it is possible to reduce the objective value of the initial centering problem
(19) in each iteration of a damped Newton method by at least a constant
σ(εc). It follows that in

O
(

C(m,n, cmin)
σ(εc)

)
= O

(
m n log(

n

cmin
)
)

steps we obtain a point close to the central path.
From a theoretical point of view, an auxiliary path-following scheme

to find the analytic center of the feasible set (to provide an initial iter-
ate close to the central path) would feature a better complexity estimate
O(
√

nm log(nm)) than the scheme we implemented. This would consist in
solving an auxiliary problem with another objective vector c̃ such that an
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arbitrary starting interior point is exactly on the central path. One would
then follow the central path to the analytic center of the feasible set using
a short-step path-following scheme with the above mentioned complexity.

However, since the rest of the algorithm is using damped long steps and
has already iteration complexity O(mn), our choice of also using a damped
Newton scheme for the initialization strategy has no negative impact on the
overall complexity of the method. Furthermore, it turned out that these
estimates are too conservative in practice and that the damped Newton
scheme very often finds a good approximation for a point close to the central
path in no more than 5 iterations.

We are ready now to formulate the final theorem.

Theorem 4.1. Let ci ∈ [cmin, 1], ∀i = 1, . . . ,m, where cmin > 0 and Bij ∈
[0, 1], for i = 1, . . . ,m, j = 1, . . . , n. The long-step path-following method
described in Section 3 initialized as described above solves the unconstrained
location problem with mixed norms

min
x∈Rn

m∑
i=1

ci||x−Bi||pi ,

in O(n m) · O
(
log
(

n m
εcmin

))
iterations.

Proof. Recall that the first centering step needs at most O
(
m n log( n

cmin
)
)

it-
erations. The total number of outer iterations is then bounded byO

(
log
(

m n
ε

))
steps, and the number of centering steps for each outer iteration is bounded
by O(m n) steps, so that the total complexity is

= O
(
m n log(

n

cmin
)
)

+O(m n)×O
(
log
(m n

ε

))
= O(n m) · O

(
log
(

n m

εcmin

))
iterations.

5 Computational results

We implemented the long-step path-following scheme described in Section 3
in MATLAB and tested it on some randomly generated problems where the
exponents pi are uniformly distributed on the [1 3] interval and the facilities
are uniformly distributed in the [0 1]n box. The positive weights ci in the
objective function are chosen to be all equal to 1.
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We choose µ0 and x0 according to Section 4.4, the centering accuracy
ε0 = 10−1, a long-step update with θ = 0.1 and an absolute objective
accuracy of ε = 10−6.

5.1 Comparison with nonlinear AMPL solvers

For each choice of problem parameters (n, m) presented here, 10 different
instances were solved and the average is reported. We compare our solver
with the AMPL nonlinear solvers MINOS2 , LOQO3 and KNITRO4, all
used with their default parameters (no attempt was made to tune them
specifically to our problem) and limited to 2000 iterations per problem.

MINOS is using a quasi-Newton method to solve nonlinear problems.
LOQO uses a primal-dual interior-point method applied to a quadratic ap-
proximation of the original problem. KNITRO is based on a direct barrier
method to solve a primal-dual KKT system, using trust regions and a merit
function are used to promote convergence.

Table 1 reports the number of iterations (major iterations for KNITRO)
carried out by each method.

Table 1: Number of iterations for each solver (averaged on 10 instances)
dimension IPM solver MINOS LOQO KNITRO
n = 2,m = 10 27.6 12.9 206.7 22.9
n = 2,m = 100 33.3 7.2 57.9 8.8
n = 2,m = 1000 43.6 7.7 33.8 8.7
n = 2,m = 10000 51.5 7.8 9.1 5.5
n = 10,m = 10 42.8 128.9 206.1 29.8
n = 10,m = 50 46.8 34 217.6 40.9
n = 10,m = 100 55.3 128.4 263.5 21.4
n = 10,m = 500 60.4 44.1 301.8 29.5
n = 10,m = 1000 59 25.4 203.3 16
n = 50,m = 10 53.6 243.6 314.8 215.3
n = 50,m = 50 70.1 245.1 453.1 177.6
n = 50,m = 70 70.1 171.4 341.4 364.7
n = 50,m = 100 67.5 141.2 452.4 89.4
n = 50,m = 200 82.3 261.8 457.4 1133.1

2http:// www.sbsi-sol-optimize.com/asp/sol product minos.htm
3http://www.princeton.edu/∼rvdb/loqo/
4http://www.ziena.com/knitro.htm
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The iteration numbers of our interior-point solver are much better than
what could be expected from theory, since the theoretically guaranteed O(n·
m) iteration bound seems to be quite pessimistic: in practice, the number
of iterations barely triples between nm = 20 and nm = 10000 (a usual
phenomenon for interior-point methods).

Although not competitive for the small value n = 2, iteration counts
become comparable for n = 10 to those of KNITRO, the best nonlinear
solver, and are clearly better for n = 50. The guidance of the central path
is thus clearly beneficial here.

It is interesting to see that when fixing n and increasing the value of m,
the number of iterations for all the AMPL nonlinear solvers remains constant
or even decreases. This effect could be explained by a ”smoothing-out” of the
objective function. For a large m, non-differentiable terms in the objective
become ”small” with respect to the complete sum of the norms, and the
objective is almost smooth. This potentially explains why the nonlinear
solvers find an optimal solution faster for large values of m, even though the
problems seem to be more difficult.

Table 2 shows the computation times in seconds1. Please bear in mind
that this comparison across solvers is not completely fair since we cannot
expect MATLAB, an interpreted language, to be as fast as those native
compiled solvers. To somehow support this claim, we report that for a
typical (n, m) = (50, 100) run, 50% of the CPU time is spent on building
the Hessian (involving a lot of data manipulation within MATLAB) and only
30% on actually computing the Newton step (solving a linear system with
a single MATLAB command), while the latter operation should in principle
be dominating the CPU cost.

Our interior-point solver is not competitive with the AMPL nonlinear
solvers. Only LOQO’s computing times could be ranked roughly in the
same category as ours, although this is mainly due to LOQO having trouble
reaching the required accuracy and stopping because of its iteration limit.

The main explanation for the poor performance of the interior-point
scheme seems to be the large number of variables needed for the conic for-
mulation: indeed, instead of working with a vector of n unknowns (and,
accordingly, computing a n × n Hessian), our algorithm requires an addi-
tional yij variable for each of the mn cones involved, for a total of n(m + 1)
variables and the corresponding much enlarged Hessian.

Table 3 displays the percentage of problems for which the AMPL solvers
claimed to have found an optimal solution. The need for this table was

1Intel Pentium IV 3.00 GHz; MATLAB version 7.2 (R14)
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Table 2: CPU time (in seconds) used by each solver (averaged on 10 in-
stances)

dimension IPM solver MINOS LOQO KNITRO
n = 2,m = 10 0.07 0.10 0.12 0.10
n = 2,m = 100 0.31 0.10 0.18 0.11
n = 2,m = 1000 4.00 0.16 0.31 0.16
n = 2,m = 10000 136.37 0.70 1.13 0.64
n = 10,m = 10 0.30 0.17 0.18 0.11
n = 10,m = 50 1.38 0.16 0.60 0.16
n = 10,m = 100 3.26 0.72 0.98 0.16
n = 10,m = 500 19.33 1.00 8.24 0.68
n = 10,m = 1000 36.00 0.89 9.15 0.56
n = 50,m = 10 4.47 0.51 1.03 0.46
n = 50,m = 50 40.38 2.45 6.64 1.38
n = 50,m = 70 58.35 1.91 7.51 3.64
n = 50,m = 100 80.87 2.18 15.28 1.64
n = 50,m = 200 198.50 11.56 43.66 39.14

prompted by that fact that, for a significant number of instances, the AMPL
solvers could not satisfy their stopping criterion (based on the norm of the
gradient) and stopped either because a built-in iteration limit (LOQO) or
insufficient progress after a certain number of iterations (MINOS, KNITRO),
reporting that the final iterate might not be optimal. For large m and n, this
problematic behavior even seems to become the norm. However, in nearly
all the cases, the solution provided was indeed optimal (meaning in that case
that all six requested digits of accuracy matched between the interior-point
solution and its nonlinear counterpart), except in the case of LOQO, where
some unsuccessful runs stopped because of the iteration limit exhibited a
less accurate solution (meaning a few mismatched digits when comparing
to the interior-point and other nonlinear solutions). Nonetheless, we still
classify these situations as unsuccessful because in general we do not know
how close to the optimal solution we are and would like to have a guarantee
to be within an ε distance of the optimal solution.

These failures to detect optimality are most probably due to the prox-
imity/equality of the optimal solution to one of the fixed facilities and the
(near) non-differentiability of the objective function that it causes. It is
remarkable to observe that this non-differentiability has a significant im-
pact on the practical behavior of the AMPL codes tested, even on relatively
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Table 3: Percentage of solutions for which optimality is guaranteed
dimension IPM solver MINOS LOQO KNITRO

n = 2,m = 10 100% 70% 60% 70%
n = 2,m = 100 100% 90% 90% 90%
n = 2,m = 1000 100% 100% 100% 90%
n = 2,m = 10000 100% 100% 100% 100%
n = 10,m = 10 100% 90% 60% 90%
n = 10,m = 50 100% 80% 60% 70%
n = 10,m = 100 100% 90% 60% 70%
n = 10,m = 500 100% 70% 50% 50%
n = 10,m = 1000 100% 100% 90% 90%
n = 50,m = 10 100% 80% 40% 40%
n = 50,m = 50 100% 60% 10% 10%
n = 50,m = 70 100% 60% 40% 10%
n = 50,m = 100 100% 90% 10% 10%
n = 50,m = 200 100% 40% 10% 0%

simple unconstrained problems with a finite number of problematic points.
One can therefore conclude here that one of the main advantages of the
interior-point solver lies in its insensitivity to these issues.

5.2 Comparison with Xue and Ye’s algorithm

The authors of [23] present an algorithm to solve the similar - but not
identical - problem of minimizing a sum of p-norms, where all norms in the
objective are defined by one single value of p and the decision variable x is
scaled by a matrix AT

i in each norm term,

min
x∈Rn

m∑
i=1

||Bi −AT
i x||p, (21)

with Bi ∈ Rd and AT
i ∈ Rd×n, i = 1, . . . ,m. They propose a nonsymmetric

primal-dual potential-reduction method that relies on the self-concordant
barrier for the conic hull of the p-unit ball. Due to this construction the
self-concordance parameter becomes relatively large, i.e. 200m(2d + 1) for
the description they chose in the computational examples.
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We considered the problem (3)

min
x∈Rn

m∑
i=1

ci||x−Bi||pi

which is slightly more general in the sense that it does not require the norm
terms to have identical parameters p, but on the other hand does not make
use of scaling matrices AT

i (however, incorporation of these matrices in our
model would be trivial).

Although a direct comparison is not possible, problem (21) can be rewrit-
ten as

min
x∈Rn

m∑
i=1

||Bi|| ·
∣∣∣∣∣∣∣∣ Bi

||Bi||
− AT

i

||Bi||
x

∣∣∣∣∣∣∣∣
p

,

with the constants in each norm term having components in the interval
[0, 1]. Assuming that d = n and pi = p,∀i = 1, . . . ,m, we can compare the
complexity of both methods in that case. The self-concordance parameter of
the barrier used by Xue and Ye in [23] is 200m(2n+1), while it is only 4nm
for our barrier, showing a clear advantage for our approach. The iteration
complexity of the method used by Xue and Ye in their computational results
is O(2m

√
200m(2n + 1) · log(max ||Bi||

ε · mn)), for our method is O(n m) ·
O
(
log
(

n m
εcmin

))
, which are equivalent except when m � n, in which case

our method will have a better bound. Finally, the cost per iteration in [23] is
O(mn3), which is also the case for our method. Summarizing, both methods
have comparable overall algorithmic complexity, although our method has
a slight advantage when m � n.

We now look at the test case considered in [23] of finding the shortest
network under a given N -Steiner topology, with N = 10. We reformulate
this problem as a sum of p-norms problem yields the parameters m = 2N −
3, d = 2, n = 2N − 4. They consider several values of p, among others
p = 3. With the algorithms proposed in their paper they get a solution
with an accuracy of 1.0e − 5 in 33 iterations, whereas choosing for our
formulation some random data in the same dimensions (omitting d), we get
a solution with the same accuracy requirement in 31 iterations. This slight
improvement is not too surprising because of the smaller self-concordance
parameter of our barrier, although both iteration counts are much better
than their corresponding pessimistic worst-case bounds.

Comparing CPU times is not possible since no computation times are
reported in [23]. Altough the size of the linear systems to be solved at each
iteration is smaller (2m(d + 1) + 2m + n = 152) when compared to ours
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(n(m+1) = 288), the special block-structure and sparsity of our system has
to be taken into account, which make it difficult to predict which iteration
will be more efficient in practice.

To conclude this section, we observe that the main advantage of our
approach seems to be its simplicity and versatility: a single barrier for the
3-dimensional power cone is all that is needed to derive a polynomial-time
algorithm, while the approach in [23] proposes three different barriers for
p-cones, to be chosen according to the value of the norm parameter p. More-
over, while the approach of Xue and Ye can in principle be applied to any
problem involving p-cones such as (4), ours can be applied to any problem
based on power cones, which encompass all problems with p-cones and many
others (such as problems involving sums of p powers).

6 Concluding remarks

We have showed that to solve the location problem with mixed norms, the
proposed approach based on a decomposition into a structured conic format
is successful. This approach allows us to generate an extended formulation
that can be solved efficiently by an interior-point method with a guaranteed
total algorithmic complexity of O(n m) · O

(
log
(

n m
εcmin

))
iterations, each

involving O(n2m2) arithmetic operations.
Although the location problem (3) considered in this paper is rather

simple, we would like to point out the fact that the approach described can
be very easily extended to more complicated problems involving side con-
straints, such as requiring the unknown facility to belong to some polyhedral
region, or imposing upper bounds on (the sum of) some distance terms simi-
lar to those involved in the objective function. Indeed, any of those problems
can easily be reformulated into a conic model similar to (10) involving only
power cones (using the fact that both p-norm and affine nonnegativity con-
straints can be modelled using the power cone), to which our algorithm
can be applied without modification. Further classes of problems can be
handled in exactly the same fashion, such as convex Euclidean multifacil-
ity location problems (EMFL) and Euclidean Steiner minimal tree (SMT)
problems considered in [22], and their variants based on p-norms instead of
Euclidean norms, since these problems are also reducible to conic models
using power cones.

We observed that, in practice, the number of iterations increases only
slowly with the dimension, and becomes lower than the number iterations
used by the three nonlinear solvers MINOS, LOQO and KNITRO for prob-

23



lems involving 50 unknowns. Unfortunately, this is compensated by the high
cost per iteration inherent to our approach, due to the increased number of
variables of the conic formulation. Yet, our approach has the advantage of
being very reliable with respect to finding a guaranteed optimal solution,
and unsensitive to the non-differentiability of the objective function.

The large number of variables present in our formulation has negative
implications for the building of the Hessian and the computation of the
Newton step. However, it might be possible to take advantage of the struc-
ture and sparsity of the Hessian and speed up these computations. In this
respect, formulas (16) and (17) and the very particular sparsity pattern of
matrix J could prove helpful.

Another possibility to improve this scheme’s computational efficiency
would be to resort to the notion of partial minimization of the self-concordant
barrier, which works as follows: instead of keeping a vector of variables y as
iterates, it could be possible (with some adaptations) to compute efficiently
the minimum of the barrier F (x, y) with respect to the variables y. The
interior-point scheme would then only work with vector x as iterate and the
resulting partially minimized barrier function depending only on x (along
with its gradient and Hessian), which is guaranteed to be self-concordant
with the same parameter as the original barrier F (x, y). We leave the ex-
ploration of this technique for further research.

Recently, Nesterov [17] presented a primal-dual predictor-corrector method
that generates iterates in the primal-dual space by computing the corrector
steps in the primal space and generating the predictor step for the primal-
dual variables, and for which the dual barrier does not need to be available
explicitly. Therefore, this method is applicable for general non-symmetric
cones, and in particular to our problem and its conic formulation. Further
research could be done to implement it and compare it with our primal-only
path-following scheme.

Finally, we would like to emphasize the fact that the general approach we
followed here, relying on the decomposition of a given convex optimization
problem into a conic problem with many small cones followed by the appli-
cation of a standard interior-point scheme, can in principle be adapted to
many other classes of convex problems, including for example geometric pro-
gramming problems [9], lp-norm optimization [11] and convex optimization
with separable objective and constraints[10, Chapter 7].

Acknowledgements: The authors would like to thank Yurii Nesterov for
fruitful discussions and comments about this paper.
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