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Abstract We show that the Hedge algorithm, a method that is widely used in Machine
Learning, can be interpreted as a particular instance of Dual Averaging schemes, which
have recently been introduced by Nesterov for regret minimization. Based on this
interpretation, we establish three alternative methods of the Hedge algorithm: one in
the form of the original method, but with optimal parameters, one that requires less a
priori information, and one that is better adapted to the context of the Hedge algorithm.
All our modified methods have convergence results that are better or at least as good
as the performance guarantees of the vanilla method. In numerical experiments, our
methods significantly outperform the original scheme.

Keywords First-order methods · Hedge algorithm · Dual Averaging methods ·
Convex optimization

1 Introduction

The Hedge algorithm was introduced by Freund and Schapire (1997) and encompasses
many well-known schemes in Machine Learning. For instance, as Freund and Schapire
showed, this method is related to the now widely used AdaBoost algorithm (Freund
and Schapire 1997). The Hedge algorithm can be used to solve the following online
allocation problem. We want to invest an amount of money in a portfolio consisting
of different assets at the stock market. After each time step, we can modify the current
composition of our portfolio. The Hedge algorithm defines an update strategy for our
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280 M. Baes, M. Bürgisser

portfolio, such that the average performance that we achieve is not much worse than the
average performance of the most favorable investment product. The portfolio update
rule is based on the current loss (or gain) that is associated with every investment
product.

In this paper, we propose an alternative viewpoint on the Hedge algorithm, using
methods that have recently been introduced in Convex Optimization. It is well-known
that the Hedge algorithm can be interpreted as a Mirror-Descent scheme (Nemirovski
and Yudin 1983) with an entropy-type prox-function; see for instance Chapter 11 in
Cesa-Bianchi and Lugosi (2006). However, this interpretation has two drawbacks.
First, Mirror-Descent schemes require the definition of a convex and closed objec-
tive function. In this setting, the current loss of the investment products corresponds
to a subgradient of this objective function. In particular, we explicitly rule out the
possibility of a dynamic objective function with this approach. However, modeling
the performance of a portfolio with a static objective function, even when we allow
random losses, is at best questionable. As the last financial crisis has shown, signifi-
cant sudden changes in the performance of an investment product can appear, which
are more appropriately modeled with a dynamic objective function. Second, in order
to ensure convergence, Mirror-Descent schemes need to consider subgradients with
more weight the earlier they appear. However, common sense dictates that recent losses
contain more relevant information on the future development of the stock market than
losses occurred years ago. In this paper, we interpret the Hedge algorithm as a Dual
Averaging scheme (Nesterov 2009).

Dual Averaging schemes are the natural extension of Mirror-Descent methods and
get rid of both deficiencies we pointed out above at the same time. When applied to our
context, Dual Averaging schemes do not make any assumptions on the construction
of the losses. For instance, they can be chosen in adversarial way with respect to our
current portfolio, they can be randomly generated, or—which reflects some of the latest
events at the stock market more accurately—their construction rule may dynamically
change. Moreover, in Dual Averaging schemes, we can give more weight to the latest
losses, which allows to react much faster to significant changes in the market behavior.

Based on this alternative interpretation of the Hedge algorithm, we give three mod-
ifications of the Hedge algorithm, namely the Optimal Hedge algorithm, the Optimal
Time-Independent Hedge algorithm, and the Optimal Aggressive Hedge algorithm.
All these methods have convergence results that are better or at least as good as the
convergence guarantee for the vanilla Hedge algorithm. The Optimal Hedge algorithm
has the same form as the original Hedge algorithm, except that all method parame-
ters are chosen in an optimal way. The Optimal Time-Independent Hedge algorithm
requires less a priori information than the Optimal Hedge algorithm. Finally, the Opti-
mal Aggressive Hedge algorithm considers losses as more relevant the later they
appear. Numerical results show that all our alternative methods perform better than
the vanilla Hedge algorithm. More interestingly, using the Optimal Aggressive Hedge
algorithm, we end up with an average benefit that is even better than the profit of
the most favorable single investment product, provided that the losses incur shocks
reverting the performance of assets. This effect would not have been possible with a
static objective function.
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Hedge algorithm and Dual Averaging schemes 281

This paper is organized as follows. In Sects. 2 and 3, we review Dual Averaging
schemes and the original Hedge algorithm. We show in Sect. 4 that the Hedge algorithm
is a Dual Averaging scheme and suggest several alternative methods based on this
interpretation. We conclude this paper with some numerical results in Sect. 5.

2 Dual Averaging methods

We give a brief review of Dual Averaging schemes, which were introduced by Nesterov
(2009).

Let Q ⊂ R
n be a closed and convex set. We assume that we have at our disposal

an oracle G, which returns a vector g = G(x) ∈ R
n for input x ∈ Q. We interpret

the oracle output g = G(x) as a loss vector that is associated to x . The corresponding
loss is defined as 〈g, x〉, where 〈·, ·〉 denotes the standard dot product in R

n . Assume
now that we repeat this process. That is, for t ∈ N, we choose an element xt ∈ Q, call
the oracle G with input xt , observe the loss vector gt = G(xt ) ∈ R

n , and update our
choice of the element xt+1 ∈ Q. After T rounds, we obtain a total averaged loss of

LT := 1
∑T −1

k=0 λk

T −1∑

t=0

λt 〈gt , xt 〉,

where the numbers λ0, . . . , λT −1 > 0 can be seen as a tool to weight the losses
according to their appearance. We can compare LT to the averaged loss

1
∑T −1

k=0 λk

T −1∑

t=0

λt 〈gt , x̄〉,

where x̄ corresponds to an element in Q that turns out to be optimal in hindsight. The
deviation of this two quantities is called averaged regret and denoted by RT :

RT := 1
∑T −1

k=0 λk

(
T −1∑

t=0

λt 〈gt , xt 〉 − min
x∈Q

{
T −1∑

t=0

λt 〈gt , x〉
})

= 1
∑T −1

k=0 λk
max
x∈Q

{
T −1∑

t=0

λt 〈gt , xt − x〉
}

.

If the oracle G is associated to a convex optimization problem of the form min
x∈Q

f (x),

that is, the oracle return correspond to subgradients of f , the averaged regret RT gives
us an upper bound on the optimality gap min0≤t≤T −1 f (xt ) − minx∈Q f (x).

Naturally, the following question arises: is there a strategy to update the elements
x0, . . . , xT −1 such that the averaged regret RT is bounded from above by a quantity
that converges to zero when T goes to infinity? Nesterov’s Dual Averaging schemes
(Nesterov 2009) can be used to define such update strategies.
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282 M. Baes, M. Bürgisser

We equip R
n with a norm ‖ · ‖, not necessarily the norm associated with 〈·, ·〉, and

denote by ‖ · ‖∗ the corresponding dual norm. Nesterov’s Dual Averaging methods
require a prox-function d : Q → R, that is, a function that is continuous and strongly
convex modulus σ > 0 with respect to ‖ · ‖ on Q. We set x0 = arg minx∈Q d(x).
Without loss of generality, we may assume that σ = 1 and that d vanishes at x0.
The algorithm accumulates all the loss vectors in a dual variable st+1, that is, st+1 =
−∑t

k=0 λk gk for any t = 0, . . . , T − 1. In order to define xt+1, the dual variable st+1
is then projected back on the set Q using the parameterized mirror-operator

πQ,βt+1 : R
n → Q : s 
→ arg max

x∈Q
{〈s, x − x0〉 − βt+1d(x)} ,

where βt+1 > 0 is some projection parameter. We assume that d is chosen in such
a way that the above optimization problem is easily solvable. The resulting scheme
looks as follows.

Nesterov proved the following result for this method.

Theorem 1 (First part of Theorem 1 in Nesterov 2009) For any D ≥ 0, we have:

1
∑T −1

k=0 λk
max
x∈Q

{
T −1∑

t=0

λt 〈gt , xt − x〉 : d(x) ≤ D

}

≤ 1
∑T −1

k=0 λk

(

βT D + 1

2

T −1∑

t=0

λ2
t

βt
||gt ||2∗

)

. (1)

Let us assume that the oracle returns are uniformly bounded, that is, there exist
a constant L such that ‖gt‖∗ ≤ L for any t = 0, . . . , T − 1. The above theorem
motivates several ways to choose the weights λt and the projection parameters βt . For
instance, we can set βt = 1 for any t and choose constant weights λt = λ∗ in such a
way that the right-hand side in (1) is minimized. That is, provided that T is fixed in
advance, we set λ∗ = (1/L)

√
2D/T , for which the right-hand side in (1) becomes

L
√

2D/T . Moreover, Nesterov (2009) observed that for βt = 1 the right-hand side
in (1) converges to zero as long as as

∑T
t=0 λt diverges and

∑T
t=0 λ2

t converges when
T goes to infinity. The latter condition implies that the weights λt converge to zero.
Selecting the βt ’s in an appropriate way, we can allow non-decreasing weights λt

while still ensuring that the right-hand side in (1) converges to zero when T goes to
infinity. For instance, as Nesterov (2009) suggested, we can set
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Hedge algorithm and Dual Averaging schemes 283

λt =
√

2D

L
, β0 = 1, and βt+1 =

t∑

k=0

1

βt
∀ t ≥ 0, (2)

for which the right-hand side in (1) is still in O (
L
√

D/T
)
. The same asymptotic

bound can be guaranteed for λt = (t + 1)2
√

7D/L and βt = t2.5 for each t ≥ 0.

3 The Hedge algorithm

The Hedge algorithm (Freund and Schapire 1997) is a generic method that encom-
passes many well-known schemes in Machine Learning. As examples, Multiplicative
Weights Update methods are a variation of the Hedge algorithm (see Arora et al. 2005
for a survey) and AdaBoost can be related to the Hedge algorithm (see Freund and
Schapire 1997 for more details).

The problem the Hedge algorithm aims at solving can be described as follows. We
assume that we want to invest a certain amount of money at the stock market. We have
at our disposal a basket of n investment products such as shares, currencies, gold, raw
materials, real estates, and so on. Let us denote by xt,i ≥ 0 the share of our initial
amount of money that we invest in product i at time t , where i = 1, . . . , n and t ≥ 0.
We always invest all of our money, that is, we assume

∑n
i=1 xt,i = 1 for all t ≥ 0.

At every time step t ≥ 0, we can evaluate the loss (or gain) �t,i corresponding to
the investment product i , where we assume �t,i ∈ [−μ, ρ] for every t ≥ 0 and any
i = 1, . . . , n. Thus, given our portfolio xt at time t , we suffer a loss of 〈�t , xt 〉 at
this time step. The Hedge algorithm defines now an update strategy for our portfolio
such that the averaged loss

∑T −1
t=0 〈�t , xt 〉/T that we face is not much worse than the

averaged total loss min1≤i≤n
∑T −1

t=0 �t,i/T of the investment product with the best
performance.

The Hedge scheme evaluates the losses through a decreasing score function U :
[−μ, ρ] → (0, 1]. For the sake of brevity, we focus in this paper only on score
functions of the form U (z) = γ az+b, where γ ∈ (0, 1), a > 0, and b ∈ R are
some parameters whose choices we discuss in detail afterwards. The Hedge algorithm
assigns a weight wt,i to every investment product 1 ≤ i ≤ n and for every time step
t ≥ 0. The current weight of investment product i depends on its initial weight and
on its performance in the past. More concretely, it is defined as wt+1,i := wt,iU (�t,i ).
The portfolio xt+1 is then given by the normalization of the weight vector wt+1. The
full method takes the following form.

Freund and Schapire studied the convergence behavior of Algorithm 2. In their
paper, they considered the situation where μ = 0 and ρ = 1. The immediate extension
of their reasoning to our more general setting yields to the following result.
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284 M. Baes, M. Bürgisser

Theorem 2 (Extension of Theorem 2 in Freund and Schapire 1997) With a = 1/(μ+
ρ) and b = μ/(μ + ρ), the sequence (xt )

T −1
t=0 generated by Algorithm 2 satisfies

T −1∑

t=0

(μ + 〈�t , xt 〉) ≤ μ + ρ

1 − γ
− ln(γ )

1 − γ
min

1≤i≤n

(
T −1∑

t=0

(
μ + �t,i

)
)

.

As mentioned in Freund and Schapire (1997), the above theorem can be extended
to any decreasing score function U : [−μ, ρ] → R that complies with the condition

γ
z+μ
μ+ρ ≤ U (z) ≤ 1 − (1 − z)

z + μ

μ + ρ
∀ z ∈ [−μ, ρ]. (3)

In accordance with Freund and Schapire (1997), we set γ = 1/
(√

2 ln(n)/T + 1
)
.

With this parameter setting, we obtain the score function

U : [−μ, ρ] → R : z 
→
(√

2 ln(n)/T + 1
)− z+μ

μ+ρ
, (4)

for which one can prove the following statement using Theorem 2; see Freund and
Schapire (1997) for more details on the derivation of this score function.

Corollary 1 (Consequence of Lemma 4 in Freund and Schapire 1997) With the above
score function, we have:

1

T

(
T −1∑

t=0

〈�t , xt 〉 − min
1≤i≤n

T −1∑

t=0

�t,i

)

≤ (μ + ρ)

(
ln(n)

T
+

√
2 ln(n)

T

)

. (5)

4 The Hedge algorithm is a Dual Averaging method

We show that we can recast the Hedge algorithm in the framework of Dual Averaging
schemes and derive alternative versions of the original method.

We define Q as the (n − 1)-dimensional standard simplex

	n =
{

x ∈ R
n : x ≥ 0,

n∑

i=1

xi = 1

}

,

so that Q encompasses all possible portfolios. We equip R
n with the norm ‖x‖1 :=∑n

i=1 |xi |. The corresponding dual norm is of the form ‖s‖∞ := max1≤i≤n |si |.
Moreover, we endow Algorithm 1 with the prox-function

d	n : 	n → R : x 
→ ln(n) +
n∑

i=1

xi ln(xi ).
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Hedge algorithm and Dual Averaging schemes 285

It is well-known that d	n complies with our assumptions on prox-functions, that is, it
is continuous and strongly convex modulus 1 with respect to ‖ · ‖1 on 	n , it attains its
center x0 := arg minx∈	n d	n (x) at (1/n, . . . , 1/n), and it vanishes at this point; see
for instance Nesterov (2009) and the references therein. Moreover, we can explicitly
write the corresponding parameterized mirror-operator:

π	n ,β(s) =
(

exp(si/β)
∑n

j=1 exp(s j/β)

)n

i=1

∀ s ∈ R
n, ∀ β > 0.

Given a loss vector �t ∈ R
n , that is, �t,i corresponds to the loss of investment product

i at time t , we evaluate this vector through an affine function z 
→ az +b, where a > 0
and b ∈ R. This affine function can be interpreted as how we subjectively perceive
a loss z. We use the resulting vector gt := (

a�t,i + b
)n

i=1 as the output G(xt ) of the
oracle G in Algorithm 1 for input vector xt ∈ R

n , . Note that we do not specify any
construction rule for the loss vector �t . For instance, they could be chosen randomly or
in an adversarial way with respect to the portfolio xt . Algorithm 1 takes the following
form for our setting, where we express the parameterized mirror-operator π	n ,β in a
form that makes the comparison of the resulting method with the Hedge algorithm
rather transparent.

Let us now discuss several strategies for choosing the weights γt , the projection
parameters βt , and the affine function z 
→ az + b in Algorithm 3. However, first we
observe that the norm of each oracle return a�t + b and the prox-function d	n are
bounded from above by the quantities L(a, b) := max {|−aμ + b| , |aρ + b|} and by
D := ln(n), respectively.

Original Hedge algorithm: If βt = 1 and λt = ln(1/γ ) for any t = 0, . . . , T − 1
and with a fixed γ ∈ (0, 1), we recover the Hedge algorithm. This implies that the
Hedge algorithm is Dual Averaging scheme.

Optimal Hedge algorithm: Theorem 1 yields for these weights and projection
parameters:

1

T
max
x∈	n

T −1∑

t=0

〈�t , xt − x〉 ≤ 1

aT ln(1/γ )

(

D + 1

2

T −1∑

t=0

ln2(1/γ )L2(a, b)

)

. (6)
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This bound suggests an optimal way of selecting the parameters b∗ and γ ∗ when a is
fixed to some value a∗ > 0. The right-hand side is indeed minimized if these numbers
satisfy the relations:

b∗ = μ − ρ

2
a∗ and γ ∗ = exp

(

− 2

a∗(μ + ρ)

√
2 ln(n)

T

)

.

Interestingly, the particular value of the loss perception factor a∗ > 0 does not influ-
ence the complexity bound of the algorithm, as for every a∗ > 0 we have:

1

T
max
x∈	n

T −1∑

t=0

〈�t , xt − x〉 ≤ (μ + ρ)

√
ln(n)

2T
.

We refer to Algorithm 3 with the setting specified just above as Optimal Hedge
algorithm, for which This result improves Bound (5) by the additive quantity
(μ + ρ) ln(n)/T and by a multiplicative factor of 2. Note that the resulting score
function U (z) = (γ ∗)a∗z+b∗

does not comply with Condition (3). Therefore, neither
Theorem 2 nor its extension can be used to establish the above bound.

Optimal Time-Independent Hedge algorithm: The update parameter γ depends
on the number of iterations T in both algorithms, the Original Hedge algorithm with
the score function (4) suggested by Freund and Schapire (1997) and the Optimal
Hedge algorithm. However, when investing our money at the stock market, we might
not want to fix the number of times that we adapt our portfolio in advance. We thus
need an update parameter that is independent of T . Adapting Nesterov’s strategy (2),
we choose γ ∈ (0, 1) and set λt = ln(1/γ ), β0 = 1, and βt+1 = ∑t−1

k=0 1/βk for any
t ≥ 0. Applying Theorem 1, we obtain for any T ≥ 1:

1

T
max
x∈	n

T −1∑

t=0

〈�t , xt − x〉 ≤ βT

aT ln(1/γ )

(

D + 1

2
ln2(1/γ )L2(a, b)

)

.

We minimize the right-hand side of the above inequality, that is, we choose a loss
perception factor a∗ > 0 and set

γ ∗ = exp

(

− 2
√

2 ln(n)

a∗(μ + ρ)

)

and b∗ = μ − ρ

2
a∗.

Exploiting Lemma 3 in Nesterov (2009), we obtain for the resulting method, which we
refer to as the Optimal Time-Independent Hedge algorithm, the following inequalities
for all T ≥ 1:
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1

T
max
x∈	n

T −1∑

t=0

〈�t , xt − x〉 ≤ (μ + ρ)

⎛

⎝ 1
(

1 + √
3
)

T
+

√
2

T

⎞

⎠

√
ln(n)

2

≤ 2(μ + ρ)

√
ln(n)

T
.

Optimal Aggressive Hedge algorithm: The later a loss appears, the more likely
it is that this loss vector contains relevant information for the future development
of the investment products’ performances. We conclude this section by introduc-
ing an alternative version of the Hedge algorithm, where we continuously increase
the weights of the loss vectors when time proceeds. For fixed γ ∈ (0, 1), we set
λt = ln(1/γ )(t + 1)2 and βt = t2.5 for any t ≥ 0. Let T > 6. Using the relations∑T −1

t=0 (t + 1)2 = T (T + 1)(2T + 1)/6 > T 3/3,
∑T −1

t=0 (t + 1)4 ≤ 2T 5/7, and
Theorem 1, we obtain for Algorithm 3:

6

T (T + 1)(2T + 1)
max
x∈	n

T −1∑

t=0

(t + 1)2〈�t , xt − x〉

<
3

aT 3

(
T 2.5 D

ln(1/γ )
+ 1

2

T −1∑

t=0

(t + 1)4 ln(1/γ )

T 2.5
L2(a, b)

)

≤ 3

a
√

T

(
D

ln(1/γ )
+ ln(1/γ )L2(a, b)

7

)

.

Fixing a to a constant a∗ > 0, the latter quantity is minimized for b∗ and γ ∗ satisfying

b∗ = μ − ρ

2
a∗ and γ ∗ = exp

(

− 2
√

7 ln(n)

a∗(μ + ρ)

)

,

We call the resulting method Optimal Aggressive Hedge algorithm, for which we can
rewrite the above inequality as:

6

T (T + 1)(2T + 1)
max
x∈	n

T −1∑

t=0

(t + 1)2〈�t , xt − x〉 < 3(μ + ρ)

√
ln(n)

7T
.

Note that the averaged regret reflects our time-varying choice of the weights λt .

5 Numerical results

We select a pool of n = 30 investment products and consider T = 31,200 itera-
tions of the methods that we presented. The number T is chosen in such a way that
it corresponds to the number of transactions at a stock exchange during four months
(20 trading days of 6 h 30 for one month), provided that there is transaction every
minute. The losses �t ∈ R

n , t = 0, . . . , T −1, are randomly generated. The first 7,800
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Fig. 1 Averaged losses
∑t

k=1〈�k−1, xk−1〉/t , t = 1, . . . , T , achieved by the best investment product
(thick line), by the Original Hedge algorithm (thick dashed line), by the Optimal Hedge algorithm (dotted
line), by the Optimal Time-Independent Hedge algorithm (thin dashed line), and by the Optimal Aggressive
Hedge algorithm (dashed-dotted line)

Table 1 Averaged losses achieved by the best investment product, by the Original Hedge algorithm, by
the Optimal Hedge algorithm, by the Optimal Time-Independent Hedge algorithm, and by the Optimal
Aggressive Hedge algorithm after one, two, three, and four months of trading

Number of iterations 7,800 15,600 23,400 31,200 w.r.t. best product (%)

30 investment products (μ = 0.5133, ρ = 0.5175)

Best investment product -0.0045 -0.0034 −0.0081 −0.0110 −
Original Hedge 0.0040 0.0039 −0.0020 −0.0047 42.7

Optimal Hedge 0.0028 0.0020 −0.0042 −0.0075 68.2

Optimal Time-Independent Hedge 0.0010 0.0011 −0.0047 −0.0073 66.4

Optimal Aggressive Hedge 0.0014 -0.0061 −0.0183 −0.0252 229.1

In the last column, we express the final averaged loss in percentage of the final averaged loss achieved by
the best investment product

losses (�t )
7799
t=0 , that is, the losses observed during the first month, are realizations of a

multivariate normally distributed random vector with mean μ̄1 and covariance matrix

. The data (μ̄1, 
) is taken from http://tabu.diegm.uniud.it/portfolio/. The losses
(
�7800( j−1)+k

)7799
k=0 observed in month j , where j = 2, 3, 4, are realizations of a mul-

tivariate normally distributed random vector with the same covariance matrix 
, but
with a different mean μ̄ j . In our experiments, we modify each component μ̄ j−1,i of
μ̄ j−1 as μ̄ j,i = a j,i μ̄ j−1,i +b j , with b j small. The coefficient a j,i is negative with an
increasing probability as j increases (namely 1/2, 3/4, and 1), reverting the perfor-
mance of more and more products. The level of perturbation |a j,i | is also increasing
as j increases. The experiments are run 10 times, and the obtained losses are averaged
afterwards.

In Fig. 1, we show the averaged losses, that is,
∑t

k=1〈�k−1, xk−1〉/t for any t ≥ 1,
achieved by the most successful investment product at instant t (obviously, this winning
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product might change over time), by the Original Hedge algorithm [with Freund and
Schapire’s score function as described in (4)], by the Optimal Hedge algorithm, by the
Optimal Time-Independent Hedge algorithm, and by the Optimal Aggressive Hedge
algorithm. Note that we show for the Optimal Aggressive Hedge algorithm also the
quantity

∑t
k=1〈�k−1, xk−1〉/t , although we use a different weighting in the algorithm

and in its theoretical analysis; compare with the last section. In Table 1, we give the
averaged losses after each month.

We observe that all the extensions of the Hedge algorithm that we suggested in
this paper significantly outperform its original counterpart. Even more interestingly,
the Optimal Aggressive Hedge algorithm achieves an averaged loss that is more than
two times better than the averaged loss of the best investment product after 4 months.
The Optimal Aggressive Hedge algorithm outperforms the most successful investment
product, as the investment product with the best performance has accumulated a sig-
nificant loss in an early month. This happens as we switch signs when we perturb the
means of the distribution that we use to generate random losses.

Compared to the other versions of the Hedge algorithm that we suggested in this
paper, the Optimal Hedge algorithm reacts faster and thus more successful to the
perturbations. This is due to the increasing weights λt , which makes losses the more
relevant the later they appear. Recall that all the other methods consider the losses as
equally important.
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