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Abstract The inverse p-median problem with variable edge lengths on graphs
is to modify the edge lengths at minimum total cost with respect to given
modification bounds such that a prespecified set of p vertices becomes a p-
median with respect to the new edge lengths. The problem is shown to be
strongly NP-hard on general graphs and weakly NP-hard on series-parallel
graphs. Therefore, the special case on a tree is considered: It is shown that
the inverse 2-median problem with variable edge lengths on trees is solvable
in polynomial time. For the special case of a star graph we suggest a linear
time algorithm.

Keywords Location problem · inverse optimization · p-median · complexity
analysis

1 Introduction

In recent years inverse optimization problems found an increasing interest.
In an inverse optimization problem the task is to change parameters of the
problem (like traffic connections or client rankings) at minimum cost so that
a prespecified solution becomes optimal. In one of the first papers on this
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subject, Burton and Toint [8] investigated the inverse shortest path problem.
It is beyond of the scope of this paper to give a complete overview about
inverse optimization problems. For a survey on inverse optimization problems
the reader is referred to Heuberger [16].

In the following, we will restrict ourselves to inverse location problems. In
classical location problems the aim is to locate one or more facilities such that
the (weighted) distances from clients to facilities is smallest possible. Hence,
the quality of facility locations depends on weights of clients and on the dis-
tances between clients and facilities. Two well-known location problems are
the p-median and the p-center location model: While in the p-median problem
the goal is to find a set of p facilities such that the sum of (weighted) distances
from the clients to the closest facility becomes minimum, the p-center location
problem is to determine a set of p facilities such that the maximum (weighted)
distance between clients and the closest facility is minimized. Most attention
was paid to location problems on graphs and in the plane. For location prob-
lems in graphs the positions of clients coincide with the set of vertices. The
distance between two points is measured by the shortest distance in the graph
with respect to given edge lengths. In case of location problems in the plane,
the distance is usually measured by the L1-, L2- or L∞-norm. Hence, if we
consider an inverse approach then the parameters that can be modified are
client weights and/or edge lengths (in case of a problem on a graph) or client
weights and/or positions (in case of a problem in the plane).

Let us start with inverse median problems in graphs: In 2004, Burkard,
Pleschiutschnig and Zhang [6] considered inverse p-median problems with vari-
able vertex weights and showed that discrete inverse p-median problems can
be solved in polynomial time, if p is fixed and not an input parameter. More-
over, the same authors [6,7] investigated the inverse 1-median problem with
variable vertex weights and proved that the problem is solvable by a greedy-
type algorithm in O(n log n) time if the underlying network is a tree or the
location problem is defined in the plane (where distances are measured by the
rectilinear or the Chebyshev norm) and in O(n2) time on cycles. On the other
hand, Gassner [10] proved that the inverse 1-maxian problem with variable
edge lengths on general graphs is strongly NP-hard and remains weakly NP-
hard even on series-parallel graphs. The author suggested an O(n log n) time
algorithm for this problem on a tree. An inverse version of the convex ordered
median problem was studied by Gassner [11]. The author showed that this
problem is NP-hard even on trees. Further, it was shown that the problem
remains NP-hard for unit weights or if the underlying problem is a k-centrum
problem (but not, if both of these conditions hold). The inverse unit-weight k-
centrum problem with unit cost coefficients on a tree can be solved in O(n3k2)
time. Let us now consider inverse median problems in the plane. Observe that
the 1-median problem in the plane with respect to the Euclidean distance is
called Fermat-Weber problem. In 2008, Burkard, Galavii and Gassner [5] sug-
gested a Greedy-type algorithm for the inverse Fermat-Weber problem with
variable vertex weights, unit cost and under the assumption that the prespec-
ified point that should become a 1-median does not coincide with a given
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weighted point in the plane. The inverse 1-median problem with variable co-
ordinates is to modify the positions (= coordinates) of the given points (=
clients) in R

d at minimum cost such that a prespecified point in R
d becomes

a 1-median. The inverse 1-median problem with variable coordinates was in-
vestigated by Baroughi, Burkard and Alizadeh [3]. They showed that this
problem in R

d endowed with the rectilinear norm is NP-hard, but it can be
solved by a pseudo-polynomial algorithm. It was shown that the problem is
polynomially solvable when the point weights are assumed to be equal. The
authors suggested an O(dn) time algorithm for the problem in R

d endowed
with the squared Euclidean norm. Moreover, it was shown that the problem
in the plane endowed with the Chebyshev norm is NP-hard. They proposed
another pseudo-polynomial algorithm for this case.

Let us now turn our attention to inverse center problems. Cai, Yang and
Zhang [9] proved that the inverse 1-center location problem with variable edge
lengths on general unweighted graphs is NP-hard, while the underlying cen-
ter location problem is solvable in polynomial time. Yang and Zhang [22]
considered the inverse vertex center problem with variable edge lengths on
tree networks. They derived an O(n2 log n) time algorithm for this problem
where it is assumed that all the modified edge lengths remain positive. Al-
izadeh and Burkard [1] investigated the inverse absolute and vertex 1-center
location problem on trees with variable edge lengths. They showed that the
absolute and vertex 1-center problem can be solved in O(n2) time provided
that all edge lengths are strictly positive. Dropping this condition, they pro-
posed an O(n2r) time algorithm where the parameter r bounded by ⌈n

2 ⌉.
Recently Alizadeh, Burkard and Pferschy [2] used a set of suitably extended
AVL-search trees and developed a combinatorial algorithm which solves the
inverse 1-center location problem with edge length augmentation in O(n log n)
time. In this article we investigate the inverse p-median problem with variable
edge lengths.

The article is organized as follows: In the next section, we state the inverse
p-median problem on general graphs. Afterwards, Section 3 concerns some
complexity results. We prove that the inverse p-median problem is strongly
NP-hard and remains weakly NP-hard on series-parallel graphs. In Section 4
we recall the edge deletion method for finding a 2-median of a tree. Using this
method we can formulate the inverse 2-median problem on a tree as a linear
program which is solvable in polynomial time. Finally, in Section 5 we show
that the inverse 2-median problem on star graphs can be solved in linear time
by using the special structure of the linear programming formulation of Section
4 combined with the fast multidimensional search algorithm of Megiddo [19].

2 The p-median problem and the inverse p-median problem with

variable edge lengths

Let G = (V, E) be a connected graph with vertex set V = {v1, . . . , vn}, edge
set E with |E| = m, and a constant p ≤ n. Every edge e ∈ E has a positive
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length ℓe and dℓ(vi, vj) denotes the shortest distance from vi ∈ V to vj ∈ V
in G with respect to length vector ℓ. Moreover, for any vertex v ∈ V let w(v)
be a positive vertex weight. In the classical p-median problem the goal is to
locate p pairwise different facilities m1, . . . , mp on G (i.e., on vertices or edges)
which minimize the sum of weighted distances from each vertex to its closest
facility:

min
m1,...,mp∈G

∑

v∈V

w(v) min
i=1,...,p

dℓ(v, mi).

An optimal solution is called p-median.

Hakimi [15] showed that there exists an optimal solution among the set of
vertices. This property is called vertex optimality.

The classical p-median problem has been studied since the 60’s. Kariv and
Hakimi [18] showed that this problem is NP-hard even if G = (V, E) is a
planar graph of maximum degree 3. In the case of tree graphs the p-median
problem is solvable in polynomial time. Kariv and Hakimi [18] developed an
algorithm that computes a solution in O(p2n2) time. The running time was
improved to O(pn2) by Tamir [21] and later to O(n logp+2 n) by Benkoczi and
Bhattacharya [4]. For the 1-median problem on trees algorithms that run in
linear time were given by Hua et al. [17] and independently by Goldman [13].
The case of p = 2 can be solved in O(n log n) time as shown by Gavish and
Sridhar [14].

Now we are going to define the inverse p-median problem with variable
edge lengths: Let a connected graph G = (V, E) with a positive weight w(v)
for every v ∈ V and a positive length ℓe for every e ∈ E be given. We want
to modify the edge lengths at minimum cost such that a given set of vertices
{m1, . . . , mp} becomes a p-median. Suppose that we incur nonnegative cost
c+
e , if ℓe is increased by one unit and we incur nonnegative cost c−e , if ℓe is

decreased by one unit. Let pe and qe be the amounts by which the edge length
ℓe is increased and decreased, respectively. We suppose that pe and qe obey
the upper bounds u+

e and u−
e . Moreover, let S denote the set of all subsets

S ⊆ V of cardinality |S| = p. Therefore, we can state the inverse p-median
problem on graph G as follows:

Modify the edge lengths ℓe, e ∈ E, to ℓ̃e = ℓe + pe − qe such that the
following three properties hold:

(i) The set {m1, . . . , mp} becomes a p-median of G with respect to ℓ̃, i.e.,

∑

v∈V

w(v) min
i=1,...,p

dℓ̃(v, mi) ≤
∑

v∈V

w(v) min
k∈S

dℓ̃(v, vk) for all S ∈ S. (1)

(ii) The bound constraints are satisfied:

0 ≤ pe ≤ u+
e , 0 ≤ qe ≤ u−

e for all e ∈ E.
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(iii) The linear cost function
∑

e∈E

(c+
e pe + c−e qe)

becomes minimum.

This formulation of the inverse p-median problem is a nonlinear program-
ming model. In Section 4, we will, however, get a linear programming formu-
lation of this problem if the underlying graph is a tree.

In the next section we are going to investigate the computational com-
plexity of the inverse p-median problem on general and also on series-parallel
graphs. It requires first to discuss the complexity of the special case p = 1.

3 Computational complexity of inverse p-median problems

In this section, we first show that the inverse 1-median problem is strongly NP-
hard on general graphs. Then we generalize this result to p-median problems
for any p ∈ N. Next we show that the inverse 1-median problem and also the
inverse p-median problem remain weakly NP-hard on series-parallel graphs.
Our NP-hardness constructions are motivated by the NP-hardness proof for
the inverse 1-maxian problem by Gassner [10]. Since the ideas are similar to
those in [10], we will omit some details and refer the interested reader to the
paper by Gassner.

3.1 Strong NP-hardness of the inverse 1-median problem on general graphs

We consider an instance of the Set Cover problem which is known to be
strongly NP-hard [12], to construct an equivalent instance of the inverse 1-
median problem on general graphs.

An instance ISC of the Set Cover problem is given by a finite set S, a
family C of subsets and an integer K < |C|. The Set Cover problem asks for
a set of subsets C′ ⊆ C of cardinality at most K such that every element of S
belongs to at least one set in C′.

Let us assume that we are given an instance ISC . Now we construct an
instance II1M of the inverse 1-median problem with a graph G = (V, E) in the
following way:

V ={s, t} ∪ {ai | i ∈ S} ∪ {vj | Cj∈ C}

E =E1 ∪ E2 ∪ E3

E1 ={(s, ai) | i ∈ S}

E2 ={(ai, vj) | i ∈ S, Cj ∈ C, i ∈ Cj}

E3 ={(vj , t) | Cj ∈ C}

The vertex weights are defined in the following way: w(ai) = 1 for every i ∈ S
and w(x) = 0 otherwise. All edges e ∈ E have equal length ℓe = 1. Only
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Fig. 1 Graph constructed from the Set Cover instance with S = {1, 2, 3, 4} and C =
{{1, 2}, {2, 3}, {2, 3, 4}}, C′ = {{1, 2}, {2, 3, 4}}.

E3 has edges whose lengths are allowed to be modified. We define u−
e = 1 if

e ∈ E3 and u−
e = 0 otherwise. Finally, u+

e = 0 for all e ∈ E. We also assume
that c+

e = c−e = 1 for all e ∈ E. The definition of the instance of the inverse 1-
median problem is completed by requiring that vertex t becomes a 1-median.
A specific example for the constructed instance in this way is illustrated in
Figure 1.

Let (p, q) be any length modification that satisfies the bound constraints
and let ℓ̃ = ℓ + p − q. Then the objective function values of the vertices of G
with respect to ℓ̃ fulfill the following properties:

fℓ̃(s) =|S| fℓ̃(ai) = 2(|S| − 1) > |S| i ∈ S

fℓ̃(t) ≥|S| fℓ̃(vj) ≥ |S| Cj ∈ C

Therefore, we conclude that t is a 1-median with respect to ℓ̃ if and only
if fℓ̃(t) = |S|.

Lemma 1 There exists a Set Cover of cardinality at most K for ISC if and
only if there exists a feasible solution of the constructed instance of the inverse
1-median problem of cost at most K.

Proof This lemma can be proved in an analogous way as Lemma 2.1 in [10].

Since the Set Cover problem is strongly NP-hard we obtain the following
theorem.

Theorem 1 The inverse 1-median problem with variable edge lengths is strongly
NP-hard on general graphs even if all lengths and cost coefficients are equal
to 1.
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3.2 Strong NP-hardness of the inverse p-median problem on general graphs

The hardness of the inverse 1-median problem can be generalized to the inverse
p-median problem for any natural number p.

Given an instance II1M with G = (V, E), weights w(v) (v ∈ V ), lengths
ℓe (e ∈ E), cost coefficients c+

e , c−e , and bounds u+
e , u−

e and vertex mp which
should become a 1-median. We construct an instance IIPM of the inverse
p-median problem on a graph G′ = (V ′, E′) as follows:

V ′ =V ∪ V1

V1 ={m1, . . . , mp−1}

E′ =E ∪ E1

E1 ={(mi, mi+1) | i = 1, . . . , p − 1}

All vertices v ∈ V keep their vertex weights and all edges e ∈ E maintain
their lengths, cost coefficients and bounds as in II1M . It remains to define these
parameters for elements in V1 and E1: Their weights and lengths are chosen
sufficiently large, i.e., w(m) = M =

∑

v∈V w(v) + 1 for every vertex m ∈ V1

and ℓe = L =
∑

e∈E(ℓe +u+
e ) + 1 for every e ∈ E1. Moreover, let u+

e = u−
e = 0

and c+
e = c−e = 1 for each e ∈ E1. Finally, the set {m1, . . . , mp−1, mp} should

become a p-median.
Let ℓ̂ be any length modification of IIPM that satisfies the bound con-

straints. We show that any p-median of graph G′ with respect to ℓ̂ contains
the vertices m1, . . . , mp−1:

Let vj ∈ V ′ for j = 1, . . . , p be arbitrary p vertices of V ′ such that mi 6= vj

for j = 1, . . . , p and every mi ∈ V1. Then we have

f
ℓ̂
(v1, . . . , vp) ≥ w(mi) min

j=1,...,p
d

ℓ̂
(mi, vj) ≥ ML.

On the other hand, for every v, v′ ∈ V we have

d
ℓ̂
(v, v′) ≤

∑

e∈E

(ℓe + u+
e ) < L.

Let m∗ ∈ V be an arbitrary vertex, then

f
ℓ̂
(m1, . . . , mp−1, m

∗) =
∑

v∈V ′

w(v) min{ min
1≤j≤p−1

d
ℓ̂
(v, mj), d

ℓ̂
(v, m∗)}

=
∑

v∈V

w(v) min{ min
1≤j≤p−1

d
ℓ̂
(v, mj)

︸ ︷︷ ︸

≥L

, d
ℓ̂
(v, m∗)

︸ ︷︷ ︸

<L

}

=
∑

v∈V

w(v)d
ℓ̂
(v, m∗) < ML ≤ f

ℓ̂
(v1, . . . , vp).

Therefore, we conclude that every p-median of graph G′ contains the ver-
tices m1, . . . , mp−1 and no vertex in G travels to m1, . . . , mp−1. Observe that
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any length modification ℓ̂ in G′ implies a length modification ℓ̃ in G be-
cause the lengths of edges in E1 are not allowed to be modified. Hence, let
{m1, . . . , mp−1, m

∗} with m∗ ∈ V be a candidate for a p-median in G′. Then its
objective value is equal to the 1-median objective value of m∗ in G. Moreover,
we get f

ℓ̂
(m1, . . . , mp−1, m

∗) = fℓ̃(m
∗).

These observations immediately imply that {m1, . . . , mp−1, m
∗} is a p-

median of G′ with respect to ℓ̂ if and only if m∗ is the 1-median of G with
respect to ℓ̃. This leads to the following theorem.

Theorem 2 The inverse p-median problem with variable edge lengths is strongly
NP-hard on general graphs for every p ∈ N even if all cost coefficients are
equal to 1.

3.3 Weak NP-hardness of the inverse p-median problem on series-parallel
graphs

In this subsection we first prove that the inverse 1-median problem is NP-
hard even on series-parallel graphs. Next we show that the hardness of this
problem can be generalized to the inverse p-median problem. Let us start with
an NP-hardness proof of the inverse 1-median problem.

We prove by a reduction from the continuous multiple choice knapsack
problem that the inverse 1-median is weakly NP-hard on series-parallel graphs.
The continuous multiple choice knapsack problem is known to be weakly NP-
hard, but it can be solve by a pseudo-polynomial algorithm [12].

An instance IKP of the continuous multiple choice knapsack problem is
given by a finite set S, for each i ∈ S a profit bi ∈ Z

+ and a cost ci ∈ Z
+, a

partition A of S into disjoint sets A1, . . . , Ak, and positive integers P and C.
The question is whether there exists a choice of a single element ϕ(j) ∈ Aj ,
1 ≤ j ≤ k, and an assignment of rational numbers rj , 0 ≤ rj ≤ 1, to the sets,
such that

k∑

j=1

rjcϕ(j) ≤ C and

k∑

j=1

rjbϕ(j) ≥ P.

Let us assume that we have an instance IKP of the continuous multiple
choice knapsack problem. Now we construct an instance II1M of the inverse
1-median problem on a series-parallel graph G = (V, E) as follows.

V ={s, t} ∪ {aj | Aj ∈ A} ∪ {vi | i∈ S}

E =E1 ∪ E2 ∪ E3

E1 ={(s, aj) | Aj ∈ A}

E2 ={(aj, vi) | i ∈ Aj , Aj ∈ A}

E3 ={(vi, t) | i ∈ S}
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Fig. 2 Graph constructed from A = {A1, A2} and A1 = {1, 2, 3}, A2 = {4, 5}.

The vertex weights are defined in the following way:

w(x) =

{
1

|Aj|
if x = vi, i ∈ Aj ,

0 otherwise.

We define length-, bound- and cost coefficients of the edges as follows.

ℓe =







P
k

if e ∈ E1

0 if e ∈ E2

2P
k

if e ∈ E3

u−
e =

{

bi if e ∈ E3

0 otherwise
c−e =

{
ci

bi
if e ∈ E3

0 otherwise.

Furthermore, u+
e = c+

e = 0 for all e ∈ E.
The definition of an instance of the inverse 1-median problem is completed

by specifying vertex t as the vertex that should become a 1-median. Figure 2
illustrates the constructed instance for a specific example.

Observe, that edges in E3 are only allowed to be shortened. Now we in-
vestigate the objective values of the vertices with respect to any feasible edge
length modification: Let (p, q) be any length modification that satisfies the
bound constraints and let ℓ̃ = ℓ + p − q. Then fℓ̃(s) = P , fℓ̃(aj) = fℓ̃(vi) for
all i ∈ Aj (j = 1, . . . , k) and

fℓ̃(aj) =

k∑

i=1
i6=j

dℓ̃(aj , ai) fℓ̃(t) =

k∑

i=1

dℓ̃(ai, t)
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hold. Consider a vertex aj for j ∈ {1, . . . , k}. Observe that

dℓ̃(aj , ai) = min

{
2P

k
, dℓ̃(aj , t) + dℓ̃(ai, t)

}

holds. Hence, if 2P
k

≤ dℓ̃(aj , t) + dℓ̃(ai, t) holds for all i 6= j then fℓ̃(aj) =
k−1

k
2P > P (for k > 2) holds and otherwise fℓ̃(aj) ≥ fℓ̃(t) because then there

is at least one set j′ 6= j with dℓ̃(aj , aj′) = dℓ̃(aj , t) + dℓ̃(aj′ , t) and

dℓ̃(aj , ai) = min







2P/k
︸ ︷︷ ︸

≥d
ℓ̃
(ai,t)

, dℓ̃(aj , t) + dℓ̃(ai, t)







≥ dℓ̃(ai, t)

holds for all i 6= j. These observations immediately imply that t is a 1-median
with respect to ℓ̃ if and only if fℓ̃(t) ≤ P .

Lemma 2 Assume that IKP is an instance of the continuous multiple choice
knapsack problem. Then there exists a feasible solution (ϕ∗, r∗) for IKP if and
only if there exists a feasible solution (p∗, q∗) of the corresponding instance of
the inverse 1-median problem with cost at most C.

Proof This lemma can be proved in an analogous way as Lemma 2.3 in [10].

This lemma immediately leads to the following theorem.

Theorem 3 The inverse 1-median problem with variable edge lengths is weakly
NP-hard on series-parallel graphs.

Now we consider an instance of the inverse 1-median problem on series-
parallel graphs. In an analogous way as Subsection 3.2 we construct an equiv-
alent instance of the inverse p-median problem. Since the constructed graph
is also a series-parallel graph we conclude the following theorem:

Theorem 4 The inverse p-median problem with variable edge lengths is weakly
NP-hard on series-parallel graphs for every p ∈ N.

4 The inverse 2-median problem on trees

Consider a tree graph with n vertices. Throughout this section, we assume
that ℓe − u−

e > 0 hold for all e ∈ E because otherwise the modified length
ℓ̃e = ℓe − u−

e = 0 would change the topology of the tree (edges with zero-
lengths have to be contracted).

Observe that every pair of vertices is a candidate to be a 2-median. Hence,
the formulation of the inverse 2-median problem (see Section 1) has

(
n
2

)
=

O(n2) constraints that make sure that the given pair will be a 2-median and
in addition there are 2n bound constraints. Unfortunately, the constraints (1)
are nonlinear because they involve the minimum-operator, i.e., it is not clear in
advance to which facility vertices travel. Our goal is now to avoid this difficulty
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of non-linearity by making use of some properties of the 2-median problem on
trees.

Let us assume that T = (V, E) is an undirected tree with vertex set V with
|V | = n and edge set E with |E| = n − 1. Suppose that the unique path from
vi ∈ V to vj ∈ V is denoted by p[vi, vj ] and dℓ(vi, vj) is the length of p[vi, vj ]
with respect to ℓ. A method for finding 2-medians of a tree is to consider
edge deletions [20]. Observe that whenever two vertices are fixed as facility
locations, there exists exactly one edge that is not used by any vertex on its
way to its closest facility. This edge is called split-edge. Conversely, whenever
an edge is fixed to be a split-edge the assignment of vertices to facilities is
uniquely given. Hence, the idea is to guess the split-edge: The deletion of edge
e ∈ E, partitions the tree T into two subtrees T1(e) and T2(e). Let V1(e) and
V2(e) be the corresponding vertex sets of T1(e) and T2(e), respectively. Since
we have (n − 1) edges we have (n − 1) partitions. For each edge deletion we
determine, using Goldman’s algorithm [13,20], a 1-median m1(e) in T1(e) and
a 1-median m2(e) in T2(e). Let f̄ℓ(e) be the optimal objective value provided
that e is the split-edge and {m1(e), m2(e)} are the facility locations. Then
f̄ℓ(e) is equal to

f̄ℓ(e) =
∑

v∈V1(e)

w(v)dℓ(v, m1(e)) +
∑

v∈V2(e)

w(v)dℓ(v, m2(e)).

A consequence of the edge deletion method is the following lemma (see
e.g., [20]):

Lemma 3

i) fℓ(m1(e), m2(e)) ≤ f̄ℓ(e) for all e ∈ E.
ii) If the set {m1, m2} is a 2-median of T then there exists an edge e∗ ∈ E
such that m1 and m2 are 1-medians of T1(e∗) and T2(e∗), respectively, and
f̄ℓ(e

∗) = fℓ(m1, m2).
iii) If f̄ℓ(e

∗) ≤ f̄ℓ(e) for all e ∈ E then the set {m1(e∗), m2(e∗)} is a 2-median.

Lemma 3 says that for every fixed edge e we can determine a 1-median
mi(e) for i = 1, 2 in Ti(e) (according to Goldman’s algorithm [13,20]) and
finally take the best pair among the candidates {{m1(e), m2(e)} | e ∈ E}.
Observe that there exists an optimality criterion for the 1-median problem
in a graph that is independent of the edge lengths (this property is often
called Goldman property [13]). Since we modify only edge lengths while vertex
weights are fixed, we can determine this set of candidates {{m1(e), m2(e)} |
e ∈ E} without knowledge about the final edge lengths.

Let us assume that the prespecified set {m1, m2} is not a 2-median of T .
We want to modify the edge lengths ℓe, e ∈ E, to ℓ̃e at minimum cost such
that the given set {m1, m2} becomes a 2-median. The difficulty is, however,
that we do not know the correct split-edge. Hence, we try out all possibilities
e ∈ p[m1, m2]. Whenever mi are 1-medians in Ti(e) (i = 1, 2) then e is a
candidate be an optimal split-edge. Observe that an edge e ∈ p[m1, m2] with
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mi ∈ Ti(e) is not a 1-median in Ti(e) can not be a split-edge with respect to
an optimal solution of the inverse 2-median problem.

Let M denote the set of split-edge candidates. For every e∗ ∈ M, we
are interested in an optimal length modification such that f̄ℓ̃(e

∗) ≤ f̄ℓ̃(e)
holds for every e ∈ E. Let e∗ ∈ M then the following linear programming
problem models the problem of finding an optimal length modification with
the additional constraint that e∗ is the split-edge:

(P1) minimize
∑

e∈E

(c+
e pe + c−e qe)

subject to f̄ℓ̃(e
∗) ≤ f̄ℓ̃(e) for all e ∈ E, (2)

ℓ̃e = ℓe + pe − qe for all e ∈ E,

0 ≤ pe ≤ u+
e for all e ∈ E,

0 ≤ qe ≤ u−
e for all e ∈ E.

Since
dℓ̃(vi, vj) =

∑

e∈p[vi,vj ]

(ℓe + pe − qe)

is linear, constraints (2) are also linear. Thus, an optimal solution of the inverse
2-median problem can be found by solving (P1) for every e ∈ M and finally
choosing a cheapest solution. This implies that the inverse 2-median problem
on a tree is solvable in polynomial time.

Note that if we allow to reduce edge lengths to zero then we also have
to consider split-edges e ∈ p[m1, m2] where mi ∈ Ti(e) (i = 1, 2) are not 1-
medians in their subtrees. In this case, we determine the cost of changing all
edges on a path from mi to mi(e) to zero (i.e., we change the topology of
the tree) and continue with the linear programming problem for the modified
tree. The cost of edge e ∈ p[m1, m2] is then given by the cost of zero-length
modification plus the cost of length modification given by the linear program.
Since we assume positive vertex weights, every subtree may have up to two
different 1-medians. Hence, for every edge e ∈ p[m1, m2], we have to solve up
to four linear programming problems.

Theorem 5 The inverse 2-median problem can be solved in polynomial time
if the underlying network is a tree.

5 The inverse 2-median problem on star graphs

Let G = (V, E) be a star graph with vertex set V = {v0, v1, . . . , vn} and edge
set E = {ei = (v0, vi) | i = 1, . . . , n}, v0 is the central vertex and v1, . . . , vn

are leaves of G. Assume that w(vi) = wi, i = 0, 1, . . . , n are vertex weights of
G and

wn ≥ wn−1 ≥ . . . ≥ w1.
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The deletion of edge ei ∈ E partitions the star graph G into the two subgraphs
G1(ei) and G2(ei), where G1(ei) = (V1(ei), E1(ei)) is the trivial graph with
vertex set V1(ei) = {vi} and G2(ei) is a star graph with vertex set V2(ei) =
{v0, v1, . . . , vi−1, vi+1, . . . , vn} and edge set E = {e1, . . . , ei−1, ei+1, . . . , en}.

Our task is to compute f̄ℓ̃(ei) for i = 1, . . . , n in order to apply the solution
method described in the previous section. Let us first compute the 1-medians
m1(ei) and m2(ei):

Assume that ei, i = 1, . . . , n−1 is a split-edge in G. In this case m1(ei) = vi

is the 1-median in G1(ei). In order to determine a 1-median m2(ei) in G2(ei),
we use Goldman’s optimality criterion [13,20]: If the weight of vertex vn is not
large enough, i.e.,

wn <

n∑

j=0

wj − wn − wi,

then m2(ei) = v0 is a 1-median in G2(ei), otherwise m2(ei) = vn. Thus, for
i = 1, . . . , n − 1 we have

f̄ℓ(ei) =

n∑

j=1

wjℓej
− wiℓei

− aiℓen

with

ai =







0 if wn <
n∑

j=0

wj − wn − wi

2wn + wi −
n∑

j=0

wj if wn ≥
n∑

j=0

wj − wn − wi.

Now assume that en is a split-edge in G. In this case m1(en) = vn holds.
If the weight of vertex vn−1 is not large enough, i.e.,

wn−1 <

n∑

j=0

wj − wn−1 − wn,

then m2(en) = v0, otherwise m2(en) = vn−1. Therefore,

f̄ℓ(en) =

n∑

j=1

wjℓej
− wnℓen

− anℓen−1

with

an =







0 if wn−1 <
n∑

j=0

wj − wn−1 − wn

2wn−1 + wn −
n∑

j=0

wj if wn−1 ≥
n∑

j=0

wj − wn−1 − wn.

Let now assume that we are given a set {m1, m2} of vertices and we want
to modify the edge lengths of G at minimum cost within the given bounds
such that {m1, m2} becomes a 2-median. We use the algorithm of Section
4 to compute an optimal solution of the inverse 2-median problem. Observe
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that there are at most two edges on p[m1, m2]. Hence, there are at most two
candidates for an optimal split-edge. Assume that es ∈ p[m1, m2] is fixed to be
a split-edge of an optimal solution. The task is to solve the linear programming
problem for split-edge es as described in Section 4.

Observe that every function f̄ℓ(ei) for i = 1, . . . , n contains the term
∑n

j=1 wjℓej
. Therefore, we can delete this term and consider the functions

gℓ(ei) = wiℓei
+ aiℓen

for i = 1, . . . , n − 1 and gℓ(en) = wnℓen
+ anℓen−1

.
In order to simplify the explanation, we distinguish the following three

cases:
Case 1. If es = en, then according to problem (P1) we have to solve

(P2) minimize

n∑

i=1

(c+
ei

pei
+ c−ei

qei
)

subject to wiℓ̃ei
+ aiℓ̃en

≤ wnℓ̃en
+ anℓ̃en−1

for i = 1, . . . , n − 1, (3)

ℓ̃ei
= ℓei

+ pei
− qei

for i = 1, . . . , n,

0 ≤ pei
≤ u+

ei
for i = 1, . . . , n,

0 ≤ qei
≤ u−

ei
for i = 1, . . . , n.

Observe that wn−ai ≥ 0 holds for all i = 1, . . . , n−1 and hence there exists
an optimal solution with qen

= 0. It is not clear in advance whether the length
of en−1 has to be in- or decreased. Therefore, we will consider two cases where
either pen−1

= 0 or qen−1
= 0. Finally, every ℓ̃ei

for i = 1, . . . , n − 2 appears
once in constraints (3) on the left-hand side and hence pei

= 0. Moreover,

wi(ℓei
− qei

) + aiℓ̃en
≤ wnℓ̃en

+ anℓ̃en−1
= gℓ̃(en)

implies

qei
≥ ℓei

+
aiℓ̃en

− gℓ̃(en)

wi

= Ai(ℓ̃en−1
, ℓ̃en

)

Obviously, there exists an optimal solution with

qei
= max{Ai(ℓ̃en−1

, ℓ̃en
), 0} = Gi(ℓ̃en−1

, ℓ̃en
) for i = 1, . . . , n − 2,

where
Ai(ℓ̃en−1

, ℓ̃en
) ≤ u−

ei
.

The idea is to replace the decision variables qei
for i = 1, . . . , n − 2 by

the above representation which depends on ℓ̃en
and ℓ̃en−1

. However, ℓ̃en
and

ℓ̃en−1
only depend on pen

and pen−1
or qen−1

. In the following, we will discuss
the case pen−1

= 0. The other case where qen−1
= 0 can be considered in an

analogous way.
Observe that the constraint (3) for i = n − 1 is equivalent to

qen−1
(an − wn−1) + pen

(an−1 − wn) ≤ gℓ(en) − gℓ(en−1).

Hence, we have to solve
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(P3) minimize
n−2∑

i=1

c−ei
Gi(ℓ̃en−1

, ℓ̃en
) + c−en−1

qen−1
+ c+

en
pen

subject to Ai(ℓ̃en−1
, ℓ̃en

) ≤ u−
ei

for i = 1, . . . , n − 2,

qen−1
(an − wn−1) + pen

(an−1 − wn) ≤ gℓ(en) − gℓ(en−1)

0 ≤ qen−1
≤ u−

en−1

0 ≤ pen
≤ u+

en
.

We now explain how to solve optimization problems of the above form.
Note that Gi(ℓ̃en−1

, ℓ̃en
) is a convex piecewise linear function depending on

pen
and qen−1

. If it is known whether

Gi(ℓ̃en−1
, ℓ̃en

) = 0 or Gi(ℓ̃en−1
, ℓ̃en

) = Ai(ℓ̃en−1
, ℓ̃en

)

then objective function of problem (P3) is linear. In other words, problem (P3)
is then a linear programming problem with n+1 constraints and two variables
which is solvable in linear time [19].

Consider the (qen−1
, pen

)-plane. Then Ai(ℓ̃en−1
, ℓ̃en

) = 0 defines a line  Li

that splits the plane into two regions such that Gi(ℓ̃en−1
, ℓ̃en

) = Ai(ℓ̃en−1
, ℓ̃en

)

in one region while Gi(ℓ̃en−1
, ℓ̃en

) = 0 in the other region. Hence, the task is
to find the relative position of an optimal solution to these lines. Moreover,
the set of points that satisfy a constraint with equality is a line, i.e., every
constraint defines a line, say Cj for the j’th constraint. Hence, we are given
2n − 3 = O(n) lines in the plane.

In order to find out the relative position of an optimal solution to the
lines Li, we make use of the linear search algorithm in fixed dimension due
to Megiddo [19]. The key point of Megiddo’s search algorithm is to find in
linear time (in terms of the number of active lines) a quarter of the plane that
contains an optimal solution such that a fixed fraction of lines (of type Li or Cj)
do not intersect the quarter and hence can be discarded, i.e., they are inactive
and not considered any more (in case of a line Li the corresponding linear
term is then cumulated). Megiddo provides a linear time algorithm provided
that the following subproblem can be solved in linear time: Let K be a line
and let HL and HR be the two (open) halfplanes defined by K. If there exists
an optimal solution on K then determine it. Otherwise, compute the halfplane
HL or HR that contains an optimal solution.

Now we explain the main ideas how to solve this subproblem. Clearly, if
there is no feasible solution in one of the halfplanes then the answer is trivial.
Now assume that there are feasible solutions in HL and in HR. We minimize
the objective function restricted to K where P denotes a minimal point on K
if no constraints are considered and P ′ denotes a minimal point on K if the
constraints are considered. Observe that both points P ′ and P (if the problem
is not bounded) can be found in linear time by considering the intersection
points of the lines Li and Cj with K.
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Assume that P exists and lies in the interior of the feasible region. Then
the slopes of the supporting planes of the objective function in P enable the
decision whether there is an optimal solution in HL or in HR. If P does not
exist, lies outside or on the boundary of the feasible region then P ′ also lies
on the boundary and hence P ′ lies on a line Cj . Then compute a minimum
feasible solution restricted to Cj . If this solution lies in HL (and HR, resp.)
then there exists an optimal solution in HL (an HR, resp.). Otherwise, P ′ is a
minimum feasible solution restricted to Cj . If P exists then the slopes of the
supporting planes of the objective function in P enable the decision whether
a minimum point (without considering the constraints) lies in HL (and HR,
resp.) and due to the convexity of the objective function there also exists an
optimal feasible solution in HL (and HR, resp.). If, however, P does not exist,
then the convexity of the objective function implies that P ′ is an optimal
solution which lies on K.

Observe that the procedure described above takes linear time in the number
of active lines Li and Cj and hence Megiddo’s search algorithm immediately
implies a linear time algorithm for the whole problem.

Case 2. If es 6∈ {en, en−1}, then we can formulate the inverse 2-median prob-
lem on the star graph G as follows:

(P4) minimize

n∑

i=1

(c+
ei

pei
+ c−ei

qei
)

subject to wiℓ̃ei
+ aiℓ̃en

≤ wsℓ̃es
+ asℓ̃en

for i = 1, . . . , n − 1, i 6= s,
(4)

wnℓ̃en
+ anℓ̃en−1

≤ wsℓ̃es
+ asℓ̃en

(5)

ℓ̃ei
= ℓei

+ pei
− qei

for i = 1, . . . , n,

0 ≤ pei
≤ u+

ei
for i = 1, . . . , n,

0 ≤ qei
≤ u−

ei
for i = 1, . . . , n.

The reason why we consider this case separately is that there are only
n− 3 lengths that appear in only one constraint. Let us first fix the directions
of modifications: It is easy to see that there exists an optimal solution with
qes

= 0 and pei
= 0 for i = 1, . . . , s−1, s+1, . . . , n−1. Unfortunately, we do not

know whether the length of en is increased or decreased therefore we consider
both possibilities, i.e., we solve the problem for pen

= 0 and for qen
= 0.

For i = 1, . . . , n − 2 and i 6= s, we have qei
= max{Ai(ℓ̃es

, ℓ̃en
), 0} and

Ai(ℓ̃es
, ℓ̃en

) ≤ u−
ei

. Moreover, the constraints (4) and (5) that involve qen−1
are

of the form:

wn−1ℓ̃en−1
+ an−1ℓ̃en

≤ wsℓ̃es
+ asℓ̃en

(6)

wnℓ̃en
+ anℓ̃en−1

≤ wsℓ̃es
+ asℓ̃en

(7)
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Inequality (6) implies that

qen−1
≥ ℓen−1

+
an−1ℓ̃en

− gℓ̃(es)

wn−1
= Bn−1(ℓ̃es

, ℓ̃en
)

and from inequality (7) we get

qen−1
≥ ℓen−1

+
wnℓ̃en

− gℓ̃(es)

an

= An−1(ℓ̃es
, ℓ̃en

).

There exists an optimal solution that satisfies one of the following two
subcases: Either

qen−1
= max{An−1(ℓ̃es

, ℓ̃en
), 0} = Gn−1(ℓ̃es

, ℓ̃en
)

with Bn−1(ℓ̃es
, ℓ̃en

) ≤ An−1(ℓ̃es
, ℓ̃en

) and An−1(ℓ̃es
, ℓ̃en

) ≤ u−
en−1

or

qen−1
= max{Bn−1(ℓ̃es

, ℓ̃en
), 0} = Gn−1(ℓ̃es

, ℓ̃en
)

with An−1(ℓ̃es
, ℓ̃en

) ≤ Bn−1(ℓ̃es
, ℓ̃en

) and Bn−1(ℓ̃es
, ℓ̃en

) ≤ u−
en−1

.
The first alternative leads to the following linear programming problem

(the second alternative leads to an analogue problem which we do not state
explicitly):

(P5) minimize

n−1∑

i=1
i6=s

c−ei
Gi(ℓ̃es

, ℓ̃en
) + c+

es
pes

+ c+
en

pen
+ c−en

qen

subject to Ai(ℓ̃es
, ℓ̃en

) ≤ u−
ei

for i = 1, . . . , n − 1, i 6= s,

Bn−1(ℓ̃es
, ℓ̃en

) ≤ An−1(ℓ̃es
, ℓ̃en

),

0 ≤ pes
≤ u+

es
,

0 ≤ pen
≤ u+

en

0 ≤ qen
≤ u−

en
.

If we fix pen
= 0 or qen

= 0 the resulting problem is of the same form as
discussed in Case 1. Hence, we may apply Megiddo’s multidimensional search
and afterwards solve a linear programming problem in two variables which
again leads to a linear time algorithm for the inverse 2-median problem.

Case 3. If es = en−1 then the inverse 2-median problem can be formulated as
problem (P4). In this case we compute qei

for i = 1, .., n − 2 from constraints
(4) in terms of ℓ̃en−1

and ℓ̃en
and replace them in objective function of problem

(P4). Finally, we get an optimization problem with maximum operations in
the objective function and n + 1 constraints with two variables ℓ̃en−1

and ℓ̃en

which is solvable in linear time.
Now based on all cases discussed above we conclude the following theorem.

Theorem 6 The inverse 2-median problem with variable edge lengths on star
graphs can be solved in linear time.
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6 Conclusions

We have shown that the inverse p-median problem with variable edge lengths
on general graphs is strongly NP-hard and remains weakly NP-hard on series-
parallel graphs. However, this problem is solvable in polynomial time for p = 2
if the underlying graph is a tree. Our approach can easily be adapted for
arbitrary values of p. In this case the resulting linear programming problem
would have

(
n

p−1

)
constraints. Moreover, we developed fast algorithms for the

inverse 2-median problem on a star.
The area of inverse p-median problems still offers a lot of open questions: It

seems to be a challenging task to develop efficient algorithms for other special
trees like binary trees or paths.

Moreover, inverse p-median problems with variable vertex weights can be
solved in polynomial time provided that p is fixed (Burkard, Pleschiutschnig,
Zhang [6]). However, there are no efficient algorithms known for special graph
classes if p ≥ 2.
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