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Abstract This paper examines the computational complexity certification of the fast
gradient method for the solution of the dual of a parametric convex program. To this
end, a lower iteration bound is derived such that for all parameters from a compact
set a solution with a specified level of suboptimality will be obtained. For its practical
importance, the derivation of the smallest lower iteration bound is considered. In
order to determine it, we investigate both the computation of the worst case minimal
Euclidean distance between an initial iterate and a Lagrange multiplier and the issue
of finding the largest step size for the fast gradient method. In addition, we argue that
optimal preconditioning of the dual problem cannot be proven to decrease the smallest
lower iteration bound. The findings of this paper are of importance in embedded
optimization, for instance, in model predictive control.

Keywords Fast gradient method · Certification · Lagrange relaxation

1 Introduction

Motivation In recent years, state-of-the-art optimization methods have changed
numerous fields of engineering, primarily in the context of offline synthesis and
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306 S. Richter et al.

analysis. More recently, they have entered the area of embedded systems, where data
is processed under real-time constraints on low-cost platforms. One of the challenges
in embedded optimization is the a priori certification of the computational complexity,
i.e. the derivation of an upper bound on the number of iterations that is valid for all
data encountered during operation.

Certification is a crucial prerequisite in risk-of-loss applications, e.g. onboard trajec-
tory planning in space missions (Blackmore et al. 2010), in safety-critical environments
such as power systems (Fuchs et al. 2011), for a verified operation of engineering sys-
tems, for instance, in embedded model predictive control (Bleris and Kothare 2005)
and real-time audio clipping (Defraene et al. 2012), as well as for the selection of
appropriate hardware during the design phase. In control, certification is particularly
challenging as solution times are restricted to lie within a sampling interval of the
control loop. For systems with fast dynamics, sampling intervals are typically in the
range of milli- and microseconds which underlines the need for a method that features
both fast convergence and an upper iteration bound that is close to the practically
observed number of iterations.

An upper iteration bound stems from a non-asymptotic convergence rate analysis
of the solution method and is the very iteration count that ensures a pre-specified level
of suboptimality. From here on, this upper bound is denoted a lower iteration bound,
indicating that any greater iteration count will meet the suboptimality criterion. Note
that an upper iteration bound is to be seen in the context of an actual implementation
of the method, i.e. it puts a bound on the loop counter, whereas our preferred termi-
nology of a lower iteration bound highlights the bound’s origin in the convergence
analysis of the method.

In this paper we restrict ourselves to convex programs since powerful solution
methods and convergence results are available (See e.g. Nesterov 2004a). Interior
point methods (Nesterov and Nemirovskii 1994) are popular methods for such prob-
lems and McGovern (2000) treats certification aspects of a short step, primal-dual
path following method. The reported lower iteration bounds are up to two orders
of magnitude off from the practically observed number of iterations which agrees
with the widely accepted viewpoint that bounds for interior point methods lack
expressiveness.

Active set methods (Bertsekas 1999) belong to the dominant solution methods for
linearly constrained programs. These methods perform well in practice, but as their
convergence rate is unknown, they are not eligible for certification. In contrast, gradi-
ent methods (Nesterov 2004a; Bertsekas 1999) come with a convergence rate analysis
and provide expressive lower iteration bounds (e.g. see the example in Boyd and Van-
denberghe (2004, §9.3.2) and compare the convergence rate with Polyak (1987, §3.1.2,
Theorem 2).

In this paper, we will focus on the fast gradient method which was first derived in
Nesterov (1983). Many variants of this method exist and we refer the reader to Tseng
(2008) where an attempt is made to unify existing methods in the more general context
of accelerated proximal gradient methods.
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Certification of the fast gradient method 307

Problem setup and previous work In this paper, we discuss the computational
aspects of deriving a lower iteration bound for a constant step size fast gradient method
for the solution of the parametric convex program

f ∗(b) � min f (x) = 1

2
xT H x + gT x (1)

s.t. Ax = b, x ∈ X,

via its dual.1 In (1) the strongly convex quadratic function f : R
n → R is minimized

over the intersection of an affine set, given by (A, b) ∈ R
m×n × R

m , and a nonempty
closed convex set X ⊆ R

n . We assume set X to be ‘simple’ so that Euclidean projection
can be evaluated at low computational cost. Simple sets include the Euclidean ball,
simplex, the LP-, SOCP- and the SDP cone.

On embedded systems, problem (1) is solved with varying data, usually from mea-
surements, which justifies denoting it a parametric program. In this work, we consider
the right hand side b of the equality constraint as the only parameter. This important
class of parametric programs is found, for instance, in linear quadratic model predictive
control (Rawlings and Mayne 2009, §1.3).

In the authors’ previous work (Richter et al. 2012), certification of (1) without
equality constraints is considered when vector g of the objective is the parameter. For
this setup, benefits from warm-starting could be quantified for model predictive control
and system properties related to the lower iteration bound. The bounds derived for real-
world problems were found to match the observed number of iterations within a factor
of two to four. Recently, this work was extended in Richter et al. (2011) for parametric
problems of the type addressed in this paper in the framework of Lagrange relaxation
of the equality constraint (cf. Lemaréchal 2001). The reported bounds for the fast
gradient method solving the dual problem are off by up to three orders of magnitude
from the observed number of iterations; the main reason for this being the conservative,
yet computationally tractable approach to bound the worst case Euclidean distance
between the initial dual iterate and a Lagrange multiplier.

Contribution and outline This paper discusses the main certification issues for
solving the parametric convex problem (1) in the framework of Lagrange relaxation
using the fast gradient method and poses related open questions. We start in Sect. 2
with a review on Lagrange relaxation and the fast gradient method and refer to related
work in the area of certification. Thereafter, Sect. 3 defines the certification problem of
interest and summarizes basic assumptions that hold throughout the paper. In Sect. 4,
we first define the smallest lower iteration bound and then proceed to discuss the com-
putation of its defining entities. The first entity is the worst case minimal Euclidean
distance between an initial iterate and a Lagrange multiplier whose importance beyond
certification will be motivated (Sect. 4.1). Section 4.2 elaborates on computing the sec-
ond important entity which is the smallest Lipschitz constant of the dual gradient (this
section follows Richter et al. 2011, §IV.A). Since the Lipschitz constant determines the

1 From a certification point of view, a constant step size is not a limitation as for gradient methods in convex
optimization advanced step size rules, e.g. exact line search, do not exhibit better convergence rate results
(Polyak 1987, §3.1.2).
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308 S. Richter et al.

step size in the fast gradient method, the latter investigation is of practical importance
even when certification is not an issue. After that, in Sect. 4.3, we prove that precon-
ditioning of the dual problem does not decrease the smallest lower iteration bound.
Finally, we state some open questions with regard to the findings in this paper in Sect. 5.

2 Review and related work

Lagrange relaxation Assume that for a parameter b the feasible set of (1) is non-
empty such that by strong convexity of f and closedness of the feasible set a unique
minimizer x∗(b) exists. In order to obtain it by Lagrange relaxation, we eliminate the
complicating equality constraint, define the dual function

d(λ; b) � min
x∈X

f (x)+ λT (Ax − b) , (2)

with multiplier λ ∈ R
m and solve the concave dual problem

d∗(b) � sup
λ∈Rm

d(λ; b) . (3)

If the supremum is attained (see Remark 1 in Sect. 3 for sufficient conditions), we
denote the closed convex set of dual optimal solutions as

�∗(b) = arg max
λ∈Rm

d(λ; b) (4)

and refer to any λ∗(b) ∈ �∗(b) as a Lagrange multiplier. If strong duality holds,
i.e. d∗(b) = f ∗(b), then by strong convexity of f and Rockafellar (1997, Corollary
28.1.1), the primal minimizer can be recovered from x∗(λ∗(b)) where

x∗(λ) = arg min
x∈X

f (x)+ λT (Ax − b) . (5)

In this paper, we use the fast gradient method to solve the dual problem (3); the
required gradient ∇d (λ; b) is obtained according to the next theorem.

Theorem 1 The dual function d(λ; b)has a Lipschitz continuous gradient∇d (λ; b)=
Ax∗(λ)− b, i.e. for each parameter b and any λ1, λ2 ∈ R

m we have

‖∇d (λ1; b)− ∇d (λ2; b)‖ ≤ L ‖λ1 − λ2‖ (6)

with Lipschitz constant L = ‖A‖2/λmin(H), where ‖A‖ denotes the maximum singu-
lar value of A and λmin(H) is the smallest eigenvalue of H.

Proof The first statement follows from Danskin’s Theorem in Bertsekas (1999,
Proposition B.25) that applies if we modify the (potentially non-compact) feasible
set X in (2) at every λ ∈ R

m by adding the convex set constraint x ∈ {
x ∈ R

n

| f (x)+ λT (Ax − b) ≤ d(λ; b)+ ε′
}
, ε′ > 0, which contains x∗(λ) and is compact

by strong convexity of f . Lipschitz continuity of the gradient is provided by Nesterov
(2004b, Theorem 1). 
�

123



Certification of the fast gradient method 309

It follows that for solving the dual or outer problem (3) using the fast gradient
method, the inner problem (2) needs to be solved in every iteration in order to determine
the dual gradient.

Fast gradient method We consider the constant step size scheme II in Nesterov
(2004a, §2.2.1) which is given in Algorithm 2.1. The step size 1/L in line 2 is deter-
mined by the Lipschitz constant L of the gradient ∇d (λ; b), whereas the upper bound
on the number of iterations is given in terms of the lower iteration bound imin which
will be formally defined in Sect. 3.

Related work Lan and Monteiro (2009) investigate the certification of a problem
similar to (1) with a general smooth convex function f . The authors derive a lower
iteration bound for an augmented Lagrangian approach that ensures a smooth (aug-
mented) dual function (see e.g. Bertsekas 1999, §4.2). It is assumed that the inner
problem is solved by the fast gradient method whereas the outer problem is solved
by the standard gradient method. The derived bound on the overall number of fast
gradient iterations holds under inexact gradients obtained from suboptimal solutions
of the inner problem. A guess-and-check procedure circumvents the computation of
the distance between the initial dual iterate and the set of Lagrange multipliers which
is an important entity for determining the lower iteration bound. Consequently, no a
priori lower iteration bound as considered in this paper can be computed.

Devolder et al. (2012) propose to smooth the dual function and to add a strongly
concave quadratic such that a lower iteration bound on the required fast gradient
iterations to obtain a nearly primal feasible, suboptimal solution can be derived. The
cost of solving the inner problems is thereby neglected.

In Doan et al. (2011) the relaxed constraints are linear inequalities. By constraint
tightening and the theory developed in Nedić and Ozdaglar (2009), a lower iteration
bound for obtaining a primal feasible iterate is derived. The bound depends on a Slater
point and is valid for a projected gradient method solving the outer problem while the
inner one is solved by conjugate gradients.

3 Definitions and assumptions

In this section, we define the considered certification problem in terms of a dual
ε-solution and a lower iteration bound and state assumptions that implicitly hold
throughout the paper. Let us start with the definition of some sets.
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310 S. Richter et al.

Definition 1 (set of admissible parameters) The closed convex set of admissible para-
meters B ⊆ R

m contains all right hand side vectors b of the equality constraint such
that problem (1) is feasible, i.e. b ∈ B ⇐⇒ f ∗(b) < ∞.

Definition 2 (set of certified parameters) The set of certified parameters Bc ⊆ B

contains all instances b ∈ B for which a lower iteration bound according to Definition 4
is to be derived.

Definition 3 (dual ε-solution) Let b ∈ Bc. For a specified ε > 0, a dual ε-solution
λε ∈ R

m satisfies d∗(b)− d(λε; b) ≤ ε.

Definition 4 (lower iteration bound) We denote imin a lower iteration bound if for
any number of iterations of the fast gradient method, i ≥ imin, a dual ε-solution is
retrieved for every parameter b ∈ Bc and a common ε > 0.

Definition 5 (computational complexity certification) Consists in determining a lower
iteration bound imin for a given set Bc.

Assumption 1 For all parameters b ∈ Bc, a Lagrange multiplier λ∗(b) exists and
strong duality holds.

Assumption 2 The inner problem (2) can be solved exactly.

Assumption 3 The certified set of parameters Bc is compact and convex.

Remark 1 Assumption 1 holds true if for every b ∈ Bc a feasible point x̄(b) in the rela-
tive interior of X exists, i.e. Ax̄(b) = b, x̄(b) ∈ ri(X) (cf. Bertsekas 2009, Prop. 5.3.3).
A milder premise holds if X has a polyhedral structure (Bertsekas 2009, Prop. 5.3.6).
Assumption 2 is satisfied for important problem instances of model predictive control
(see Richter et al. 2011, §V), network resource allocation and others (cf. Nedić and
Ozdaglar 2009, §2.2). See Devolder et al. (2011) and Schmidt et al. (2011) for conver-
gence of the fast gradient method in case the inner problem cannot be solved exactly.

4 Obtaining the smallest lower iteration bound

In this section,we investigate the aspects related to the computation of a lower iteration
bound in the sense of Definition 4 when using the variant of the fast gradient method
given in Algorithm 2.1. For its practical importance, the focus will be laid on deriving
the smallest lower iteration bound as defined next.

Theorem 2 Let the initial iterate of the fast gradient method be determined by function
λ0 : R

m → R
m for every parameter b ∈ Bc, and let L∗ be the smallest Lipschitz

constant of the gradient of the dual function. The smallest lower iteration bound for
the fast gradient method in Algorithm 2.1 is given by

i∗min = max

⎧
⎨

⎩

⎡

⎢
⎢
⎢

2

√
L∗�2

d

ε
− 2

⎤

⎥
⎥
⎥
, 0

⎫
⎬

⎭
,
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Certification of the fast gradient method 311

where �2
d � supb∈Bc

h∗(b) and

h∗(b) � min
λ∈�∗(b)

‖λ− λ0(b)‖2 . (7)

Proof Follows from Theorem 2.2.3 in Nesterov (2004a). 
�
The problem of determining�2

d , which is the worst case minimal squared distance
between an initial iterate and a Lagrange multiplier, is addressed in Sect. 4.1. In
Sect. 4.2 the smallest Lipschitz constant L∗ is derived under mild assumptions, whereas
Sect. 4.3 investigates preconditioning of the dual problem in order to further decrease
the smallest lower iteration bound.

Remark 2 Even if we are able to compute the smallest lower iteration bound, this does
not necessarily imply that it is tight. Actually, it is unknown if there exists a problem
instance for which the bound in Theorem 2 is tight.

4.1 Worst case distance between an initial iterate and a Lagrange multiplier

For the computation of�2
d , we investigate the properties of function h∗(b) in (7) based

on Theorem 3 below. According to it, h∗(b) is a closed convex function under certain
assumptions, however, the satisfiability of these assumptions will be shown to depend
on how the set of Lagrange multipliers�∗(b) in the definition of h∗(b) is represented.
For a representation derived from a zero-duality gap formulation of the optimality
conditions, the assumptions can provably never be met (Sect. 4.1.1), whereas this is
not true for a representation based on support functions (Sect. 4.1.2). Section 4.1.3
finally elaborates on computational aspects as related to the previous findings.

Before stating the main theorem of this section, we note that knowing �2
d is also

of interest for extending the approaches in Lan and Monteiro (2009), Devolder et al.
(2012) to parametric problems as well as in the framework of exact penalty func-
tions (Bertsekas 1999, §5.4.5). In order to illustrate the latter, let λ0(b) ≡ 0 for all
b ∈ Bc so that from the existence of Lagrange multipliers and the Minimax Theorem
in Rockafellar (1997, Corollary 37.3.2)

f ∗(b) = max‖λ‖≤�d
min
x∈X

f (x)+ λT (Ax − b) = min
x∈X

max‖λ‖≤�d
f (x)+ λT (Ax − b)

= min
x∈X

f (x)+�d · ‖Ax − b‖ , b ∈ Bc ,

which can be solved, e.g. by the fast gradient method if smoothing (Nesterov 2004b)
is applied to replace the nonsmooth norm by a smooth approximation.

Theorem 3 Let λ0(b) = K b + λ̂0, where K ∈ R
m×m is a symmetric matrix and

λ̂0 ∈ R
m. Furthermore, let φ : R

n × R
m → R be a closed jointly convex function for

which it holds that

(i) φ(·, λ) is strongly convex for every λ ∈ R
m,

(ii) φ(x, λ) ≥ −λT b for all (x, λ) ∈ {(x, λ) ∈ R
n × R

m | Ax = b, x ∈ X},
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312 S. Richter et al.

and consider the convex program parametrized in b ∈ Bc

p∗(b) = min ‖λ− λ0(b)‖2 (8)

s.t. φ(x, λ)+ λT b ≤ 0 (IC)

Ax = b, x ∈ X .

Assume that there exists a function ν∗ : V → R+,Bc ⊆ V ⊆ R
m, which assigns to

every parameter b ∈ Bc a nonnegative Lagrange multiplier ν∗(b) for the inequality
constraint IC. If the supremum

ν∗
c = sup

b∈Bc

ν∗(b) (9)

exists, then

S1 if K � ν∗
c /4 · I , p∗(b) is a closed convex function for all b ∈ Bc,

S2 if K � ν∗
c /4 · I , p∗(b) is the sum of a concave quadratic function and a closed

convex function for all b ∈ Bc.

Proof Choose any b ∈ Bc. We denote the dual problem to (8) as

q∗(b) = sup
ν≥0

min
Ax=b, x∈X

λ∈R
m

‖λ− λ0(b)‖2 + ν
(
φ(x, λ)+ λT b

)
, (10)

and infer strong duality, i.e. p∗(b) = q∗(b), from Gol’šteı̌n (1972, Theorem 2) as the
Lagrangian in (10) is strongly convex in (x, λ) (cf. Assumption (i)).

By Assumption (ii) there does not exist a Slater point for problem (8), hence by
Gauvin’s Theorem (Gauvin 1977) the set of Lagrange multipliers for the inequality
constraint IC is either empty or nonempty but unbounded. Theorem 3 assumes the
latter. By strong convexity and the assumption that the supremum ν∗

c in (9) exists, it
thus follows

p∗(b) = min
Ax=b, x∈X

λ∈R
m

‖λ− λ0(b)‖2 + ν∗
c

(
φ(x, λ)+ λT b

)
, b ∈ Bc , (11)

since by unboundedness of the set of Lagrange multipliers the scalar ν∗
c is a viable

Lagrange multiplier for all parametric problems with parameter b ∈ Bc.
Note that the latter argument can be made alternatively via the theory of exact

penalty functions (see e.g. Bertsekas 1999, §5.4.5).
In order to obtain Statement S1, we can verify using Schur’s Lemma that K �

ν∗
c /4 · I is necessary and sufficient for ‖λ− K b − λ̂0‖2 + ν∗

c λ
T b being jointly convex

in (λ, b) which in turn is sufficient for the objective in (11) to be jointly convex
in (x, λ, b). Based on joint convexity of the objective and standard arguments (cf.
Bertsekas 1999, §5.4.4), convexity of p∗(b) follows.

Closedness follows from lower semicontinuity of p∗(b) at every b ∈ Bc established
by Bank et al. (1982, Theorem 4.3.4). In order for this to hold true, strong convexity
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Certification of the fast gradient method 313

of the objective in (11) in (x, λ) for every b ∈ Bc and closedness of the convex set X

are of importance as they imply boundedness of the set of minimizers and further that
X can be represented as the intersection of all closed halfspaces containing it.

For the proof of Statement S2, we note that for every b ∈ Bc

p∗(b) = ν∗
c bT

(
K − ν∗

c
4 · I

)
b + ψ∗(b) , (12)

where

ψ∗(b) � ν∗
c λ̂

T
0 b + min

Ax=b, x∈X

λ∈R
m

∥
∥
∥λ−

(
K − ν∗

c
2 · I

)
b − λ̂0

∥
∥
∥

2 + ν∗
cφ(x, λ) , (13)

so that for K � ν∗
c /4 · I the (closed) quadratic term in (12) is negative semidefinite.

Convexity and closedness of ψ∗(b) follow from a similar reasoning as used in the
proof of Statement S1. 
�
Remark 3 For the case where neither K � ν∗

c /4 · I nor K � ν∗
c /4 · I , it follows from

the proof of Statement S2 that p∗(b) is the sum of an indefinite quadratic function and
a closed convex function.

Based on the next theorem, two representations of the set of Lagrange multipli-
ers �∗(b) will be derived in Sects. 4.1.1 and 4.1.2 so that problem (7) can be posed
as (8). Interestingly enough, we will prove that only the latter representation allows
one to validate the assumptions of Theorem 3.

Theorem 4 (Adapted from Bertsekas 2009, Prop. 5.3.3b) For each parameter b ∈ Bc

there holds f ∗(b) = d∗(b) and (x∗(b), λ∗(b)) is a primal/dual optimal solution pair
if and only if x∗(b) is primal feasible and

x∗(b) = arg min
x∈X

f (x)+ λ∗(b)T (Ax − b) . (14)

4.1.1 Zero-duality-gap-based representation of �∗(b)

This representation follows from the sufficiency condition of Theorem 4, i.e.

�∗(b) = {
λ ∈ R

m | ∃z ∈ X ∩ {x | Ax = b} : f (x)− d(λ; b) ≤ 0
}
, b ∈ Bc (R1)

To render the constraints convex, the equality enforcing a zero-duality gap is
replaced by an inequality inR1, legitimated by f (x) ≥ d(λ; b) for all primal/dual
feasible pairs (x, λ). The next theorem proves that except for a trivial case the premise
of Theorem 3 cannot be validated for representation R1.

Theorem 5 Consider representation R1 of the closed convex set of Lagrange multi-
pliers �∗(b). Let λ0 be any function that maps R

m into R
m. If λ0(b) ∈ �∗(b) for
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314 S. Richter et al.

every b ∈ Bc, we have ν∗
c = 0 trivially, else, the premise of Theorem 3 cannot be

validated.

Proof We identify function φ(x, λ) in Theorem 3 as φ(x, λ)= f (x)− d̂(λ), where

d̂(λ) � min
x∈X

f (x)+ λT Ax

is continuously differentiable according to Theorem 1. Assumptions (i) and (ii) on
φ(x, λ) hold since f is strongly convex and the relation f (x) ≥ d̂(λ) − λT b holds
for all primal/dual feasible pairs (x, λ). If λ0(b) ∈ �∗(b) for every b ∈ Bc, then
p∗(b) ≡ 0 which implies ν∗(b) ≡ 0 for all b ∈ Bc, so ν∗

c = 0.
On the other hand, let there be a b̄ ∈ Bc with λ0(b̄) /∈ �∗(b̄). For the sake of contra-

diction, assume that there exists a Lagrange multiplier ν∗ = ν∗(b̄) ≥ 0 for the inequal-
ity constraint IC. Then by strong convexity of the Lagrangian in (x, λ) and Rockafellar
(1997, Corollary 28.1.1) we have for the pair of minimizers (x∗(b̄), λ∗∗(b̄)) of (8),
that we denote as (x∗, λ∗∗) below,

(
x∗, λ∗∗) = arg min

Ax=b, x∈X

λ∈R
m

∥
∥λ− λ0(b̄)

∥
∥2 + ν∗ (

f (x)− d̂(λ)+ λT b̄
)
,

or equivalently (by differentiability of f and d̂ (cf. Bertsekas 2009, Prop. 1.1.8))

ν∗∇ f (x∗)T
(
x − x∗) +

(
2

(
λ∗∗ − λ0(b̄)

) − ν∗ (
∇d̂(λ∗∗)− b̄

))T (
λ− λ∗∗) ≥ 0

for all (x, λ) ∈ {
(x, λ) ∈ R

n × R
m | Ax = b̄, x ∈ X

}
and x∗ ∈ X ∩ {

x | Ax = b̄
}
.

For the latter inequality to hold, we have 2(λ∗∗ − λ0(b̄))− ν∗(∇d̂(λ∗∗)− b̄) = 0, but
as ∇d̂(λ∗∗)− b̄ = Ax∗ − b̄ = 0 (cf. Theorem 1 and dual optimality), we end up with
λ∗∗ − λ0(b̄) = 0 which contradicts λ0(b̄) /∈ �∗(b̄). 
�

4.1.2 Support-function-based representation of �∗(b)

This representation is based on the necessary condition of Theorem 4.

Lemma 1 For each parameter b ∈ Bc, the convex set of Lagrange multipliers �∗(b)
can be represented as

�∗(b) =
{
λ ∈ R

m | ∃x ∈ X ∩ {x | Ax = b} : (R2)

xT H x + gT x + σX

(
−H x − g − AT λ

)
+ λT b ≤ 0

}
,

where σX (y) = supx∈X yT x denotes the closed convex support function of X.
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Certification of the fast gradient method 315

Proof By Proposition 1.1.8 in Bertsekas (2009) we have the equivalence

(14) ⇐⇒ x∗(b) ∈ X and 0 ≤
(

H x∗(b)+g+ AT λ∗(b)
)T (

x − x∗(b)
) ∀x ∈X

⇐⇒ x∗(b) ∈ X and 0 ≤ inf
x∈X

(
H x∗(b)+ g + AT λ∗(b)

)T (
x − x∗(b)

)
,

which using the definition of σX (·) and primal feasibility proves the lemma. 
�
Before illustrating with an example that representation R2, as opposed to R1, is

meaningful with respect to Theorem 3, we prove that this cannot be expected for every
parametric problem.

Theorem 6 Consider representation R2 of the closed convex set of Lagrange multi-
pliers �∗(b). There exist parametric problems of type (1) with b ∈ Bc for which the
premise of Theorem 3 cannot be validated.

Proof For representation R2 we identify function φ(x, λ) in Theorem 3 as

φ(x, λ) = xT H x + gT x + σX

(
−H x − g − AT λ

)
,

which is strongly convex in x as H � 0, so meets Assumption (i), and satisfies
Assumption (ii) since for every (x, λ) ∈ {(x, λ) ∈ R

n × R
m | Ax = b, x ∈ X}

φ(x, λ) ≥ xT H x + gT x − xT H x − gT x − λT Ax = −λT b

by definition of the support function σX (·). For the sake of contradiction, assume that
the premise of Theorem 3 can be validated for a problem with

H = I, g =
[

2
−2

]
, A = [−1 1

]
, X =

{
x ∈ R

2 | ‖x‖∞ ≤ 1
}
, (15)

for which the set of admissible parameters is B = [−2, 2]. Let Bc = B and K = 0,
λ̂0 = 0. Since Bc is a closed interval of the real line andψ∗(b) in (13) is closed convex
by Statement S2 in Theorem 3, it follows from Bertsekas (2009, Proposition 1.3.12)
that ψ∗(b) is continuous on Bc. But this implies that h∗(b)must be continuous on Bc,
however, by basic calculations we find

h∗(b) =
{

1
4 (4 − b)2 , for b ∈ [−2, 2) ,

0 , for b = 2 ,
(16)

which is closed but not continuous. 
�
Let us revisit the example (15) in the previous proof in order to understand which

part of the assumptions of Theorem 3 cannot be validated. From this insight, we will
then alter the example appropriately so that Theorem 3 applies.
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We start with defining map ν∗(b) as the one that returns for every parameter b ∈ Bc

the smallest Lagrange multiplier for inequality constraint IC. Note that here σX (·) =
‖ · ‖1, so that for b ∈ [−2, 2) we obtain this map from

ν∗(b) = min
ν≥0

ν (17)

s.t.
(
x∗(b), λ∗∗(b)

)=arg min
Ax=b, x∈X

λ∈R

λ2 + ν
(

xT x + gT x + λb + ‖x + g + AT λ‖1

)
,

by Theorem 4 and Rockafellar (1997, Cor. 28.1.1). For problem (15) we obtain

x∗(b) =
[−2

2

]
− 1

2

[−1
1

]
(4 − b) , λ∗∗(b) = 1

2 (4 − b) , b ∈ [−2, 2) ,

such that after some calculation, the function in (17) is found to be

ν∗(b) =
{

1 + 2
2−b , for b ∈ [−2, 2) ,

0 , for b = 2 .

Now, ν∗(b) is defined everywhere on Bc, however, the supremum ν∗
c in (9) does not

exist, which explains why Theorem 3 does not apply. Differently, the theorem applies
if Bc = [−2, 2 − δ], δ ∈ (0, 4], since ν∗

c then exists.

4.1.3 Computational aspects

The investigation of function h∗(b) based on Theorem 3 depends on the existence of
the supremum ν∗

c in (9) for representation R2. Let us assume for the moment that the
supremum exists and is available. If the set of certified parameters Bc is contained
in the relative interior of the admissible set of parameters B, i.e. Bc ⊂ ri B, then
h∗(b) is continuous on Bc (this follows from Statements S1 and S2 in Theorem 3
and Rockafellar (1997, Theorem 10.4), thus by Weierstrass’ Theorem the value of�2

d
in (7) is attained.

If Statement S1 applies, the supremum is attained at some extreme point since Bc is
assumed convex (Rockafellar 1997, Corollary 32.3.2). For instance, if Bc is a polytope,
then it suffices to evaluate h∗(b) at its vertices. Although Statement S2 is weaker, it
can be used to get an upper bound on �2

d by omitting the nonpositive quadratic term
in (12) and maximizing ψ∗(b), i.e.

�2
d ≤ sup

b∈Bc

ψ∗(b) .

Note that this includes the case K = 0, λ̂0 = 0, which is the problem of determining
an upper bound on the largest squared norm Lagrange multiplier.

Evaluating h∗(b) pointwise corresponds to solving a single convex program if the
dual function d(λ; b) or the support function of set X can be represented conveniently.
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In this respect, alternative R1 works, e.g. for quadratic programming (X is a poly-
hedron) if the linear inequality constraints defining set X are relaxed too (cf. Bert-
sekas 2009, Example 5.3.1), and linear programming (H = 0, X is a polyhedron),
whereas R2 is a viable representation if set X is a 1-, 2- or ∞-norm ball, a simplex,
ellipsoid, proper cone or a Cartesian product, Minkowski sum and/or union of them
(see Rockafellar 1997, §13).

Remark 4 It is standard to characterize the set of Lagrange multipliers �∗(b) by
the Karush–Kuhn–Tucker (KKT) conditions (Bertsekas 1999, §3.3.1). This approach
requires additional constraint qualifications to hold and set X to be representable
as the intersection of finitely many level sets of closed convex functions s j (x),
i.e. X = {

x ∈ R
n | s j (x) ≤ 0, j = 1, . . . , l

}
. However, the nonconvex complemen-

tary slackness conditions, as part of the KKT conditions, complicate the analysis of
h∗(b) and also prevent one from evaluating it by convex programming—despite the
convexity of set �∗(b).

4.2 Computation of the smallest Lipschitz constant

The smallest Lipschitz constant of the gradient, L∗, is the other crucial entity in the
computation of the smallest lower iteration bound (cf. Theorem 2). We will show
that L∗ can indeed be computed under mild assumptions so that for some λ̄1, λ̄2
inequality (6) is tight. This result is also crucial for practical performance of the fast
gradient method as 1/L∗ is the implemented step size.

Let us start with an important observation. If we define a change of variables for
problem (2), i.e. x = Pw with invertible matrix P ∈ R

n×n , then from Theorem 1 we
obtain ∇d (λ; b) = APw∗(λ) − b = Ax∗(λ) − b, however, the Lipschitz constant
according to the same theorem changes, since in general

‖A‖2/λmin(H) �= ‖AP‖2/λmin(P
T H P) . (18)

By minimizing the right hand side of (18) over all invertible matrices P we obtain
the smallest Lipschitz constant L∗ under a linear change of variables. Whereas this
problem can be cast as a convex semidefinite program (see Boyd et al. 1994, §3.1) it
can also be solved analytically based on the next lemma.

Lemma 2 It holds that

min
P invertible

‖AP‖2/λmin(P
T P) = ‖A‖2 .

Proof For all invertible matrices P we have

λmin (P PT ) wT AATw ≤ wT AP PT ATw, ∀w ∈ R
n . (19)

This implies λmin (P PT ) ≤ ‖AP‖2 / ‖A‖2 and thus the lower bound ‖A‖2 of the
objective. But choosing P = I attains this lower bound. 
�
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Theorem 7 The smallest Lipschitz constant of the dual gradient under a linear change

of variables is L∗ = ‖AH− 1
2 ‖2.

Proof Let P = H− 1
2 S, S invertible, and apply Lemma 2 to the r.h.s. of

min
P invertible

‖AP‖2/λmin(P
T H P) = min

S invertible
‖AH− 1

2 S‖2/λmin(S
T S) .


�
Let us investigate when L∗ < L , where L is from Theorem 1.

Lemma 3 If L∗ is the Lipschitz constant from Theorem 7 and L the one from Theo-
rem 1, then ‖A‖2/λmax(H) ≤ L∗ ≤ L.

Proof L is an upper bound of L∗ by definition. Also,

‖AP‖2/λmin(P
T H P) ≥ λmin(P

T P) ‖A‖2/λmin(P
T H P) ≥ ‖A‖2/λmax(H)

by using 19 and λmin(PT H P) ≤ λmax(H) λmin(PT P). 
�
So, we deduce that L∗ < L only if λmax(H) > λmin(H) which is true whenever

Hessian H is not a positive multiple of the identity matrix. Also, L∗ is a tight Lipschitz
constant under a mild assumption as shown next.

Theorem 8 If there exists a λ̄ ∈ R
m with x∗(λ̄) ∈ int X, then L∗ from Theorem 7 is

a tight Lipschitz constant of the dual gradient.

Proof We prove that there exists a subset of R
m with nonempty interior on which the

Lipschitz constant of the dual gradient attains L∗. By the premise, there exists a δ > 0
such that X = {

x ∈ R
n | ‖x − x∗(λ̄)‖ < δ

} ⊆ X. Let set M contain all multipliers λ
with x∗(λ) ∈ X, or equivalently, for all λ ∈ M the minimizer of (5) is free. In this
case, we can compute the minimizer explicitly, i.e. x∗(λ) = −H−1(g + AT λ), thus
M = {

λ ∈ R
m | ∥

∥H−1 AT (λ− λ̄)
∥
∥ < δ

}
.

Since
{
λ ∈ R

m | ∥
∥H−1 AT

∥
∥

∥
∥(λ− λ̄)

∥
∥ < δ

}
is an m-dimensional open subset of

M, we conclude that M has nonempty interior. The dual function defined over M is

d(λ; b) = −1/2
(

gT + λT A
)

H−1
(

g + AT λ
)

− λT b ,

which is twice continuously differentiable, so the Lipschitz constant of its gradient is
λmax(AH−1 AT ) (Nesterov, 2004a, Lemma 1.2.2), which is L∗. 
�
Remark 5 In model predictive control, the interior assumption of Theorem 8 is a stan-
dard assumption (cf. Rawlings and Mayne 2009, §1.2)). So, for this class of problems,
a tight Lipschitz constant can be obtained from Theorem 7.

Let us illustrate the findings of this section with the example given by (15). Consider
a change of variables for its dual problem (2) according to

x =
[

p1 0
0 p2

]
w, 0 < p1 ≤ p2 .
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From Theorem 7, the smallest Lipschitz constant is given by L∗ = 2 for any p1, p2>0.
As x∗(2) = 0 ∈ int X, it is also tight (cf. Theorem 8). On the contrary, the Lipschitz
constant from Theorem 1 is

L(p1, p2) = 1 + (p2/p1)
2 ≥ L∗ ,

which can be arbitrarily larger than L∗ if p1 and p2 are chosen accordingly.

4.3 Optimal preconditioning of the dual problem

Theorem 2 states the smallest lower iteration bound for Algorithm 2.1. Yet, we might
get a better bound by considering the dual problem in a different basis. For a strongly
concave problem the lower iteration bound can be improved if the preconditioner
decreases the condition number [see Bertsekas (1999, §1.3.2) for heuristic and Boyd
et al. (1994, §3.1) for optimal preconditioners]. The dual function in (2) lacks strong
concavity, leaving the condition number undefined. In this section, we propose to take
the smallest lower iteration bound in Theorem 2 as an alternative selection criterion
for an optimal preconditioner of the dual function. It turns out that under the com-
putationally tractable approximate reformulation of this problem introduced below,
it cannot be ensured that the obtained optimal preconditioner gives a strictly better
smallest lower iteration bound than the original one.

In order to see this, define dC (υ; b) � d(Cυ; b) as the preconditioned dual function
where C ∈ R

m×m is an invertible preconditioner. In order to find a preconditioner that
minimizes the smallest lower iteration bound for the preconditioned problem we need
to minimize L∗(C)�2

d(C) over all invertible matrices C (cf. Theorem 2), where

L∗(C) = ‖CT AH− 1
2 ‖2 , �2

d(C) = sup
b∈Bc

min
λ∈�∗(b)

‖C−1 (λ− λ0(b)) ‖2 .

Minimizing L∗(C)�2
d(C) directly is hard in view of �2

d(C), however, a tractable
formulation can be obtained from the upper bound

min
C inv.

L∗(C)�2
d(C) ≤ min

C inv.
L∗(C)‖C−1‖2�2

d = min
C inv.

‖CT AH− 1
2 ‖2

λmin(CT C)
�2

d .

Assume that a preconditioner C∗ is obtained from solving the upper bound. Then
by the previous inequality and Lemma 2, we have

L∗(C∗)�2
d(C

∗) ≤ L∗(C∗)‖C∗−1‖2�2
d = L∗�2

d ,

which implies that the original smallest lower iteration bound is not guaranteed to be
strictly improved. Also, if matrix A is sparse, then C∗TA might not be sparse thus
rendering an iteration of the fast gradient method more expensive.
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5 Discussion

Let us pose some open questions based on the findings in this paper.
As shown in Sect. 4.1, characterization of function h∗(b) critically depends on how

the set of Lagrange multipliers is represented. The example in Sect. 4.1.2 illustrates
that with representation R2 it is possible to reveal that h∗(b) is the sum of a concave and
a convex term (which in this example is convex), however, this cannot be concluded
from representation R1. Thus, it would be interesting to have an analysis independent
from the representation.

Another issue concerns the computation of ν∗
c in (9) and, as a prerequisite, verifying

if ν∗(b) is defined on Bc. For a meaningful lower iteration bound, it is also important
to find an affine initialization map λ0(b) that makes �2

d ‘small’.
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