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Abstract

We consider the M/G/1 queue with a processor sharing server. We
study the conditional sojourn time distribution, conditioned on the
customer’s service requirement, as well as the unconditional distribu-
tion, in various asymptotic limits. These include large time and/or
large service request, and heavy traffic, where the arrival rate is only
slightly less than the service rate. Our results demonstrate the possible
tail behaviors of the unconditional distribution, which was previously
known in the cases G = M and G = D (where it is purely exponen-
tial). We assume that the service density decays at least exponentially
fast. We use various methods for the asymptotic expansion of inte-
grals, such as the Laplace and saddle point methods.
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1 Introduction

One of the most interesting service disciplines in queueing theory is that of
processor sharing (PS). Here every customer in the system gets an equal
fraction of the server or processor, and this has the advantage that shorter
jobs get served in less time than, say, under the first-in-first-out (FIFO)
discipline.

PS queues were introduced in the 1960’s by Kleinrock (see [1],[2]) and have
been the subject of much research over the past 407 years. In these models
one of the main measures of performance is a given (also called tagged)
customer’s sojourn time distribution, conditioned on that customer’s service
time. The sojourn time is the time the tagged customer leaves the system
after being served, assuming the customer arrives at time zero.

We denote by V(x) the conditional sojourn time, with x being the service
time. If the tagged customer arrived to an empty system and no further
arrivals occurred in the time interval [0, z], then V(z) = z. But in general
V(z) > z as the tagged customer must share the server. We denote by b(z)
the serv1ce time dens1ty, by p(t|x) the conditional sojourn time density, and
by p(t fo p(t|x)dz the unconditional sojourn time density. We note
that p(t|:£) has in general a probability mass along t = x, but p(t) is generally
continuous.

The M/M/1-PS queue assumes Poisson arrivals and i.i.d. service times
with density b(z) = pe #*. In [3], Coffman, Muntz and Trotter obtained an
expression for the Laplace transform of p(t|z) (i.e., for E[e™*V®)], where s is
the Laplace transform variable). In [4] Morrison removed the conditioning on
x and studied p(t) in the heavy traffic limit, where the Poisson arrival rate A
is nearly equal to the service rate p (thus p = A/ T 1). Setting e = 1 — p, in
[4] asymptotic results were obtained for the time scales t = O(1),t = O(¢™!)
and t = O(e3). Most the mass is concentrated in the range t = O(e™!),
and the asymptotic series involves modified Bessel functions. For moderate
traffic intensities with p < 1, the tail behavior of p(t) is given by

p(t) ~ Cyt=5/6 g~ Aot e Bt 0 (1.1)

where Ay = (1 —,/p)? and the constants By and Cy are given in [5]-[7]. The
result in (LI was obtained for the M/M/1 queue under a random order of
service (ROS) discipline, but there is a close connection between the waiting
time distribution in the ROS model and the sojourn time distribution in the



PS model. This relation, along with some extensions, is explored in [§] and
[9]. In [I0] we studied the conditional density p(t|z) for various asymptotic
ranges of x and ¢, for both a fixed p < 1 and in the heavy traffic limit where

pT1

A more difficult model is the M/G/1-PS queue, where the service density
is general. This was analyzed by Yashkov in [11], [I2] and by Ott [13]. These
authors obtained an explicit, albeit complicated, expression for E[e~*V(®)].
Inverting the Laplace transform leads to an expression for p(t|x) as a contour
integral (see (2.4])), but the integrand is a nonlinear function of another
contour integral, which is in turn defined in terms of the Laplace transform
of the service density. In the case of deterministic service times, where b(z) =
d(z —1/p), much more explicit results are available (see [13] and [14]). Also,
the tail behavior of the unconditional sojourn time density was derived by
Egorova, Zwart and Boxma [14] as

pt) ~C et (G =D), t— oo (1.2)

where the constants A" and C" are explicitly characterized in [14]. Comparing
(LT) and (T2)) we see that the tail behaviors of the M /M /1-PS and M/D/1-
PS models are quite different.

In this paper we will study both the conditional sojourn time density
p(t|x) and the unconditional density p(¢) in the M/G/1-PS model. As in [10]
we shall consider various asymptotic limits, such as = and/or ¢t — oo with a
fixed p < 1, and 1 — p =€ — 0" with space and time scaled by €. Here p =
Amy where my = fooo x b(z)dz is the mean service time. We consider service
densities b(x) that have “thin tails”, with decay that is at least exponential as
x — oo. We shall show that the basic asymptotic structure of the conditional
density p(t|z) is essentially independent of the service density (though the
formulas do depend on the Laplace transform of b(z)). In contrast, the
unconditional density is highly dependent on the tail behavior of b(x). We
shall make specific assumptions on this tail, first assuming that

bx) ~ Male ™M™ r>1, (1.3)

where M, N (> 0) and ¢ are constants. Thus (L3) allows for roughly ex-
ponential or even thinner tails, such as a Gaussian. Then we shall discuss
“zero-tail” service densities, by assuming that b(x) has support for 0 <z < A
(e.g., b(x) = 1/A corresponds to uniformly distributed service times). In the



zero tail case the behavior of p(t) as t — oo and p < 1 is determined by the
behavior of b(x) near the upper limit of its support, and we will assume that

b(x) ~ a, (A—2)""t a1 A, (1.4)

where «, and v, are positive constants.

We will obtain a wide variety of tail behaviors of p(t) as t — oo for the
general M/G/1-PS model, that are different from either (L)) or (IT2). We
shall also identify the class of service densities that lead to purely exponential
tails, such as G = D in (L2).

We mention some related work on various PS models. Ramaswami [15]
studied the G/M/1-PS queue and obtained explicit results for the uncondi-
tional moments of the sojourn time. Various asymptotic properties of the
conditional and unconditional moments and distribution were derived in [16].
The G/G/1-PS model has not been analyzed exactly, but some approxima-
tions are discussed in Sengupta [17] and the tail exponent of the unconditional
sojourn time density was derived by Mandjes and Zwart [18]. Specifically, in
[18] the authors characterized the limit ¢~ log[p(t)] — — A as t — oo, assum-
ing that the arrival and service densities have at least exponential tails. In
[19] Zwart and Boxma analyze the M/G/1-PS queue with heavy tails, where
the service density has algebraic or sub-exponential behavior as © — oo (thus
N=0,r=0,g<—11in [L3),0or 0 <r <1).

For PS models one is also interested in the sojourn time conditioned
on the number of other customers in the system when the tagged customer
arrives. The conditional sojourn time for the M /M /1-PS model, conditioned
on this number rather than the service time x, was studied by Sengupta and
Jagerman [20] and Guillemin and Boyer [21]. A good recent survey of sojourn
time asymptotics in PS queues is in Borst, Nunez-Queija and Zwart [22].

In this paper the main methods used are for the asymptotic expansion of
integrals, such as the Laplace and saddle point methods, and good general
references are the books of Bleistein and Handelsman [23] and of Wong [24].

The remainder of the paper is organized as follows. In Section 2 we
summarize and briefly discuss our main results (see Theorems 2.1-2.5). In
Section 3 we derive the results for p(t|z), for moderate traffic intensities
p < 1. In Section 4 we consider p(t|x) for p 1 1, and various scalings of space
and time. We remove the condition on x in Section 5, treating both p < 1
and p =~ 1, and here we make the assumptions (L3) or (L.4]).



2 Summary of results

We assume that customers arrive according to a Poisson process with rate A,
at a single processor-sharing server. The customers’ random service requests
are i.i.d. random variables with density function lA)(y), and Laplace-Stieltjes
transform b(7) = [ e b(y)dy. We assume that b(7) is an analytic function
of 7 for R(7) > —¢y for some ¢y > 0. Thus all the moments of the service

time are finite, and we set

my = /000 v b(y) dy = (—1)Fb® (7)],—o (k€ N). (2.1)

In particular we denote the service rate by u where

1 00 .,
—=m1=/ yb(y) dy = —=0'(0).
M 0

Then the traffic intensity is defined as p = A/u and we assume that p < 1.

The Laplace transform of the equilibrium sojourn time distribution, con-
ditioned on the tagged customer (or job) requiring x units of service, was
derived by Ott [13] and Yashkov [I1], [I2], who obtained

6—8V(SC) _ I P
El ) (1—p)Gi(s,x) +sGs(s, 1)’ (2:2)
where : A( )
*° T—A(1=0b(7
e " Gi(s,x)dr = = ,
/0 (5, 2) T[T—S—)\(l—b(T))]
and

plr—p(1L=b(r)]
T2 [7‘— s—A(1— b(T))}

/ e " Gs(s,x)dr =
0

Thus, the Laplace transform of the denominator in the right-hand side of

22) is

f(rys) = /000 [(1—p)Gi(s,2) +sGs(s,z)] e ™dx

_ 0=pT = (A= AA b +spT s A (1= b)), o
T2 [T—S— A1 _6(7—))}
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Taking the inverse Laplace transform of (2.3]), (2.2) becomes

_ I—p
E[e—*V®)] = , 2.4
| | 271ri fBrT e f(7;s) dr (2.4)

where Br; is a vertical contour in the complex 7-plane, on which R(7) > 0.

By taking the inverse Laplace transform of (2.4)), the probability density
of the sojourn time, conditioned on service time zx, is

1
p(tle) = i /s et Ele™*V@] ds

1—p 1 / -
_ s - T . d d . 2
5 /BTS e [2m’ . e f(r;s) T:| 5 (2.5)

Here Br; is a vertical contour in the complex s-plane with R(s) > 0. Note
that p(t|z) will in general have a probability mass along ¢t = x. Analyzing the
integral (2.5]), we obtain the following expansions for p(t|x), valid on different
space and time scales.

Theorem 2.1 For a fixed p < 1, the conditional sojourn time density has
the following asymptotic expansions:

1. 2 =00, t —x — 0" with x(t — x)” = O(1), assuming that

by) ~ay” ', asy — 0 (a,v > 0),

1-— r
p(tlx) ~ p / e et (72 exp [L(V) x} ds
Brg

2mi sv
= (1—p)(t—xa)e ™

+(1 _ p) e AT Z [)\Ozr(l/) I]m (t —

m! T'(vm)

)Vm—l

(2.6)

m=1
2. xt — 00, 1 <t/x < oo,

1—p)72 [+ A0 (r)] >
p(t|l’) ~ ( P) T [ + (T )} 6s*t 6—7—*95’ (27)

s2 4/ 2w\ V' (1,)
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where s, = s.(t/x) and 7, = T.(t/x) satisfy the equations
-, o0 _ t—=x ~
—b(r) = / e ™Y ybly)dy = S ST A1 —=0b(m)). (2.8)
0
3. x,t — oo, t/x? = O(1),

pltle) ~ (1 —p) 12/ AV (10) oot g iexp { _(2n+ 1)25172}
23/2 r1/2 sk 15/2 et AV (7o) t

2 2
X(Q(Qn;l— 1)z —2t>,
)\b”(’TQ)

where s = $,(00) and 19 = T.(00) satisfy:

~

AV (10) = =1, so =10 — A1 —b(1)). (2.9)

pt|z) ~ (1= p) J(x) e, (2.10)
where
d 1
J(z)=—=— f(r;s)e™dr : (2.11)
ds \2mi Jp,. s=se(z)
and s.(z)(< 0) is the mazimal real solution of
1 T _
371 f(r;8.)e™dr =0 (2.12)
or 2 TT
1= pt 8,4+ —& ¢ — _dr=o.

27t Jp,. T2 [T — 5. —A(l— b(T))]

The result in Case 4 was also recently derived by Yashkov [25], who
characterized s.(z) and J(z) in a different form.

In the asymptotic matching region between Cases 3 and 4, we have

(L—p) P> N 75 (V')

2 st 23

p(t|x) ~ e ™" exp{sot+ Bt/z> + Ct/z"},

(2.13)



where . . A
TN (19 N6 0" (10) + 70 0" (70)]
2 B 370 '
Then result (ZI3)) holds for x, ¢ — oo with ¢ = O(z?). It can be extended to

larger ranges of ¢, e.g., to t = O(x?), by including an additional factor of the
form exp(Dt/x%).

We note that in Case 2, if t/z ~ 1/(1—p), by (2.8)) we have s,(1/(1—p)) =
0, 7(1/(1 — p)) =0 and
_ (1—/))3( r )2 ( z 3>
Syt —Thx = IV t =, +O( (¢ l—p) .
Then the formula (2.7)) simplifies to the Gaussian
(1—p)*? { (1-p)® x 2}
R0, ety
V2T Amyx 2 mex 1—p
which gives the spread about the well known mean value E [V (x)] = x/(1—p).

As a special case of the M/G/1-PS model, we consider the M/Ej/1-PS
model, in which the Erlang service time density function is given by

k, k—1 e—kuy
by) = (k u)(ky_ -

b(T):( ke )k (2.16)

(2.14)

p(t|z) ~

(k€ N,y > 0) (2.15)

and thus

>

kp+rt

Then we obtain the following more explicit results.

Corollary 2.1 For the M/Ey/1-PS model with traffic intensity p < 1, the
conditional sojourn time density has the following asymptotic expansions:

1. 2 — o0, t—x — 0% withz (t —x)* = 0(1),

1-— A (k p)*
p(tlx) ~ _p/ e_)‘xes(t_x)exp[ (kp) :z]ds
Brs

27 oF

e =) X(kp)kx(t —z)te e
D sz_m

: OFR(H;[H%’H%’"J—%72];Au’“x(t—x)’f). (2.17)

Here o Fy([ |; [b1, ba, ..., bi]; 2) is the generalized hypergeometric function.
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2. x,t > 00,1 <t/r< oo,

sy o UEPRTE = bl (5) T ()"
ts§\/27r(/€+1)
xe¥te T (2.18)
where
G = (A k) (1 _1x/t)*(k Sl—a/t) = A—pk,  (2.19)
7 = /w[(l _px/t)’““ - 1]. (2.20)

3.zt — oo, t/z? = 0(1),

p) ki (k+ 1) (1 — pii)? o
p(t|l’) ~ ( + )( kar) esote—‘rot

Mw pw[ ~ (k4 1) o+ K] 902

T 2
S e { - DO
n=0

2(k+1)t
x[k2+1(2n+1)2()\uk)ﬁx2—Qt], (2.21)
where
So=(k+1) Aph)=T = (kp+\), (2.22)
Fo =k (A pf)F — k p (2.23)

= , (2.24)
4] s e RBy(s)|

where 7, = 7;(s) (i =1, ...,k + 1) are the k+ 1 poles of f(7;s) in (2.3),
with residues R;(s) = Res(f, 7 = 7i(s)), and 5.(x) is the mazimal root
of it en®e Ri(s) = 0.




In the matching region between Cases 3 and 4, we have

1

(1—p)(k+1)*m2 (1 — p=1)?
22 pit [p— (k + 1) poit + k] a3 (2.25)
X exp{k,u(l —p%ﬂ)x+sot+3t/x2+c~'t/x3},

p(t|z) ~

where 2 (b4 1
-kl (2.26)
2k ppret
w2 (k4 D[k —4) pF — (k42
o ™k D[(k—4)pt — (k+2)] (2.27)

3k2 2 pri1 (prin — 1)

We note that for the M/E},/1-PS model, v = k, a = (k p)*/(k — 1)!, and
Twy Sk, So and 7y in Theorem 2.1 are explicitly computable, as given by 7y, 3,
S0 and 7Ty in Corollary 2.1.

We next consider the heavy traffic case, where \ T u. Lettinge =1 —p

(thus € — 07), we have the following results for general service time distri-
butions.

Theorem 2.2 For p =1—¢, where e — 07, we let t = T/e and x = X/e.
The conditional sojourn time density of M /G /1-PS model has the following
asymptotic expansions:

p(t|x)wi_/ it[ 1 / e — pu+ pb(r)] d7:| _lds.

271 ), S 27 Br, T2 [7 — ;H—,ulA)(T) - s]
(2.28)
2. x=0(),T=0(1),
€ _ 6T T —2x)e T/
s e 8D, T2
o (2.29)

e

x@@+ﬁL7mﬂm—WMﬂ’
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where

Qu(x) =

m[90m§x3+90m2m3x 15 me (Al — 3mama) x

H(Om2ms + 20m — 30 my ms m4)] (2.30)

and m; is the i" moment of the service time distribution, given by
(Z1). The contour C_ can be taken as the imaginary axis in the T-
plane, indented to the left of T = 0, where the integrand has a pole of
order 4.

X, T=0(1),T—X = 0" with T — X =T, /" = O(e!*1/"), assum-
ing that
b(y) ~ay’™", asy =0 (o, v > 0),

—uX/e 1-1/v T
p(tlx) ~ ;/ 5T exp [,ua ) X} as
27 Brg Sv

v pal(v) X]™
_uX/e 1—1/u[ L } 2.31
‘ ‘ )+ Z m! T'(vm) {2:31)

. X=0(1),T=0(1), and 1 <T/X < o0,

p(t|z) ~ exp

€12 52 {T So— X 7,
27 uT b (%)

+T(F, — s)} (2.32)

€

where §, = 8,(T/X) and 7, = 7.(T/X) satisfy

~

1+ pb(7) = X/T, 8, =7, — pu(1—b(%)). (2.33)

L X =\eZ=0(/e),T =0(1),

21/2 €32 i {_ 2n—|—1)2Z2}

2.34
Vimmy w T - 2pmy T 230

p(tlz) ~

. X =001),T=0/e=0(c1), we give the expansion in three different
forms:

11



(a)

2

p(tx) ~

X C)
exp ( - )
LMo T 6 Hwme 2 pme

/ VE explzo € = 2V (23
pre (1+V€)? — (1 = VE)?exp(— ,f,;ii\f)
(b)
n+ 1) X 22
t ~ — _n
(t|) Zexp [ 1 }
2n (2n) 43 I+1
1\ : 1+3/2 s AL 2.
X Z::( 1) T2n -1 2 (umg)™ 2 O 2 (2.36)
m m
x [M@2D_l(zn) —2 M®2D_l_1(zn)+D_l_2(zn)}.
Here D, (-) is the parabolic cylinder function and z, = %.
(c) )
pltlz) ~ > e OG(w,). (2.37)
n=1
Here v, = v,(X) are the real positive roots of the equation
2X 1 +iv\2
P [_ Ly “’} - (1 — w) ’ (2.38)
202 exp (i)
Gl = R T X cos (BX) T 2o X + (12 + 1 X’
(v2 —1) cos( )+[vn + (v2 4+ ),umg}sm(umz)
(2.39)
Sd(vn) = Bl ('Un) + C11 ('Un) €+ 0(62)> (240)
where e
+v
Bi(v,) = ———"n 2.41
(o) =~ (2.41)

12



(v241)

Ci(v,) =
1(en) 6 12m3[(v2 + 1) X + 2um,

] [2 pma (mz — 3 um3)
+ (3 um2v? — 3msv? — 3 um2 + my) X]. (2.42)

For very large times, corresponding to © > 1 (thus ¢ > ¢72), we have
p(t|z) ~ 2 e3 O G(uy), (2.43)
where v; = v1(X) is the unique root of (Z38) in the interval (0, umomw/X).
Then the first term in the sum in (2.37) dominates.
For the M/E}/1-PS model, we again get more explicit expressions.

Corollary 2.2 For the M/Ey/1-PS model in heavy traffic, we have the fol-
lowing expansions of the conditional sojourn time density.

p(t|z) ~ i./ e—t[i/ m(r = p) ke + 7)° 4 )] dfrds.

210 S, s 270 Jp,, T2[(7 — s — p)(kp+ 1)k + p(kp)¥]
(2.44)
2. z=0(1), T=0(1),
2 — —T/x
p(tlr) ~ SeTre 22 o(T) + (T4 2r)
x
2.45
(k+1) Q3 '
where
) = ! 3.3 5 5
) = Stk 1 1y 1900k 1) + 900k +2) (k )2

+ 15k (K2 +k—2)x— (k3+9k2+6k—16)],
and Q;, j =3,...,k+ 1 are nonzero roots of
(Q—m(Q+kp" +pu(kp)t =0
Note that @ = 0 is a double oot and the other roots have R(Q) < 0.

For example, if k =2, Q3 = —3pu; if k =3, Q3 = (=4 +iv2) p and
Qi=(—4—iV2)p

13



3. X, T=01),T—-X — 0t withT — X =T, Tk = O(e"+1/F),

—uX/e 1-1/v k kX
p(tlz) ~ 6—6/ 5T exp [%} as
Brg

21

kp) X T (JL-1/k
(k—1)!

1 2

1
X OFk([ ]7[1_‘_%’1_‘_%’72_ E>2]nu“k+1XTf)

_ e—uX/e 6l—l/k 6(T*) + €_MX/EM(

4. X=0(1), T=0(1) and 1 <T/X < o0,

2
P | ()T =1 ()
p(tlz) ~
(

o (k:—l—l)X( )z(kil) [(T%)%

con{Eulieen T ()" 1))
ol () (L)}

5. X = e Z=0(/), T = 0(1),

2
p(t]z) ~ &2 _ 8kp Z [ 2n—|—1) k,uZ].

(k+0)nT 2(k+1)T

6. X =0(1), T =0/e =0(e"), we have the following three different
forms of the expansion:

(a)

(t]2) ek y pkX ko
PO a7 Pk +1 20k + 1)

of = exp (8¢ - 45 VE)
re (14 V) — (1— VB exp ( — 22X )

d¢.

14



(b)

e & 2kpn+1)X 21N, ., (2n)
t ~ _‘n B DU Snl?A
p(t|z) ﬁ;ex { k41 4];( )l!(2n—l)!
kNS [(R+1D)p
ol+3/2 1/2—1
. <k+ p) e | Dtz
kE+1 _ -
2/ b )+ Do),
where Z, = / (k—i—l 5[0+ (2n+1)X].
(¢ )
p(t|z) ~ € Z e*ad) O G (5,).
n=1
Here 0, = 0,(X) are the real positive roots of the equation
2kuX 14i0\>
exp {— e ] _ (H@) | (2.46)
é(~ ) 2U exp (!;c]—gl—i{)
Un) = > ~ )
(52 = 1) X cos (E42%) + [25, X + SLEED iy (RrinX)
$d(Un) = Bl({}n) + C~11(2~}n) e+0(e?),
where k(1)
. w(o, +
B Sl e L
1(t) 2(k+1)
~ Ckp(op+1) 2(k—1)kpXo?
Ci(o,) = — 2 T ) o) 41 n .
1) = =057y {( T @D X 2k 1)

For very large times with © > 1, we again have

p(t|z) ~ € g%a(01 QG( 1),

where 97 = 9, (X) is the unique root of (2.46)) in the interval (0, (klj)l() ).

The asymptotics of the conditional sojourn time distribution are generally
dependent on the service density only through equations such as (28] or

15



(2.9), which involve the Laplace transform. This is true for all the scales in
Theorem 2.1 except Case 1, where t ~ x and the expansion depends on the
local behavior of the service density b(y) as y — 07. We now examine the
unconditional sojourn time density, defined by

p(t) = /0 b(z) plt|z)dz. (2.47)

The structure of p(t) is highly dependent on the behavior of b(z) for z —
oo, and we need to make specific assumptions on the tail of the service
distribution. We first assume that the service time density function behaves
as

by) ~Myle ™ y—o00 (M,N>0,1<r<2). (2.48)

We remove the condition on x by using the results in [ZI3)) (if p < 1)
or (243) (if p ~ 1), and evaluate asymptotically the integral in (Z47). We
thus derive the following results for the unconditional sojourn time density

as t — oo, from which we realize the variety of possible tail behaviors for the
M /G /1-PS model.

Theorem 2.3 As t — oo, the unconditional sojourn time density has the
following asymptotic expansions, assuming the tail behavior in (2.48), and
that p is fived with p < 1.

1. Ifr=1,
p(t) ~ arts exp(sot — i t?), (2.49)

where

M(1l — 2 q 2¢+7
a; = ( p)TO — 7T4 +5 |:>\ b//( )] g
VB3 (N + )"

{ N+T0 6b,( )"—Tobm(T())} }
X exp )
3

3 T0 b”(T())

"= (N—I—T)2/3 [ AV (77 )}1/3

and sy and T are computed from (229).
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2. If1l<r<2,
2q—1r—
p(t) ~ @z t 3559 exp(sot — B(&.,1)). (2.50)
Here

B s 1 r—1
o€, 1) = (Nﬁ’"—?) tre +7‘o€tm—gtm, (2.51)

[

(1—p) M7 Nr)liq 34 20-1) P\[A?H(To)]%ﬂ}

Ny — —F/—— r+2 T2 r+2
2 \/2(7"—1—2)3%(

where B and C' are given by (2.1])), and & = £.(t) satisfies

Y

2B\ 3C .-
be(6,1) = (Nrgr_l + ?> t7 ot 4 2 =0, (2.52)

We have the following expansion(s) of &, and ¢(&,,t) ast — oo:

2—7r

N

oo [FA@) T A
Nr (r+ 2)(N7“)Tiz
_ 2 2 A// 37‘7ﬁ 1—r
(5—r)7y [m° Ab (7_07)] i t2(7“+2), 1<r<3/2,
N 2(r +2)2(Nr)r+2
T 7
60"(10) + 70 6"(70) 7, 3/2<r<2,
(r+2) 10" (10)
T+ 2 2 [ o\ 2y r+2 r B 7_0 G 1
HEert) ~ (W) [W AV (mo) | 72 4 7o b
37'02 (NT') T+2|:7T )\b//( ):|Trt —r 1<’f’<3/2
2(r+2) -
A [oH () + b)) [ e 17
T [ (70) + 79 (7'0)] [ i } tr—é, 3/2<r <2
3’7‘0 71‘2)\6//(7'0)
3. Ifr=2,
q—3
p(t) ~ ast'T exp(sot — 3 /2 — b5 £1/4), (2.53)
where
at5
=M D] TN B ND
p— X B
’ 2% AN STz B |
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Y3 = T/ QN)\(A)//(T(]),

5o = NC+ToB
» T NIRRT
and
D = L}{[zﬁ b (10) b (7o) — (577 + 12) (0" (70))?] 78
72721 (o) ’

1448 (1) B (o) 7o — 432 (6"(70))2}.

For the M/ E})/1-PS model, we note that the parameters in the tail of the
service time density in Z48) are M = (ku)*/(k— 1), N =ku, g=k—1
and r = 1. Thus Case 1 of Theorem 2.3 applies, with o; and v; given by

4k+1 2k+11

TR (k1) pte (1= p) (1 pE)?
o = 1 5
VB (k — 1)1 pirts [p— (k + 1) =7 + k]
k42— (k—4) pret
X exp T s
3(L—prt)

3
= 5wl (k4 1)) (AT,
and sg is given by §y in (2.22).

We next consider the unconditional distribution in the heavy traffic limit.
We find that the expansion of p(t) in (2.47) is different for the time scales
t=0(1),t=0(") and t = O(¢"2). For t = O(1) we can use (244
to evaluate the integral in (2.47), but no further simplification is possible.
Below we give the results on the large times scales, and we note that most
of the probability mass occurs where t = T'/e = O(e™!).

Theorem 2.4 For p=1—¢, where e — 0T, the unconditional sojourn time
density has the following asymptotic expansions.

1. t=T/e=0(e"),

(3] e—T/x
p(t) ~ 6/0 b(x)dx + ¢ S(T), (2.54)

X
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where S(T') is given by the double integral

S(T) = - /0 "y I 2;2 " [% /C e :(1_ ok

Here the contour C, is taken as the itmaginary axis in the T-plane,
indented to the right of T = 0.

=0,/ =0(e" ) with 1 <r < 2,
V2T g M XG0y (X)) €724
\/a* [(vi(f())z + 01 (X) UY(X)] +7r(r—1)pumy N X2

p(t) ~

X exp [—¢0(X(U*), 0.) €7+ C1 (v (X)) o, el_r} . (2.55)

Here X = X(0.) satisfies

N X [pmy X (0F(X) + 1) 4 2 2 m]

7= WX [2(X) + 1] 250

Yo(X, 04) is defined by
’IZJ()(X, 0'*) = NXT — Bl(Ul(X)) Oy,

vy = v1(X) is the unique root of (2.38) in the interval (0, umem/X),
and Byi(v1) and Cy(vy) are given by (2.41) and (273).

t=o0/e' =0(e?) withr =2,
V27 g M X1G(vy(X)) e
\/a [(W4(X))2 + 01 (X) v(X)] + 2pmy N

p(t) ~

. exp{ CUo(X(0),0) 2+ (K)o + Di(na (X)) o

oy [C’{(vl(f()) 0_]2
T i N 120 [(0(X)) + u(X) (X)) } (257)

Here X = X (o) satisfies

_ 2NX[pm, X (vF(X) +1) + 2 m3]
V(X)) [0F(X) +1] ’
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and D1(v) is defined by

(V2 +1) (do+ di X + dp X* + d3 X?)
723 m3 [X (02 + 1) + 2 pmy]”

Dl(U) =

where

do = 24 pi* mj [—12u2m§+8um§m3+(v2+1)m2m4—(v2+3)m§},

d = 4u2md [36u2(v2—3)m§—24,u(4112—3)m§m3

+3 (30" — 202 + 3) mymy — (11u4—42v2+27)m§},

dy = 2,um2[—36,u2(v2+3)m‘21—24u(v4+2v2—3)m§m3

+ 3B —Tv' =T+ 3)mymy — (13@6—27v4—45v2+27)m§},

ds = (V¥ +1) [—36u2m§+24um§m3—3(214—61)2+1)m2m4

—(5v? = 18v* +9) mg]

If the service density had even thinner tails, say with » > 2 in (2.48)),
we can easily extend Theorem 2.3. The main complication is that we would
need further terms in the expansion of s.(z) as x — oo, which has the form
so+ B/z* + C/2® + D/x* + O(275). When r = 2 the O(z™*) term affects
the leading term in the expansion of p(t) as t — oo. The asymptotic eval-
uation of (2.47)) involves balancing the factors exp(Bt/z?) and exp(—N z7),
which occurs when z = O(t%ﬁ). We can also extend Theorem 2.3 to more
complicated tail behaviors of b(y) of the form

b(y) ~ My exp[— Ny + Ny + -+ Ny"]

where 0 < r; < rj_; < --- < r; < r. This would be needed, for example, if
b(y) were a truncated Gaussian centered at some non-zero y (then r = 2 and
r1 = 1). We shall next consider densities with “zero-tail”, and these lead to
different behaviors of p(t).
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Now we assume that the service time density function b(y) has finite
support for 0 <y < A and behaves as

b(y) ~ a. (A — y)u*_1> y T A, (o, vi>0). (2.58)

The structure of the conditional sojourn time density p(t|z) is the same as in
Theorem 2.1, but the unconditional sojourn time density p(t¢) is determined
by the behavior of b(y) near the upper limit A of its support.

As t — oo with fixed p and p < 1, we remove the condition on z by using
the results in (Z10). For the heavy traffic case with p ~ 1, we remove the
condition on z by using ([229) on the large time scale t = O(¢~!). We thus
have the following results for the unconditional sojourn time density.

Theorem 2.5 The unconditional sojourn time density has the following asymp-
totic expansions, assuming the service density behavior in (2.58).

1. t — oo with p fixed and p < 1:
1—p) o, I'(v.
)~ (=)0 T)

[se(A) 2]
where J(x) is given by (211) and s.(x) is the mazimal real solution of
2.t=Tle=0(1"), p=1—¢c withe — 0T

A —T/x
plt) = ¢ / b(x)

J(A) es=t (2.59)

dz + O(€?). (2.60)

X

For very large times with 7" — oo, (2.60) becomes
p(t) ~ ea, D(v,) A1 T—v = T/A, (2.61)

We can show that when (2.59) is expanded in the heavy traffic limit p 1 1, we
also obtain (2Z.61]). We note that as p 1 1, (2.12) shows that s.(A) ~ —¢/A =
O(e) and thus s.(A)t ~ T /A% The O(€?) term in (Z.60) is the same as that
in ([2.54)), except that the integral over z is truncated at z = A.

If b(A) is non-zero and finite then v, = 1 and (2.59) shows that p(¢) has
an exponential tail with the additional algebraic factor 1/¢. This additional
factor disappears only in the limit of v, — 0, but then (2.58)) shows that b(y)
develops a probability mass at y = A. Our results show that p(¢) will have
a purely exponential tail only if b(y) consists of one (then G = D) or several
point masses, or if b(y) has a point mass at the maximum of its support
(y = A) with all the remaining mass in the range 0 <y < A, with A, < A.
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3 Brief derivations of the conditional sojourn
time density for the case p < 1

In this section, we first give a brief derivation of the conditional sojourn time
density for the M/E}/1-PS model, with a fixed traffic intensity p less than
one. Then we sketch the derivations for the general service time density.

The Erlang service time density and its Laplace transform are given by
(2I5) and ([2.16). Then (2.3) has the following explicit form:

f(rss)
_ 1A= [(r =N+ k)t + ME )] +sp[(r — ) (7 + k)" + pulk )]
T2[(1 — s = A) (T + k )k 4+ A(k p)*] '

(3.1)
From (B.)) we see that the numerator of f(7;s) has a double zero at 7 = 0,
so f is analytic at 7 = 0 and the poles 7 = 7(s) satisfy

(T—s=NT+Ep)*+Nkp) =0. (3.2)

Consider first the limit x,t — oo with 1 < t/x < co. We define F' by

1
F(s,x) = 57 Jy f(r;s)e™*dr. (3.3)
From (3.2) we have
kp F
A =5— A A4
(7‘ + k:u) ST (3-4)

By applying the residue theorem in (3.3)) and using (3.4]), we have
F(s,z) ~ R(1(s),s)e™®?, (3.5)
e 2 (r(s) + b p)
U r2(s) [(k 1) T(s) — ks k(u—N)]
and 7 = 7(s) is the largest real root of (8:2). The other poles of f lead to

exponentially smaller terms and (3.5]) holds when z — oo and R(7) > 0 on
the vertical contour Br.. We next define

(3.6)

ols) = p(s52) =5 — () (37)

T
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and then by (2.5) we have

1—p 1
tjx) ~ zels) (s, 3.8

Pl ~ 5 /B © RE(s),9) (38)
The integrand in (B.8)) has saddle points where ¢'(s) = 0 so that there is
a saddle point along the real axis at §., where 5, and 7. = 7(5,) are the

solutions of ;

#(5) = =~ (s) =0,
(T—s=N(T+kp)*+Akp) =
From (3.2) we have

(3.9)

T(s) + kp
(k+1)7(s) +k(p—s—A)

7(s) = (3.10)

Solving the system (3.9) with the help of (B10) leads to (2.19) and (2:20). If
we shift Brg in (8.8) to Brl, on which £(s) = 3., and use the saddle point

method (see, e.g., Wong [24]) with the steepest decent direction arg(s—3§,) =
+7/2, we get

1—p
V2mxe"(8,) R(T

But, from (B.7) and (3.2) we have

p(t|x) ~ eW(g*). (3.11)

k(kE+1)(r(s)+ ku)(s—r(s)—i-)\)'
[((k+1)r(s)+k(p—s—N]

Using (3.6), (3.7) and (3.12)) in (3.11]) leads to (2.18)).

Next we consider x,t — oo but with ¢t/x ~ 1. The previous calculation
is not valid since, from (2.19), the saddle point §, — oco. From (B.2), 7. has
the following expansion as §, — oo:

A(/;fu)k +0(§,;+1).

We return to (B.8) and note that R(7(5.),S5.) ~ 1 as §, — oco. Then we ap-
proximate the integrand for s large (more precisely we can scale s = O(z'/*)

P'(s) = =7"(s) =

(3.12)
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with z(t—x)* = O(1)) to get the integral representation in (Z.I7). Expanding
exp[A(k p)¥s*z] as a geometric series, using the identity

ot —x) m =0,

1
_ s(t—2)_~  J¢ — (t— km—1
: e s t—ux)
2mi [, ghm — >1
bre (km—1)1 =

and the generalized hypergeometric function
- Zm fkm 1 1 2 1
E = (Ll +—1+—,..,2——2[
—~ (m+ 1)l (km+k —1)! %—1ﬂ°kQL[+k’+k” P2,

m=0

we obtain the second expression in (2.17).

Now we consider x,t — oo but with z/t small. From (2.19) we let z/t —
0, then the saddle point 5, — S, which is given by (2.22)). Then from (220,
7, has the following expansion

7~_>»<:710:':7111\/5’_5’:0_'_0(8_§(])7

where 7 is given by (223)) and

- [2EQph
.o k+1

This means that on this scale, we must re-examine (3.3) as now two poles
of the function f(7;s) determine the asymptotics of the integral ([B.3). We
denote these two poles as 7, = 7,.(8y) and 7 = 7_(8¢p). Then for s — 3

F(S>$) ~ R(%-l-ag())e‘brx+R(7~_—>§0)67~—71‘
o 7o TaV$—50 —TaV/$—50
T0T TaVS8—S0 T __ TaVS—S0 X , 3'13
Pt G A BN CAE)

where R(74,35¢) ~ + \/i)—sb and Ry is given by

~Y

1 o [p—(k+1)prT 4+ k]
Ro= ——o\[puprii . 3.14
NGy =y [ (314

1—p%+1
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We return to (2.5, shift the contour Brg to Br?, which is slightly to the
right of 5y, and use ([B.I3)), thus obtaining

L—p et /s =3,
p(tlz) ~ . = —————ds
271 Br!! RO (67'11 $=S0T — o= TaVS—50 SU)
1 B p —Tox - 1
Ry “—2m
X V8 — 8o exp [st—(2n+1)7~'amx} ds. (3.15)
Brl!

Using the identity

1
— Vs —38gexp [st—(2n+1)7, \/s—§0x]ds

21 Br!!
1 ((2n41)2722* 2 - (2n 4+ 1)2 72 22
- 4\/7?[ £5/2 - t?W] P [SO N At }

in (3.15), we obtain (2.21]).

Finally, we consider the case z = O(1) and ¢t — oco. Now all the k + 1
poles of f in (B contribute to the asymptotics. We denote these poles
by 7. = 7i(s), i = 1,--- k4 1, which are the solutions of (3:2), and (B.3)

evaluates to
k+1

x) =Y eI R(s), (3.16)

where R;(s) = R(7i(s),s) is the residue of f(7;s) at 7 = 7;(s). Then (23]
becomes

1—-p ' 1
tlx) = 5 ds. 3.17
p(tlz) 271 /BT,S ¢ Zk+11 ()7 Ry(s) 5 ( )

From (B.I7) we obtain (2.24]) by locating the pole s = 5.(z) with the largest
real part, which is the maximal solution of F(s,z) = 0.

We can simplify (2.24]) for x — oo, which leads to an explicit expression
in the matching region between Cases 3 and 4. As © — oo, we have 5. — 5
and the expansion

—30+A+§+g+0<;4>

25



We then expand (B:2) about 7 = 7, to find that A = 0, B < 0 (which
corresponds to §. < 39) and that 7 has the following expansion:

1
- [2kppEr <1
= Fti|| =22 B =
To= EN 1Bl
k+2 - | kppra ~}1 1
+|—" BFiy—F _Cl=+0(=). (318
[3(k‘+1) - 2(k+1)|B] |a? (933) (3.18)

Then as in the analysis of Case 3, two poles of the function f(7;s) dominate
the expansion of F'(s,z). We denote these two conjugate poles as 71 and

Ty = 71. From (B.6) we have

Ri(s) = R(m(s),s)

and Ry(s) = Ri(s). Thus (3.10]) is approximately

F(s,z) ~ ™% Ri(s) + e Ry(s)
~ 2R R (s)). (3.20)

Expanding (3.20) as # — oo and noting that 3. is a root of F(s,x) = 0 in
this limit, we obtain the expressions for B and C' in (2.26) and (Z27). Then

we can simplify (2.24) to
(1—p) exp (30t + Bt/a® + Ct/a?)
42 R(en 0= By (5))]

p(t|z) ~ (3.21)

s$=35¢
But,

%(671@)95 Rl(3)> = [3/1(3) + Ri(s) IT{(S)} enls)e (3.22)
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and
R{(3.) = O(a?), (3.23)

' ke pE
nile) ~ = T

Using (3.23), (3.24) and (3.19), (3:22) becomes
2

d 2 piiT —(k+1)pF + k i
—(e”(s)le(s)> [ p p—(k+ )pl RN e
ds 51

x. (3.24)

Y

s=5.  (k+1)2x? 1—p

which leads to (Z.27).

We now consider general service densities b(y). The basic scales in The-
orem 2.1 are the same as those for the Ej case in Corollary 2.1, but some
of the definiting equations are more complicated, becoming transcendental
rather than algebraic. We consider the function (2Z3) and note that b(0) = 1
and b'(0) = —1/p, so 7 = 0 is not a pole of f(r;s). The poles 7 = 7(s) of
f(7; s) now satisfy A

T—s—A(1=b(1))=0. (3.25)

For the case x,t — oo, with 1 < t/x < 0o, the asymptotics are obtained

analogously to the Ej case and (B.7)) still applies, but (3.6), (310) and (3.12))
must be replaced by

2

RT):9) = S5y (3.26)
e 1
) =5 ) (3.27)
and R
A (7)

'
P'(s) = ————.
) (1+Ab(n)’°
The first equation in (2.8) follows from using ¢'(s) = 0, (3.7) and (B.27).

For the case x,t — oo with ¢/z &~ 1, we have to make some assumptions
about the behavior of b(y) as y — 0. We assume that b(y) ~ ay” ! (o, v >
0) for y — 0F. Then the Laplace transform of the service time satisfies
b(t) ~ al(v) 7" as 7 — co. Then (ZB) is obtained in the same way as
(217), although we cannot express the sum in (2.6) as a hypergeometric
function for non-integer v.

27



Next we consider z,t — oo but with z/t small. From (28], letting
t/x — oo, we have sy = s,(0c0) and 79 = 7.(00), which are given by (2.9)).
Then 7, has the following expansion as s — s:

2(s — sp)

- + O(s — s0).
Ny T

T« = T0

Thus again two poles of f(7;s) dominate the expansion of F(s,x) and the
calculation is similar to the Erlang case, with (8.14]) becoming

2
S0

TeA/2 A Z)"(T())

Finally, we consider the case z = O(1) and ¢t — oo. For the general service
time distribution, all the singularities of the function f(7;s) contribute to
F(s,x). Then (2.10) is obtained by using the residue theorem at the largest
pole s.(z) of the integrand in (ZX]), which is the maximal real solution of
F(s,z) =0.

In the asymptotic matching region between Cases 3 and 4, we let z — oo
and

Ry =

A B (O 1
86280+—+—2+—3+O<—4>,
xXr xXr X X

and expand ([3:20) at 7 = 7. We find that A =0, B < 0 and two conjugate
poles 71 and 75 of the function f(7;s) dominate the behavior of F(s,z).
Analogously to (B.18) and (3.19), 7, and R, (s) have the following expansions:

| 5B 1 B i)/// T 1C 1 1
SO TN U L N S F O

A (10) T L3N0 (10)) 270" (7o) B '

Ri(s) i s 55 (60" (0) + 70 8" (70)]
1 - 5 o b 2
T2\/22\V (7o) | B BAm (¢ (7o)
- 2
n ZSOC —I—O(%)a

2 B72 /2 AV (1) | B]
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and 7, = 77, Ra(s) = Ry(s). The constants B and C are obtained by expand-
ing (3.20) as  — oo using F'(s.(v),z) = 0, and this leads to (ZI4). Using
B21) with (8o, B, C) replaced by (sg, B,C) and

T
7! (8¢) ~ —f——,
1(5c) T AV (7o)
2
i(en(s)x Rl(s)) ~ (‘979) 1’3 67'0x’
ds s=sc T ATV (7o)

we obtain (2.13)).

4 Brief derivations of the conditional sojourn
time density for the case p ~ 1

Now we consider the M/G/1-PS model with a traffic intensity that is close
to one, and let p =1 — € with 0 < e < 1.

First, we consider x = O(1) and ¢t = O(1). Using A = u+ O(€) we obtain
from (2.3])
—pu(1—=0
sfron b)) o
2 [r—s—pu(l—=0b(1))]
This leads to (2.28)). On this scale the solution does not simplify much, but
there is little probability mass in heavy traffic on the time scale t = O(1).

f(r;s) =

Next, we consider z = O(1) but for large time scales t = T'/e = O(e™!).
In (B3) we replace p as 1 — € and scale s as ew, and we have

F(s,x) = — € - e+ 0())| dr
@ = ) T R

1 e
= e(l+wzx 2 w? — - dr + O(€%).
A i T

1 e [T-l—’tU w?
e
Brr

T
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Then from (2.3]), we obtain

E2 ewT
tlz) = — —d
p(tlz) 271 /Brw F(ew,x) v

£ e“’T[ . cw / < dr|dw
21t S, 14wz 2mi(l +wz)? Jp, 72 [7— p(1 - 3(7))]
T T —9 —T/x 1 TX
= ST 2 ld(z) + ( :z)e }—/ ‘ < dr.
x x x 21t )y, T2 [7‘ —p(l— b(T))}
(4.1)
The function o
g(1,2) = -
T2 [T —pu(l- b(T))]
has a pole at 7 = 0 of order 4. By the residue theorem we have
1 1
— g(T,x)dT = Res,—g (g(T, :B)) + — / g(T,x) dr. (4.2)
271 ). 21 Jeo

Here we shifted the contour Br, to C_, which can be taken as the imaginary
axis in the 7-plane, indented to the left of 7 = 0. Then we define

1 - d3 |: 7_2 eTe :|
= — 1 B = y
37047 L7 — (1= b(r))

which leads to (Z30). Note that we assumed that all the moments of the
service time are finite, which are given by (2.1). Expression (2.29)) is obtained
by using (41)), (£2) and ([&3]). The term proportional to §(7") in (A1) does
not mean that there is actually mass at 7' = 0, but rather corresponds to
the small (O(€)) mass that exists in the shorter time scale ¢, where (2.28))
applies.

Now consider x = X/e = O(e ') and t = T/e = O(e™!) with 1 < T/X <
oo. By the same argument as in Section 3, the pole 7 = 7(s) of f(7;s) with
the largest real part satisfies (3.28). We replace A by p (1—e¢) in (3.28), which
yields

Q.(x) = Res,—o(g(1, z)) (4.3)

T—s—p(l—e) (1—0b(t)) =0, (4.4)

and then expand 7 as 7 = 7, + 7€ + O(¢?). Then 7, = 7,(s) and 7, = 73(s)
satisfy

~

To—s—p(l—=0(m))=0
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and .
() = 1)
L+ pb(7)
In (B.7) we replace t and x by T'/e and X/e respectively, to get

ols) = o(si5) = s —7()
r 2
= 55— T.(8) — m(s) e+ O(€?)
= wo(s) + pi(s) e+ O(€?) (4.5)

and rewrite (3.8) as

ds. (4.6)

e/ exp [Xpo(s)/e + Xi(s)]

pltle) ~ 5 R(r(5). 5)

Here R is as in (3.26]), with A replaced by p. Then the integrand in (4.6]) has
a saddle point where ¢(s) = 0, which satisfies

To—8—pu(l—="0(r)) =0.

We denote the solution of (A1) as 7. = 7.(T/X) and 8, = 5,(T/X), which
leads to (2.33). Then by the standard saddle point method, (£6) asymptot-
ically evaluates to

3/2

) ~ = o (X e+ Xer(3)]. - (49)

But by ([3.26) and (4.3), we have

a2
R(7,,5.) = % (4.9)

72 [1 4 pb/(7)]

and .
/! (2~
_ o pbE) (4.10)
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Using (49), (£I10) and (43) in (48), we obtain (232). We note that if
X — oo and T — oo but T/X = O(1), the approximation (232) remains

valid.

For the case X = O(1), T = O(1) and T'— X — 07, we again assume
that the service time density behaves as b(y) ~ ay*~! (a, v > 0) for y — 0.
We note that the saddle point §, — oo as T//X — 1. Then from ([@4]), we
find that 7 has the following expansion for s — oo:

r 1
S\ R
Sl/

81/—1—1

Following the same argument as in Section 3, we can easily obtain (2.31]),
once we scale s as Se'/” and let T, = (T — X) e 17Y” = O(1).

Next, we consider X = /eZ = O(ye), T = O(1). If we let T/X — oo
in (2.33), it follows that 7. — 0 and the saddle point s, — 0. By (44]) and
scaling s = O(e) = ew, we find that 7 has the following expansion:

wWms —3m
\/’ 3 26.
3 um3

7’r\./

Now two poles of the function f (T; s) dominate the behavior of F(s,z). We
approximate F'(s, z) by the sum of the residue at these two poles, where from

([3.20) we also have R(7( ~ ++/pumaowe/8. Then from (235 we obtain

NEL e exp (- YZ22)
plile) /M2 2V2wZ dw
Ti/ums Jp,., _ _2V2w
K2 JBr, \/w [1 exp < N )]

V262 Z [ (2n+1) \/QwZ} g
. exp w,
T V s B?‘w n=0 Hm2

where the contour Br,, is a vertical line in the w-plane slightly to the right
of w = 0. Then (2.34) follows by using the identity

T [ 2n+1)v2w Z] 1 { (2n + 1)? 22]
— exp | — dw = exp| ———|.
Br, VW [z VT 2 ums T

We note that by using the Poisson summation formula

[e.e]

S = 3 G = 3 | emmat) dy

n=-—00 m=—00 m=—00
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where W is the Fourier transform of v, we can rewrite (2.34)) as

€3/ = . n? w2 umy T
p(t|x) ~ 7{1+2n2::1(—1) exp <— T)] (4.11)

From (Z£.11]), we can easily verify that Cases 2 and 5 in Theorem 2.2 asymptot-
ically match, in the intermediate limit where  — co and Z — 0. Similarly,
Cases 4 and 5 match in the limit where X — 0 and Z — oo, which follows
easily from (2.34]).

Now we consider X = O(1) and T = /e = O(e™!) (thus x = O(e!) and
t = O(e7?)). Similarly to the previous time scale, two poles, at 71 = 71(s)
and 7o = T9(s), dominate the behavior of F(s,x) and we have

€ es@/e2

Zﬁﬂ;f%&mxﬂwswm»+RwKQU@unaﬂ

: o d 4.12
T 2mi Jp, Ru(s) e 1 Ry(s) emz (4.12)

ds

p(tlz) ~

We scale s = O(€?) by setting s = (5=) €, and then from (£4) and (3.26)

2 pma
we have

(1 £+¢)”

S (iﬁ A£VEO*
: 4/€ 7

o )e and Rjs(s) = R(m2) ~ £
2

which leads to (2.39]).

Furthermore, we expand the integrand in (2.35]) as a geometric series, and
we have

)~ ep (- )

Hme 2 K

eXP(z(ZfLQ)\/E < /1 VE\" 2n+1)X
Xéguﬂ@ ZC+@)“ﬁ‘ph—ﬂM'

Note that if we let X — oo, then the n = 0 term in (£I3) dominates, and

(4.13)

n=0
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we have

\/_
= /m <1+3> [t~V

/2,um2 2,um2—|—X+@ X+06 X?
erfc [ — ) | exp ( —
7O g V2 mo© 2umo©

2,um2 (
ex
VES) P

Here we used

~Y

X —
2um2@> oo

erfe(z) =1 — erf(z / 6_22, as z — Q.
\/_

Z

Then (4I3]) becomes, for O fixed and X — oo,
23/2¢2 X S X2

) ~ s e |

When X = O(e7!) and T = O(e!) but with T/X = O(1), (Z32) remains

valid, and letting 7/ X — oo in (232) regains (4.14). This again verifies that
these two cases asymptotically match.

We return to (£13)), and let /€ = 2z — 1, with which the integral becomes

= S (2n+1)X
2 ;exp [2,um2 * msa }
_ 2 _ 2n
></ (z—1)?*(z—2) exp[ © , 6+(2n+1)X
Cr

2° — z|dz.
S2n+2 20 (1M

— — . 4.14
Jeaae%) 2,um2 2,um2 © ( )

Here the contour C, can be taken as the imaginary axis in the z-plane,
indented to the right of z = 0. Using the binomial expansion

= (217 (20)!
SR S T TR

(EI3) leads to

p(t|x) ~ ZO ZO 2n 7 (—2) exp [M}
(z—1)?

n (4.15)
1
2mi Jo, 2K

P (2
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where
0+ (2n+1)X

Ay
2,&7712

and
K=2n—7j+2.
We express the integral in (£I5]) in terms of parabolic cylinder functions,
using
L Zue—wz+22/2dz _ LD (w)e—w2/4
271 Br \/ 2 v ’

thus obtaining

¢ o 2 DX 2N (-1 (2n)!
p(tlz) ~ exp _n . ) (—9)K
V27 pimy g [ pms 4] jzoj! 2n — ) (—2) "
O \ T [pmy Ume
- 2 =D, 9, /2 ~ ~
where
0+ (2n+1)X
" ,Umg@

Replacing 2n — j by [, (A10]) leads to (2.36]).
If we let X — 0 and © — 0 with X/v/© (thus z,) fixed, the term with
[ =0 in (2.37) dominates and we have

2322 & 2n+1)X 22
o) ~ 2 SR [ DX
plle) ~ s> e [2TE Bl
93/2¢2 X [ - (2n + 1)2X2} (4.17)
TUmLO £ 2ume© 1 '

Here we note that X2/© = Z2/T and used the fact that Dy(w) = e™®"/4,
Since (LI7) is the same as (2.34), we have shown that Case 5 is really a
special case of Case 6 in Theorem 2.2.

Alternately, we can treat the problem on the (X, ©) scale by evaluating
(4.12)) using the residues of the integrand at all the poles s, which satisfy

Res 7 (s,)(f(T:5) €™") + Res,—ry(s,) (f(T:5) e™") = 0. (4.18)
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We let s, = Aje + Bie® + C1e® + O(e*). Then from (£4]) and ([B3.26) we find
that A; = 0 and we have the following expansions:

1
Tio ~ <— :tn)e—i— (ra £ 7)€%,

Hmeg
where
N vV 1+ 2[&’)71231
c [y ’
2ms — 3pum3 + pmoms By
Td = 3.2m3 ,
M=y
3uPm3Cy + 3umi — 2ms + 3pma(umi — ms) By
Te = )
3u2mi/1 + 2umq By
and )
Ry 5(s) ~ <§ + ra> €ty e,
where

_— 1+ pumso By
© 2T 2umy By
1By [2pm3Cy — (3um3 — mg) By
6(1 + 2umoBy)3/?
By expanding the left-hand side of (4.18)) about € = 0, we obtain
Corx  2ra+1
2r, — 1

Ty

e (4.19)

and
ry=2(r2 —1/4) 71, X. (4.20)

Setting /1 +2umeB; = u + v (v > 0) we find that all the roots of (419)
are on the imaginary axis, and with v = 0 (4.I9]) becomes (2.38). Denoting

the n'™ positive solution by v, = v,(X), we obtain B, = Bi(v,) by Z41).
By solving ([£20) for Cy, we have
Buma(pms — ms) X B + [(3um3 — 2ms) X + pmo(3um3 — ms)| B
Cl = 2 3 Y
pPmi(1 — X By)
which leads to (2.42)) with the help of (2.41]). Note that v, = v, (X) have the
following asymptotic expansions:

o = |2 2(pmo)? N 4(pmz)?
" X X2 X3

}nw—i—O(%), X — o0, (4.21)
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and

_V2Zumy V2 X 112

— " X34 0(X?), X0
U= T Ty N T TGy O, X =0,
(n— 1)mpums 2 4 )
, = . X4+0(X?), n>2X =0,
! X - (n—17m (n—1)3m3ums +O(X5), n -

Now (£I12) becomes

pltlz) ~ e -
n=1 7.

esp (vn) © /€2

(e Ra(s) + €07 Rafs)|

ds s=s,
But
(O R) | = [Rilsn) + Bulsy) wri(sy)]| e 007
and . -
2 —
Ri(sy) ~ (5 +i7—) e
o1
T{(SP) ~ _Zma
/ (1 +vz) pmy
Rl(sp) ~ —ZTELE.
Thus we obtain
d
£<6ﬁ(8)mR1(S)) o)
2 - ) . (4.22)
1[v: —1 20, X + puma (v + 1) -1+
~ = X —1 exp X
€ 421% 41)% Mg
and
d d
2 (ent)z g ) - —( n@e R ) 4.23
ds (6 2(5) —splon) A5\ 1(e) s=sp(vn) (4.23)

Using (£22) and ([£23), we define G by

1 o2 —1 20, X + pmay (v +1) —1+4iv
—2Rq - [ SX - e ( X))t
G(vy,) {e 4v2 ! 4v2 P [ms
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which leads to (2:39), and then we obtain ([237) with sq(v,,) = s,(v,) /€.

If we consider even larger time scales, with © > 1 (thus t > ¢ 2), then
the largest pole s,(v1) dominates. Here v; = v;(X) is the unique root in the

interval (0, umom/X) of (2:38)). This leads to (Z43]). The expression (2.37)
with (240) applies for time scales up to © = O(e7!) (t = O(¢7?)), but for
even larger time scales we may need further term in (240), e.g., the O(e*)
correction to s,. We will discuss this more in Section 5.
The M/E/1-PS results in Corollary 2.2 follows from Theorem 2.2 by
using the 7 moment
(k+j—1)!
m; = —~-— -
k! E3—1 i

5 Brief derivations of the unconditional so-
journ time density

The structure of the unconditional sojourn time density is highly dependent
on the tail behavior of the service density. First we assume the service time
density function behaves as (LL3)) or (2.48)). For p fixed and less than one, the
major contribution to the integral in (2.47)) will come from the asymptotic
matching region between the scales * = O(1) and x = O(\/t), with t — oo.
In this region, the conditional sojourn time density is given asymptotically
by (Z13).

For 1 <r < 2, using (2.13) and (2:48)) in (2.47), the unconditional sojourn
time density behaves asymptotically as

! Bt Ct
p(t) Naoes‘)t/ xq_3exp<—T0£L’—NSL’T+—2+—3)dSL’, (5.1)
0 x x
where .
(1—p) M7 X272 [V (70)]?
Qp — 3 .
25§
Scaling = ¢tz = O(t++2), () becomes
r+1
oo L2
p(t) ~ otz et / | el ge, (5.2)
st
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where ¢(&, ) is given by (2.51]). Here 6 > 0 so as to avoid integration through
& = 0in the case of ¢ < 3, and 6 > 1. By using the Laplace method with the
major contribution coming from &, = £, (), which satisfies ¢ = 0 or ([Z52),

(52) becomes

~ @ q—3 g;é 50 t—p(Ex,t)
o) e (& t) Sotre ’ (5.3)
where
687, » 12C .
belet) = [rlr NG =] — S
B T
~ [T(T — 1)N£T—2 o 65_4] tr+2 . (54)

If r =1, then by [252), & = (5@0)1/3. Using (2.51)) and (5.4]) with &,
and r = 1 in (B.3]), we obtain (2.49).
If 1 < r < 2, then by (252)) the leading term &, in the asymptotic

_1
expansion of &, satisfies Nr&™ =1 + 25—{9,3 = 0, which leads to & = (%)TH-

Then we can rewrite (5.3)) as

Y

V2T g 58_3 t(’l‘;é S0 1=0(&x 1)

p(t) ~ -
\/[r(r —1)NgT = — %}trﬂ

which leads to (2.50). We give three terms of asymptotic expansion for &,
and ¢(&,,t) in Theorem 2.3, as t — co. We note that the third terms in these
expansions are different according as 1 < r < 3/2 or r > 3/2.

If r = 2, the above analysis is still valid but we need to include the
additional factor exp(Dt/z*) in ([ZI3), and then in (51). The constant

D is obtained by refining the approximation (2I3]) so that it applies for
r = O(t"*). Thus (5.2) and (5.3) become

q=2 8/ D
Pt) ~ aptT e /5 e (ot e
VAT gy - D
— T e (s - 060 + )

\/ﬁao q—
Voee(Eort)

341 exp (sot — (&, t) + 5%).
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Here & = (|B|/N)* and
3NC — T()B " 1 1

5*250“' SNB 4+O(t 2)a
B 1 NC + 1B 1 (3NC — TOB)2 _1
¢(&«,t) = 2/ N|B| tQ—W T TGN R +O(t™1),

bee(&o,t) ~ SNt2,

Thus, after simplification, we obtain (2.53).

Now we consider the unconditional distribution in the heavy traffic limit,
again assuming that the service time density function behaves as (2Z48]).

For the time scale t = T'/e = O(e™1), we use (2:29) in (Z.47), which leads
to (2.54) after we integrate from x = 0 to x = oc.

To compute the unconditional density p(t) on the scale t = o, /"% =

O(e7"?) with 1 <r < 2, we use ([243) and ([248) in (2.47) with © =0, /€.
Scaling z = X/e = O(e™ 1), (2.47) becomes, since et — 0o,

M o[ 1
plt) ~ = /O G(v)) X7 exp [— (X, o—*)] dx, (5.5)
where

Y(X,0,) = NX"— Bi(vi(X))o, — Cr(v1(X))owe
= 1/}0(X70'*>+1/}1(X70-*)6‘

Hence (5.5) is a Laplace type integral, and the major contribution will come
from where 1 is minimal, which should satisfy

0 d
8—X¢0(X, o.) = NrX ' - ﬁBl(vl(X))a* =0. (5.6)
But from (2.47]) and (2.38])), we have
d BRI+
d—XBl(Ul(X)) Coume X (X)) + 1]+ 2u2m3 (5.7)

Using (5.7) in (5.6]), we obtain (256). This defines X = X (o,) implicitly.
Denoting the right-hand side of ([2.56]) as Q(X), we can verify that Q'(X) > 0,
so that Q(X) is a monotonically increasing function. As we discussed in
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Section 4, v1(X) ~ pumaem/X as X — oo and v1(X) ~ /2umo/X as X — 0.
Then Q(X) — oo as X — oo and Q(X) — 0 as X — 07. Hence there is a
unique positive root of Q(X) = o, which we denote by X = X(c,). Then
we use the standard Laplace method in (53) to get, for 1 <r < 2,

V21 M €279 X9G (v (X)) exp [_w(X”U*) 6—7’], (5.8)
6X277D0(X U*)

p(t) ~

which leads to (2.55]).

If r = 2, to compute the unconditional sojourn time density on the time
scale t = o/e* = O(e™), we need to include the D;(v;)e? = O(€?) term in
sq(v1) in (2:43). D1(vy) is obtained in the same way that By (v;) and C(v;)
are derived, which we discussed in Section 4. Analogously to (5.0) and (5.8)),
with o, replaced by ¢ and r = 2, we have

M [ _
p(t) ~ _q/ G(Ul)qu_w(X"’*)EQeDl(”l)"dX
e Jo
V2r M

~ 71X G (0 (X))
6X2 wO(X U)

[Zv1(X,0)]’

X exp{ — (X, 0) e 2+ Dy(v (X))o + 2.7, % 00(X,0)

}, (5.9)

where X = X (o) satisfies (256) with o, replaced by ¢ and r = 2. This leads
to (2.57).

Next we assume that the service time density function b(y) has finite
support for 0 < y < A and behaves as (2.58) near the maximum of its
support. As t — oo with fixed p < 1, we remove the condition on x by using
the results in (ZI0). The main contribution comes from z = A, and we have

p(t) ~ /0 e (A=) (1= p) J(z) e do

A
~ (1= p)a, J(A)e<W? / (A — ) tese@ @Dty (5.10)

oo

Setting x = A — u/(s.(A) t), (510) becomes

(1—p)a, J(A)esc(“‘”/“ Vel —u
S (A i U e “du.

[

p(t) ~
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Using [~ u”~'e™du = I'(1.), we obtain (2.59).

For the heavy traffic case, we remove the condition on x by using (2.29]),
and on the large time scale t = O(e™!) we obtain (2.60). For even larger times
with 7" — oo, by using the Laplace method (with the main contribution from

r = A), (260) becomes

~T/A A
p(t) ~ %/ (A — )t T =A% .

— 00

This leads to (2.61]).

A Appendix

We will give a brief derivation of the Laplace transform of the conditional
sojourn time distribution with deterministic service density b(y) = 0(y —
1/p). This was derived by Ott (see (5.16) in [13]) and more recently in
[T4]. However, these authors use arguments that are specific to the case
G = D. Here we point out that these results also follow easily from the
general M/G/1-PS model.

We rewrite (5.16) in [13] as

_ (1 B ,0)()\ + 3)2 e_p_s/“ (Al)

Ele—sV1/w)
[ ] 2+ AN[s+ (1 —p)(A+s)] ers/n’

where we replaced z in [13] by 1. To prove (A, in view of that ([2.4) we
need to prove that

L e f (13 8)dT = PPt X s+ (1= p)(A+5)]

211 ), (A +5)2

But, by @3),

(A.2)

and we have



Thus ([A.2)) is equivalent to proving the following identity:

1 eT/N
2mi B, T2 [T—s=A(1—e /)] 7 (A3)
et (L= p N4+ (2-p)sA  s+u(l—p) '
(A +s)? (A + 5)2 52 s? '
If we scale 7 = T and set w = p + s/u, (A3) becomes
1 el e’ —w-—1
— dl' = —————. A4
2 ) gy 12 T2 [T—w+pe—T] (2 w? (A.4)

We shift the contour Brr to the right so that R(7") > R(w). Then upon
expanding the integrand in (A.4)) as a geometric series and multiplying (A.4)
by u? we must show that

— 1 (=DFp* (1-L)T e —w—1
Z i / T2 (T — w)l+1© I’ = w2 (A.5)
L=0 Brr

For L > 1 we can close the integration contour in the right half of the T-
plane, and these integrals all evaluate to zero. For L = 0 we close in the
left half-plane, where there is a simple pole at T" = w and a double pole at
T = 0. Calculating the residues leads to (A.5]), thus proving (A.T]).
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