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Abstract In a strategic game, a curb set (Basu and Weibull, Econ Lett 36:141–146,
1991) is a product set of pure strategies containing all best responses to every possible
belief restricted to this set. Prep sets (Voorneveld, Games Econ Behav 48:403–414,
2004) relax this condition by only requiring the presence of at least one best response to
such a belief. The purpose of this paper is to provide sufficient conditions under which
minimal prep sets give sharp predictions. These conditions are satisfied in many eco-
nomically relevant classes of games, including supermodular games, potential games,
and congestion games with player-specific payoffs. In these classes, minimal curb
sets generically have a large cutting power as well, although it is shown that there are
relevant subclasses of coordination games and congestion games where minimal curb
sets have no cutting power at all and simply consist of the entire strategy space.

Keywords Curb sets · Prep sets · Supermodular games · Potential games ·
Congestion games

1 Introduction

Set-valued coarsenings of the Nash equilibrium concept have proven to possess a
number of appealing properties. For instance, set-valued solutions adequately model
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the intuition that people live by rules and principles (rules of thumb, the Ten Com-
mandments, teetotalism, etc.) that restrict behavior without determining it uniquely,
and they provide a characterization of the limit behavior of many plausible models of
strategy adjustment, cf. Hurkens (1995); Young (1998); Kosfeld et al. (2002); Tercieux
(2006), and Kets and Voorneveld (2008).

Set-valued solutions, however, may provide very unsharp predictions: non-equilib-
rium strategies may be included and in some games the solution may have no cutting
power whatsoever and simply consist of the entire strategy space. Hence, to evaluate
the practical appeal of such concepts, it is important to provide economically relevant
classes of games where they have considerable cutting power.

The current paper focusses on the cutting power of minimal prep sets (‘prep’ is short
for ‘preparation’). This set-valued solution concept, introduced in Voorneveld (2004,
2005), combines a standard rationality condition, stating that the set of recommended
strategies to each player must contain at least one best reply to whatever belief he may
have that is consistent with the recommendations to the other players, with players’
aim at simplicity, which encourages them to select a set of strategies that is as small
as possible. Think of the set of recommendations to a player in a minimal prep set
as a well-packed suitcase for a holiday: you want to be prepared for different kinds
of weather, but bringing all five of your umbrellas and all seven bathing suits may be
overdoing it. This distinguishes minimal prep sets from (a) minimal curb sets (Basu
and Weibull 1991), which are product sets of pure strategies containing not just some,
but all best responses to beliefs restricted to the recommendations to the remaining
players, and (b) persistent retracts (Kalai and Samet 1984), which also require the
recommendations to each player to contain at least one best reply to beliefs in a small
neighborhood of the beliefs restricted to the recommendations to the other players.
Voorneveld (2004, 2005) gives a general existence proof and provides relations with
Nash equilibria, rationalizability, minimal curb sets, and persistent retracts. Voorne-
veld et al. (2005) provide axiomatizations of minimal prep sets and minimal curb
sets. Kets and Voorneveld (2008) show that appealing models of strategic adjustment
eventually settle down in minimal prep sets.

The current paper focuses on a number of economically relevant classes of games
with pure Nash equilibria (As a complement, we are investigating the cutting power
of minimal prep sets in games without such equilibria in ongoing research). Indeed,
pure Nash equilibria are appealing due to their simplicity, whereas the use of mixed
strategies is sometimes (think of one-shot games) subject to criticism; see Luce and
Raiffa (1957, Sect. 4.10) and Osborne and Rubinstein (1994, Sect. 3.2) for a critical
appraisal of the use of mixed strategies.

What can one say about the cutting power of minimal prep sets in games with pure
Nash equilibria? By definition, each pure Nash equilibrium corresponds with a sin-
gleton minimal prep set, but it is easy to construct games where minimal prep sets—in
addition to the game’s pure Nash equilibria—select other sets as well. See Fig. 4 for
an example. Therefore, it is of interest to see (a) whether in economically appealing
classes of games with pure Nash equilibria, the cutting power of minimal prep sets
is as sharp as possible, in the sense that it picks out only the pure Nash equilibria,
and (b) to compare this cutting power with that of its nearest sibling, minimal curb
sets.
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The main results of this paper are the following. Proposition 3.1 provides sufficient
conditions under which the collection of minimal prep sets coincides with the collec-
tion of pure Nash equilibria. After a simple illustration of this result by means of a
classical pure saddle-point theorem of Shapley (1964) for zero-sum games, it is shown
to apply to two well-known classes of games which together cover a large range of
economic applications.

The first class, studied in Sect. 4, consists of supermodular games, games where the
best-response correspondences have certain monotonicity properties (Topkis 1978).
Milgrom and Roberts (1990) and Topkis (1998) provide numerous applications, includ-
ing search models, facility location, arms races, and oligopoly models.

The second class, studied in Sect. 5, consists of potential games, in particular the
most general class of potential games of Monderer and Shapley (1996) and the best-
response potential games of Voorneveld (2000). These potential games have applica-
tions to, for instance, congestion games (Rosenthal 1973), oligopoly models (Slade
1994), coalition formation (Slikker 2001), and the financing of public goods (Koster
et al. 2003). Section 5.3 extends the analysis to the congestion games of Quint and
Shubik (1994), which are typically not potential games.

When it comes to the cutting power of minimal curb sets in these classes of games,
the results come in two variations. Firstly, in generic finite games belonging to these
two classes of supermodular and potential games, the collections of minimal curb sets,
minimal prep sets, pure Nash equilibria, and strict Nash equilibria all coincide; see
the remarks following Propositions 4.1 and 5.1.1 This has an important consequence,
since it is within minimal curb sets that many intuitive models of strategic adjustment
settle down. Hence, in generic finite supermodular or potential games, these processes
necessarily converge toward a strict Nash equilibrium.

Secondly, although these genericity results are of interest in their own right, many
classes of games have additional structure, making them congeneric. To enhance this
point, we also provide practically relevant subclasses of games where minimal prep
sets give sharp predictions, whereas minimal curb sets have no cutting power whatso-
ever and simply consist of the entire strategy space: a class of coordination games in
Sect. 4.3 and a class of minority games in Sect. 5.2. Minority games model situations
where players strive to be in the most exclusive of two groups, for one of many possible
reasons: standing out from the crowd might give status; one would prefer to choose
the less crowded of two roads to work; if demand for a good is larger than supply, one
would rather be a supplier, etc. See Moro (2003) for an introduction to minority games
and Challet et al. (2004) for a book containing many of the path-breaking papers and
applications to phenomena in financial markets.

The material is organized as follows. Section 2 contains preliminaries. In Sect. 3
we provide sufficient conditions for the collection of minimal prep sets and the col-
lection of pure Nash equilibria to coincide and a give a simple illustration in the
setting of zero-sum games. Applications to supermodular games are given in Sect. 4,

1 To avoid confusion: these genericity results do not follow from earlier ones in Voorneveld (2004, 2005):
genericity is always defined with respect to a given domain and a property that is generic in one domain is
not necessarily generic in another. For instance, the defining property ‘being zero-sum’ is clearly generic
in zero-sum games, but is not a generic property in finite games.
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applications to potential games and the congestion games of Quint and Shubik (1994)
in Sect. 5.

2 Preliminaries

A (strategic) game is a tuple G = 〈N , (Ai )i∈N , (ui )i∈N 〉, where N is a nonempty,
finite set of players, each player i ∈ N has a nonempty set of pure strategies (or
actions) Ai and a von Neumann-Mergansers utility function ui : × j∈N A j → R. A
game is finite if each player has a finite set of pure strategies. Write A = ×i∈N Ai and
for each i ∈ N , A−i = × j∈N\{i} A j .

Payoffs are extended to mixed strategies in the usual way. Assuming each Ai to be a
topological space, �(Ai ) denotes the set of Boreal probability measures over Ai . Using
a common, minor abuse of notation, α−i denotes both an element of × j∈N\{i} �(A j )

specifying a profile of mixed strategies of the opponents of player i ∈ N , and the
probability measure it induces over the set A−i of pure strategy profiles of his oppo-
nents. Beliefs of player i take the form of such a mixed strategy profile. Similarly, if
Bi ⊆ Ai is a Boreal set, then �(Bi ) denotes the set of Boreal probability measures
with support in Bi :

�(Bi ) = {αi ∈ �(Ai ) | αi (Bi ) = 1}.

As usual, (ai , α−i ) is the profile of strategies where player i ∈ N plays ai ∈ Ai

and his opponents play according to the mixed strategy profile α−i = (α j ) j∈N\{i} ∈
× j∈N\{i} �(A j ).

Let � denote the set of all games satisfying the following weak measurability
assumption on the players’ utility functions: for each player i ∈ N , for each ai ∈ Ai

and each α−i ∈ × j∈N\{i} �(A j ), the expected payoff ui (ai , α−i ) = ∫
A−i

ui (ai , a−i )

dα−i is well-defined and finite. The set � contains, in particular, all (mixed extensions
of) finite strategic games.

Let i ∈ N and let α−i ∈ × j∈N\{i} �(A j ) be a belief of player i . The set

B Ri (α−i ) = {ai ∈ Ai | ∀bi ∈ Ai : ui (ai , α−i ) ≥ ui (bi , α−i )}

is the set of pure best responses of player i against α−i .
We recall the definitions of minimal curb sets and minimal prep sets. Let G =

〈N , (Ai )i∈N , (ui )i∈N 〉 ∈ �. A curb set is a product set X = ×i∈N Xi , where

• for each i ∈ N , Xi ⊆ Ai is a nonempty, compact set of pure strategies;
• for each i ∈ N and each belief α−i of player i with support in X−i , the set Xi

contains all best responses of player i against his belief:

∀i ∈ N ,∀α−i ∈ × j∈N\{i} �(X j ) : B Ri (α−i ) ⊆ Xi .

A curb set X is minimal if no curb set is a proper subset of X . Similarly, a prep set is
a product set X = ×i∈N Xi , where
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• for each i ∈ N , Xi ⊆ Ai is a nonempty, compact set of pure strategies;
• for each i ∈ N and each belief α−i of player i with support in X−i , the set Xi

contains at least one best response of player i against his belief:

∀i ∈ N ,∀α−i ∈ × j∈N\{i} �(X j ) : B Ri (α−i ) ∩ Xi 	= ∅.

A prep set X is minimal if no prep set is a proper subset of X .

3 Sufficient conditions for coincidence

In this section, we show that some simple conditions are sufficient for the collection
of minimal prep sets and the collection of pure Nash equilibria to coincide in a class
of games. This statement is intuitively clear, but since we are comparing set-valued
solutions with point-valued solutions, let us define the coincidence formally: in a game
G = 〈N , (Ai )i∈N , (ui )i∈N 〉 ∈ �, the collection of minimal prep sets and the collec-
tion of pure Nash equilibria coincide if for each minimal prep set X = ×i∈N Xi of
G and each player i ∈ N , there is a pure strategy ai ∈ Ai such that Xi = {ai } and
a = (ai )i∈N is a pure Nash equilibrium. (Its ‘converse’, namely that for each pure
Nash equilibrium a = (ai )i∈N ∈ A, the product set ×i∈N {ai } is a minimal prep set,
is true by definition.)

If �′ ⊆ � is a class of games, we say that the collection of minimal prep sets and
the collection of pure Nash equilibria coincide on �′ if they coincide for each game
G ∈ �′.

For a game G = 〈N , (Ai )i∈N , (ui )i∈N 〉 ∈ �, we will sometimes wish to restrict
players’ pure strategies to a product set B = ×i∈N Bi ⊆ A. The game’s payoffs are
trivially obtained by restricting the payoff functions (ui )i∈N to B. With a slight abuse
of notation (letting the domain of payoffs be implicit), this subgame of G is denoted
by 〈N , (Bi )i∈N , (ui )i∈N 〉.

Let us formulate the conditions under which we will establish coincidence. A class
of games �′ ⊆ �:

• is closed w.r.t. subgames if for each game G = 〈N , (Ai )i∈N , (ui )i∈N 〉 ∈ �′ and
each nonempty product set B = ×i∈N Bi ⊆ A of compact action sets Bi ⊆ Ai ,
also 〈N , (Bi )i∈N , (ui )i∈N 〉 ∈ �′;

• is closed w.r.t. minimal prep sets if for each game G = 〈N , (Ai )i∈N , (ui )i∈N 〉 ∈ �′
and each minimal prep set B = ×i∈N Bi ⊆ A, also 〈N , (Bi )i∈N , (ui )i∈N 〉 ∈ �′;

• has the pure Nash property if each game G ∈ �′ has a pure Nash equilibrium.

Clearly, if �′ is closed w.r.t. subgames, it is closed w.r.t. minimal prep sets. The set of
matrix games (i.e., finite, two-player zero-sum games) is closed w.r.t. subgames and
in particular w.r.t. minimal prep sets, but does not have the pure Nash property. The
set of best-response potential games with a finite pure strategy space (see Sect. 5.1)
has the pure Nash property and is closed w.r.t. minimal prep sets, but is not closed
w.r.t. subgames.

Proposition 3.1 If �′ ⊆ � has the pure Nash property and is closed w.r.t. minimal
prep sets, then the set of pure Nash equilibria and the collection of minimal prep sets
coincide on �′.
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Proof Let G = 〈N , (Ai )i∈N , (ui )i∈N 〉 ∈ �′. By definition, for each pure Nash equilib-
rium a ∈ A, ×i∈N {ai } is a minimal prep set. Conversely, let B = ×i∈N Bi be a minimal
prep set of G. Since �′ is closed w.r.t. minimal prep sets, also 〈N , (Bi )i∈N , (ui )i∈N 〉 ∈
�′. By the pure Nash property, 〈N , (Bi )i∈N , (ui )i∈N 〉 has a pure Nash equilibrium
b = (bi )i∈N ∈ B and hence minimal prep set ×i∈N {bi }. Since B is a prep set of G, it
follows that ×i∈N {bi } is a minimal prep set of the original game G. Moreover, as it is
a singleton set, b is a Nash equilibrium of G. Since ×i∈N {bi } ⊆ B and B is a minimal
prep set of G, it follows that ×i∈N {bi } = B: the minimal prep set B corresponds with
a pure Nash equilibrium. �

Although Proposition 3.1 is relatively straightforward, its power comes from the fact
that it is applicable—as is shown in the following sections—in many well-known and
practically relevant classes of games. It applies in particular to—and is arguably intu-
itively most appealing for—a class of games which is closed w.r.t. subgames. This is
regularly the case if the games are defined by common types of strategic interactions:
subgames of zero-sum games are zero-sum, subgames of congestion games, where
players choose among different roads/facilities, are congestion games, etc. Neverthe-
less, many interesting classes of games with the pure Nash property are not closed
w.r.t. subgames, even though they are closed w.r.t. minimal prep sets. Specific examples
include the games with strategic complementarities in Sect. 4.2 and the best-response
potential games in Sect. 5.1.

A pure saddle-point theorem of Shapley (1964, pp. 6–7) serves as a first illustration
of the use of Proposition 3.1. Other economically relevant applications are provided
in later sections.

Proposition 3.2 Let �′ be the set of finite two-person zero-sum games

G = 〈{1, 2}, (A1, A2), (u1,−u1)〉

in which each 2 × 2 subgame (a subgame in which both players have exactly two pure
strategies) has a pure saddle point/Nash equilibrium2. For each game G ∈ �′, the set
of pure saddle points/Nash equilibria and the collection of minimal prep sets coincide.

Proof Let G ∈ �′ and let H be a subgame of G. Since each 2 × 2 subgame of H is a
2 × 2 subgame of G, it follows that all 2 × 2 subgames of H have a pure saddle point.
Conclude that �′ is closed w.r.t. subgames. Moreover, �′ has the pure Nash property
by Thm. 2.1 of Shapley (1964). The result now follows from Proposition 3.1. �


4 Strategic complementarities

Well-known existence results for Nash equilibria in supermodular games or games
with strategic complementarities rely on monotonicity properties of the best-reply
correspondence. The theory was initiated by Topkis (1978) and has been successfully
applied to a wide range of economic models; the reader is referred to, for instance,

2 This assumption holds vacuously for finite two-person zero-sum games in which some player has only
one pure strategy: there are no 2 × 2 subgames! Hence, such games are included in �′.
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Milgrom and Roberts (1990) or the book of Topkis (1998). This section relies on a
general existence result by Zhou’s (1994).

4.1 Lattices and order

A partially ordered set (S,≤) is a set S with a binary relation ≤ which is:

(1) reflexive: ∀x ∈ S : x ≤ x ,
(2) antisymmetric: ∀x, y ∈ S : if x ≤ y and y ≤ x , then x = y,
(3) transitive: ∀x, y, z ∈ S : if x ≤ y and y ≤ z, then x ≤ z.

If the partial order ≤ is complete (∀x, y ∈ S : x ≤ y or y ≤ x), it is a linear order.
Let (S,≤) be a partially ordered set and let T ⊆ S. An element x ∈ S is a lower

bound of T if x ≤ y for all y ∈ T and an upper bound of T if y ≤ x for all y ∈ T .
If it exists, the least upper bound of T is called the supremum sup(T ) of T in S and
the greatest lower bound of T is called the infimum inf(T ) of T in S. A lattice is a
partially ordered set (S,≤) that contains the infimum x ∧ y = inf{x, y} and supremum
x ∨ y = sup{x, y} of each pair of elements x, y ∈ S. The lattice is complete if, for all
nonempty subsets T ⊆ S: inf(T ) and sup(T ) exist.

(T,≤) is a sublattice of lattice (S,≤) if T ⊆ S is closed under ∧ and ∨, i.e., if
it is a lattice with the same join and meet relations as S. As above, this sublattice is
complete if, for all nonempty subsets U ⊆ T : inf(U ) ∈ T and sup(U ) ∈ T .

An interval [x, y] in (S,≤) is the set {z ∈ S | x ≤ z ≤ y}. For x ∈ S, we denote
(−∞, x] = {z ∈ S | z ≤ x} and [x,∞) = {z ∈ S | x ≤ z}. The interval topology on a
lattice (S,≤) is the topology for which all closed sets are intersections or finite unions
of intervals of the form S, (−∞, x], and [x,∞), where x ∈ S. By the Frink-Birkhoff
theorem (Birkhoff 1967), a lattice is complete if and only if it is compact in its interval
topology. Hence, any sublattice of a complete lattice is complete if and only if it is
closed in its interval topology.

A note of caution: a subset of (S,≤) that is a complete lattice in its own right may
not be a complete sublattice of (S,≤). Milgrom and Roberts (1990, p. 1260) give
enlightening examples. For instance, the set T = [0, 1) ∪ {2} is a complete lattice
under its standard order. In this case sup[0, 1) = 2 ∈ T . It is not a complete sublattice
of [0, 2], where sup[0, 1) = 1 /∈ T .

Let (S,≤) and (T,�) be two lattices. A correspondence ϕ : S � T is ascending if,
for all s, s′ ∈ S with s ≤ s′, all t ∈ ϕ(s) and t ′ ∈ ϕ(s′), it holds that t ∧ t ′ ∈ ϕ(s), t ∨ t ′ ∈
ϕ(s′).

4.2 Games with ascending best replies

As stated, well-known existence results for Nash equilibria rely on the best-response
correspondence being ascending. This can be derived from other assumptions under
names like supermodularity/strategic complementarity/increasing differences, but the
key to the result is always the monotonicity of best replies. Therefore, we state our
result in terms of ascending best replies and refer to, for instance, Zhou’s (1994) for
a clear account on how to achieve it from other conditions.
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We use the general existence result by Zhou’s (1994) with the only modification
that we assume all action sets Ai to be linearly ordered, rather than just a lattice. In
most applications (see Milgrom and Roberts 1990; Topkis 1998), this assumption is
satisfied. Often, for instance, Ai is a set of real numbers with its usual order.

Recall that a function f : A → R on a topological space A is upper semicontinuous
(u.s.c.) if its upper contour sets are closed:

∀r ∈ R : {a ∈ A | f (a) ≥ r} is closed.

Proposition 4.1 Let �ASC be the set of strategic games G = 〈N , (Ai )i∈N , (ui )i∈N 〉 ∈
� satisfying the following conditions:

(ASC1) For each i ∈ N, there is a linear order ≤i on Ai such that Ai is compact in
a topology τi equal to or finer than the interval topology.3

(ASC2) For each i ∈ N, ui is upper semicontinuous on Ai in the topology τi .
(ASC3) For each i ∈ N, the best-response correspondence B Ri : A−i � Ai is

ascending.4

For each game G ∈ �ASC the collection of minimal prep sets and pure Nash equilibria
coincide.

Proof �ASC has the pure Nash property: All games in �ASC satisfy Zhou’s
(1994) sufficient conditions for the existence of pure Nash equilibria: A is a com-
plete lattice; for each a ∈ A, the set B R(a) = ×i∈N B Ri (a−i ) is a nonempty, closed
sublattice of A by (ASC1) and (ASC2); the best response correspondence is ascending.
�ASC is closed w.r.t. minimal prep sets: Let G = 〈N , (Ai )i∈N , (ui )i∈N 〉 ∈
�ASC and let B = ×i∈N Bi ⊆ A be a minimal prep set of G. To show: H =
〈N , (Bi )i∈N , (ui )i∈N 〉 ∈ �ASC .

(i) Restricting the linear order ≤i on Ai to Bi , we see that (Bi ,≤i ) is linearly
ordered.

(ii) By definition of a minimal prep set, Bi is compact in τi , which is equal to or
finer than the interval topology on Ai . Hence, the same holds for the topology
restricted to Bi , the usual subspace topology.

(iii) Since ui is upper semicontinuous in the topology τi on Ai , it remains so on Bi .
(iv) Since B is a minimal prep set, the best-response correspondence B RH

i (·) of the
subgame H is given by

B RH
i (·) = Bi ∩ B RG

i (·),

the—by definition of a minimal prep set—nonempty intersection of the best-
response correspondence of the original game G and i’s component Bi of the
minimal prep set. Since B RG

i (·) is ascending and Bi is a lattice given its linear
order ≤i , it follows that B RH

i (·) is ascending.

3 Topology τi is finer than the interval topology if every open set in the interval topology is open in τi .
4 As usual, A−i is the direct product compact lattice whose product order ≤−i is such that for all a−i =
(a j ) j∈N\{i} and b−i = (b j ) j∈N\{i} in A−i : a−i ≤−i b−i iff a j ≤ j b j for all j ∈ N \ {i}.
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Fig. 1 Supermodular games:
not closed w.r.t. subgames

Fig. 2 Supermodular games:
non-linear orders

Combining observations (i) to (iv), it follows that 〈N , (Bi )i∈N , (ui )i∈N 〉 ∈ �ASC , i.e.,
�ASC is closed w.r.t. minimal prep sets. The result now follows from Proposition 3.1.

�


Remarks (i) The set �ASC in Proposition 4.1 is not closed w.r.t. subgames: in the
two-player game in Fig. 1, each player’s action 0 is strictly dominant.
Hence, the best-response correspondences are constant and in particular ascend-
ing in the usual order on {0, 1, 2}: the game belongs to �ASC . But the subgame
on {1, 2} × {1, 2} is not in �ASC : it has no pure Nash equilibrium.

(ii) Proposition 4.1 does not hold if the assumption that each action set Ai is linearly
ordered is relaxed to assuming that there is an order ≤i on Ai such that (Ai ,≤i )

is a complete lattice: the associated class of games is not closed w.r.t. minimal
prep sets. Consider the two-player game in Fig. 2. Define, for each player i ,
the partial order ≤i on Ai = {0, 1, 2, 3} with 0 ≤i 1 ≤i 3 and 0 ≤i 2 ≤i 3,
but which does not compare 1 and 2. Then (Ai ,≤i ) is a complete lattice. The
players’ best-response correspondences are:

BR1(a2) = {a2} for all a2 ∈ {0, 1, 2, 3} and BR2(a1) =

⎧
⎪⎪⎨

⎪⎪⎩

{0} if a1 = 0,

{2} if a1 = 1,

{1} if a1 = 2,

{3} if a1 = 3.

Hence, the best-response correspondences B R1 and B R2 are ascending. The
product set {1, 2} × {1, 2} is a minimal prep set of the game. In the subgame
restricted to these action profiles, we still have that the best response corre-
spondence is (trivially) ascending with respect to the product order induced
by the restriction of ≤i to {1, 2}. But ({1, 2},≤i ) is not a lattice: 1 ∧ 2 and
1 ∨ 2 do not exist. Notice, indeed, that this subgame does not have a pure Nash
equilibrium.
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(iii) Recall that a (necessarily pure) Nash equilibrium is strict if each player has a
unique best response to the choices of the remaining players. In generic finite
games belonging to the class of games with ascending best replies studied above,
also the collection of minimal curb sets coincides with the collection of pure
and strict Nash equilibria:5 take the subclass of games where all payoffs are
distinct (its relative complement is definitely a set of measure zero). Clearly,
all pure Nash equilibria are strict in such games. Any minimal curb set B is a
prep set, hence contains a minimal prep set, which is a singleton set consisting
of one pure Nash equilibrium. This singleton set is curb too, so B is a Nash
equilibrium! This result has an important impact for convergence of adjustment
processes: it is within minimal curb sets that many intuitive models of strate-
gic adjustment settle down; cf. Young (1993, 1998); Hurkens (1995); Kosfeld
et al. (2002). Hence, in generic, finite games in �ASC , these processes converge
toward a strict Nash equilibrium. �

Although of interest in its own right, many classes of games have additional struc-
ture, making them congeneric. To illustrate this point, the next subsection describes
a subclass of supermodular games in which minimal prep sets give sharp predictions,
whereas minimal curb sets have no cutting power whatsoever and simply consist of
the entire strategy space.

4.3 A class of coordination games

By Proposition 4.1, minimal prep sets have substantial cutting power in a very general
class of supermodular games. However, one can easily construct plausible subclasses
of such games where minimal curb sets have no cutting power. We give a simple
example.

Consider a two-player coordination game where the players find each other if they
choose close-by alternatives. Formally, consider the game G = 〈{1, 2}, (A1, A2),

(u1, u2)〉 where

A1 = A2 = {0, 1, . . . , k} for some k ∈ N (1)

and for each pair of alternatives (a1, a2) ∈ A1 × A2:

u1(a1, a2) = u2(a1, a2) =
{

1 if |a1 − a2| ≤ 1,

0 otherwise,
(2)

i.e., the players choose a location 0, . . . , k and are rewarded (‘find each other’) if they
choose identical or neighboring locations.

Proposition 4.2 In a two-player coordination game G = 〈{1, 2}, (A1, A2), (u1, u2)〉
as in (1) and (2), the following hold:

5 We are grateful to an anonymous referee for suggesting this shorter version of our original proof.
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(a) the collections of pure Nash equilibria and minimal prep sets coincide;
(b) the collection of pure Nash equilibria is

{(a1, a2) ∈ A1 × A2 : |a1 − a2| ≤ 1};
(c) the unique (hence minimal) curb set is A1 × A2.

Proof (a) Endowing the action space Ai = {0, 1, . . . , k} of player i ∈ {1, 2} with
its standard order, the game is easily seen to belong to the class of games with
ascending best responses in Proposition 4.1, so that pure Nash equilibria and
minimal prep sets indeed coincide.

(b) Follows easily from (2).
(c) Let X = X1 × X2 be a curb set of G. Fix a player i ∈ {1, 2}. By (2), it follows

that if ai ∈ Xi , then {ai −1, ai , ai +1}∩{0, 1, . . . , k} ⊆ X j for j 	= i : player j’s
component of the curb set contains not only ai , but also the neighboring actions.
The only set with this property is A1 × A2. �


5 Potential games

5.1 Generalized ordinal and best-response potential games

Monderer and Shapley (1996) define four classes of potential games, in increasing
order of generality: exact, weighted, ordinal, and generalized ordinal potential games.
These games have applications to, for instance, congestion models (Rosenthal 1973)
and oligopoly models (Slade 1994). All finite potential games in Monderer and Shapley
(1996) have the following finite improvement property: start with an arbitrary strat-
egy profile. Each time, let a player that can benefit from unilateral deviation switch
to a better strategy. Under the finite improvement property, this process eventually
ends, obviously in a Nash equilibrium. Voorneveld (2000) introduces best-response
potential games that allow infinite improvement paths by imposing restrictions only
on paths in which players that can improve actually deviate to a best response. These
games include the best-response potential games of Morris and Ui (2004, p. 264, after
Def. 6). Formally, a game G = 〈N , (Ai )i∈N , (ui )i∈N 〉 is

• a generalized ordinal potential game if there is a function P : A → R such that,
for each player i ∈ N , each strategy profile a−i ∈ A−i of his fellow players, and
each pair of strategies ai , bi ∈ Ai :

ui (ai , a−i ) − ui (bi , a−i ) > 0 ⇒ P(ai , a−i ) − P(bi , a−i ) > 0. (3)

• a best-response potential game if there is a function P : A → R such that, for
each player i ∈ N and each strategy profile a−i ∈ A−i of his fellow players:

arg max
ai ∈Ai

ui (ai , a−i ) = arg max
ai ∈Ai

P(ai , a−i ). (4)

The function P is called a (generalized ordinal or best-response) potential.
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There is no logical dependence between (3) and (4): Examples 4.1 and 4.2 in
Voorneveld (2000) indicate that there are generalized ordinal potential games which
are not best-response potential games, and conversely, that there are best-response
potential games which are not generalized ordinal potential games.

Proposition 5.1 Let �G O P and �B R P be the set of games with compact strategy
spaces and an upper semicontinuous generalized ordinal or best-response potential,
respectively. For each G ∈ �G O P ∪ �B R P , the set of pure Nash equilibria and the
collection of minimal prep sets coincide.

Proof �G O P is closed w.r.t. subgames: Simply restrict the domain of the poten-
tial function.
�B R P is closed w.r.t. minimal prep sets: Let G = 〈N , (Ai )i∈N , (ui )i∈N 〉 ∈
�B R P have u.s.c. best-response potential P and assume B = ×i∈N Bi is a minimal
prep set of G. For each player i ∈ N and each strategy profile a−i ∈ × j∈N\{i} B j ,

∅ 	= arg max
ai ∈Ai

ui (ai , a−i ) ∩ Bi = arg max
ai ∈Ai

P(ai , a−i ) ∩ Bi ,

where the inequality follows by definition of a prep set and the equality follows from
(4). Hence, also the game H = 〈N , (Bi )i∈N , (ui )i∈N 〉 is a best-response potential
game, with a best response potential obtained from P by restricting its domain. Its
strategy spaces (Bi )i∈N are compact by definition of a prep set and P remains u.s.c.
in the subspace topology. Conclude that H ∈ �B R P .
�G O P and �B R P have the pure Nash property: Since A is compact in the
product topology and each G ∈ �G O P ∪�B R P has an upper semicontinuous potential
P , the potential achieves a maximum. By (3) or (4), such a maximum is a pure Nash
equilibrium.
The result now follows from Proposition 3.1. �


Remarks (i) Endowing A with the discrete topology, the conclusion of Proposi-
tion 5.1 applies in particular to finite generalized ordinal/best-response potential
games.

(ii) As opposed to the set of generalized ordinal potential games, the set of best-
response potential games is not closed w.r.t. subgames: The two-player game
to the left in Fig. 3 has a best-response potential (to the right). The subgame
with action space {T, B} × {M, R} is not a best-response potential game: such
a potential would have to satisfy

P(T, M) < P(T, R) < P(B, R) < P(B, M) < P(T, M),

a contradiction.

Fig. 3 Best-response potential
games: not closed w.r.t.
subgames , , ,

, , ,
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Fig. 4 A pseudo-potential game

, , , ,

, , , ,

(iii) The assumption that the game needs to have an u.s.c. potential is not an innocuous
one. Voorneveld (1997, pp. 167–168) gives an example of an ordinal potential
game with compact strategy spaces and continuous payoff functions for which no
potential achieves a maximum and which, consequently, has no u.s.c. potential.

(iv) The conclusion of Proposition 5.1 does not hold for the pseudo-potential games
recently introduced by Dubey et al. (2006). Formally, a game G = 〈N , (Ai )i∈N ,

(ui )i∈N 〉 is a pseudo-potential game if there is a function P : A → R such that,
for each player i ∈ N and each strategy profile a−i ∈ A−i of his fellow players:

arg max
ai ∈Ai

ui (ai , a−i ) ⊇ arg max
ai ∈Ai

P(ai , a−i ).

The two-player game to the left in Fig. 4 has a pseudo-potential (to the right).
But its pure Nash equilibria and minimal prep sets do not coincide, since {T, B}×
{A, B} is a minimal prep set. The game has neither a generalized ordinal nor a
best-response potential function P , which by definition would have to satisfy:

P(T, A) < P(T, B) < P(B, B) < P(B, A) < P(T, A),

a contradiction.
(v) As we showed for supermodular games, also in generic finite generalized ordi-

nal/best-response potential games, the collection of minimal curb sets and the
collection of pure (and strict) Nash equilibria coincide. Again, we note that in
such games, adjustment processes as in Young (1993, 1998); Hurkens (1995),
and Kosfeld et al. (2002) converge toward a strict Nash equilibrium. �

5.2 Minority games

Above, we saw that in large classes of potential games, minimal prep sets have substan-
tial cutting power, yielding equilibrium predictions. On the one hand, we have shown
that in finite generic potential games, the collection of minimal curb sets and the collec-
tion of minimal prep sets coincide. On the other hand, just as for supermodular games,
in economically relevant subclasses of these games, minimal curb sets have no cutting
power whatsoever. As an example, this section considers so-called minority games,
a type of congestion problems introduced by Challet and Zhang (1997) and inspired
by the El Farol Bar problem of Arthur (1994). See Moro (2003) for an introductory
overview, Challet et al. (2004) for a book containing many of the path-breaking papers
within the physics literature and applications to phenomena in financial markets, and
Coolen (2005) for a thorough mathematical treatment.

A minority game is a congestion problem where players aim to avoid crowds and
prefer choosing the minority alternative. It has an odd number of players: N =
{1, . . . , 2k + 1} for some k ∈ N. Each player i ∈ N chooses among two actions:
Ai = {−1,+1} for all i ∈ N . For each action s ∈ {−1,+1} there is a function
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fs : {1, . . . , 2k + 1} → R,

where, for each m ∈ {1, . . . , 2k + 1}, the number fs(m) ∈ R specifies the util-
ity/payoff to a player choosing s if the total number of players choosing s equals m.
The payoff/utility function ui : A → R of player i ∈ N is consequently defined as
follows:

∀a = (a j ) j∈N ∈ A : ui (a) = fai (| { j ∈ N : a j = ai } |).
Characteristic for a minority game is the assumption that unilateral deviation from a
majority to a minority pays off:

∀s, t ∈ {−1,+1}, s 	= t,∀m ∈ {k + 2, . . . , 2k + 1} : fs(m) < ft (2k + 2 − m).

(5)

Example 5.2 Challet and Zhang (1997, p. 408) who introduce minority games, ini-
tially assign payoff one to each member of the minority, and payoff zero to each
member of a majority:

f−1(m) = f+1(m) =
{

1 if m ∈ {1, . . . , k},
0 if m ∈ {k + 1, . . . , 2k + 1}. (6)

In a variant (Challet and Zhang 1997, p. 411), they suggest payoffs giving zero reward
to majority members and positive payoffs to minorities, favoring small ones:

f−1(m) = f+1(m) =
{ | N | /m − 2 if m ∈ {1, . . . , k},

0 if m ∈ {k + 1, . . . , 2k + 1}. (7)

Given an action profile a = (ai )i∈N , the minority alternative is −1 if
∑

i∈N ai > 0
and +1 if

∑
i∈N ai < 0. Other frequently occurring payoff functions (Moro 2003)

assign to player i a payoff given by −ai g(
∑

j∈N a j ), where g is an odd function, i.e.,
g(x) = −g(−x), with g(x) > 0 if x > 0. In particular, common examples include

g(x) = x/|N | and g(x) = sgn(x), (8)

where the sign function is defined for each x ∈ R as:

sgn(x) =
⎧
⎨

⎩

−1 if x < 0,

0 if x = 0,

+1 if x > 0.

In our notation:

f−1(m) = f+1(m) = g(2(k − m) + 1). (9)

As is seen from the examples, the payoff functions to the two alternatives are tra-
ditionally assumed to be identical: f−1 = f+1. We relax this assumption by only
requiring

f−1(k + 1) = f+1(k + 1). (10)
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Proposition 5.3 In a minority game G (in particular, under assumptions (5) and (10))
with 2k + 1 players, the following holds:

(a) G is a potential game, so its pure Nash equilibria and minimal prep sets coincide;
(b) A pure strategy profile a ∈ A is a Nash equilibrium if and only if there is an alter-

native s ∈ {−1,+1} chosen by exactly k players, i.e., |{i ∈ N : ai = s}| = k;
(c) The unique minimal curb set of G is the entire pure strategy space.

Proof (a) G is a congestion game as in Rosenthal (1973) and hence a (finite exact)
potential game (Monderer and Shapley 1996, Thm. 3.1). By Proposition 5.1, its
pure Nash equilibria and minimal prep sets coincide.

(b) Fix a pure strategy profile. The number of players is odd, so some option s ∈
{−1,+1} is chosen by a majority of at least k + 1 players. If the majority has
k +2 or more players, (5) implies that a majority member can unilaterally deviate
to the other option and achieve a strictly higher payoff. Thus, the strategy profiles
in Proposition 5.3(b) are the only candidates for pure Nash equilibria. They are
indeed equilibria: by (5), a minority member never has an incentive to deviate
and join a majority. Next, let s ∈ {−1,+1} be the alternative chosen by the k +1
majority members. If a majority member deviates to t 	= s, his payoff changes
from fs(k + 1) to ft (k + 1). By (10), these payoffs are the same. Conclude: the
profiles in Proposition 5.3(b) are indeed the game’s pure Nash equilibria.

(c) Let B = ×i∈N Bi be a minimal curb set of G. At least one of the sets {i ∈ N :
−1 ∈ Bi } and {i ∈ N : +1 ∈ Bi }, w.l.o.g. the latter, contains k + 1 or more
players. Let I ⊆ {i ∈ N : +1 ∈ Bi } have k + 1 members and choose b ∈ B with
bi = +1 if i ∈ I . For each of the k remaining players j ∈ N \ I , the unique best
reply to b− j is −1, so −1 ∈ B j . When the k + 1 players in I play +1 and the k
players in N \ I play −1, the members of I are indifferent between their actions
by (10), so by definition of a minimal curb set, Bi = {−1,+1} for all i ∈ I .
Similarly, choose b′ ∈ B with b′

i = −1 if i ∈ I . For each of the k remaining
players j ∈ N \ I , the unique best reply to b′− j is +1, so +1 ∈ B j . We already
had that −1 ∈ B j , so B j = {−1,+1}. Hence, Bi = {−1,+1} for all i ∈ N . �


5.3 An extension to the Quint-Shubik congestion model

Monderer and Shapley (1996, Thm. 3.2) show that each finite exact potential game is
isomorphic to a congestion game as defined in Rosenthal (1973). In these games, play-
ers choose subsets of facilities from a common pool. The payoff associated with each
facility is a function only of the number of players using it. Quint and Shubik (1994)
and—as a special case—Milchtaich (1996) considered a different class of congestion
games by allowing payoffs to be player-dependent. In general, these games do not
admit a potential function, but nevertheless have pure Nash equilibria. The notation
in this section follows the overview article on congestion models by Voorneveld et al.
(2000).

Quint and Shubik (1994) consider finite games G = 〈N , (Ai )i∈N , (ui )i∈N 〉 satis-
fying the following three properties:

(QS1) There is a nonempty, finite set F of facilities such that Ai ⊆ F for all i ∈ N .
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By (QS1), an action of a player is to choose a facility from a collection F , possibly
subject to feasibility constraints: players may not have access to all elements of F .

Let a ∈ A, f ∈ F . Let n f (a) := |{i ∈ N : ai = f }| be the number of players
choosing facility f in action profile a.

(QS2) For each player i ∈ N and all pure strategy profiles a, b ∈ A with ai = bi = f :
if n f (a) = n f (b), then ui (a) = ui (b).

By (QS2), the utility of player i depends only on the number of users of his chosen
facility.

(QS3) For each player i ∈ N , each pure strategy profile a ∈ A, each player j ∈ N \{i}
with a j = ai , and each alternative action choice b j ∈ A j \ {a j } of this player:
ui (a j , a− j ) ≤ ui (b j , a− j ).

Property (QS3) models the congestion: a player is not harmed if an other user of the
same facility switches to a different one. The benefit to each player from choosing a
facility is weakly decreasing in the total number of users.

Proposition 5.4 Let �QS be the set of Quint-Shubik congestion games, i.e., the set
of games satisfying (QS1) to (QS3). For each game G ∈ �QS, the set of pure Nash
equilibria and the collection of minimal prep sets coincide.

Proof Quint and Shubik (1994, Thm. 3) prove that �QS has the pure Nash property.
Property (QS1) allows us to restrict the set of facilities from which players make their
choices: �QS is closed w.r.t. subgames. The result follows from Proposition 3.1. �


Remarks (i) The Quint-Shubik congestion games contain numerous minority
games, including all our examples with payoffs as defined in (6), (7), and (9)
with g as in (8). Conclude that also here, there is a relevant subclass in which
minimal curb sets have no cutting power.

(ii) Milchtaich (1996) allows no restrictions on access to facilities: he assumes
(QS2), (QS3), and Ai = F instead of the weaker assumption (QS1). Hence,
his class of games is not closed w.r.t. subgames or minimal prep sets. Since they
are special cases of the Quint-Shubik congestion games, we can nevertheless
conclude that minimal prep sets and pure Nash equilibria coincide. �
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