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Abstract We are interested in structures and efficient methods for mixed-integer nonlin-
ear programs (MINLP) that arise from a first discretize, then optimize approach to time-
dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on
combinatorial constraints, in particular on restrictions on the number of switches on a fixed
time grid.

We propose a novel approach that is based on a decomposition of the MINLP into a
NLP and a MILP. We discuss the relation of the MILP solution to the MINLP solution
and formulate bounds for the gap between the two, depending on Lipschitz constants and
the control discretization grid size. The MILP solution can also be used for an efficient
initialization of the MINLP solution process.

The speedup of the solution of the MILP compared to the MINLP solution is consider-
able already for general purpose MILP solvers. We analyze the structure of the MILP that
takes switching constraints into account and propose a tailored Branch and Bound strategy
that outperforms cplex on a numerical case study and hence further improves efficiency of
our novel method.

1 Introduction

The main motivation for this paper are mixed-integer optimal control problems (MIOCPs)
in ordinary differential equations (ODE) of the following form. We assume that one of the
controls needs to take binary values and can only change these values on a prefixed time
grid

0 = t1 < .. . < tnt+1 = tf, (1)

which we will use for a discretization of the control in a first discretize, then optimize ap-
proach. For the sake of notational simplicity we consider a problem with linearly entering
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piecewise constant binary control functions,

ωk(t) = pk,i, t ∈ [ti, ti+1], k = 1 . . .nω , i = 1 . . .nt (2)

with pk,i ∈ {0,1}. We want to minimize a Mayer term

min
x,p

Φ(x(tf)) (3a)

over the differential states x(·) and the discretized binary control p subject to the nx-dimensional
ODE system

ẋ(t) = f0(x(t))+
nω

∑
k=1

fk(x(t)) pk,i, t ∈ [ti, ti+1], (3b)

fixed initial values

x(0) = x0, (3c)

integrality of the control function ω(·)

pk,i ∈ {0,1}, k = 1 . . .nω , i = 1 . . .nt, (3d)

and switching constraints

nt−1

∑
i=1
|pk,i+1− pk,i| ≤ σk,max, k = 1 . . .nω . (3e)

Note that the generalization towards the more general case in which ω(·) enters in a
nonlinear way into the right-hand side can be achieved by means of an SOS1 constraint.
Also additional continuous controls, path constraints, or multi-stage formulations can be
included, compare the results in [21,19]. For the sake of notational simplicity, however, we
concentrate on the special case stated above.

Although in practice we will use a simultaneous approach, e.g., collocation [13] or di-
rect multiple shooting [15], we will consider the differential states as dependent variables
in the theoretical part that can be determined uniquely, whenever the controls are fixed.
This transforms (3) into a MINLP with finitely many degrees of freedom. The difference
to MIOCPs as they are defined, e.g., in [21,19] are the additional switching restriction (3e)
and the fixed time grid (1) which do not allow the usage of a switching time optimization.
More remotely related is the question of the maximum number of switches for equivalent
reachable sets. For a special case of a switched system it is shown in [22] that 4 switches are
enough. A counterexample based on Fuller’s phenomenon is given in [16]. However, these
approaches are based on continuous time, not on fixed switching grids. Therefore we focus
on combinatorial approaches, i.e., integer programming, in this paper.

Progress in mixed-integer linear programming (MILP) started with the fundamental
work of Dantzig and coworkers on the Traveling Salesman problem in the 1950s. Since
then, enormous progress has been made in areas such as linear programming (and espe-
cially in the dual simplex method that is the core of almost all MILP solvers because of its
restart capabilities), in the understanding of branching rules and more powerful selection
criteria such as strong branching, the derivation of tight cutting planes, novel preprocessing
and bound tightening procedures, and of course the computational advances roughly follow-
ing Moore’s law. For specific problem classes problems with millions of integer variables
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can now be routinely solved [2]. Also generic problems can often be solved very efficiently
in practice, despite the known exponential complexity from a theoretical point of view [4].

The situation is different in the field of Mixed-Integer Nonlinear Programming (MINLP).
Only at first sight many properties of MILP seem to carry over to the nonlinear case. Restart-
ing nonlinear continuous relaxations within branching trees is essentially more difficult than
restarting linear relaxations (which some global solvers also use for nonlinear problems),
as no dual algorithm comparable to the dual simplex is available in the general case. Non-
convexities lead to local minima and do not allow for easy calculation of subtrees, which is
important to avoid an explicit enumeration. Additionally, nonlinear solvers are slower and
less robust than LP solvers. However, the last decade saw great progress triggered by cross-
disciplinary work of integer and nonlinear optimizers, resulting in generic MINLP solvers,
e.g., [1,5], or efficient heuristics such as the Feasibility Pump [6]. Most of them, however,
still require the underlying functions to be convex. Comprehensive surveys on algorithms
and software for convex MINLPs are given in [12,7]. Recent progress in the solution of
nonconvex MINLPs is in most cases based on methods from global optimization, in partic-
ular convex under- and overestimation. See, e.g., [3,11,23] for references on general under–
and overestimation of functions and sets. In our study we use the solver Bonmin [5] for
comparison and show how important it is to exploit problem-class specific structures.

The basic idea of our new approach to solve problem (3) consists of a decomposition of
the MINLP into an NLP and an MILP, which we can both solve comparatively efficiently.
This idea is related to ideas of [8]. The authors reformulate the MIOCP as a large-scale,
structured nonlinear program (NLP) and solve a small scale linear integer program on a
second level to approximate the calculated continuous aggregated output of all pumps in a
water works. However, their decomposition is tailored to the special structure of the water
network application, while our approach targets generic problems of the form (3).

To guarantee error bounds on the obtained solution compared to the MINLP solution,
we revise some theoretical results in Section 2. In Section 3 we will discuss our new method
that is based on a combinatorial approximation of the integral over control deviations. In
Section 4 we analyze the structure of the MILP and provide a structure exploiting Branch
and Bound algorithm. In Section 5 we present results for a numerical benchmark example.
Finally, we will conclude and give an outlook in Section 6.

2 Approximation Results

We revise some results from [20]. The following theorem states how the difference of so-
lutions to the initial value problem (3b-3c) depends on the integrated difference between
control functions and the difference between the initial values. From now on we will often
leave the argument (t) away for the sake of notational simplicity. In the following ‖ · ‖ will
denote the maximum norm.

Theorem 1 Let x(·) and y(·) be solutions of the initial value problems

ẋ(t) = A(t,x(t)) ·α(t), x(0) = x0, (4a)

ẏ(t) = A(t,y(t)) ·ω(t), y(0) = y0, (4b)

with t ∈ [0, tf], for given measurable functions α,ω : [0, tf]→ [0,1]nω and a differentiable
A : Rnx+1 7→ Rnx×nω . If positive numbers C,L ∈ R+ exist such that for t ∈ [0, tf] almost
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everywhere it holds that ∥∥∥∥ d
dt

A(t,x(t))
∥∥∥∥ ≤ C, (4c)

‖ A(t,y(t))−A(t,x(t)) ‖ ≤ L‖ y(t)− x(t) ‖ , (4d)

and A(·,x(·)) is essentially bounded by M ∈R+ on [0, tf] , and it exists ε ∈R+ such that for
all t ∈ [0, tf] ∥∥∥∥ ∫ t

0
α(τ)−ω(τ) dτ

∥∥∥∥ ≤ ε (4e)

then it also holds

‖ y(t)− x(t) ‖ ≤ (‖ x0− y0 ‖+(M+Ct)ε)eLt (4f)

for all t ∈ [0, tf].

As a corollary to Theorem 4, with A = ( f1 f2 . . . fnω
f0) ∈ Rnx×(nω+1) and artificial entries

αnω+1 = ωnω+1 = 1, one obtains that for a differentiable function Φ(·) it holds

Φ(x(tf))−Φ(y(tf))≤ C̄ ε (5)

with problem-dependent, but constant C̄. Assume we have solved a relaxed problem for
ωk(t) = qk,i, k = 1 . . .nω , t ∈ [ti, ti+1] for i = 1 . . .nt and qk,i ∈ [0,1] and obtained an optimal
trajectory (x∗(·),α(·)) with

αk(t) = qk,i, k = 1 . . .nω , t ∈ [ti, ti+1]. (6)

We can use q to construct a binary control ω(·) ∈ {0,1}nω and get an estimate that we
can use for assumption (4e). We write ∆ ti := ti+1− ti and ∆ t for the maximum distance
between two time points, ∆ t := maxi=1...nt ∆ ti = maxi=1...nt{ti+1− ti}. Let then a function
ω(·) : [0, t f ] 7→ {0,1}nω be defined by

ωk(t) = pSUR
k,i , k = 1 . . .nω , t ∈ [ti, ti+1] (7)

where the pSUR
k,i are binary values given for k = 1 . . .nω by

pSUR
k,i =

{
1 if ∑

i
j=1 qk, j∆ t j−∑

i−1
j=1 pSUR

k, j ∆ t j ≥ 0.5∆ ti
0 else

. (8)

We refer to pSUR as the Sum Up Rounding solution [18] and define σSUR
k to be the minimal

number for which inequality (3e) holds for pSUR
k . We then have the following estimate on

the integral over the difference between the control functions α(·) and ω(·).
Theorem 2 Let the functions α : [0, t f ] 7→ [0,1]nω and ω : [0, t f ] 7→ {0,1}nω be given by (6)
and (7, 8), respectively. Then it holds∥∥∥∥ ∫ t

0
α(τ)−ω(τ) dτ

∥∥∥∥≤ η

with η = 0.5 ∆ t.

Note that for the more general case in which the integer control functions enter in a nonlinear
way into the differential equations the SUR strategy can be modified to incorporate the SOS1
constraint [20]. Theorem 2 still holds with a constant η which is a function of nω .
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3 Approximating the integral over the controls by MILP techniques

The results of Section 2 have been used in several ways. Most importantly they imply that,
if the control discretization grid is fine enough, no integer gap exists [21], because ∆ t can
be chosen arbitrarily small and the estimation carries over to continuous objective and con-
straint functions. Also, the specific way of constructing a binary solution (7,8) can be used,
e.g., in the adaptive algorithm MINTOC, [21,19]. However, both uses require that the con-
structed binary control is feasible for the original problem. This is not a problem if only
constraints on the differential states are present when ∆ t → 0, but constraints of the type
(3e) will typically be violated if ∆ t is small.

Therefore we propose to change the point of view: while before it was argued that the
difference between integer and relaxed solution will become arbitrarily small if ∆ t→ 0, we
now consider ∆ t to be fixed and allow a larger constant to obtain a feasible solution.

To be able to include constraint (3e) we determine p not by (7,8), but as the solution of
the MILP

min
p

max
k=1...nω

max
i=1...nt

∣∣∣∣∣ i

∑
j=1

(qk, j− pk, j)∆ t j

∣∣∣∣∣
subject to

σk,max ≥ ∑
nt−1
i=1

∣∣pk,i− pk,i+1
∣∣ , k = 1 . . .nω ,

pi ∈ {0,1}, i = 1 . . .nt.

(9)

To get rid of the minmax formulation and the absolute values, we introduce slack variables
η ∈ R and s ∈ [0,1]nω×(nt−1) and obtain

min
η ,s,p

η

subject to

η ≥ ∑
i
j=1(qk, j− pk, j)∆ t j, k = 1 . . .nω , i = 1 . . .nt,

η ≥ −∑
i
j=1(qk, j− pk, j)∆ t j, k = 1 . . .nω , i = 1 . . .nt,

sk,i ≥ pk,i− pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

sk,i ≥ −pk,i + pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

σk,max ≥ ∑
nt−1
i=1 sk,i, k = 1 . . .nω ,

pk,i ∈ {0,1}, k = 1 . . .nω , i = 1 . . .nt,

(10)

for fixed control values q that stem from the solution of the relaxed problem (3) and given
upper bounds on the number of switches, σk,max.

Although problem (10) is a MILP and thus typically hard to solve, for certain values
σk,max the solution can be calculated in polynomial time using the Sum Up Rounding strat-
egy (7, 8). This is the content of the following theorem. In analogy to the maximal interval
length ∆ t := maxi=1...nt ∆ ti we also define the minimal one, δ t := mini=1...nt ∆ ti.
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Theorem 3 Assume pSUR to be the solution obtained by Sum Up Rounding (7, 8). The fol-
lowing claims hold for the optimal solution (η∗,s∗, p∗) of the MILP (10):

(a) η
∗ < 0.5 δ t = 0.5 min

i=1...nt
∆ ti

⇒ (b) p∗ = pSUR

⇒ (c) σk,max ≥ σ
SUR
k ∀ k = 1 . . .nω

⇒ (d) η
∗ ≤ 0.5 ∆ t = 0.5 max

i=1...nt
∆ ti

where the solution p∗ = pSUR in (b) is unique.

Proof “(a)⇒ (b)”. Assume first η∗ < 0.5 δ t and p∗ 6= pSUR. Then there must exist indices
k ∈ {1, . . . ,nω} and i ∈ {1, . . . ,nt} such that p∗k, j = pSUR

k, j for all j < i and p∗k,i 6= pSUR
k,i .

We have two cases for the binary variables p∗k,i 6= pSUR
k,i . If p∗k,i = 0 and pSUR

k,i = 1, then
from (8) it follows that

i

∑
j=1

qk, j∆ t j−
i−1

∑
j=1

pSUR
k, j ∆ t j ≥ 0.5 ∆ ti

and hence

i

∑
j=1

(qk, j− p∗k, j)∆ t j =
i

∑
j=1

qk, j∆ t j−
i−1

∑
j=1

pSUR
k, j ∆ t j ≥ 0.5 ∆ ti. (11)

Equivalently, if p∗k,i = 1 and pSUR
k,i = 0 then

i

∑
j=1

qk, j∆ t j−
i−1

∑
j=1

pSUR
k, j ∆ t j < 0.5 ∆ ti

and therefore

i

∑
j=1

(qk, j− p∗k, j)∆ t j =−∆ ti +
i

∑
j=1

qk, j∆ t j−
i−1

∑
j=1

pSUR
k, j ∆ t j <−0.5 ∆ ti. (12)

As (η∗,s∗, p∗) is a feasible solution of (10), with (11) and (12) we have the contradiction

η
∗ ≥

∣∣∣∣∣ i

∑
j=1

(qk, j− p∗k, j)∆ t j

∣∣∣∣∣≥ 0.5 ∆ ti ≥ 0.5 δ t (13)

to the assumption η∗ < 0.5 δ t. Therefore p∗ = pSUR.

“(b)⇒ (c)”. Assume now p∗ = pSUR. As (η∗,s∗, p∗) is a feasible solution of (10), the
number of switches of pSUR given by σSUR

max is necessarily at least σmax, componentwise.

“(c)⇒ (d)”. If it holds that σk,max ≥ σSUR
k for all k = 1 . . .nω , then the vector given by

η = 0.5∆ t,

p = pSUR,

sk,i = |pk,i− pk,i+1|, k = 1 . . .nω , i = 1 . . .nt−1

is a feasible solution of (10) as follows from Theorem 2, and yields hence an upper bound
on the objective function value η∗.
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Remark 1 The asymmetry in Theorem 3 even for an equidistant grid with δ t = ∆ t = ∆ ti
is due to the degenerate case where η∗ = 0.5∆ t. While pSUR always yields a solution with
ηSUR ≤ 0.5∆ t, this solution might switch more often than another control resulting in η∗ =
0.5∆ t. The easiest example is qk = (0.5,0, . . . ,0), which results in pSUR

k = (1,0, . . . ,0) with
one switch. The same value of η∗ = 0.5∆ t is obtained by pk = (0,0, . . . ,0). This is also the
optimal solution of the MILP instance with qk and σk,max = 0 for which pSUR is infeasible,
but still η∗ = 0.5∆ t.

Remark 2 It holds ηSUR ≤ 0.5∆ t, and therefore also the optimal objective function val-
ues η∗ of MILP (10) decrease, as ∆ t is decreased. However, this is not necessarily strictly
monotonic, as the amount of reduction depends heavily on the values of q and ∆ ti.

Theorem 3 is particularly interesting, as we know from (5) and Theorem 2 that if nt→∞,
then Φ(xSUR)→Φ∗, i.e., the solution obtained with Sum Up Rounding, pSUR, will yield an
objective function value that converges against the lower bound Φ∗ obtained by solving the
relaxed version of (3).

However, the solution pSUR may violate the switching constraint (3e). Hence, solving
one of the MILPs yields a compromise between the approximation of the control integral,
which has been shown to imply convergence towards the objective’s lower bound if the con-
trol discretization is refined, and the incorporation of switching constraints — and possibly
all other types of linear constraints on p — by means of a mixed-integer linear program.

4 Solving the MILP

The mixed-integer linear program (10) can be solved with standard solvers, such as cplex.
However, as the structure is generic for all MIOCPs with switching restrictions, we have a
closer look at the facets of the convex hull of all feasible points in Section 4.1. To speed
up computational runtimes we also propose a tailored Branch and Bound strategy in Sec-
tion 4.2.

4.1 Facet defining inequalities

Important insight can be gained by investigating the feasibility polytope. An investigation
of min down/up polytopes, for example, can be found in [14].

The MILP (10) has a specific structure, partly independent of the values of q and σmax.
To identify the structure – especially the facets – of the convex hull of all feasible points
of MILP (10) we use the software-package PORTA [10,9]. The following constraints define
facets of this polytope,

sk,i ≥ pk,i− pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

sk,i ≥ −pk,i + pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

sk,i ≤ pk,i + pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1,

sk,i ≤ 2− pk,i− pk,i+1, k = 1 . . .nω , i = 1 . . .nt−1.

(14)

Depending on whether the σk,max are fixed to a certain value or not, the corresponding
facets are different. If σk,max is free, they read as

σk,max ≥ ∑
nt−1
i=1 sk,i, k = 1 . . .nω . (15a)
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If σk,max is fixed to an even value, then as

σk,max ≥ pk,1− pk,nt +∑
nt−1
i=1 sk,i, k = 1 . . .nω ,

σk,max ≥ pk,nt − pk,1 +∑
nt−1
i=1 sk,i, k = 1 . . .nω ,

(15b)

and alternatively if σk,max is fixed to an odd value as

σk,max ≥ 1− pk,1− pk,nt +∑
nt−1
i=1 sk,i, k = 1 . . .nω ,

σk,max ≥ pk,1 + pk,nt −1+∑
nt−1
i=1 sk,i, k = 1 . . .nω .

(15c)

Unfortunately, the facets arising from the approximation inequalities

η ≥ ∑
i
j=1(qk, j− pk, j)∆ t j, k = 1 . . .nω , i = 1 . . .nt,

η ≥ − ∑
i
j=1(qk, j− pk, j)∆ t j, k = 1 . . .nω , i = 1 . . .nt.

(16)

cannot be expressed as easily, as far as we know. They mainly depend on the values of q and
generally are dense in both pk,i and sk,i. Additionally, their number strongly increases with
the size of the problem, as can be seen in Table 1. Therefore it is hard to identify structures
in the corresponding facets which would possibly enable cutting plane methods.

Table 1 Number of all facets for problems with only one control and all the given q1, j fixed to a certain value,
all the σk,max are free.

Control values q1, j fixed to:
nt 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4 16 18 23 33 29 33 23 18 16
5 21 31 87 189 54 189 87 31 21
6 30 60 745 612 248 612 745 60 30
7 47 150 4838 4840 922 4840 4838 150 47
8 83 899 37470 29884 4212 29884 37470 899 83

4.2 Solving the MILPs efficiently

As an alternative to cutting planes we implemented a structure exploiting pure Branch and
Bound algorithm. It uses the structure of the approximation inequalities (16) that model the
minmax formulation.

We branch on controls p and determine s as dependent variables. We branch in increas-
ing order of the time index i in pk,i. This way 2 nω inequalities are fixed for each i, i.e.,
all variables sk, j and pk, j with j ≤ i are fixed and we can give a new bound on η using
constraints (16). Because of this lower bound it is not necessary to solve an LP relaxation.

We will present a short outline of the algorithm. Each node of the branching tree contains
the four components

– depth d of the node, i.e., the number of timesteps for which the controls are fixed,
– the fixed control variables pk, j for j ≤ d,
– the fixed slack variables sk, j for j ≤ d,
– the corresponding lower bound on η .



10

Algorithm 1: Combinatorial Branch and Bound
Input : Relaxed controls q, time grid {ti}, i = 1 . . .nt, max. numbers of switches σk,max,k = 1 . . .nω .
Result: Optimal solution (η∗,s∗, p∗) of (10).
begin

Create empty priority queue Q ordered by a.η (non-decreasing), if equal by a.d (non-increasing).
Push an empty node (0, {}, {}, 0.0) into the queue.
while Q is not empty do

a = top node of Q and remove the node from Q.
/* 1st solution found is optimal since best-first search is used */
if a.d = nt then

Return optimal solution (a.η ,a.s,a.p).
/* Create child nodes, use strong branching. */
else

forall possible permutations φ of {0,1}nω do
Create new node n with n.d = d +1, n.p = a.p, n.s = a.s.
Set n.pk,d+1 = φk , calculate n.sk,d+1.
if n.s fulfills switching constraint (3e) until time d +1 then

n.η = max
{

a.η ,maxnω

k=1{±∑
d+1
j=1 (qk, j− pk, j)∆ t j}

}
Push n into Q.

end

The priority queue in Algorithm 1 models the search strategy, in our case a best-first
search (if two nodes have the same objective value, the deeper one is preferred). Note that
the algorithm does not solve any relaxed linear programs, but is purely based on efficient
branching and constraint/objective evaluation.

5 Numerical Results

An open online benchmark library for the problem class of MIOCPs is available at [17].
Here we present numerical results for the Lotka-Volterra benchmark fishing problem [17,
18] extended with an additional switching constraint (3e),

min
x,w

x2(tf) (17a)

subject to ẋ0(t) = x0(t)− x0(t)x1(t)− c0x0(t) w(t), (17b)

ẋ1(t) =−x1(t)+ x0(t)x1(t)− c1x1(t) w(t), (17c)

ẋ2(t) = (x0(t)−1)2 +(x1(t)−1)2, (17d)

x(0) = (0.5,0.7,0)T , (17e)

w(t) = pi ∈ {0,1}, t ∈ [ti, ti+1], (17f)

σmax ≥
nt−1

∑
i=1
|pi+1− pi|, (17g)

with c0 = 0.4, c1 = 0.2, tf = 12, and different equidistant grids {t1, . . . , tnt+1}. This problem
is particularly suited for our study, because the optimal relaxed solution contains a singular
arc [18].
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The differential equations have been discretized with an implicit Euler method and
10000 equidistant time steps, independent of the control discretization. All computational
times refer to a two core Intel CPU with 3GHz and 8GB RAM run under Ubuntu 9.10. We
used Bonmin 1.2 trunk revision 16011 and cplex 8.1 with standard options, respectively.

Numerical results are shown in Tables 2 and 3. Here τ is the computing time in seconds,
Φ denotes the objective function value. The number of switches of a solution is given by σ ,
while η is the maximum deviation of the integrated difference between relaxed and integer
control over the time horizon. Note, however, that the values of η have been scaled by tf

nt
for better comparability. The upper script rel refers to the relaxed version of the OCP (3),
milp to the solution of the MILP (10) obtained with either cplex 8.1 or with our own code
(bb) as described in Section 4.2, and minlp to the solution of the MINLP resulting from a
discretization of (17) and solution with Bonmin 1.2.

We used an upper time limit of 1800 seconds, indicated by an * in Table 2 whenever
active. If no feasible solution could be found within this upper time limit, this is indicated
by an *, otherwise the value of the upper bound feasible solution is listed. In Table 3 a value
for σmax and a * indicate that no better solution than the one from the MILP initialization
could be found.

5.1 MILP and MINLP solutions

Numerical results for the solution of problem (17) with different upper limits on the number
of switchings of pi between 0 and 1 and different equidistant discretizations (1) are shown
in Table 2.

The first rows show the behavior of the solution of the relaxed MINLP (17). As predicted
by theory, compare Section 2, the objective function values of the relaxed problem Φ rel and
the Sum Up Rounding solutions ΦSUR converge towards a Φ∗ that is the solution of the
non-discretized, relaxed optimal control problem. However, the number of switches σmax of
the SUR solution increases significantly. All values of 1

∆ t ηSUR = nt
tf

ηSUR are below 0.5,
as predicted by Theorem 2. It is interesting to observe that these values approach 0.5 as nt
increases, due to the increased probability to find a maximum close to the upper bound 0.5.

The next blocks show results for the solutions of MILPs and MINLPs corresponding to
different upper limits σmax. If this limit is large enough, then in accordance with Theorem 3
the MILP and SUR solutions coincide (e.g., nt = 25,σmax ≥ 4). If not, the value of 1

∆ t ηmilp

necessarily increases above 0.5. The objective function values Φmilp and Φminlp will both
converge against the value of Φ rel, as nt→∞ and σmax large enough. If switching constraints
are active, the objective function value is bounded by a constant multiple of η . Although the
MILP is not necessarily optimal for the MINLP, it has the advantage to be feasible, to have
asymptotic properties, and to be a priori bounded.

As can be observed, the CPU times for the Branch and Bound algorithm are below those
of cplex (τbb vs. τcplex), which in turn are considerably below those of the MINLP solver
(τcplex vs. τbonmin). For all larger problems Bonmin violated the upper time limit of 1800
seconds.

Remark 3 It is interesting to observe that, as σmax increases for given nt, the computational
effort increases, due to the fact that more Branch and Bound subtrees need to be evaluated.
However, once the value σmax reaches σSUR, the solution of MILP (10) can be determined
in linear time with the Sum Up Rounding strategy, compare Theorem 3.

1 using Cbc 2.4stable and Ipopt 3.8stable



12

Table 2 Results for Lotka Volterra fishing problem with MILP (10) solved by our structure exploiting Branch
and Bound algorithm (bb) or cplex. For reference the original MINLP is solved relaxed (rel), with Sum Up
Rounding (SUR), and with Bonmin. τ CPU time, Φ MINLP objective, η MILP objective, σ number switches.

nt 10 20 25 50 80 100 200

τ rel 2.59616 2.61616 2.75217 2.18814 2.25214 2.33214 1.89612
Φ rel 1.34915 1.34741 1.34718 1.34683 1.34659 1.34649 1.34626

τSUR 0 0 0 0 0 0 0
ΦSUR 1.60251 1.40651 1.37175 1.38366 1.35234 1.35561 1.35328
σSUR 2 4 4 8 10 14 24

nt
tf

ηSUR 0.316526 0.47577 0.492702 0.499711 0.483694 0.497768 0.49956

Maximum of σmax = 3 switches:
τbb 0.00 0.00 0.00 0.00 0.00 0.01 0.14

τcplex 0.008001 0.016001 0.020002 0.100006 0.412026 0.584037 5.54835
Φmilp 1.60251 1.60251 1.52323 1.67052 1.48912 1.55515 1.70474
σmilp 2 2 3 2 2 3 3

nt
tf

ηmilp 0.316526 0.753893 0.807746 0.970736 1.55474 1.85555 3.49649
τbonmin 63.212 134.204 164.106 420.134 998.922 1600.61 1800*
Φminlp 1.60251 1.57489 1.52323 1.38746 1.39481 1.38741 *
σminlp 2 3 3 2 3 3 *

Maximum of σmax = 4 switches:
τbb 0.00 0.00 0.00 0.00 0.00 0.01 0.09

τcplex 0.008 0.016001 0.020001 0.080006 0.428027 1.00806 4.8443
Φmilp 1.60251 1.40651 1.37175 1.36718 1.4576 1.39684 1.40632
σmilp 2 4 4 4 4 4 4

nt
tf

ηmilp 0.316526 0.47577 0.492702 0.671702 0.951219 1.17408 1.98732
τbonmin 62.8599 106.903 145.381 610.482 1800* 1800* 1800*
Φminlp 1.60251 1.40651 1.37175 1.35883 1.36079 1.35643 3.36001
σminlp 2 4 4 4 4 4 4

Maximum of σmax = 5 switches:
τbb 0.00 0.00 0.00 0.00 0.00 0.02 0.56

τcplex 0.008001 0.016001 0.020001 0.088006 1.36809 3.1562 32.378
Φmilp 1.60251 1.40651 1.37175 1.36718 1.4576 1.41056 1.40632
σmilp 2 4 4 4 4 5 4

nt
tf

ηmilp 0.316526 0.47577 0.492702 0.671702 0.951219 1.17408 1.98732
τbonmin 60.0358 114.095 153.706 979.285 1800* 1800* 1800*
Φminlp 1.60251 1.40651 1.37175 1.35883 1.37073 1.35896 *
σminlp 2 4 4 4 5 5 *

Maximum of σmax = 6 switches:
τbb 0.00 0.00 0.00 0.00 0.00 0.01 0.71

τcplex 0.012001 0.016001 0.016002 0.096007 0.884056 2.92418 41.9546
Φmilp 1.60251 1.40651 1.37175 1.3654 1.45852 1.39149 1.39471
σmilp 2 4 4 6 6 6 6

nt
tf

ηmilp 0.316526 0.47577 0.492702 0.505287 0.793561 0.86204 1.50351
τbonmin 59.7637 114.447 147.777 374.347 1800* 1800* 1800*
Φminlp 1.60251 1.40651 1.37175 1.35233 1.35122 1.35211 1.90096
σminlp 2 4 4 6 6 6 6

Maximum of σmax = 7 switches:
τbb 0.00 0.00 0.00 0.00 0.00 0.02 2.39

τcplex 0.008 0.016001 0.020001 0.096006 1.73611 6.59241 250.428
Φmilp 1.60251 1.40651 1.37175 1.36533 1.45852 1.35481 1.39471
σmilp 2 4 4 7 6 7 6

nt
tf

ηmilp 0.316526 0.47577 0.492702 0.50359 0.793561 0.858368 1.50351
τbonmin 57.8996 111.763 147.473 364.447 1800* 1800* 1800*
Φminlp 1.60251 1.40651 1.37175 1.35233 1.35439 1.3539 *
σminlp 2 4 4 6 6 6 *

Maximum of σmax = 8 switches:
τbb 0.00 0.00 0.00 0.00 0.00 0.01 1.15

τcplex 0.008 0.008 0.016002 0.084005 0.780049 5.34833 388.74
Φmilp 1.60251 1.40651 1.37175 1.38366 1.34997 1.38437 1.35297
σmilp 2 4 4 8 8 8 8

nt
tf

ηmilp 0.316526 0.47577 0.492702 0.499711 0.602692 0.725728 1.23938
τbonmin 57.8636 112.363 139.653 356.37 1800* 1800* 1800*
Φminlp 1.60251 1.40651 1.37175 1.35233 1.34964 1.34956 1.43779
σminlp 2 4 4 6 8 8 8
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5.2 Using the MILP solution for cutoff in the MINLP tree

The MILP solution can itself be used as a solution that will get arbitrarily close to the lower
bound, if nt and σmax are large enough. If the global solution on a given grid is an issue,
and MINLP solvers have to be used, the solution can still be used to obtain a reduction in
the MINLP Branch and Bound tree. The MILP solution is a feasible solution that respects
the switching constraint (3e). Bonmin provides a bonmin.cutoff option that can be used
to eliminate branches with a lower bound exceeding this value. In Table 3 numerical results
are presented that show the effect of this additional information.

It results either in a reduction of the overall computation time (up to approximately 50%)
when comparing τmilp init to τscratch, or in better solutions Φmilp init compared to Φ scratch, if
the computation time is bounded. For the rightmost column with nt = 200 all results obtained
by making use of the information from the MILP solution resulted in a better solution.

6 Conclusions

We presented a novel method to solve optimal control problems including control functions
with a discrete feasible set and switching constraints. The approach is based on a first dis-
cretize, then optimize approach which results in MINLPs that need to be solved. To avoid
the high computational burden of solving the MINLP with standard methods, we propose to
decompose the problem into a NLP and a MILP.

Although the MILP solution is not necessarily optimal for the MINLP, it has the advan-
tage to be feasible, to have asymptotic properties as nt increases, and to be a priori bounded.
We proved that it converges against the solution of the nonlinear mixed-integer optimal con-
trol problem, if the switching constraint does not become active and the time discretization
is refined. If the switching constraint is active, knowledge of system properties, such as the
Lipschitz constant of the right-hand side function of the differential equation, allows to for-
mulate an upper bound on the deviation of the MILP based solution from the solution of
the relaxed optimal control problem. This upper bound depends linearly on the objective
function value of the MILP.

We furthermore analyzed the structure of the convex hull of feasible points to the MILP
and discussed why tailored cutting planes are not likely to be computationally beneficial. We
presented a tailored Branch and Bound algorithm to cope with this specific structure. We
presented numerical results for a benchmark problem in nonlinear mixed-integer optimal
control that illustrate the efficiency of our approach.

Future work will concentrate on related optimization problems, such as the minimiza-
tion of the number of switches subject to a maximal deviation from the optimal solution
without switching constraints, or a weighted sum between penalization of switching and
performance with respect to the objective. Open questions include also an efficient deter-
mination of model-dependent constants that are needed for the error estimations, and the
question of reusage of information in adaptive or moving horizon schemes.

Theorem 3 and the way we efficiently solve the MILP need to be generalized to the case
where the integer control functions enter in a nonlinear way. Our main motivation to follow
the MILP based way is to be able to incorporate any kind of linear constraints on the binary
control functions, hence we will try to identify classes of combinatorial constraints and to
incorporate them into our methodology.
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Table 3 Results for Lotka Volterra fishing problem as MINLP resulting from (3). Solutions and computation
times for Bonmin runs without initialization (scratch) as in Table 2 and using the solution Φmilp of (10) for
initial cutoff in the Branch & Bound tree (milp init).

nt 10 20 25 50 80 100 200
Maximum of σmax = 3 switches:

τscratch 63.212 134.204 164.106 420.134 998.922 1600.61 1800*
Φscratch 1.60251 1.57489 1.52323 1.38746 1.39481 1.38741 *
σ scratch 2 3 3 2 3 3 *

τmilp init 32.75 118.675 128.58 425.671 912.821 1391.44 1800*
Φmilp init 1.60251 1.57489 1.52323 1.38746 1.39481 1.38741 1.70474
σmilp init 2 3 3 2 3 3 3*
Maximum of σmax = 4 switches:

τscratch 62.8599 106.903 145.381 610.482 1800* 1800* 1800*
Φscratch 1.60251 1.40651 1.37175 1.35883 1.36079 1.35643 3.36001
σ scratch 2 4 4 4 4 4 4

τmilp init 31.522 73.2166 89.9296 522.173 1800* 1800* 1800*
Φmilp init 1.60251 1.40651 1.37175 1.35883 1.36079 1.35643 1.40632
σmilp init 2 4 4 4 4 4 4*
Maximum of σmax = 5 switches:

τscratch 60.0358 114.095 153.706 979.285 1800* 1800* 1800*
Φscratch 1.60251 1.40651 1.37175 1.35883 1.37073 1.35896 *
σ scratch 2 4 4 4 5 5 *

τmilp init 30.0979 79.965 119.463 824.568 1800* 1800* 1800*
Φmilp init 1.60251 1.40651 1.37175 1.35883 1.36917 1.35896 1.40632
σmilp init 2 4 4 4 5 5 4*
Maximum of σmax = 6 switches:

τscratch 59.7637 114.447 147.777 374.347 1800* 1800* 1800*
Φscratch 1.60251 1.40651 1.37175 1.35233 1.35122 1.35211 1.90096
σ scratch 2 4 4 6 6 6 6

τmilp init 30.3499 80.8731 129.78 377.04 1800* 1800* 1800*
Φmilp init 1.60251 1.40651 1.37175 1.35233 1.35122 1.35098 1.38382
σmilp init 2 4 4 6 6 6 6
Maximum of σmax = 7 switches:

τscratch 57.8996 111.763 147.473 364.447 1800* 1800* 1800*
Φscratch 1.60251 1.40651 1.37175 1.35233 1.35439 1.3539 *
σ scratch 2 4 4 6 6 6 *

τmilp init 29.9899 78.4889 114.931 350.93 1800* 1800* 1800*
Φmilp init 1.60251 1.40651 1.37175 1.35233 1.35354 1.35471 1.39471
σmilp init 2 4 4 6 6 6 6*
Maximum of σmax = 8 switches:

τscratch 57.8636 112.363 139.653 356.37 1800* 1800* 1800*
Φscratch 1.60251 1.40651 1.37175 1.35233 1.34964 1.34956 1.43779
σ scratch 2 4 4 6 8 8 8

τmilp init 30.1859 79.313 112.163 359.162 1800* 1800* 1800*
Φmilp init 1.60251 1.40651 1.37175 1.35233 1.34952 1.34977 1.35297
σmilp init 2 4 4 6 8 8 8*
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