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In this paper we consider stochastic optimization problems for an ambi-
guity averse decision maker who is uncertain about the parameters of the
underlying process. In a first part we consider problems of optimal stopping
under drift ambiguity for one-dimensional diffusion processes. Analogously
to the case of ordinary optimal stopping problems for one-dimensional Brow-
nian motions we reduce the problem to the geometric problem of finding the
smallest majorant of the reward function in a two-parameter function space.
In a second part we solve optimal stopping problems when the underlying
process may crash down. These problems are reduced to one optimal stop-
ping problem and one Dynkin game. Examples are discussed.
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1 Introduction
In most articles dealing with stochastic optimization problems one major assumption is
that the decision maker has full knowledge of the parameter of the underlying stochastic
process. This does not seem to be a realistic assumption in many real world situations.
Therefore, different multiple prior models were studied in the economic literature in the
last years. Here, we want to mention [DE92] and [ES03], and refer to [CR10] for an
economic discussion and further references.
In this setting it is assumed that the decision maker deals with the uncertainty via a

worst-case approach, that is, she optimizes her reward under the assumption that the
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“market” chooses the worst possible prior. This is a natural assumption, and we also
want to pursue this approach.
A very important class of stochastic optimization problems is given by optimal stop-

ping problems. These problems arise in many different fields, e.g., in pricing American-
style options, in portfolio optimization, and in sequential statistics. Discrete time prob-
lems of optimal stopping in a multiple prior setting were first discussed in [Rie09] and
analogous results to the classical ones were proved. In this setting a generalization of
the classical best choice problem was treated in detail in [CR09]. In continuous time the
case of an underlying diffusion with uncertainty about the drift is of special interest. The
general theory (including adjusted Hamilton-Jacobi-Bellman equations) is developed in
[CR10]. Some explicit examples are given there, but no systematic way for finding an
analytical solution is described. In [Alv07] the case of monotonic reward functions for
one-dimensional diffusion processes is considered. The restriction to monotonic reward
functions simplifies the problem since only two different worst-case measures can arise.
Another class of stochastic optimization problems under uncertainty was dealt with in

a series of papers starting with [KW02]: Portfolio optimization problems are considered
under the assumption that the underlying asset price process may crash down at a
certain (unknown) time point. The decision maker is again considered to be ambiguity
averse in the sense that she tries to choose the best possible stopping policy out of the
worst possible realizations of the crash date. See [KS09] for an overview on existing
results.
The aim of this article is to treat optimal stopping problems under uncertainty for

underlying one-dimensional diffusion processes. These kinds of problems are of special
interest since they arise in many situations and often allow for an explicit solution.
The structure of this article is as follows: In Section 2 we first review some well-

known facts about the solution of ordinary optimal stopping problems for an underlying
Brownian motion. These problems can be solved graphically by characterizing the value
function as the smallest concave majorant of the reward function. Then we treat the
optimal stopping problem under ambiguity about the drift in a similar way: The result
is that the value function can be characterized as the smallest majorant of the reward
function in a two-parameter class of functions. The main tool is the use of generalized r-
harmonic functions. After giving an example and characterizing the worst-case measure,
we generalize the results to general one-dimensional diffusion processes.
In Section 3 we introduce the optimal stopping problem under ambiguity about crashes

of the underlying process in the spirit of [KS09]. In this situation the optimal strategy
can be described by two easy strategies: One pre-crash and one post-crash strategy.
These strategies can be found as solutions of a one-dimensional Dynkin game and an
ordinary optimal stopping problem, which can both be solved using standard methods.
We want to point out that this model is a natural situation where Dynkin games arise
and the theory developed in the last years can be used fruitfully. As an explicit example
we study the valuation of American call-options in the model with crashes. Here, the
post-crash strategy is the well-known threshold-strategy in the standard Black-Scholes
setting. The pre-crash strategy is of the same type, but the optimal threshold is lower.
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2 Optimal stopping under drift ambiguity
2.1 Graphical solution of ordinary optimal stopping problems
Problems of optimal stopping in continuous time are well-studied and the general theory
is well-developed. Nonetheless, the explicit solution to such problems is often hard to
find and the class of explicit examples is very limited. Most of them are generalizations
of the following situation, that allows for an easy geometric solution:
Let (Wt)t≥0 be a standard Brownian motion on a compact interval [a,b] with absorbing
boundary points a and b. We consider the problem of optimal stopping given by the
value function

v(x) = sup
τ

Ex(g(Wτ )1{τ<∞}), x ∈ [a,b],

where the reward function g : [a,b]→ [0,∞) is continuous and the supremum is taken over
all stopping times w.r.t. the natural filtration for (Wt)t≥0. Here and in the following,
Ex denotes taking expectation for the process conditioned to start in x. In this case
it is well-known that the value function v can be characterized as the smallest concave
majorant of g, see [DY69]. This means that the problem of optimal stopping can be
reduced to finding the smallest majorant of g in an easy class of functions. For finding
the smallest concave majorant of a function g one only has to consider affine functions,
i.e., for each fixed point x ∈ [a,b] the value of the smallest concave majorant is given by

inf{hc,d(x) : c,d ∈ R,hc,d ≥ g},

where hc,d is an element of the two-parameter class of affine functions of the form
hc,d(y) = cy+ d. This problem can be solved geometrically, see Figure 2.1. We want
to remark that this problem is indeed a semi-infinite linear programming problem:

min! cx+d

s.t cy+d≥ g(y) for all y ∈ [a,b].
This gives rise to an efficient method for solving these problems, which can be gener-
alized in an appropriate way, see [HS10] for an analytical method and [Chr12] for a
numerical point of view. The example described above is important both for theory
and applications of optimal stopping since by studying it one can obtain an intuition
for more complex situations such as finite time horizon problems and multidimensional
driving processes, where numerical methods have to be used in most situations of interest.

The goal of this section is to handle optimal stopping problems with drift ambiguity
for diffusion processes similarly to the ordinary case discussed above. This gives rise to
an easy to handle geometric method for solving optimal stopping problems under drift
ambiguity explicitly.

2.2 Special Case: Brownian motion
In the following we use the notation of [CR10]: Let (Xt)t≥0 be a Brownian motion under
the measure Q, fix κ≥ 0 and denote by Pκ the set of all probability measures, that are
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Figure 2.1: Graph of a function g (black) and its smallest concave majorant (blue)

equivalent to Q with density process of the form

exp
(∫ t

0
θsdXs−1/2

∫ t

0
θ2
sds

)

for a progressively measurable process (θt)t≥0 with |θt| ≤ κ for all t≥ 0. We want to find
the value function

v(x) = sup
τ

inf
P∈Pκ

EPx (e−rτg(Xτ )1{τ<∞})

for some fixed discounting rate r > 0 and a measurable reward function g : R→ [0,∞),
where EPx means taking expectation under the measure P when the process is started
in x. Instead of taking affine functions as in Subsection 2.1 we construct another class
of appropriate functions based on the minimal r-harmonic functions (introduced below)
for the Brownian motion with drift −κ resp. κ as follows:
Denote the roots of the equation

1/2z2−κz− r = 0

by α1 < 0< α2 and the roots of

1/2z2 +κz− r = 0

by β1 < 0< β2. Then eαix, i= 1,2, are the minimal r-harmonic functions for a Brownian
motion with drift −κ, and eβix, i = 1,2, the corresponding functions for a Brownian
motion with drift κ. Note that β1 ≤ α1 ≤ 0≤ β2 ≤ α2 and β1 =−α2 and β2 =−α1. For
all c ∈ R define the functions hc : R→ [0,∞) via

hc(x) =


α2

α2−α1
eα1(x−c)− α1

α2−α1
eα2(x−c), if x > c

β2
β2−β1

eβ1(x−c)− β1
β2−β1

eβ2(x−c), if x≤ c,
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and
h∞(x) = eβ1x, h−∞(x) = eα2x.

For c ∈R, the function hc is constructed by smoothly merging r-harmonic functions for
the Brownian motion with drift κ (for x ≤ c) and −κ (for x > c) at their minimum in
c. By taking derivatives and taking into account that β1 =−α2 and β2 =−α1, one sees
that the function hc is indeed C2.
The set {λhc : c ∈ [−∞,∞],λ ≥ 0} does not form a convex cone for κ > 0. This is the
main difference compared to the case without drift ambiguity. Therefore, the standard
techniques for optimal stopping are not applicable immediately. Nonetheless, this leads
to the right Pκ-supermartingales to work with:

Lemma 2.1. (i) For all a,b,x ∈ R with a ≤ x ≤ b, c ∈ [−∞,∞], P ∈ Pκ and τ =
inf{t≥ 0 :Xt 6∈ [a,b]} it holds that

EPx (e−rτhc(Xτ )1{τ<∞})≥ hc(x) and EPcx (e−rτhc(Xτ )1{τ<∞}) = hc(x),

where the measure Pc is such that

dXt =−κsgn(Xt− c)dt+dW c
t

for a Brownian motion W c under Pc.

(ii) For all c ∈ [−∞,∞] and all stopping times τ it holds that

EPcx (e−rτhc(Xτ )1{τ<∞})≤ hc(x).

(iii) For all a,b,x ∈R with a < x< b, P ∈Pκ, and τa = inf{t≥ 0 :Xt = a}, τb = inf{t≥
0 :Xt = b} it holds that

EPx (e−rτah∞(Xτa)1{τa<∞})≥ h∞(x),
EP∞x (e−rτah∞(Xτa)1{τa<∞}) = h∞(x),

and

EPx (e−rτbh−∞(Xτb)1{τb<∞})≥ h−∞(x),
EP−∞x (e−rτbh−∞(Xτb)1{τb<∞}) = h−∞(x).

Proof. (i) For P ∈ P with density process θ, by Girsanov’s theorem, we may write

Xt =WP
t +

∫ t

0
θsds,

whereWP is a Brownian motion under P . Since hc ∈C2 we can apply Itô’s lemma
and obtain

dhc(Xt) = h′c(Xt)dWP
t +(h′c(Xt)θt+1/2h′′c (Xt))dt.
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By construction of hc, it holds that
1/2h′′c (Xt)−κsgn(Xt− c)h′c(Xt)− rhc(Xt) = 0,

hence

e−rthc(Xt) =hc(X0)+
∫ t

0
e−ru(κsgn(Xu− c)+ θu)h′c(Xu)du

+
∫ t

0
e−ruh′c(Xu)dWP

u .

Noting that (κsgn(Xu− c) + θu) ≥ 0 iff h′c(Xu) ≥ 0, we obtain that the process
(e−r(t∧τ)hc(Xt∧τ ))t≥0 is a bounded P -submartingale. Therefore, by the optional
sampling theorem,

EPx (e−rτhc(Xτ ))≥ EPx (hc(X0)) = hc(x).
Under P c we see that (e−r(t∧τ)hc(Xt∧τ ))t≥0 is actually a local martingale that is
bounded. Therefore, the optional sampling theorem yields equality.

(ii) By the calculation in (i) the process (e−rthc(Xt))t≥0 is a positive local P c-martingale,
i.e. also a P c-supermartingale. The optional sampling theorem for non-negative
supermartingales is applicable.

(iii) By noting that h∞ is decreasing and h−∞ is increasing the same arguments as in
(i) apply.

The following theorem shows that the geometric solution described in Subsection 2.1
can indeed be generalized to the drift ambiguity case. Moreover, we give a characteri-
zation of the optimal stopping set as maximum point of explicitly given functions.
Theorem 2.2. (i) It holds that

v(x) = inf{λhc(x) : c ∈ [−∞,∞],λ ∈ [0,∞],λhc ≥ g} for all x ∈ R.
Furthermore, the infimum in c is indeed a minimum.

(ii) A point x ∈ R is in the optimal stopping set {y : v(y) = g(y)} if and only if there
exists c ∈ [−∞,∞] such that

x ∈ argmax g

hc
.

Proof. For each x ∈ R, c ∈ [−∞,∞] and each stopping time τ we obtain using Lemma
2.1 (ii)

inf
P

EPx (e−rτg(Xτ )1{τ<∞}) = inf
P

EPx
(
e−rτhc(Xτ )

g

hc
(Xτ )1{τ<∞}

)
≤ sup

(
g

hc

)
inf
P

EPx (e−rτhc(Xτ )1{τ<∞})

≤ sup
(
g

hc

)
EPcx (e−rτhc(Xτ )1{τ<∞})

≤ sup
(
g

hc

)
hc(x).
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Since λhc ≥ g holds if and only if λ≥ sup
(
g
hc

)
we obtain that

v(x)≤ inf{λhc(x) : c ∈ [−∞,∞],λ≥ 0,λhc ≥ g}.

For the other inequality consider the following cases:
Case 1:

sup
y∈R

g(y)
h∞(y) = sup

y≤x

g(y)
h∞(y) .

Take a sequence (yn)n∈N with yn ≤ x such that g(yn)/h∞(yn)→ supy∈R
g(y)
h∞(y) . Then for

τn = inf{t≥ 0 :Xt = yn} using Lemma 2.1 (iii) we obtain

v(x)≥ inf
P

EPx (e−rτng(Xτn)1{τn<∞})

= inf
P

EPx (e−rτnh∞(Xτn) g

h∞
(Xτn)1{τn<∞})

= g

h∞
(yn)EP∞x (e−rτnh∞(Xτn)1{τn<∞})

= g

h∞
(yn)h∞(x)

→ sup
y∈R

g(y)
h∞(y)h∞(x) for n→∞.

Therefore, v(x)≥ inf{λhc(x) : c ∈ [−∞,∞],λ ∈ [0,∞],λhc ≥ g}.
Moreover, if x is in the stopping set, i.e. v(x) = g(x), then we see that g(x)/h∞(x) =
supy∈R

g(y)
h∞(y) , i.e. x is a maximum point of the function g/h∞, i.e. (ii).

Case 2: The case supy∈R g(y)/h−∞(y) = supy≥x g(y)/h−∞(y) can be handled the same
way.
Case 3:

sup
y≤x

g(y)
h∞(y) > sup

y≥x

g(y)
h∞(y) and sup

y≤x

g(y)
h−∞(y) < sup

y≥x

g(y)
h−∞(y) .

First we show that there exists c∗ ∈ R such that

sup
y≤x

g(y)
hc∗(y) = sup

y≥x

g(y)
hc∗(y) :

To this end, write

hc,1(y) = α2
α2−α1

eα1(y−c)− α1
α2−α1

eα2(y−c),

hc,2(y) = β2
β2−β1

eβ1(y−c)− β1
β2−β1

eβ2(y−c).
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By construction of hc it holds that hc = min(hc,1,hc,2). Therefore,

sup
y≤x

g(y)
hc(y) =

[
inf
y≤x

(
min

(
hc,1(y)
g(y) ,

hc,2(y)
g(y)

))]−1

=
[

min
{
e−α2c inf

y≤x

(
α2

α2−α1

eα1y

g(y)e
(α2−α1)c+ α1

α2−α1

eα2y

g(y)

)
,

e−β2c inf
y≤x

(
β2

β2−β1

eβ1y

g(y)e
(β2−β1)c+ β1

β2−β1

eβ2y

g(y)

)}]−1

Since the functions
z 7→ inf

y≤x

(
α2

α2−α1

eα1y

g(y)z+ α1
α2−α1

eα2y

g(y)

)
and

z 7→ inf
y≤x

(
β2

β2−β1

eβ1y

g(y)z+ β1
β2−β1

eβ2y

g(y)

)

are continuous as concave functions, we obtain that the function c 7→ supy≤x
g(y)
hc(y) is

continuous. By the same argument, the function c 7→ supy≥x
g(y)
hc(y) is also continuous. By

the intermediate value theorem applied to the function

c 7→ sup
y≤x

(
g(y)
hc(y)

)
− sup
y≥x

(
g(y)
hc(y)

)

there exists c∗ with supy≤x
g(y)
hc∗(y) = supy≥x

g(y)
hc∗(y) as desired.

Now take sequences (yn)n∈N and (zn)n∈N with yn ≤ x≤ zn such that

sup
y≤x

g(y)
hc∗(y) = lim

n→∞
g(yn)
hc∗(yn) = lim

n→∞
g(zn)
hc∗(zn) = sup

y≥x

g(y)
hc∗(y) .

Using τn = inf{t≥ 0 :Xt 6∈ [yn, zn]} we obtain by Lemma 2.1 (i)

v(x)≥ inf
P

EPx (e−rτnhc∗(Xτn) g

hc∗
(Xτn)1{τn<∞})

≥
(
g

hc∗
(yn)∧ g

hc∗
(zn)

)
inf
P

EPx (e−rτnhc∗(Xτn)1{τn<∞})

=
(
g

hc∗
(yn)∧ g

hc∗
(zn)

)
hc∗(x)→ sup

(
g

hc∗

)
hc∗(x).

This yields the result (i). As above we furthermore see that if x is in the optimal stopping
set, then it is a maximum point of g/hc∗ , i.e. (ii).

Remark 2.3. 1. We would like to emphasize that we do not need any continuity
assumptions on g. This is remarkable, because even for the easy case described at
the beginning of this section most standard techniques do not lead to such a general
result.
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2. The previous proof is inspired by the ideas first described in [BL97]. It seems that
other standard methods for dealing with optimal stopping problems for diffusions
without drift ambiguity (such as Martin boundary theory as in [Sal85], generalized
concavity methods as in [DK03], or linear programming arguments as in [HS10])
are not applicable with minor modifications due to the nonlinear structure com-
ing from drift ambiguity. A characterization of the optimal stopping points as in
Theorem 2.2 (ii) for the problem without ambiguity can be found in [CI11].

2.3 Worst-case prior
Theorem 2.2 leads to the value of the optimal stopping problem with drift ambiguity and
also provides an easy way to find the optimal stopping time. Another important topic
is to determine the worst-case measure for a process started in a point x, i.e. we would
like to determine the measure P such that v(x) = supτ EPx (e−rτg(Xτ )1{τ<∞}). Using
the results described above the worst-case measure can also be found immediately:
Theorem 2.4. Let x ∈ R and let c be a minimizer as in Theorem 2.2 (i). Then P c is
a worst-case measure for the process started in x.
Proof. This is immediate from the proof of Theorem 2.2.

2.4 Example: American straddle in the Bachelier market
Because it is easy and instructive we consider the example discussed in [CR10] in the
light of our method:
We consider a variant of the American straddle option in a Bachelier market model as
follows: As a driving process we consider a standard Brownian motion under P 0 with
reward function g(x) = |x|. Our aim is to find the value in 0 of the optimal stopping
problem

sup
τ

min
P∈Pκ

EP (e−rτ |Xτ |1{τ<∞}).

Using Theorem 2.2 we have to find the majorant of | · | in the set

{λhc : c ∈ [−∞,∞],λ ∈ [0,∞],λhc ≥ g}.

One immediately sees that if λhc(·) ≥ | · |, then λh0(·) ≥ | · | and furthermore λh0(0) ≤
λhc(0). Therefore, we only have to consider majorants of | · | in the set

{λh0 : λ ∈ [0,∞],λh0 ≥ g}.

This one-dimensional problem can be solved immediately. For λ = max(| · |/h0(·)) one
obtains v(0) = λh0(0).
In fact, if −b,b denote the maximum points of | · |/h0(·) we obtain that v(x) = λh0(x) for
x ∈ [−b,b]. Moreover, for x 6∈ [−b,b] one immediately sees that there exists c ∈ R such
that x is a maximum point of | · |/hc(·) and we obtain

v(x) =

λh0(x), if x ∈ [−b,b]
|x|, else.

9



Moreover, the worst-case measure is P0, i.e. the processX has positive drift κ on (−∞,0)
and drift −κ on [0,∞).

2.5 General diffusion processes
The results obtained before can be generalized to general one-dimensional diffusion pro-
cesses. The only problem is to choose appropriate functions hc carefully. After these
functions are constructed the same arguments as in the previous subsections work.
Let (Xt)t≥0 be a regular one-dimensional diffusion process on some interval I with bound-
ary points a < b,a,b ∈ [−∞,∞], that is characterized by its generator

A= 1
2σ

2(x) d
2

dx2 +µ(x) d
dx

for some continuous functions σ > 0,µ. For convenience we furthermore assume that the
boundary points a,b of I are natural. For a generalization to other boundary behaviors
see the discussion in [BL00, Section 6]. Again denote by Pκ the set of all probability
measures, that are equivalent to Q with density process of the form

exp
(∫ t

0
θsdXs−1/2

∫ t

0
θ2
sds

)

for a progressively measurable process (θt)t≥0 with |θt| ≤ κ for all t≥ 0. We denote the
fundamental solutions of the equation

1
2σ

2(x) d
2

dx2ψ+(µ(x)+κ) d
dx
ψ = rψ

by ψκ+ resp. ψκ− for the increasing resp. decreasing positive solution, cf. [BS02, II.10] for
a discussion and further references. Analogously, denote the fundamental solutions of

1
2σ

2(x) d
2

dx2ψ+(µ(x)−κ) d
dx
ψ = rψ

by ψ−κ+ resp. ψ−κ− . Note that for each positive solution ψ of one of the above ODEs it
holds that

d2

dx2ψ(x) =
−(µ(x)±κ) d

dxψ(x)+ rψ(x)
1
2σ

2(x)
, (1)

hence all extremal points are minima, so that ψ has at most one minimum. Therefore,
for each s ∈ (0,1) the function ψ = sψ±κ+ +(1−s)ψ±κ− has a unique minimum point and
each c ∈ I arises as such a minimum point. Therefore, for each c ∈ (a,b) we can find
constants γ1, ...,γ4 such that the function

hc : E→ R,x 7→

γ1ψκ+(x)+γ2ψκ−(x), if x≤ c
γ3ψ

−κ
+ (x)+γ4ψ

−κ
− (x), if x > c

10



is C1 with a unique minimum point in c with the standardization hc(c) = 1. More
explicitly, γ1, ...,γ4 are given by

γ1 = ψκ−
′(c)

Dκ(c) , γ2 = −ψ
κ
+
′(c)

Dκ(c) , γ3 = ψ−κ−
′(c)

D−κ(c) , γ4 = −ψ
−κ
+
′(c)

D−κ(c) , (2)

where
D±κ(c) = ψ±κ+ (c)ψ±κ−

′(c)−ψ±κ− (c)ψ±κ+
′(c).

Furthermore, write ha = ψ−κ+ and hb = ψκ−. First, we show that the functions hc are
always C2.

Lemma 2.5. For each c ∈ [a,b], the function hc is C2.

Proof. For c ∈ {a,b} the claim obviously holds. Let c ∈ (a,b). We only have to prove
that h′′c (c−) = h′′c (c+). Using equation (1), we obtain that

h′′c (c−) = γ1ψ
κ
+
′′(c)+γ2ψ

κ
−
′′(c)

= −(µ(c)+κ)
1
2σ

2(c)
(γ1ψ

κ
+
′(c)+γ2ψ

κ
−
′(c))+ r

1
2σ

2(c)
(γ1ψ

κ
+(c)+γ2ψ

κ
−(c))

= −(µ(c)+κ)
1
2σ

2(c)
h′c(c)+ r

1
2σ

2(c)
hc(c).

By the choice of γ1,γ2, we obtain

h′′c (c−) = r
1
2σ

2(c)

and analogously

h′′c (c+) = r
1
2σ

2(c)
.

This proves the claim.

Now all the arguments given in Subsection 2.2 and 2.3 apply and we again obtain the
following results (compare Theorem 2.2 and Theorem 2.4):

Theorem 2.6. (i) It holds that

v(x) = inf{λhc(x) : c ∈ [a,b],λ ∈ [0,∞],λhc ≥ g} for all x ∈ I.

(ii) A point x ∈ I is in the optimal stopping set {y : v(y) = g(y)} if and only if there
exists c ∈ [a,b] such that

x ∈ argmax g

hc
.

Theorem 2.7. Let x ∈ R and let c be a minimizer as in Theorem 2.6 (i). Then P c is
a worst-case measure for the process started in x.

11



2.6 Example: An optimal decision problem for Brownian motions
with drift

The following example illustrates that our method also works in the case of a discon-
tinuous reward function g, where differential equation techniques cannot be applied
immediately. Furthermore, we see that our approach can be used for all parameters in
the parameter space, although the structure of the solution changes.
Let X = σWt +µt denote a Brownian motion with drift µ ∈ (−∞,∞) and volatility σ
under P 0, and let

g(x) =

1, x≤ 0,
x, x > 0.

The fundamental solutions are given by

ψκ+(x) = eα1x, ψκ−(x) = eα2x, ψ−κ+ (x) = eβ1x, ψ−κ− (x) = eβ2x,

where α1 < 0< α2 and β1 < 0< β2 are the roots of

1/2σ2z2 +(µ−κ)z− r = 0, resp. 1/2σ2z2 +(µ+κ)z− r = 0.

Using equation (2) we obtain

hc(x) =


α2

α2−α1
eα1(x−c)− α1

α2−α1
eα2(x−c), if x > c,

β2
β2−β1

eβ1(x−c)− β1
β2−β1

eβ2(x−c), if x≤ c.

We consider

l∗(c) := sup
y≤0

1
hc(y) =


1

hc(0) , c≥ 0,
1, c≤ 0

and l∗(c) := supy≥0
y

hc(y) = yc
hc(yc) , where yc denotes the unique maximum point of y/hc(y),y≥

0.
We first consider the case 1 = l∗(0) ≥ l∗(0). By Theorem 2.6 (ii), we obtain that x = 0
is in the optimal stopping set S as a maximizer of y 7→ g(y)/h0(y). Furthermore, by
decreasing c to −∞, we see that (−∞,0]⊆ S. Since l∗(c)→ 0 and l∗(c)→∞ for c→∞,
there exists a unique c∗ ≥ 0 such that l∗(c∗) = l∗(c∗). Therefore, by Theorem 2.6 (ii)
again, x∗ := yc∗ ∈ S and by increasing c to ∞, we obtain that S = (−∞,0]∪ [x∗,∞).
Theorem 2.6 (i) yields

v(x) =


1, x≤ 0
hc∗(x)
hc∗(0) , x ∈ [0,x∗],
x x≥ x∗,

see Figure 2.2 below. By Theorem 2.7 we furthermore obtain that P c∗ is a worst-case
measure for the process started in x ∈ (0,x∗). That is, under the worst-case measure,
the process has drift µ+κ on [0, c∗) and drift µ−κ on [c∗,x∗].
Now, we consider the case 1 = l∗(0) < l∗(0). By a similar reasoning as in the first case,
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we see that there exists c∗ < 0 such that l∗(c∗) = l∗(c∗). Write x∗ = c∗ < 0,x∗ = yc∗ .
Then, S = (−∞,x∗]∪ [x∗,∞) is the optimal stopping set and the value function is given
by

v(x) =


1, x≤ x∗

hc∗(x), x ∈ [x∗,x∗],
x x≥ x∗,

see Figure 2.3 below. The worst-case measure is given by P c∗ , which means that the
process has drift µ−κ on [x∗,x∗].

Figure 2.2: Value function for l∗(0)≥ l∗(0) Figure 2.3: Value function for l∗(0)< l∗(0)

3 Optimal decision for models with crashes
Now denote by Y a one-dimensional regular diffusion process on an interval I. Denote by
F the natural filtration generated by Y . In this section we assume that all parameters of
this process are known. This process represents the asset price process of the underlying
asset if no crash occurs; therefore for economical plausibility it is reasonable to assume
I = (0,∞).
Now we modify the process such that at a certain random time point σ a crash of

bounded height occurs. To be more precise, let c ∈ (0,1) be a given constant that
describes an upper bound for the height of the crash. For a given stopping time σ and
an Fσ-measurable and [c,1]-valued random variable ζ we consider the modified process
Xσ,ζ given by

Xσ,ζ
t =

Yt t≤ σ
ζYt t > σ.

Now we consider the optimal stopping problem connected to the pricing of perpetual
American options in this market, i.e., let g : (0,∞)→ [0,∞) be a continuous reward
function. We furthermore assume g to be non-decreasing, so that a crash always leads
to a lower payoff. We fix a constant discounting rate r > 0 and furthermore assume that
the holder of the option does know that the process will crash once in the future. We
assume the crash to be observable for the decision maker, so she will specify her action

13



by a pre-crash stopping time τ and a post-crash stopping time τ , i.e. given σ she takes
the strategy

τ = τσ =

τ , τ ≤ σ
σ+ τ ◦ θσ, else,

(3)

where θ· denotes the time-shift operator. As before we assume the holder of the option
to be ambiguity averse in the sense that she maximizes her expected reward under the
worst-case scenario, i.e. she tries to solve the problem

v(x) = sup
τ ,τ

inf
σ,ζ

Ex(e−rτg(Xσ,ζ
τ )), (4)

where τ = τσ is given as in (3).

Remark 3.1. Obviously by the monotonicity of the reward function we always have

v(x) = sup
τ ,τ

inf
σ
Ex(e−rτg(Xσ

τ ))

where Xσ :=Xσ,c.

We obtain the following reduction of the optimal stopping problem under ambiguity
about the crashes: It shows that the problem can be reduced into one optimal stopping
problem and one Dynkin game for the diffusion process Y (without crashes).

Theorem 3.2. (i) Let ĝ be the value function for the optimal stopping problem for
cY with reward g, i.e.

ĝ(y) = sup
τ

Ey(e−rτg(cYτ )) for all y ∈ (0,∞) (5)

and let ĝ <∞. Then it holds that

v(x) = sup
τ

inf
σ
Ex(e−rτg(Yτ )1{τ≤σ}+ e−rσĝ(Yσ)1{τ>σ}). (6)

(ii) If τ is optimal for (5) and τ ,σ is a Nash-equilibrium for (6), then (τ ,τ), (σ,c) is
a Nash-equilibrium for (4).

Proof. (i) First fix τ , τ . Then for all σ by conditioning on Fσ we obtain

Ex(e−rτg(Xσ
τ )) = Ex(e−rτg(Yτ )1{τ≤σ}+ e−r(σ+τ◦θσ)g(cYσ+τ◦θσ)1{τ>σ})

= Ex(e−rτg(Yτ )1{τ≤σ}
+ e−rσEx(e−r(τ◦θσ)g(cYσ+τ◦θσ)|Fσ)1{τ>σ}).

By the strong Markov property we furthermore obtain

Ex(e−r(τ◦θσ)g(cYσ+τ◦θσ)|Fσ) = EYσ(e−rτg(cYτ ))≤ ĝ(Yσ).
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Therefore,

Ex(e−rτg(Xσ
τ ))≤ Ex(e−rτg(Yτ )1{τ≤σ}+ e−rσĝ(Yσ)1{τ>σ}),

showing that

v(x)≤ sup
τ

inf
σ
Ex(e−rτg(Yτ )1{τ≤σ}+ e−rσĝ(Yσ)1{τ>σ}).

Now take a sequence of 1/n-optimal stopping times (τn)n∈N for the problem (5),
i.e.

ĝ(y)≤ Ey(e−rτng(cYτn))+ 1
n

for all n ∈ N and all y.

Then
EYσ(e−rτng(cYτn))≤ ĝ(Yσ)+ 1

n
,

and hence considering the post-crash strategy τn and arbitrary τ ,σ we see that

v(x)+ 1
n
≥ sup

τ
inf
σ
Ex(e−rτg(Yτ )1{τ≤σ}+ e−rσĝ(Yσ)1{τ>σ}),

proving equality.

(ii) is obvious by the proof of (i).

Remark 3.3. Note that the arguments used so far have nothing to do with diffusion
processes, but can be applied in the same way for general nice one-dimensional strong
Markov processes, like one-dimensional Hunt processes. Nonetheless we decided to con-
sider this more special setup because of its special importance and since the theory for
explicitly solving optimal stopping problems and Dynkin games is well established.

The previous reduction theorem solves the optimal stopping problem (4) since both
problems (6) and (5) are well-studied for diffusion processes, see e.g. the references
given above for optimal stopping problems and [EV06], [Alv08], and [Peš11] for Dynkin
games. It is interesting to see that the optimal stopping problem under crash-scenarios
naturally leads to Dynkin games, which were studied extensively in the last years. The
financial applications studied so far were based on Israeli options, which are (at least at
first glance) of a different nature, see [Kif00].

3.1 Example: Call-like problem with crashes
As an example we consider a geometric Brownian motion given by the dynamics

dXt =Xt(µdt+σdWt), t≥ 0
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and we take g : (0,∞)→ [0,∞) given by g(x) = (x−K)+, where K > 0 is a constant. To
exclude trivial cases we assume that µ < r. Then a closed-form solution of the optimal
stopping problem

ĝ(y) = sup
τ

Ey(e−rτ (cYτ −K)+) = sup
τ

Ecy(e−rτ (Yτ −K)+)

is well known (see e.g. [PS06, Chapter VII]) and is given by

ĝ(y) =

cy−K, cy ≥ x∗,
d(cy)γ , cy < x∗,

where γ is the positive solution to
σ2

2 z
2 +

(
µ− σ

2

2
)
z+ r = 0,

and x∗ and d are appropriate constants. Moreover, the optimal stopping time is given
by τ := inf{t≥ 0 :Xt ≥ x∗}. By Theorem 3.2 we are faced with the Dynkin game

v(x) = sup
τ

inf
σ
Ex(e−rτ (Yτ −K)+1{τ≤σ}+ e−rσĝ(Yσ)1{τ>σ}). (7)

To solve this problem first note that there exists x′ ∈ (K,x∗/c) such that g(x)≤ ĝ(x) for
x ∈ (0,x′] and g(x)≥ ĝ(x) for x ∈ [x′,∞); indeed, x′ is the unique positive solution to

d(cx)γ = x−K,

see Figure 3.1.
We could use the general theory to solve the optimal stopping game (7), but we can

also solve it elementary here:
First let x > x′. Then for all stopping times σ∗ with σ∗ = 0 under P (·|Y0 = x) and each
stopping time τ we obtain

Ex(e−rτ (Yτ −K)+1{τ≤σ∗}+ e−rσ
∗
ĝ(Yσ∗)1{τ>σ∗})

=Ex(g(x)1{τ=0}+ ĝ(x)1{τ>0})
≤g(x)

with equality if τ = 0 P (·|Y0 = x)-a.s. On the other hand for τ∗ = 0 the payoff is g(x),
independent of σ.

For x≤ x′ by by taking τ = inf{t≥ 0 :Xt ≥ x′} we have for each stopping time σ by
definition of x′

Ex(e−rτ (Yτ −K)+1{τ≤σ}+ e−rσĝ(Yσ)1{τ>σ})
=Ex(e−rτ (x′−K)1{τ≤σ}+ e−rσd(cYσ)γ1{τ>σ})
=Ex(e−rτd(cx′)γ1{τ≤σ}+ e−rσd(cYσ)γ1{τ>σ})
=Ex(e−r(σ∧τ)d(cYσ∧τ )γ)
=dcγEx(e−r(σ∧τ)(Yσ∧τ )γ)
=dcγxγ = ĝ(x),
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Figure 3.1: Graphs of g (blue) and ĝ (red).

where the last equality holds by the fundamental properties of the minimal r-harmonic
functions, see e.g. [BS02, II.9]. By taking any stopping time σ∗ ≤ inf{t ≥ 0 : yt ≥ x′}
and any stopping time τ the same calculation holds.
Putting pieces together we obtain that τ ,σ∗ is a Nash-equilibrium of the Dynkin game
(7) for any stopping time σ∗ ≤ τ .
By applying Theorem 3.2 we get

Proposition 3.4. The value function v is given by

v(x) =

x−K, x≥ x′,
d(cx)γ , x < x′,

and for
τ = inf{t≥ 0 :Xt ≥ x′} ’pre-crash strategy’

and
τ = inf{t≥ 0 :Xt ≥ x∗} ’post-crash strategy’

and any stopping time σ∗ ≤ τ it holds that (τ ,τ), (σ∗, c) is a Nash-equilibrium of the
problem.

The solution to this example is very natural: If the investor expects a crash in the
market, then she exercises the option as soon as the asset price reaches the level x′
(pre-crash strategy). After the crash, i.e. if the investor does not expect to have more
crashes, then she takes the ordinary stopping time, i.e. she stops if the process reaches
level x∗ > x′ (post-crash strategy).
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