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Abstract

We consider theM/G/1 queue with a processor sharing server. We
study the conditional sojourn time distribution, conditioned on the
customer’s service requirement, as well as the unconditional distribu-
tion, in various asymptotic limits. These include large time and/or
large service request, and heavy traffic, where the arrival rate is only
slightly less than the service rate. Our results demonstrate the possible
tail behaviors of the unconditional distribution, which was previously
known in the cases G = M and G = D (where it is purely exponen-
tial). We assume that the service density decays at least exponentially
fast. We use various methods for the asymptotic expansion of inte-
grals, such as the Laplace and saddle point methods.
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1 Introduction

One of the most interesting service disciplines in queueing theory is that of
processor sharing (PS). Here every customer in the system gets an equal
fraction of the server or processor, and this has the advantage that shorter
jobs get served in less time than, say, under the first-in-first-out (FIFO)
discipline.

PS queues were introduced in the 1960’s by Kleinrock (see [1],[2]) and have
been the subject of much research over the past 40+ years. In these models
one of the main measures of performance is a given (also called tagged)
customer’s sojourn time distribution, conditioned on that customer’s service
time. The sojourn time is the time the tagged customer leaves the system
after being served, assuming the customer arrives at time zero.

We denote by V(x) the conditional sojourn time, with x being the service
time. If the tagged customer arrived to an empty system and no further
arrivals occurred in the time interval [0, x], then V(x) = x. But in general
V(x) > x as the tagged customer must share the server. We denote by b(x)
the service time density, by p(t|x) the conditional sojourn time density, and
by p(t) =

∫ t

0
b(x) p(t|x)dx the unconditional sojourn time density. We note

that p(t|x) has in general a probability mass along t = x, but p(t) is generally
continuous.

The M/M/1-PS queue assumes Poisson arrivals and i.i.d. service times
with density b(x) = µ e−µx. In [3], Coffman, Muntz and Trotter obtained an
expression for the Laplace transform of p(t|x) (i.e., for E[e−sV(x)], where s is
the Laplace transform variable). In [4] Morrison removed the conditioning on
x and studied p(t) in the heavy traffic limit, where the Poisson arrival rate λ
is nearly equal to the service rate µ (thus ρ = λ/µ ↑ 1). Setting ǫ = 1− ρ, in
[4] asymptotic results were obtained for the time scales t = O(1), t = O(ǫ−1)
and t = O(ǫ−3). Most the mass is concentrated in the range t = O(ǫ−1),
and the asymptotic series involves modified Bessel functions. For moderate
traffic intensities with ρ < 1, the tail behavior of p(t) is given by

p(t) ∼ C0 t
−5/6 e−A0 t e−B0 t1/3 , t→ ∞ (1.1)

where A0 = µ (1−√
ρ)2 and the constants B0 and C0 are given in [5]-[7]. The

result in (1.1) was obtained for the M/M/1 queue under a random order of
service (ROS) discipline, but there is a close connection between the waiting
time distribution in the ROS model and the sojourn time distribution in the
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PS model. This relation, along with some extensions, is explored in [8] and
[9]. In [10] we studied the conditional density p(t|x) for various asymptotic
ranges of x and t, for both a fixed ρ < 1 and in the heavy traffic limit where
ρ ↑ 1.

A more difficult model is theM/G/1-PS queue, where the service density
is general. This was analyzed by Yashkov in [11], [12] and by Ott [13]. These
authors obtained an explicit, albeit complicated, expression for E[e−sV(x)].
Inverting the Laplace transform leads to an expression for p(t|x) as a contour
integral (see (2.4)), but the integrand is a nonlinear function of another
contour integral, which is in turn defined in terms of the Laplace transform
of the service density. In the case of deterministic service times, where b(x) =
δ(x− 1/µ), much more explicit results are available (see [13] and [14]). Also,
the tail behavior of the unconditional sojourn time density was derived by
Egorova, Zwart and Boxma [14] as

p(t) ∼ C ′ e−A
′ t (G = D), t→ ∞ (1.2)

where the constants A′ and C ′ are explicitly characterized in [14]. Comparing
(1.1) and (1.2) we see that the tail behaviors of theM/M/1-PS andM/D/1-
PS models are quite different.

In this paper we will study both the conditional sojourn time density
p(t|x) and the unconditional density p(t) in theM/G/1-PS model. As in [10]
we shall consider various asymptotic limits, such as x and/or t → ∞ with a
fixed ρ < 1, and 1− ρ = ǫ → 0+ with space and time scaled by ǫ. Here ρ =
λm1 where m1 =

∫∞
0
x b(x)dx is the mean service time. We consider service

densities b(x) that have “thin tails”, with decay that is at least exponential as
x→ ∞. We shall show that the basic asymptotic structure of the conditional
density p(t|x) is essentially independent of the service density (though the
formulas do depend on the Laplace transform of b(x)). In contrast, the
unconditional density is highly dependent on the tail behavior of b(x). We
shall make specific assumptions on this tail, first assuming that

b(x) ∼M xq e−N xr , r ≥ 1, (1.3)

where M,N (> 0) and q are constants. Thus (1.3) allows for roughly ex-
ponential or even thinner tails, such as a Gaussian. Then we shall discuss
“zero-tail” service densities, by assuming that b(x) has support for 0 ≤ x ≤ A
(e.g., b(x) = 1/A corresponds to uniformly distributed service times). In the
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zero tail case the behavior of p(t) as t→ ∞ and ρ < 1 is determined by the
behavior of b(x) near the upper limit of its support, and we will assume that

b(x) ∼ α∗ (A− x)ν∗−1, x ↑ A, (1.4)

where α∗ and ν∗ are positive constants.

We will obtain a wide variety of tail behaviors of p(t) as t → ∞ for the
general M/G/1-PS model, that are different from either (1.1) or (1.2). We
shall also identify the class of service densities that lead to purely exponential
tails, such as G = D in (1.2).

We mention some related work on various PS models. Ramaswami [15]
studied the G/M/1-PS queue and obtained explicit results for the uncondi-
tional moments of the sojourn time. Various asymptotic properties of the
conditional and unconditional moments and distribution were derived in [16].
The G/G/1-PS model has not been analyzed exactly, but some approxima-
tions are discussed in Sengupta [17] and the tail exponent of the unconditional
sojourn time density was derived by Mandjes and Zwart [18]. Specifically, in
[18] the authors characterized the limit t−1 log[p(t)] → −A0 as t→ ∞, assum-
ing that the arrival and service densities have at least exponential tails. In
[19] Zwart and Boxma analyze theM/G/1-PS queue with heavy tails, where
the service density has algebraic or sub-exponential behavior as x→ ∞ (thus
N = 0, r = 0, q < −1 in (1.3), or 0 < r < 1).

For PS models one is also interested in the sojourn time conditioned
on the number of other customers in the system when the tagged customer
arrives. The conditional sojourn time for theM/M/1-PS model, conditioned
on this number rather than the service time x, was studied by Sengupta and
Jagerman [20] and Guillemin and Boyer [21]. A good recent survey of sojourn
time asymptotics in PS queues is in Borst, Núñez-Queija and Zwart [22].

In this paper the main methods used are for the asymptotic expansion of
integrals, such as the Laplace and saddle point methods, and good general
references are the books of Bleistein and Handelsman [23] and of Wong [24].

The remainder of the paper is organized as follows. In Section 2 we
summarize and briefly discuss our main results (see Theorems 2.1–2.5). In
Section 3 we derive the results for p(t|x), for moderate traffic intensities
ρ < 1. In Section 4 we consider p(t|x) for ρ ↑ 1, and various scalings of space
and time. We remove the condition on x in Section 5, treating both ρ < 1
and ρ ≈ 1, and here we make the assumptions (1.3) or (1.4).
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2 Summary of results

We assume that customers arrive according to a Poisson process with rate λ,
at a single processor-sharing server. The customers’ random service requests
are i.i.d. random variables with density function b(y), and Laplace-Stieltjes
transform b̂(τ) =

∫∞
0
e−τy b(y)dy. We assume that b̂(τ) is an analytic function

of τ for ℜ(τ) > −ǫ0 for some ǫ0 > 0. Thus all the moments of the service
time are finite, and we set

mk =

∫ ∞

0

yk b(y) dy = (−1)k b̂(k)(τ)|τ=0 (k ∈ N). (2.1)

In particular we denote the service rate by µ where

1

µ
= m1 =

∫ ∞

0

y b(y) dy = −b̂′(0).

Then the traffic intensity is defined as ρ = λ/µ and we assume that ρ < 1.

The Laplace transform of the equilibrium sojourn time distribution, con-
ditioned on the tagged customer (or job) requiring x units of service, was
derived by Ott [13] and Yashkov [11], [12], who obtained

E[e−sV(x)] =
1− ρ

(1− ρ)G1(s, x) + sG3(s, x)
, (2.2)

where
∫ ∞

0

e−τxG1(s, x)dx =
τ − λ (1− b̂(τ))

τ
[

τ − s− λ (1− b̂(τ))
]
,

and
∫ ∞

0

e−τxG3(s, x)dx =
ρ [τ − µ (1− b̂(τ))]

τ 2
[

τ − s− λ (1− b̂(τ))
]
.

Thus, the Laplace transform of the denominator in the right-hand side of
(2.2) is

f(τ ; s) =

∫ ∞

0

[(1− ρ)G1(s, x) + sG3(s, x)] e
−τxdx

=
(1− ρ) τ 2 − (1− ρ) λ (1− b̂(τ)) τ + s ρ τ − s λ (1− b̂(τ))

τ 2
[

τ − s− λ (1− b̂(τ))
]

.(2.3)
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Taking the inverse Laplace transform of (2.3), (2.2) becomes

E[e−sV(x)] =
1− ρ

1
2πi

∫

Brτ
eτxf(τ ; s) dτ

, (2.4)

where Brτ is a vertical contour in the complex τ -plane, on which ℜ(τ) > 0.

By taking the inverse Laplace transform of (2.4), the probability density
of the sojourn time, conditioned on service time x, is

p(t|x) =
1

2πi

∫

Brs

estE[e−sV(x)] ds

=
1− ρ

2πi

∫

Brs

est
[

1

2πi

∫

Brτ

eτx f(τ ; s) dτ

]−1

ds. (2.5)

Here Brs is a vertical contour in the complex s-plane with ℜ(s) > 0. Note
that p(t|x) will in general have a probability mass along t = x. Analyzing the
integral (2.5), we obtain the following expansions for p(t|x), valid on different
space and time scales.

Theorem 2.1 For a fixed ρ < 1, the conditional sojourn time density has
the following asymptotic expansions:

1. x→ ∞, t− x → 0+ with x(t− x)ν = O(1), assuming that

b(y) ∼ α yν−1, as y → 0 (α, ν > 0),

p(t|x) ∼ 1− ρ

2πi

∫

Brs

e−λx es (t−x) exp
[λαΓ(ν)

sν
x
]

ds

= (1− ρ) δ(t− x) e−λx

+(1− ρ) e−λx
∞
∑

m=1

[λαΓ(ν) x]m (t− x)νm−1

m! Γ(νm)
. (2.6)

2. x,t→ ∞, 1 < t/x <∞,

p(t|x) ∼ (1− ρ) τ 2∗
[

1 + λ b̂′(τ∗)
]5/2

s2∗

√

2πxλ b̂′′(τ∗)
es∗t e−τ∗x, (2.7)
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where s∗ = s∗(t/x) and τ∗ = τ∗(t/x) satisfy the equations

− b̂′(τ∗) =

∫ ∞

0

e−τ∗y y b(y) dy =
t− x

λ t
, s∗ = τ∗ − λ (1− b̂(τ∗)). (2.8)

3. x, t→ ∞, t/x2 = O(1),

p(t|x) ∼
(1− ρ) τ 20

√

λ b̂′′(τ0)

23/2 π1/2 s20 t
5/2

es0 t e−τ0 x
∞
∑

n=0

exp
{

− (2n+ 1)2 x2

λ b̂′′(τ0) t

}

×
(

2 (2n+ 1)2 x2

λ b̂′′(τ0)
− 2 t

)

,

where s0 = s∗(∞) and τ0 = τ∗(∞) satisfy:

λ b̂′(τ0) = −1, s0 = τ0 − λ (1− b̂(τ0)). (2.9)

4. x = O(1), t→ ∞,

p(t|x) ∼ (1− ρ) J(x) esc(x) t, (2.10)

where

J(x) =
d

ds

(

1

2πi

∫

Brτ

f(τ ; s) eτx dτ

)








s=sc(x)

, (2.11)

and sc(x)(< 0) is the maximal real solution of

1

2πi

∫

Brτ

f(τ ; sc) e
τx dτ = 0 (2.12)

or

1− ρ+ x sc +
s2c
2πi

∫

Brτ

eτx

τ 2
[

τ − sc − λ (1− b̂(τ))
] dτ = 0.

The result in Case 4 was also recently derived by Yashkov [25], who
characterized sc(x) and J(x) in a different form.

In the asymptotic matching region between Cases 3 and 4, we have

p(t|x) ∼ (1− ρ) π2 λ2 τ 20 (b̂
′′(τ0))

2

2 s20 x
3

e−τ0 x exp
{

s0 t+B t/x2 + C t/x3
}

,

(2.13)
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where

B = −π
2λ b̂′′(τ0)

2
, C = −π

2λ [6 b̂′′(τ0) + τ0 b̂
′′′(τ0)]

3 τ0
. (2.14)

Then result (2.13) holds for x, t→ ∞ with t = O(x3). It can be extended to
larger ranges of t, e.g., to t = O(x4), by including an additional factor of the
form exp(D t/x4).

We note that in Case 2, if t/x ∼ 1/(1−ρ), by (2.8) we have s∗(1/(1−ρ)) =
0, τ∗(1/(1− ρ)) = 0 and

s∗ t− τ∗ x = −(1− ρ)3

2 λm2 x

(

t− x

1− ρ

)2

+O
(

(

t− x

1− ρ

)3
)

.

Then the formula (2.7) simplifies to the Gaussian

p(t|x) ≈ (1− ρ)3/2√
2 π λm2 x

exp

[

− (1− ρ)3

2 λm2 x

(

t− x

1− ρ

)2
]

,

which gives the spread about the well known mean value E [V(x)] = x/(1−ρ).
As a special case of the M/G/1-PS model, we consider the M/Ek/1-PS

model, in which the Erlang service time density function is given by

b(y) =
(k µ)k yk−1 e−k µ y

(k − 1)!
(k ∈ N, y ≥ 0) (2.15)

and thus

b̂(τ) =

(

k µ

k µ+ τ

)k

. (2.16)

Then we obtain the following more explicit results.

Corollary 2.1 For the M/Ek/1-PS model with traffic intensity ρ < 1, the
conditional sojourn time density has the following asymptotic expansions:

1. x→ ∞, t− x → 0+ with x (t− x)k = O(1),

p(t|x) ∼ 1− ρ

2πi

∫

Brs

e−λxes (t−x) exp
[λ (k µ)k

sk
x
]

ds

= (1− ρ) δ(t− x) e−λx +
(1− ρ) λ (k µ)k x (t− x)k−1 e−λx

(k − 1)!

× 0Fk
(

[ ]; [1 +
1

k
, 1 +

2

k
, ..., 2− 1

k
, 2];λµk x (t− x)k

)

. (2.17)

Here 0Fk([ ]; [b1, b2, ..., bk]; z) is the generalized hypergeometric function.
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2. x, t→ ∞, 1 < t/x <∞,

p(t|x) ∼
(1− ρ) k τ̃ 2∗ [t− (µ k)k+1 (t− x)]

√

µ (λµk)
1

k+1

(

t
t−x

)
k+2
k+1

(

x
t

)3

t s̃2∗
√

2 π (k + 1) x

×es̃∗ t e−τ̃∗ x, (2.18)

where

s̃∗ = (λµk)
1

k+1

( 1

1− x/t

)
1

k+1
(k + 1− x/t)− λ− µ k, (2.19)

τ̃∗ = k µ

[

( ρ

1− x/t

)
1

k+1 − 1

]

. (2.20)

3. x, t→ ∞, t/x2 = O(1),

p(t|x) ∼ (1− ρ) k
√

k (k + 1) (1− ρ
1

k+1 )2

2
√
2 π µ ρ

1
2(k+1)

[

ρ− (k + 1) ρ
1

k+1 + k
]2
t5/2

es̃0t e−τ̃0t

×
∞
∑

n=0

exp
{

− (2n+ 1)2 k (λµk)
1

k+1 x2

2 (k + 1) t

}

×
[ 2 k

k + 1
(2n+ 1)2 (λµk)

1
k+1 x2 − 2 t

]

, (2.21)

where
s̃0 = (k + 1) (λµk)

1
k+1 − (k µ+ λ), (2.22)

τ̃0 = k (λµk)
1

k+1 − k µ. (2.23)

4. x = O(1), t→ ∞,

p(t|x) ∼ (1− ρ) es̃c(x) t

d
ds

[

∑k+1
i=1 e

τi(s)xRi(s)
]






s=s̃c

, (2.24)

where τi = τi(s) (i = 1, ..., k+1) are the k+1 poles of f(τ ; s) in (2.3),
with residues Ri(s) = Res(f, τ = τi(s)), and s̃c(x) is the maximal root
of

∑k+1
i=1 e

τi(s)xRi(s) = 0.
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In the matching region between Cases 3 and 4, we have

p(t|x) ∼ (1− ρ) (k + 1)2 π2 (1− ρ
1

k+1 )2

2µ2 ρ
2

k+1

[

ρ− (k + 1) ρ
1

k+1 + k
]2
x3

× exp
{

k µ (1− ρ
1

k+1 ) x+ s0 t+ B̃ t/x2 + C̃ t/x3
}

,

(2.25)

where

B̃ = −π
2 (k + 1)

2 k µ ρ
1

k+1

, (2.26)

C̃ =
π2 (k + 1)

[

(k − 4) ρ
1

k+1 − (k + 2)
]

3 k2 µ2 ρ
2

k+1

(

ρ
1

k+1 − 1
)

. (2.27)

We note that for the M/Ek/1-PS model, ν = k, α = (k µ)k/(k − 1)!, and
τ∗, s∗, s0 and τ0 in Theorem 2.1 are explicitly computable, as given by τ̃∗, s̃∗,
s̃0 and τ̃0 in Corollary 2.1.

We next consider the heavy traffic case, where λ ↑ µ. Letting ǫ ≡ 1 − ρ
(thus ǫ → 0+), we have the following results for general service time distri-
butions.

Theorem 2.2 For ρ = 1 − ǫ, where ǫ → 0+, we let t = T/ǫ and x = X/ǫ.
The conditional sojourn time density of M/G/1-PS model has the following
asymptotic expansions:

1. x = O(1), t = O(1),

p(t|x) ∼ ǫ

2πi

∫

Brs

es t

s

[

1

2πi

∫

Brτ

eτ x[τ − µ+ µ b̂(τ)]

τ 2 [τ − µ+ µ b̂(τ)− s]
dτ

]−1

ds.

(2.28)

2. x = O(1), T = O(1),

p(t|x) ∼ ǫ

x
e−T/x − ǫ2

[

δ(T )

x2
+

(T − 2x) e−T/x

x4

]

×
[

Q∗(x) +
1

2πi

∫

C−

eτ x

τ 2[τ − µ (1− b̂(τ))]
dτ

]

,

(2.29)
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where

Q∗(x) =
1

270µm4
2

[

90m3
2 x

3 + 90m2
2m3 x

2 + 15m2 (4m
2
3 − 3m2m4) x

+(9m2
2m5 + 20m3

3 − 30m2m3m4)
]

(2.30)

and mi is the ith moment of the service time distribution, given by
(2.1). The contour C− can be taken as the imaginary axis in the τ -
plane, indented to the left of τ = 0, where the integrand has a pole of
order 4.

3. X, T = O(1), T −X → 0+ with T −X = T∗ ǫ
1+1/ν = O(ǫ1+1/ν), assum-

ing that
b(y) ∼ α yν−1, as y → 0 (α, ν > 0),

p(t|x) ∼ e−µX/ǫǫ1−1/ν

2πi

∫

BrS

eS T∗ exp
[µαΓ(ν)

Sν
X
]

dS

= e−µX/ǫǫ1−1/ν
[

δ(T∗) +

∞
∑

m=1

T ν m−1
∗ [µαΓ(ν)X ]m

m! Γ(ν m)

]

.(2.31)

4. X = O(1), T = O(1), and 1 < T/X <∞,

p(t|x) ∼ ǫ3/2 ŝ2∗
√

2 π µ T b̂′′(τ̂∗)
exp

[

T ŝ∗ −X τ̂∗
ǫ

+ T (τ̂∗ − ŝ∗)

]

, (2.32)

where ŝ∗ = ŝ∗(T/X) and τ̂∗ = τ̂∗(T/X) satisfy

1 + µ b̂′(τ̂∗) = X/T, ŝ∗ = τ̂∗ − µ (1− b̂(τ̂∗)). (2.33)

5. X =
√
ǫ Z = O(

√
ǫ), T = O(1),

p(t|x) ∼ 2
√
2 ǫ3/2√

µm2 π T

∞
∑

n=0

exp

[

− (2n+ 1)2 Z2

2µm2 T

]

. (2.34)

6. X = O(1), T = Θ/ǫ = O(ǫ−1), we give the expansion in three different
forms:
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(a)

p(t|x) ∼ ǫ2

µm2 π i
exp

( X

µm2
− Θ

2µm2

)

×
∫

Brξ

√
ξ exp( Θ

2µm2
ξ − X

µm2

√
ξ)

(1 +
√
ξ)2 − (1−

√
ξ)2 exp(− 2X

µm2

√
ξ)
dξ.

(2.35)

(b)

p(t|x) ∼ ǫ2√
π

∞
∑

n=0

exp

[

2 (n+ 1)X

µm2
− z2n

4

]

×
2n
∑

l=0

(−1)l
(2n)!

l! (2n− l)!
2l+3/2 (µm2)

− l+3
2 Θ

l+1
2

×
[

µm2

Θ
D−l(zn)− 2

√

µm2

Θ
D−l−1(zn) +D−l−2(zn)

]

.

(2.36)

Here Dν(·) is the parabolic cylinder function and zn = (2n+1)X+Θ√
µm2 Θ

.

(c)

p(t|x) ∼ ǫ2
∞
∑

n=1

esd(vn)ΘG(vn). (2.37)

Here vn = vn(X) are the real positive roots of the equation

exp
[

− 2X

µm2

iv
]

=
(1 + iv

1− iv

)2

, (2.38)

G(vn) =
2 v2n exp

(

X
µm2

)

(v2n − 1)X cos
(

vnX
µm2

)

+
[

2 vnX + (v2n + 1)µm2

]

sin
(

vnX
µm2

) ,

(2.39)

sd(vn) = B1(vn) + C1(vn) ǫ+O(ǫ2), (2.40)

where

B1(vn) = −1 + v2n
2µm2

, (2.41)
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C1(vn) =
(v2n + 1)

6µ2m3
2

[

(v2n + 1)X + 2µm2

]

[

2µm2 (m3 − 3µm2
2)

+
(

3µm2
2 v

2
n − 3m3 v

2
n − 3µm2

2 +m3

)

X
]

. (2.42)

For very large times, corresponding to Θ ≫ 1 (thus t≫ ǫ−2), we have

p(t|x) ∼ ǫ2 esd(v1)ΘG(v1), (2.43)

where v1 = v1(X) is the unique root of (2.38) in the interval (0, µm2 π/X).
Then the first term in the sum in (2.37) dominates.

For the M/Ek/1-PS model, we again get more explicit expressions.

Corollary 2.2 For the M/Ek/1-PS model in heavy traffic, we have the fol-
lowing expansions of the conditional sojourn time density.

1. x = O(1), t = O(1),

p(t|x) ∼ ǫ

2πi

∫

Brs

es t

s

[

1

2πi

∫

Brτ

eτx[(τ − µ)(kµ+ τ)k + µ(kµ)k]

τ 2[(τ − s− µ)(kµ+ τ)k + µ(kµ)k]
dτ

]−1

ds.

(2.44)

2. x = O(1), T = O(1),

p(t|x) ∼ ǫ

x
e−T/x − ǫ2

x2 δ(T ) + (T − 2x) e−T/x

x4

×
(

Q̃∗(x) +
k+1
∑

j=3

Qj + k µ

(k + 1)Q3
j

eQj x

)

,
(2.45)

where

Q̃∗(x) =
1

270(k + 1) k2 µ2

[

90(k µ)3x3 + 90(k + 2) (k µ)2x2

+ 15k µ (k2 + k − 2) x− (k3 + 9k2 + 6k − 16)
]

,

and Qj, j = 3, ..., k + 1 are nonzero roots of

(Q− µ)(Q+ k µ)k + µ (k µ)k = 0.

Note that Q = 0 is a double root and the other roots have ℜ(Q) < 0.
For example, if k = 2, Q3 = −3µ; if k = 3, Q3 = (−4 + i

√
2)µ and

Q4 = (−4− i
√
2)µ.
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3. X, T = O(1), T −X → 0+ with T −X = T∗ ǫ
1+1/k = O(ǫ1+1/k),

p(t|x) ∼ e−µX/ǫǫ1−1/ν

2πi

∫

BrS

eS T∗ exp
[µ (k µ)kX

Sk

]

dS

= e−µX/ǫ ǫ1−1/k δ(T∗) + e−µX/ǫ
µ (k µ)kX T k−1

∗
(k − 1)!

ǫ1−1/k

× 0Fk
(

[ ]; [1 +
1

k
, 1 +

2

k
, ..., 2− 1

k
, 2];µk+1X T k∗

)

.

4. X = O(1), T = O(1) and 1 < T/X <∞,

p(t|x) ∼
ǫ3/2 k5/2

√
µ

[

(

T
T−X

)
1

k+1 − 1

]2
(

X
T−X

)
k+2

2(k+1)

√

2π(k + 1)X
(

T
X

)
4k+3
2(k+1)

[

(

T−X
T

)
1

k+1
(

kT
T−X + 1

)

− (k + 1)
]2

× exp

{

X

ǫ
µ
[

(k + 1)
T

X

((T −X

X

)
k

k+1 − 1
)

+ k
]

}

× exp

{

X µ
[ T

X
−

(T −X

X

)( T

T −X

)
1

k+1
]

}

.

5. X =
√
ǫ Z = O(

√
ǫ), T = O(1),

p(t|x) ∼ ǫ3/2

√

8 k µ

(k + 1) π T

∞
∑

n=0

exp

[

− (2n+ 1)2 k µZ2

2 (k + 1) T

]

.

6. X = O(1), T = Θ/ǫ = O(ǫ−1), we have the following three different
forms of the expansion:

(a)

p(t|x) ∼ ǫ2 µ k

(k + 1) π i
exp

[

µ kX

k + 1
− µ kΘ

2 (k + 1)

]

×
∫

Brξ

√
ξ exp

(

µkΘ
2(k+1)

ξ − µkX
k+1

√
ξ
)

(1 +
√
ξ)2 − (1−

√
ξ)2 exp

(

− 2µkX
k+1

√
ξ
) dξ.
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(b)

p(t|x) ∼ ǫ2√
π

∞
∑

n=0

exp

[

2 k µ (n+ 1)X

k + 1
− z̃2n

4

] 2n
∑

l=0

(−1)l
(2n)!

l! (2n− l)!

× 2l+3/2
( k

k + 1

)
l+3
2
µl/2−1Θ

l+1
2

[

(k + 1)µ

kΘ
D−l(z̃n)

−2

√

(k + 1)µ

kΘ
D−l−1(z̃n) + µ2D−l−2(z̃n)

]

,

where z̃n =
√

k µ
(k+1)Θ

[

Θ+ (2n+ 1)X
]

.

(c)

p(t|x) ∼ ǫ2
∞
∑

n=1

esd(ṽn)Θ G̃(ṽn).

Here ṽn = ṽn(X) are the real positive roots of the equation

exp

[

− 2 k µX

k + 1
iṽ

]

=

(

1 + iṽ

1− iṽ

)2

, (2.46)

G̃(ṽn) =
2 ṽ2n exp

(

µkX
k+1

)

(ṽ2n − 1)X cos
(

k µ ṽnX
k+1

)

+
[

2 ṽnX + (k+1) (ṽ2n+1)
k µ ṽn

]

sin
(

k µ ṽnX
k+1

)

,

sd(ṽn) = B̃1(ṽn) + C̃1(ṽn) ǫ+O(ǫ2),

where

B̃1(ṽn) = −k µ (ṽ
2
n + 1)

2(k + 1)
,

C̃1(ṽn) = −k µ (ṽ
2
n + 1)

6(k + 1)2

[

(2k + 1)− 2 (k − 1) k µX ṽ2n
k µ (ṽ2n + 1)X + 2(k + 1)

]

.

For very large times with Θ ≫ 1, we again have

p(t|x) ∼ ǫ2 esd(ṽ1)Θ G̃(ṽ1),

where ṽ1 = ṽ1(X) is the unique root of (2.46) in the interval (0, (k+1) π
kX

).

The asymptotics of the conditional sojourn time distribution are generally
dependent on the service density only through equations such as (2.8) or
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(2.9), which involve the Laplace transform. This is true for all the scales in
Theorem 2.1 except Case 1, where t ≈ x and the expansion depends on the
local behavior of the service density b(y) as y → 0+. We now examine the
unconditional sojourn time density, defined by

p(t) =

∫ t

0

b(x) p(t|x)dx. (2.47)

The structure of p(t) is highly dependent on the behavior of b(x) for x →
∞, and we need to make specific assumptions on the tail of the service
distribution. We first assume that the service time density function behaves
as

b(y) ∼M yq e−N yr , y → ∞ (M,N > 0, 1 ≤ r ≤ 2). (2.48)

We remove the condition on x by using the results in (2.13) (if ρ < 1)
or (2.43) (if ρ ∼ 1), and evaluate asymptotically the integral in (2.47). We
thus derive the following results for the unconditional sojourn time density
as t→ ∞, from which we realize the variety of possible tail behaviors for the
M/G/1-PS model.

Theorem 2.3 As t → ∞, the unconditional sojourn time density has the
following asymptotic expansions, assuming the tail behavior in (2.48), and
that ρ is fixed with ρ < 1.

1. If r = 1,

p(t) ∼ α1 t
2q−5

6 exp(s0 t− γ1 t
1/3), (2.49)

where

α1 =
M(1 − ρ)τ 20√
6 s20 (N + τ0)

q−1
3

π
4q+5

6

[

λ b̂′′(τ0)
]

2q+7
6

× exp

{

− (N + τ0)
[

6 b̂′′(τ0) + τ0 b̂
′′′(τ0)

]

3 τ0 b̂′′(τ0)

}

,

γ1 =
3

2
(N + τ0)

2/3
[

π2 λ b̂′′(τ0)
]1/3

and s0 and τ0 are computed from (2.9).
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2. If 1 < r < 2,

p(t) ∼ α2 t
2q−r−4
2(r+2) exp(s0 t− φ(ξ∗, t)). (2.50)

Here

φ(ξ, t) =
(

Nξr − B

ξ2

)

t
r

r+2 + τ0 ξ t
1

r+2 − C

ξ3
t
r−1
r+2 , (2.51)

α2 =
(1− ρ)M τ 20
√

2(r + 2) s20
(N r)

1−q
r+2 π

3
2
+ 2(q−1)

r+2

[

λ b̂′′(τ0)
]

3
2
+ q−1

r+2 ,

where B and C are given by (2.14), and ξ∗ = ξ∗(t) satisfies

φξ(ξ, t) =
(

N r ξr−1 +
2B

ξ3

)

t
r

r+2 + τ0 t
1

r+2 +
3C

ξ4
t
r−1
r+2 = 0. (2.52)

We have the following expansion(s) of ξ∗ and φ(ξ∗, t) as t→ ∞:

ξ∗ ∼
[

π2 λ b̂′′(τ0)

Nr

]
1

r+2

+
τ0 [π

2 λ b̂′′(τ0)]
2−r
r+2

(r + 2)(N r)
4

r+2

t
1−r
r+2

+























(5− r) τ 20 [π
2 λ b̂′′(τ0)]

3−2r
r+2

2(r + 2)2(Nr)
7

r+2

t
2(1−r)
r+2 , 1 < r ≤ 3/2,

6 b̂′′(τ0) + τ0 b̂
′′′(τ0)

(r + 2) τ0 b̂′′(τ0)
t−

1
r+2 , 3/2 < r < 2,

φ(ξ∗, t) ∼ r + 2

2 r
(Nr)

2
r+2

[

π2 λ b̂′′(τ0)
]

r
r+2

t
r

r+2 + τ0

[

π2 λ b̂′′(τ0)

Nr

]
1

r+2

t
1

r+2

+



















3 τ 20
2(r + 2)

(Nr)−
4

r+2

[

π2 λ b̂′′(τ0)
]

2−r
r+2

t
2−r
r+2 , 1 < r ≤ 3/2,

π2 λ
[

6 b̂′′(τ0) + τ0 b̂
′′′(τ0)

]

3 τ0

[

Nr

π2 λ b̂′′(τ0)

]
3

r+2

t
r−1
r+2 , 3/2 < r < 2.

3. If r = 2,

p(t) ∼ α3 t
q−3
4 exp(s0 t− γ3 t

1/2 − δ3 t
1/4), (2.53)

where

α3 =
(1− ρ)M πq/2+1 τ 20

[

λ b̂′′(τ0)
]

q+5
4

2
q+5
4 s20N

q−1
4

exp

[

(3NC − τ0B)2

16NB2
− ND

B

]

,
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γ3 = π

√

2N λ b̂′′(τ0),

δ3 = −N C + τ0B

N1/4 |B|3/4 ,

and

D =
π2 λ

72 τ 20 b̂
′′(τ0)

{

[

3 π2 b̂′′(τ0) b̂
(4)(τ0)− (5π2 + 12)(b̂′′′(τ0))

2
]

τ 20

−144 b̂′′(τ0) b̂
′′′(τ0) τ0 − 432 (b̂′′(τ0))

2
}

.

For theM/Ek/1-PS model, we note that the parameters in the tail of the
service time density in (2.48) are M = (k µ)k/(k − 1)!, N = k µ, q = k − 1
and r = 1. Thus Case 1 of Theorem 2.3 applies, with α1 and γ1 given by

α1 =
π

4k+1
6 k

2k+11
6 (k + 1)

2k+5
6 µ

2k−1
6 (1− ρ) (1− ρ

1
k+1 )2

√
6 (k − 1)! ρ

4k+1
6k+6

[

ρ− (k + 1) ρ
1

k+1 + k
]2

× exp

[

k + 2− (k − 4) ρ
1

k+1

3 (1− ρ
1

k+1 )

]

,

γ1 =
3

2
π2/3 [k (k + 1)]1/3 (µk λ)

1
3(k+1) ,

and s0 is given by s̃0 in (2.22).

We next consider the unconditional distribution in the heavy traffic limit.
We find that the expansion of p(t) in (2.47) is different for the time scales
t = O(1), t = O(ǫ−1) and t = O(ǫ−r−2). For t = O(1) we can use (2.44)
to evaluate the integral in (2.47), but no further simplification is possible.
Below we give the results on the large times scales, and we note that most
of the probability mass occurs where t = T/ǫ = O(ǫ−1).

Theorem 2.4 For ρ = 1− ǫ, where ǫ→ 0+, the unconditional sojourn time
density has the following asymptotic expansions.

1. t = T/ǫ = O(ǫ−1),

p(t) ∼ ǫ

∫ ∞

0

e−T/x

x
b(x) dx+ ǫ2 S(T ), (2.54)
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where S(T ) is given by the double integral

S(T ) = −
∫ ∞

0

b(x)
(T − 2x) e−T/x

x4

[

1

2πi

∫

C+

eτ x

τ 2
[

τ − µ (1− b̂(τ))
]
dτ

]

dx.

Here the contour C+ is taken as the imaginary axis in the τ -plane,
indented to the right of τ = 0.

2. t = σ∗/ǫ
r+2 = O(ǫ−r−2) with 1 ≤ r < 2,

p(t) ∼
√
2 π µm2M X̂qG(v1(X̂)) ǫr/2−q

√

σ∗

[

(v′1(X̂))2 + v1(X̂) v′′1(X̂)
]

+ r (r − 1)µm2N Xr−2

× exp
[

−ψ0(X̂(σ∗), σ∗) ǫ
−r + C1(v1(X̂)) σ∗ ǫ

1−r
]

. (2.55)

Here X̂ = X̂(σ∗) satisfies

σ∗ =
N rXr−1

[

µm2X (v21(X) + 1) + 2µ2m2
2

]

v21(X)
[

v21(X) + 1
] , (2.56)

ψ0(X, σ∗) is defined by

ψ0(X, σ∗) = N Xr − B1(v1(X)) σ∗,

v1 = v1(X) is the unique root of (2.38) in the interval (0, µm2 π/X),
and B1(v1) and C1(v1) are given by (2.41) and (2.42).

3. t = σ/ǫ4 = O(ǫ−4) with r = 2,

p(t) ∼
√
2 π µm2M X̃qG(v1(X̃)) ǫ1−q

√

σ
[

(v′1(X̃))2 + v1(X̃) v′′1(X̃)
]

+ 2µm2N

× exp

{

− ψ0(X̃(σ), σ) ǫ−2 + C1(v1(X̃)) σ ǫ−1 +D1(v1(X̃)) σ

+
µm2

[

C ′
1(v1(X̃)) σ

]2

4µm2N + 2 σ
[

(v′1(X̃))2 + v1(X̃) v′′1(X̃)
]

}

. (2.57)

Here X̃ = X̃(σ) satisfies

σ =
2NX

[

µm2X (v21(X) + 1) + 2µ2m2
2

]

v21(X)
[

v21(X) + 1
] ,
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and D1(v) is defined by

D1(v) =
(v2 + 1)

(

d0 + d1X + d2X
2 + d3X

3
)

72µ3m5
2

[

X (v2 + 1) + 2µm2

]3 ,

where

d0 = 24µ3m3
2

[

− 12µ2m4
2 +8µm2

2m3 + (v2 +1)m2m4 − (v2 +3)m2
3

]

,

d1 = 4µ2m2
2

[

36µ2 (v2 − 3)m4
2 − 24µ (4v2 − 3)m2

2m3

+3 (3 v4 − 2 v2 + 3)m2m4 − (11 v4 − 42 v2 + 27)m2
3

]

,

d2 = 2µm2

[

− 36µ2 (v2 + 3)m4
2 − 24µ (v4 + 2 v2 − 3)m2

2m3

+ 3 (3 v6 − 7 v4 − 7 v2 + 3)m2m4 − (13 v6 − 27 v4 − 45 v2 + 27)m2
3

]

,

d3 = (v2 + 1)2
[

− 36µ2m4
2 + 24µm2

2m3 − 3 (v4 − 6 v2 + 1)m2m4

−(5 v4 − 18 v2 + 9)m2
3

]

.

If the service density had even thinner tails, say with r > 2 in (2.48),
we can easily extend Theorem 2.3. The main complication is that we would
need further terms in the expansion of sc(x) as x → ∞, which has the form
s0 + B/x2 + C/x3 + D/x4 + O(x−5). When r = 2 the O(x−4) term affects
the leading term in the expansion of p(t) as t → ∞. The asymptotic eval-
uation of (2.47) involves balancing the factors exp(B t/x2) and exp(−N xr),

which occurs when x = O(t
1

r+2 ). We can also extend Theorem 2.3 to more
complicated tail behaviors of b(y) of the form

b(y) ∼M yq exp
[

−N yr +N1 y
r1 + · · ·+Nl y

rl
]

where 0 < rl < rl−1 < · · · < r1 < r. This would be needed, for example, if
b(y) were a truncated Gaussian centered at some non-zero y (then r = 2 and
r1 = 1). We shall next consider densities with “zero-tail”, and these lead to
different behaviors of p(t).
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Now we assume that the service time density function b(y) has finite
support for 0 ≤ y ≤ A and behaves as

b(y) ∼ α∗ (A− y)ν∗−1, y ↑ A, (α∗, ν∗ > 0). (2.58)

The structure of the conditional sojourn time density p(t|x) is the same as in
Theorem 2.1, but the unconditional sojourn time density p(t) is determined
by the behavior of b(y) near the upper limit A of its support.

As t→ ∞ with fixed ρ and ρ < 1, we remove the condition on x by using
the results in (2.10). For the heavy traffic case with ρ ∼ 1, we remove the
condition on x by using (2.29) on the large time scale t = O(ǫ−1). We thus
have the following results for the unconditional sojourn time density.

Theorem 2.5 The unconditional sojourn time density has the following asymp-
totic expansions, assuming the service density behavior in (2.58).

1. t→ ∞ with ρ fixed and ρ < 1:

p(t) ∼ (1− ρ)α∗ Γ(ν∗)

[s′c(A) t]
ν∗

J(A) esc(A) t, (2.59)

where J(x) is given by (2.11) and sc(x) is the maximal real solution of
(2.12).

2. t = T/ǫ = O(ǫ−1), ρ = 1− ǫ with ǫ→ 0+:

p(t) = ǫ

∫ A

0

b(x)
e−T/x

x
dx+O(ǫ2). (2.60)

For very large times with T → ∞, (2.60) becomes

p(t) ∼ ǫ α∗ Γ(ν∗)A
2ν∗−1 T−ν∗ e−T/A. (2.61)

We can show that when (2.59) is expanded in the heavy traffic limit ρ ↑ 1, we
also obtain (2.61). We note that as ρ ↑ 1, (2.12) shows that sc(A) ∼ −ǫ/A =
O(ǫ) and thus s′c(A)t ∼ T/A2. The O(ǫ2) term in (2.60) is the same as that
in (2.54), except that the integral over x is truncated at x = A.

If b(A) is non-zero and finite then ν∗ = 1 and (2.59) shows that p(t) has
an exponential tail with the additional algebraic factor 1/t. This additional
factor disappears only in the limit of ν∗ → 0, but then (2.58) shows that b(y)
develops a probability mass at y = A. Our results show that p(t) will have
a purely exponential tail only if b(y) consists of one (then G = D) or several
point masses, or if b(y) has a point mass at the maximum of its support
(y = A) with all the remaining mass in the range 0 ≤ y ≤ A∗ with A∗ < A.
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3 Brief derivations of the conditional sojourn

time density for the case ρ < 1

In this section, we first give a brief derivation of the conditional sojourn time
density for the M/Ek/1-PS model, with a fixed traffic intensity ρ less than
one. Then we sketch the derivations for the general service time density.

The Erlang service time density and its Laplace transform are given by
(2.15) and (2.16). Then (2.3) has the following explicit form:

f(τ ; s)

=
τ(1− ρ)

[

(τ − λ)(τ + k µ)k + λ(k µ)k
]

+ sρ
[

(τ − µ)(τ + k µ)k + µ(k µ)k
]

τ 2
[

(τ − s− λ)(τ + k µ)k + λ(k µ)k
] .

(3.1)
From (3.1) we see that the numerator of f(τ ; s) has a double zero at τ = 0,
so f is analytic at τ = 0 and the poles τ = τ(s) satisfy

(τ − s− λ)(τ + k µ)k + λ(k µ)k = 0. (3.2)

Consider first the limit x, t→ ∞ with 1 < t/x <∞. We define F by

F (s, x) =
1

2πi

∫

Brτ

f(τ ; s) eτ x dτ. (3.3)

From (3.2) we have

λ

(

k µ

τ + k µ

)k

= s− τ + λ. (3.4)

By applying the residue theorem in (3.3) and using (3.4), we have

F (s, x) ∼ R(τ(s), s) eτ(s)x, (3.5)

where

R(τ(s), s) =
s2 (τ(s) + k µ)

τ 2(s)
[

(k + 1) τ(s)− k s+ k (µ− λ)
] (3.6)

and τ = τ(s) is the largest real root of (3.2). The other poles of f lead to
exponentially smaller terms and (3.5) holds when x → ∞ and ℜ(τ) > 0 on
the vertical contour Brτ . We next define

ϕ(s) = ϕ
(

s;
t

x

)

= s
t

x
− τ(s), (3.7)
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and then by (2.5) we have

p(t|x) ∼ 1− ρ

2πi

∫

Brs

exϕ(s)
1

R(τ(s), s)
ds. (3.8)

The integrand in (3.8) has saddle points where ϕ′(s) = 0 so that there is
a saddle point along the real axis at s̃∗, where s̃∗ and τ̃∗ = τ(s̃∗) are the
solutions of







ϕ′(s) =
t

x
− τ ′(s) = 0,

(τ − s− λ) (τ + k µ)k + λ(k µ)k = 0.
(3.9)

From (3.2) we have

τ ′(s) =
τ(s) + k µ

(k + 1) τ(s) + k(µ− s− λ)
. (3.10)

Solving the system (3.9) with the help of (3.10) leads to (2.19) and (2.20). If
we shift Brs in (3.8) to Br′s, on which ℜ(s) = s̃∗, and use the saddle point
method (see, e.g., Wong [24]) with the steepest decent direction arg(s− s̃∗) =
±π/2, we get

p(t|x) ∼ 1− ρ
√

2 π xϕ′′(s̃∗) R(τ(s̃∗), s̃∗)
exϕ(s̃∗). (3.11)

But, from (3.7) and (3.2) we have

ϕ′′(s) = −τ ′′(s) = k (k + 1) (τ(s) + k µ) (s− τ(s) + λ)
[

(k + 1) τ(s) + k (µ− s− λ)
]3 . (3.12)

Using (3.6), (3.7) and (3.12) in (3.11) leads to (2.18).

Next we consider x, t → ∞ but with t/x ≈ 1. The previous calculation
is not valid since, from (2.19), the saddle point s̃∗ → ∞. From (3.2), τ̃∗ has
the following expansion as s̃∗ → ∞:

τ̃∗ = s̃∗ + λ− λ(k µ)k

s̃k∗
+O

( 1

s̃k+1
∗

)

.

We return to (3.8) and note that R(τ(s̃∗), s̃∗) ∼ 1 as s̃∗ → ∞. Then we ap-
proximate the integrand for s large (more precisely we can scale s = O(x1/k)
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with x(t−x)k = O(1)) to get the integral representation in (2.17). Expanding
exp[λ(k µ)ks−kx] as a geometric series, using the identity

1

2πi

∫

Brτ

es (t−x)
1

skm
ds =







δ(t− x) m = 0,

(t− x)km−1

(km− 1)!
m ≥ 1,

and the generalized hypergeometric function

∞
∑

m=0

zm kkm

(m+ 1)! (km+ k − 1)!
=

1

(k − 1)!
0Fk

(

[ ]; [1 +
1

k
, 1 +

2

k
, ..., 2− 1

k
, 2]; z

)

,

we obtain the second expression in (2.17).

Now we consider x, t→ ∞ but with x/t small. From (2.19) we let x/t→
0, then the saddle point s̃∗ → s̃0, which is given by (2.22). Then from (2.20),
τ̃∗ has the following expansion

τ̃∗ = τ̃0 ± τ̃a
√

s− s̃0 +O(s− s̃0),

where τ̃0 is given by (2.23) and

τ̃a =

√

2 k (λµk)
1

k+1

k + 1
.

This means that on this scale, we must re-examine (3.3) as now two poles
of the function f(τ ; s) determine the asymptotics of the integral (3.3). We
denote these two poles as τ̃+ = τ̃+(s̃0) and τ̃− = τ̃−(s̃0). Then for s→ s̃0

F (s, x) ∼ R(τ̃+, s̃0) e
τ̃+ x +R(τ̃−, s̃0) e

τ̃− x

∼ R0√
s− s̃0

eτ̃0 x
(

eτ̃a
√
s−s̃0 x − e−τ̃a

√
s−s̃0 x), (3.13)

where R(τ̃±, s̃0) ∼ ± R0√
s−s̃0 and R0 is given by

R0 =
1

√

2 k3 (k + 1)

√

µ ρ
1

k+1

[

ρ− (k + 1) ρ
1

k+1 + k

1− ρ
1

k+1

]2

. (3.14)
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We return to (2.5), shift the contour Brs to Br′′s , which is slightly to the
right of s̃0, and use (3.13), thus obtaining

p(t|x) ∼ 1− ρ

2πi

∫

Br′′s

es t−τ̃0 x
√
s− s̃0

R0

(

eτ̃a
√
s−s̃0 x − e−τ̃a

√
s−s̃0 x

)ds

=
1− ρ

R0
e−τ̃0 x

∞
∑

n=0

1

2πi

×
∫

Br′′s

√

s− s̃0 exp
[

s t− (2n+ 1) τ̃a
√

s− s̃0 x
]

ds. (3.15)

Using the identity

1

2πi

∫

Br′′s

√

s− s̃0 exp
[

s t− (2n+ 1) τ̃a
√

s− s̃0 x
]

ds

=
1

4
√
π

[(2n+ 1)2 τ̃ 2a x
2

t5/2
− 2

t3/2

]

exp
[

s̃0 t−
(2n+ 1)2 τ̃ 2a x

2

4 t

]

in (3.15), we obtain (2.21).

Finally, we consider the case x = O(1) and t → ∞. Now all the k + 1
poles of f in (3.1) contribute to the asymptotics. We denote these poles
by τi = τi(s), i = 1, · · · , k + 1, which are the solutions of (3.2), and (3.3)
evaluates to

F (s, x) =

k+1
∑

i=1

eτi(s) xRi(s), (3.16)

where Ri(s) = R(τi(s), s) is the residue of f(τ ; s) at τ = τi(s). Then (2.5)
becomes

p(t|x) = 1− ρ

2πi

∫

Brs

es t
1

∑k+1
i=1 e

τi(s) xRi(s)
ds. (3.17)

From (3.17) we obtain (2.24) by locating the pole s = s̃c(x) with the largest
real part, which is the maximal solution of F (s, x) = 0.

We can simplify (2.24) for x → ∞, which leads to an explicit expression
in the matching region between Cases 3 and 4. As x → ∞, we have s̃c → s̃0
and the expansion

s̃c = s̃0 +
Ã

x
+
B̃

x2
+
C̃

x3
+O

( 1

x4

)

.
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We then expand (3.2) about τ = τ̃0, to find that Ã = 0, B̃ < 0 (which
corresponds to s̃c < s̃0) and that τ has the following expansion:

τ = τ̃0 ± i

√

2 k µ ρ
1

k+1

k + 1
|B̃| 1

x

+

[

k + 2

3 (k + 1)
B̃ ∓ i

√

k µ ρ
1

k+1

2 (k + 1) |B̃|
C̃

]

1

x2
+O

( 1

x3

)

. (3.18)

Then as in the analysis of Case 3, two poles of the function f(τ ; s) dominate
the expansion of F (s, x). We denote these two conjugate poles as τ1 and
τ2 = τ1. From (3.6) we have

R1(s) = R(τ1(s), s)

= −i

√

µ ρ
1

k+1

2 k3 (k + 1) |B̃|

[

ρ− (k + 1) ρ
1

k+1 + k

1− ρ
1

k+1

]2

x

+

[

(k − 4) ρ
1

k+1 − (k + 2)
][

ρ− (k + 1) ρ
1

k+1 + k
]2

3 k2 (k + 1) (1− ρ
1

k+1 )3

−i

√

µ ρ
1

k+1

(2 k |B̃|)3

[

ρ− (k + 1) ρ
1

k+1 + k

1− ρ
1

k+1

]2

+O
(1

x

)

, (3.19)

and R2(s) = R1(s). Thus (3.16) is approximately

F (s, x) ∼ eτ1(s)xR1(s) + eτ2(s)xR2(s)

∼ 2 ℜ(eτ1(s) xR1(s)). (3.20)

Expanding (3.20) as x → ∞ and noting that s̃c is a root of F (s, x) = 0 in
this limit, we obtain the expressions for B̃ and C̃ in (2.26) and (2.27). Then
we can simplify (2.24) to

p(t|x) ∼ (1− ρ) exp
(

s̃0 t+ B̃ t/x2 + C̃ t/x3
)

d
ds

[

2 ℜ(eτ1(s) xR1(s))
]






s=s̃c

. (3.21)

But,
d

ds

(

eτ1(s)xR1(s)
)

=
[

R′
1(s) +R1(s) x τ

′
1(s)

]

eτ1(s) x (3.22)
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and
R′

1(s̃c) = O(x2), (3.23)

τ ′1(s̃c) ∼ −i k µ ρ
1

k+1

π (k + 1)
x. (3.24)

Using (3.23), (3.24) and (3.19), (3.22) becomes

d

ds

(

eτ1(s) xR1(s)
)






s=s̃c
∼ µ2 ρ

2
k+1

(k + 1)2 π2

[

ρ− (k + 1) ρ
1

k+1 + k

1− ρ
1

k+1

]2

x3 eτ̃0 x,

which leads to (2.25).

We now consider general service densities b(y). The basic scales in The-
orem 2.1 are the same as those for the Ek case in Corollary 2.1, but some
of the definiting equations are more complicated, becoming transcendental
rather than algebraic. We consider the function (2.3) and note that b̂(0) = 1
and b̂′(0) = −1/µ, so τ = 0 is not a pole of f(τ ; s). The poles τ = τ(s) of
f(τ ; s) now satisfy

τ − s− λ (1− b̂(τ)) = 0. (3.25)

For the case x, t → ∞, with 1 < t/x < ∞, the asymptotics are obtained
analogously to the Ek case and (3.7) still applies, but (3.6), (3.10) and (3.12)
must be replaced by

R(τ(s), s) =
s2

τ 2(1 + λ b̂′(τ))
, (3.26)

τ ′(s) =
1

1 + λ b̂′(τ)
, (3.27)

and

ϕ′′(s) =
λ b̂′′(τ)

(

1 + λ b̂′(τ)
)3 .

The first equation in (2.8) follows from using ϕ′(s) = 0, (3.7) and (3.27).

For the case x, t → ∞ with t/x ≈ 1, we have to make some assumptions
about the behavior of b(y) as y → 0. We assume that b(y) ∼ α yν−1 (α, ν >
0) for y → 0+. Then the Laplace transform of the service time satisfies
b̂(τ) ∼ αΓ(ν) τ−ν as τ → ∞. Then (2.6) is obtained in the same way as
(2.17), although we cannot express the sum in (2.6) as a hypergeometric
function for non-integer ν.
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Next we consider x, t → ∞ but with x/t small. From (2.8), letting
t/x → ∞, we have s0 = s∗(∞) and τ0 = τ∗(∞), which are given by (2.9).
Then τ∗ has the following expansion as s→ s0:

τ∗ = τ0 ±
√

2(s− s0)

λ b̂′′(τ0)
+O(s− s0).

Thus again two poles of f(τ ; s) dominate the expansion of F (s, x) and the
calculation is similar to the Erlang case, with (3.14) becoming

R0 =
s20

τ 20

√

2 λ b̂′′(τ0)
.

Finally, we consider the case x = O(1) and t→ ∞. For the general service
time distribution, all the singularities of the function f(τ ; s) contribute to
F (s, x). Then (2.10) is obtained by using the residue theorem at the largest
pole sc(x) of the integrand in (2.5), which is the maximal real solution of
F (s, x) = 0.

In the asymptotic matching region between Cases 3 and 4, we let x→ ∞
and

sc = s0 +
A

x
+
B

x2
+
C

x3
+O

( 1

x4

)

,

and expand (3.25) at τ = τ0. We find that A = 0, B < 0 and two conjugate
poles τ1 and τ2 of the function f(τ ; s) dominate the behavior of F (s, x).
Analogously to (3.18) and (3.19), τ1 and R1(s) have the following expansions:

τ1 = τ0 + i

√

2 |B|
λ b̂′′(τ0)

1

x
+

[ |B| b̂′′′(τ0)
3 λ (b̂′′(τ0))2

− i C
√

2 λ b̂′′(τ0) |B|

]

1

x2
+O(

1

x3
),

R1(s) = − i s20

τ 20

√

2 λ b̂′′(τ0) |B|
x− s20

[

6 b̂′′(τ0) + τ0 b̂
′′′(τ0)

]

3 λ τ 30
(

b̂′′(τ0)
)2

+
i s20C

2B τ 20

√

2 λ b̂′′(τ0) |B|
+O

(1

x

)

,
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and τ2 = τ1, R2(s) = R1(s). The constants B and C are obtained by expand-
ing (3.20) as x → ∞ using F (sc(x), x) = 0, and this leads to (2.14). Using
(3.21) with (s̃0, B̃, C̃) replaced by (s0, B, C) and

τ ′1(sc) ∼ −i x

π λ b̂′′(τ0)
,

d

ds

(

eτ1(s)xR1(s)
)






s=sc
∼

(

s0

π λ τ0 b̂′′(τ0)

)2

x3 eτ0 x,

we obtain (2.13).

4 Brief derivations of the conditional sojourn

time density for the case ρ ≈ 1

Now we consider the M/G/1-PS model with a traffic intensity that is close
to one, and let ρ = 1− ǫ with 0 < ǫ≪ 1.

First, we consider x = O(1) and t = O(1). Using λ = µ+O(ǫ) we obtain
from (2.3)

f(τ ; s) =
s
[

τ − µ (1− b̂(τ))
]

τ 2
[

τ − s− µ (1− b̂(τ))
]
+O(ǫ).

This leads to (2.28). On this scale the solution does not simplify much, but
there is little probability mass in heavy traffic on the time scale t = O(1).

Next, we consider x = O(1) but for large time scales t = T/ǫ = O(ǫ−1).
In (3.3) we replace ρ as 1− ǫ and scale s as ǫw, and we have

F (s, x) =
1

2πi

∫

Brτ

eτ x
[

τ + w

τ 2
ǫ+

w2

τ 2
[

τ − µ (1− b̂(τ))
]
ǫ2 +O(ǫ3)

]

dτ

= ǫ (1 + wx) + ǫ2 w2 1

2πi

∫

Brτ

eτ x

τ 2
[

τ − µ (1− b̂(τ))
]
dτ +O(ǫ3).
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Then from (2.5), we obtain

p(t|x) = ǫ2

2πi

∫

Brw

ewT

F (ǫ w, x)
dw

∼ ǫ

2πi

∫

Brw

ewT
[

1

1 + wx
− ǫ w2

2πi(1 + wx)2

∫

Brτ

eτ x

τ 2
[

τ − µ(1− b̂(τ))
]dτ

]

dw

=
ǫ

x
e−T/x − ǫ2

[

δ(T )

x2
+

(T − 2x)e−T/x

x4

]

1

2πi

∫

Brτ

eτ x

τ 2
[

τ − µ(1− b̂(τ))
]
dτ.

(4.1)
The function

g(τ, x) =
eτ x

τ 2
[

τ − µ (1− b̂(τ))
]

has a pole at τ = 0 of order 4. By the residue theorem we have

1

2πi

∫

Brτ

g(τ, x) dτ = Resτ=0

(

g(τ, x)
)

+
1

2πi

∫

C−
g(τ, x) dτ. (4.2)

Here we shifted the contour Brτ to C−, which can be taken as the imaginary
axis in the τ -plane, indented to the left of τ = 0. Then we define

Q∗(x) = Resτ=0

(

g(τ, x)
)

=
1

3!
lim
τ→0

d3

dτ 3

[

τ 2 eτ x

τ − µ (1− b̂(τ))

]

, (4.3)

which leads to (2.30). Note that we assumed that all the moments of the
service time are finite, which are given by (2.1). Expression (2.29) is obtained
by using (4.1), (4.2) and (4.3). The term proportional to δ(T ) in (4.1) does
not mean that there is actually mass at T = 0, but rather corresponds to
the small (O(ǫ)) mass that exists in the shorter time scale t, where (2.28)
applies.

Now consider x = X/ǫ = O(ǫ−1) and t = T/ǫ = O(ǫ−1) with 1 < T/X <
∞. By the same argument as in Section 3, the pole τ = τ(s) of f(τ ; s) with
the largest real part satisfies (3.25). We replace λ by µ (1−ǫ) in (3.25), which
yields

τ − s− µ (1− ǫ) (1− b̂(τ)) = 0, (4.4)

and then expand τ as τ = τa + τb ǫ+ O(ǫ2). Then τa = τa(s) and τb = τb(s)
satisfy

τa − s− µ (1− b̂(τa)) = 0
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and

τb =
µ (b̂(τa)− 1)

1 + µ b̂′(τa)
.

In (3.7) we replace t and x by T/ǫ and X/ǫ respectively, to get

ϕ(s) = ϕ
(

s;
T

X

)

= s
T

X
− τ(s)

= s
T

X
− τa(s)− τb(s) ǫ+O(ǫ2)

= ϕ0(s) + ϕ1(s) ǫ+O(ǫ2) (4.5)

and rewrite (3.8) as

p(t|x) ∼ ǫ

2πi

∫

Brs

exp
[

Xϕ0(s)/ǫ+Xϕ1(s)
]

R(τ(s), s)
ds. (4.6)

Here R is as in (3.26), with λ replaced by µ. Then the integrand in (4.6) has
a saddle point where ϕ′

0(s) = 0, which satisfies











ϕ′
0(s) =

T

X
− τ ′a(s) =

T

X
− 1

1 + µ b̂′(τa)
= 0,

τa − s− µ (1− b̂(τa)) = 0.

(4.7)

We denote the solution of (4.7) as τ̂∗ = τ̂∗(T/X) and ŝ∗ = ŝ∗(T/X), which
leads to (2.33). Then by the standard saddle point method, (4.6) asymptot-
ically evaluates to

p(t|x) ∼ ǫ3/2
√

2 πX ϕ′′
0(ŝ∗) R(τ̂∗, ŝ∗)

exp
[

Xϕ0(ŝ∗)/ǫ+Xϕ1(ŝ∗)
]

. (4.8)

But by (3.26) and (4.5), we have

R(τ̂∗, ŝ∗) =
ŝ2∗

τ̂ 2∗
[

1 + µ b̂′(τ̂∗)
] (4.9)

and

ϕ′′
0(ŝ∗) = −τ ′′a (ŝ∗) =

µ b̂′′(τ̂∗)
[

1 + µ b̂′(τ̂∗)
]3 . (4.10)

31



Using (4.9), (4.10) and (4.5) in (4.8), we obtain (2.32). We note that if
X → ∞ and T → ∞ but T/X = O(1), the approximation (2.32) remains
valid.

For the case X = O(1), T = O(1) and T − X → 0+, we again assume
that the service time density behaves as b(y) ∼ α yν−1 (α, ν > 0) for y → 0.
We note that the saddle point ŝ∗ → ∞ as T/X → 1. Then from (4.4), we
find that τ has the following expansion for s→ ∞:

τ = s+ µ− µαΓ(ν)

sν
+O

( 1

sν+1

)

.

Following the same argument as in Section 3, we can easily obtain (2.31),
once we scale s as Sǫ1/ν and let T∗ = (T −X) ǫ−1−1/ν = O(1).

Next, we consider X =
√
ǫ Z = O(

√
ǫ), T = O(1). If we let T/X → ∞

in (2.33), it follows that τ̂∗ → 0 and the saddle point ŝ∗ → 0. By (4.4) and
scaling s = O(ǫ) = ǫw, we find that τ has the following expansion:

τ ∼ ±
√

2w

µm2

√
ǫ+

wm3 − 3m2

3µm2
2

ǫ.

Now two poles of the function f(τ ; s) dominate the behavior of F (s, x). We
approximate F (s, x) by the sum of the residue at these two poles, where from
(3.26) we also have R(τ(s), s) ∼ ±

√

µm2wǫ/8. Then from (2.5) we obtain

p(t|x) ∼
√
2 ǫ3/2

π i
√
µm2

∫

Brw

ewT exp
(

−
√
2wZ√
µm2

)

√
w
[

1− exp
(

− 2
√
2wZ√
µm2

)] dw

=

√
2 ǫ3/2

π i
√
µm2

∫

Brw

ew T√
w

∞
∑

n=0

exp

[

− (2n+ 1)
√
2wZ√

µm2

]

dw,

where the contour Brw is a vertical line in the w-plane slightly to the right
of w = 0. Then (2.34) follows by using the identity

∫

Brw

ew T√
w

exp

[

− (2n+ 1)
√
2wZ√

µm2

]

dw =
1√
π T

exp

[

− (2n+ 1)2 Z2

2µm2 T

]

.

We note that by using the Poisson summation formula

∞
∑

n=−∞
ψ(n) =

∞
∑

m=−∞
Ψ̂(2πm) =

∞
∑

m=−∞

∫ ∞

−∞
e2πiymψ(y) dy,
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where Ψ̂ is the Fourier transform of ψ, we can rewrite (2.34) as

p(t|x) ∼ ǫ3/2

Z

[

1 + 2

∞
∑

n=1

(−1)n exp
(

− n2 π2 µm2 T

2Z2

)

]

. (4.11)

From (4.11), we can easily verify that Cases 2 and 5 in Theorem 2.2 asymptot-
ically match, in the intermediate limit where x → ∞ and Z → 0. Similarly,
Cases 4 and 5 match in the limit where X → 0 and Z → ∞, which follows
easily from (2.34).

Now we consider X = O(1) and T = Θ/ǫ = O(ǫ−1) (thus x = O(ǫ−1) and
t = O(ǫ−2)). Similarly to the previous time scale, two poles, at τ1 = τ1(s)
and τ2 = τ2(s), dominate the behavior of F (s, x) and we have

p(t|x) ∼ ǫ

2πi

∫

Brs

esΘ/ǫ
2

Resτ=τ1(f(τ ; s) e
τ x) +Resτ=τ2(f(τ ; s) e

τ x)
ds

=
ǫ

2πi

∫

Brs

esΘ/ǫ
2

R1(s) eτ1(s)x +R2(s) eτ2(s)x
ds. (4.12)

We scale s = O(ǫ2) by setting s =
(

ξ−1
2µm2

)

ǫ2, and then from (4.4) and (3.26)
we have

τ1,2 ∼
(−1 ±

√
ξ

µm2

)

ǫ and R1,2(s) = R(τ1,2) ∼ ±(1±
√
ξ)2

4
√
ξ

ǫ,

which leads to (2.35).

Furthermore, we expand the integrand in (2.35) as a geometric series, and
we have

p(t|x) ∼ ǫ2

µm2 πi
exp

( X

µm2

− Θ

2µm2

)

×
∫

Brξ

exp
(

Θ ξ
2µm2

)√
ξ

(1 +
√
ξ)2

∞
∑

n=0

(

1−
√
ξ

1 +
√
ξ

)2n

exp
[

− (2n+ 1)X

µm2

√

ξ
]

dξ.

(4.13)

Note that if we let X → ∞, then the n = 0 term in (4.13) dominates, and
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we have

1

2πi

∫

Brξ

√
ξ

(1 +
√
ξ)2

exp
[ Θ

2µm2
ξ − X

µm2

√

ξ
]

dξ

=

[

√

2µm2

πΘ
+

√

2Θ

πµm2

− 2µm2 +X +Θ

µm2

erfc

(

X +Θ√
2µm2Θ

)]

exp
(

− X2

2µm2Θ

)

∼
√

2µm2

πΘ
exp

(

− X2

2µm2Θ

)

, X → ∞.

Here we used

erfc(z) = 1− erf(z) =
2√
π

∫ ∞

z

e−t
2

dt ∼ 1√
πz
e−z

2

, as z → ∞.

Then (4.13) becomes, for Θ fixed and X → ∞,

p(t|x) ∼ 23/2ǫ2√
πµm2Θ

exp
[ X

µm2
− Θ

2µm2
− X2

2µm2Θ

]

. (4.14)

When X = O(ǫ−1) and T = O(ǫ−1) but with T/X = O(1), (2.32) remains
valid, and letting T/X → ∞ in (2.32) regains (4.14). This again verifies that
these two cases asymptotically match.

We return to (4.13), and let
√
ξ = z−1, with which the integral becomes

2

∞
∑

n=0

exp
[ Θ

2µm2
+

(2n+ 1)X

µm2

]

×
∫

C+

(z − 1)2 (z − 2)2n

z2n+2
exp

[ Θ

2µm2
z2 − Θ+ (2n+ 1)X

µm2
z
]

dz.

Here the contour C+ can be taken as the imaginary axis in the z-plane,
indented to the right of z = 0. Using the binomial expansion

(z − 2)2n =

2n
∑

j=0

(−1)j (2n)!

j! (2n− j)!
22n−j zj ,

(4.13) leads to

p(t|x) ∼ ǫ2

µm2

∞
∑

n=0

2n
∑

j=0

(2n)!

j! (2n− j)!
(−2)K exp

[2(n+ 1)X

µm2

]

× 1

2πi

∫

C+

(z − 1)2

zK
exp

( Θ

2µm2
z2 − Anz

)

dz,

(4.15)
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where

An =
Θ+ (2n+ 1)X

2µm2

and
K = 2n− j + 2.

We express the integral in (4.15) in terms of parabolic cylinder functions,
using

1

2πi

∫

Br

zνe−wz+z
2/2dz =

1√
2π
Dν(w)e

−w2/4,

thus obtaining

p(t|x) ∼ ǫ2√
2π µm2

∞
∑

n=0

exp
[2(n+ 1)X

µm2
− z2n

4

]

2n
∑

j=0

(−1)j (2n)!

j! (2n− j)!
(−2)K

×
( Θ

µm2

)
K−1

2

[

µm2

Θ
D2−K(zn)− 2

√

µm2

Θ
D1−K(zn) +D−K(zn)

]

,

(4.16)

where

zn =
Θ+ (2n+ 1)X√

µm2Θ
.

Replacing 2n− j by l, (4.16) leads to (2.36).

If we let X → 0 and Θ → 0 with X/
√
Θ (thus zn) fixed, the term with

l = 0 in (2.37) dominates and we have

p(t|x) ∼ 23/2ǫ2√
πµm2Θ

∞
∑

n=0

exp
[2(n + 1)X

µm2
− z2n

4

]

D0(zn)

∼ 23/2ǫ2√
πµm2Θ

∞
∑

n=0

exp
[

− (2n+ 1)2X2

2µm2Θ

]

. (4.17)

Here we note that X2/Θ = Z2/T and used the fact that D0(w) = e−w
2/4.

Since (4.17) is the same as (2.34), we have shown that Case 5 is really a
special case of Case 6 in Theorem 2.2.

Alternately, we can treat the problem on the (X,Θ) scale by evaluating
(4.12) using the residues of the integrand at all the poles sp, which satisfy

Resτ=τ1(sp)(f(τ ; s) e
τ x) +Resτ=τ2(sp)(f(τ ; s) e

τ x) = 0. (4.18)
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We let sp = A1ǫ +B1ǫ
2 + C1ǫ

3 + O(ǫ4). Then from (4.4) and (3.26) we find
that A1 = 0 and we have the following expansions:

τ1,2 ∼
(

− 1

µm2
± τc

)

ǫ+ (τd ± τe)ǫ
2,

where

τc =

√
1 + 2µm2B1

µm2
,

τd =
2m3 − 3µm2

2 + µm2m3B1

3µ2m3
2

,

τe =
3µ2m3

2C1 + 3µm2
2 − 2m3 + 3µm2(µm

2
2 −m3)B1

3µ2m3
2

√
1 + 2µm2B1

,

and

R1,2(s) ∼
(1

2
± ra

)

ǫ± rb ǫ
2,

where

ra =
1 + µm2B1

2
√
1 + 2µm2B1

,

rb =
µB1

[

2µm2
2C1 − (3µm2

2 −m3)B1

]

6(1 + 2µm2B1)3/2
.

By expanding the left-hand side of (4.18) about ǫ = 0, we obtain

e−2τcX =
2ra + 1

2ra − 1
(4.19)

and
rb = 2(r2a − 1/4) τeX. (4.20)

Setting
√
1 + 2µm2B1 = u + iv (v ≥ 0) we find that all the roots of (4.19)

are on the imaginary axis, and with u = 0 (4.19) becomes (2.38). Denoting
the nth positive solution by vn = vn(X), we obtain B1 = B1(vn) by (2.41).
By solving (4.20) for C1, we have

C1 =
3µm2(µm2 −m3)XB

2
1 +

[

(3µm2
2 − 2m3)X + µm2(3µm

2
2 −m3)

]

B1

µ2m3
2(1−XB1)

,

which leads to (2.42) with the help of (2.41). Note that vn = vn(X) have the
following asymptotic expansions:

vn =

[

µm2

X
− 2(µm2)

2

X2
+

4(µm2)
3

X3

]

nπ +O
( 1

X4

)

, X → ∞, (4.21)
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and

v1 =

√
2µm2√
X

−
√
2

12
√
µm2

√
X +

11
√
2

1440(µm2)3/2
X3/2 +O(X5/2), X → 0,

vn =
(n− 1)πµm2

X
+

2

(n− 1)π
− 4

(n− 1)3π3µm2
X +O(X2), n ≥ 2, X → 0.

Now (4.12) becomes

p(t|x) ∼ ǫ

∞
∑

n=1

esp(vn)Θ/ǫ
2

d
ds

[

eτ1(s)xR1(s) + eτ2(s)xR2(s)
]






s=sp

.

But
d

ds

(

eτ1(s)xR1(s)
)






s=sp
=

[

R′
1(sp) +R1(sp) x τ

′
1(sp)

]

eτ1(sp) x

and

R′
1(sp) ∼

(1

2
+ i

v2n − 1

4vn

)

ǫ,

τ ′1(sp) ∼ −i 1

vn ǫ
,

R′
1(sp) ∼ −i(1 + v2n)µm2

4 v3n ǫ
.

Thus we obtain

d

ds

(

eτ1(s)xR1(s)
)






s=sp(vn)

∼ 1

ǫ

[

v2n − 1

4v2n
X − i

2vnX + µm2(v
2
n + 1)

4v2n

]

exp

(−1 + iv

µm2
X

) (4.22)

and

d

ds

(

eτ2(s)xR2(s)
)






s=sp(vn)
=

d

ds

(

eτ1(s) xR1(s)
)






s=sp(vn)
. (4.23)

Using (4.22) and (4.23), we define G by

1

G(vn)
= 2 ℜ

{

1

ǫ

[v2n − 1

4v2n
X − i

2vnX + µm2(v
2
n + 1)

4v2n

]

exp
(−1 + iv

µm2

X
)

}

,
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which leads to (2.39), and then we obtain (2.37) with sd(vn) = sp(vn)/ǫ
2.

If we consider even larger time scales, with Θ ≫ 1 (thus t ≫ ǫ−2), then
the largest pole sp(v1) dominates. Here v1 = v1(X) is the unique root in the
interval (0, µm2π/X) of (2.38). This leads to (2.43). The expression (2.37)
with (2.40) applies for time scales up to Θ = O(ǫ−1) (t = O(ǫ−3)), but for
even larger time scales we may need further term in (2.40), e.g., the O(ǫ4)
correction to sp. We will discuss this more in Section 5.

The M/Ek/1-PS results in Corollary 2.2 follows from Theorem 2.2 by
using the jth moment

mj =
(k + j − 1)!

k! kj−1 µj
.

5 Brief derivations of the unconditional so-

journ time density

The structure of the unconditional sojourn time density is highly dependent
on the tail behavior of the service density. First we assume the service time
density function behaves as (1.3) or (2.48). For ρ fixed and less than one, the
major contribution to the integral in (2.47) will come from the asymptotic
matching region between the scales x = O(1) and x = O(

√
t), with t → ∞.

In this region, the conditional sojourn time density is given asymptotically
by (2.13).

For 1 ≤ r < 2, using (2.13) and (2.48) in (2.47), the unconditional sojourn
time density behaves asymptotically as

p(t) ∼ α0 e
s0 t

∫ t

0

xq−3 exp
(

− τ0 x−N xr +
B t

x2
+
C t

x3

)

dx, (5.1)

where

α0 =
(1− ρ)M π2 λ2 τ 20 [b̂

′′(τ0)]
2

2 s20
.

Scaling x = ξt
1

r+2 = O(t
1

r+2 ), (5.1) becomes

p(t) ∼ α0 t
q−2
r+2 es0 t

∫ t
r+1
r+2

δt
−

1
r+2

ξq−3 e−φ(ξ,t) dξ, (5.2)
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where φ(ξ, t) is given by (2.51). Here δ > 0 so as to avoid integration through
ξ = 0 in the case of q < 3, and δ ≫ 1. By using the Laplace method with the
major contribution coming from ξ∗ = ξ∗(t), which satisfies φξ = 0 or (2.52),
(5.2) becomes

p(t) ∼
√
2π α0

√

φξξ(ξ∗, t)
ξq−3
∗ t

q−2
r+2 es0 t−φ(ξ∗,t), (5.3)

where

φξξ(ξ, t) =
[

r(r − 1)Nξr−2 − 6B

ξ4

]

t
r

r+2 − 12C

ξ5
t
r−1
r+2

∼
[

r(r − 1)Nξr−2 − 6B

ξ4

]

t
r

r+2 . (5.4)

If r = 1, then by (2.52), ξ∗ =
(

2|B|
N+τ0

)1/3
. Using (2.51) and (5.4) with ξ∗

and r = 1 in (5.3), we obtain (2.49).

If 1 < r < 2, then by (2.52) the leading term ξ0 in the asymptotic

expansion of ξ∗ satisfies Nrξr−1 + 2B
ξ3

= 0, which leads to ξ0 =
(2|B|
Nr

)
1

r+2 .

Then we can rewrite (5.3) as

p(t) ∼
√
2π α0

√

[

r(r − 1)Nξr−2
0 − 6B

ξ40

]

t
r

r+2

ξq−3
0 t

q−2
r+2 es0 t−φ(ξ∗,t),

which leads to (2.50). We give three terms of asymptotic expansion for ξ∗
and φ(ξ∗, t) in Theorem 2.3, as t→ ∞. We note that the third terms in these
expansions are different according as 1 < r ≤ 3/2 or r > 3/2.

If r = 2, the above analysis is still valid but we need to include the
additional factor exp(Dt/x4) in (2.13), and then in (5.1). The constant
D is obtained by refining the approximation (2.13) so that it applies for
x = O(t1/4). Thus (5.2) and (5.3) become

p(t) ∼ α0 t
q−2
4 es0 t

∫ t3/4

δt−1/4

ξq−3 exp
(D

ξ4
+ φ(ξ, t)

)

dξ

∼
√
2π α0

√

φξξ(ξ∗, t)
ξq−3
∗ t

q−2
4 exp

(

s0 t− φ(ξ∗, t) +
D

ξ4∗

)

∼
√
2π α0

√

φξξ(ξ0, t)
ξq−3
0 t

q−2
4 exp

(

s0 t− φ(ξ∗, t) +
D

ξ40

)

.
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Here ξ0 = (|B|/N)1/4 and

ξ∗ = ξ0 +
3NC − τ0B

8NB
t−

1
4 +O(t−

1
2 ),

φ(ξ∗, t) = 2
√

N |B| t 12 − NC + τ0B

N1/4|B|3/4 t
1
4 − (3NC − τ0B)2

16NB2
+O(t−

1
4 ),

φξξ(ξ0, t) ∼ 8Nt1/2.

Thus, after simplification, we obtain (2.53).

Now we consider the unconditional distribution in the heavy traffic limit,
again assuming that the service time density function behaves as (2.48).

For the time scale t = T/ǫ = O(ǫ−1), we use (2.29) in (2.47), which leads
to (2.54) after we integrate from x = 0 to x = ∞.

To compute the unconditional density p(t) on the scale t = σ∗/ǫ
r+2 =

O(ǫ−r−2) with 1 ≤ r < 2, we use (2.43) and (2.48) in (2.47) with Θ = σ∗/ǫ
r.

Scaling x = X/ǫ = O(ǫ−1), (2.47) becomes, since ǫt→ ∞,

p(t) ∼ M

ǫq

∫ ∞

0

G(v1)X
q exp

[

− 1

ǫr
ψ(X, σ∗)

]

dX, (5.5)

where

ψ(X, σ∗) = NXr − B1(v1(X))σ∗ − C1(v1(X))σ∗ǫ

= ψ0(X, σ∗) + ψ1(X, σ∗)ǫ.

Hence (5.5) is a Laplace type integral, and the major contribution will come
from where ψ is minimal, which should satisfy

∂

∂X
ψ0(X, σ∗) = NrXr−1 − d

dX
B1(v1(X))σ∗ = 0. (5.6)

But from (2.41) and (2.38), we have

d

dX
B1(v1(X)) =

v21(X) [v21(X) + 1]

µm2X [v21(X) + 1] + 2µ2m2
2

. (5.7)

Using (5.7) in (5.6), we obtain (2.56). This defines X = X(σ∗) implicitly.
Denoting the right-hand side of (2.56) as Ω(X), we can verify that Ω′(X) > 0,
so that Ω(X) is a monotonically increasing function. As we discussed in
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Section 4, v1(X) ∼ µm2π/X asX → ∞ and v1(X) ∼
√

2µm2/X asX → 0+.
Then Ω(X) → ∞ as X → ∞ and Ω(X) → 0 as X → 0+. Hence there is a
unique positive root of Ω(X) = σ∗, which we denote by X̂ = X̂(σ∗). Then
we use the standard Laplace method in (5.5) to get, for 1 ≤ r < 2,

p(t) ∼
√
2πM ǫ

r
2
−q X̂qG(v1(X̂))

√

∂2

∂X2ψ0(X̂, σ∗)
exp

[

− ψ(X̂, σ∗) ǫ
−r], (5.8)

which leads to (2.55).

If r = 2, to compute the unconditional sojourn time density on the time
scale t = σ/ǫ4 = O(ǫ−4), we need to include the D1(v1)ǫ

2 = O(ǫ2) term in
sd(v1) in (2.43). D1(v1) is obtained in the same way that B1(v1) and C1(v1)
are derived, which we discussed in Section 4. Analogously to (5.5) and (5.8),
with σ∗ replaced by σ and r = 2, we have

p(t) ∼ M

ǫq

∫ ∞

0

G(v1)X
q e−ψ(X,σ∗) ǫ

−2

eD1(v1) σ dX

∼
√
2πM

√

∂2

∂X2ψ0(X̃, σ)
ǫ1−q X̃qG(v1(X̃))

× exp
{

− ψ(X̃, σ) ǫ−2 +D1(v1(X̃)) σ +

[

∂
∂X
ψ1(X̃, σ)

]2

2 ∂2

∂X2ψ0(X̃, σ)

}

, (5.9)

where X̃ = X̃(σ) satisfies (2.56) with σ∗ replaced by σ and r = 2. This leads
to (2.57).

Next we assume that the service time density function b(y) has finite
support for 0 ≤ y ≤ A and behaves as (2.58) near the maximum of its
support. As t→ ∞ with fixed ρ < 1, we remove the condition on x by using
the results in (2.10). The main contribution comes from x = A, and we have

p(t) ∼
∫ A

0

α∗ (A− x)ν∗−1(1− ρ) J(x) esc(x)t dx

∼ (1− ρ)α∗ J(A) e
sc(A) t

∫ A

−∞
(A− x)ν∗−1es

′

c(A) (x−A)tdx. (5.10)

Setting x = A− u/(s′c(A) t), (5.10) becomes

p(t) ∼ (1− ρ)α∗ J(A) e
sc(A) t

[s′c(A)t]
ν∗

∫ ∞

0

uν∗−1e−udu.
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Using
∫∞
0
uν∗−1e−udu = Γ(ν∗), we obtain (2.59).

For the heavy traffic case, we remove the condition on x by using (2.29),
and on the large time scale t = O(ǫ−1) we obtain (2.60). For even larger times
with T → ∞, by using the Laplace method (with the main contribution from
x = A), (2.60) becomes

p(t) ∼ ǫ α∗ e
−T/A

A

∫ A

−∞
(A− x)ν∗−1 eT (x−A)/A2

dx.

This leads to (2.61).

A Appendix

We will give a brief derivation of the Laplace transform of the conditional
sojourn time distribution with deterministic service density b(y) = δ(y −
1/µ). This was derived by Ott (see (5.16) in [13]) and more recently in
[14]. However, these authors use arguments that are specific to the case
G = D. Here we point out that these results also follow easily from the
general M/G/1-PS model.

We rewrite (5.16) in [13] as

E[e−sV(1/µ)] =
(1− ρ)(λ+ s)2 e−ρ−s/µ

s2 + λ
[

s+ (1− ρ)(λ + s)
]

e−ρ−s/µ
, (A.1)

where we replaced z in [13] by 1. To prove (A.1), in view of that (2.4) we
need to prove that

1

2πi

∫

Brτ

eτ/µf(τ ; s)dτ =
s2 eρ+s/µ + λ

[

s+ (1− ρ)(λ+ s)
]

(λ+ s)2
. (A.2)

But, by (2.3),

f(τ ; s) =
(1− ρ)τ + s

τ 2
+

s2

τ 2
[

τ − s− λ(1− e−τ/µ)
] ,

and we have

1

2πi

∫

Brτ

eτ/µ
(1− ρ)τ + s

τ 2
dτ = 1− ρ+ s/µ.
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Thus (A.2) is equivalent to proving the following identity:

1

2πi

∫

Brτ

eτ/µ

τ 2
[

τ − s− λ (1− e−τ/µ)
]dτ

=
eρ+s/µ

(λ+ s)2
+

(1− ρ)λ2 + (2− ρ) s λ

(λ+ s)2 s2
− s+ µ (1− ρ)

µ s2
.

(A.3)

If we scale τ = µT and set w = ρ+ s/µ, (A.3) becomes

1

2πi

∫

BrT

eT

µ2 T 2
[

T − w + ρ e−T
] dT =

ew − w − 1

µ2w2
. (A.4)

We shift the contour BrT to the right so that ℜ(T ) > ℜ(w). Then upon
expanding the integrand in (A.4) as a geometric series and multiplying (A.4)
by µ2 we must show that

∞
∑

L=0

1

2πi

∫

BrT

(−1)LρL

T 2 (T − w)L+1
e(1−L) T dT =

ew − w − 1

w2
. (A.5)

For L ≥ 1 we can close the integration contour in the right half of the T -
plane, and these integrals all evaluate to zero. For L = 0 we close in the
left half-plane, where there is a simple pole at T = w and a double pole at
T = 0. Calculating the residues leads to (A.5), thus proving (A.1).
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