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Abstract The focus of this paper is on the asymptotics of large-time numbers of customers in time-periodic
Markovian many-server queues with customer abandonment in heavy traffic. Limit theorems are obtained
for the periodic number-of-customers processes under the fluid and diffusion scalings. Other results concern
limits for general time-dependent queues and for time-homogeneous queues in steady state.

1 Introduction

Many-server queues with customer abandonment have been the subject of extensive research, the primary
motivation coming from modelling call centres, see, e.g., Garnett, Mandelbaum, and Reiman [4], Whitt
[17,18], Zeltyn and Mandelbaum [19], and references therein. Those papers testify to the importance of
the asymptotics where both the arrival rate and the number of servers tend to infinity, their ratio being
maintained, whereas the service and abandonment rates are kept fixed. Most studied is the case of Poisson
arrival processes and exponential service and abandonment times where the arrival, service, and abandonment
rates, and the number of servers do not vary with time. Fleming, Simon, and Stolyar [3], assuming critical
loading, obtain diffusion-scale limit theorems for the stationary number of customers. Garnett, Mandelbaum,
and Reiman [4], also for the critical load, derive fluid- and diffusion-scale limits for the number-of-customers
and virtual-waiting-time processes, and for the stationary distributions of those processes. Their other results
are concerned with limits for the stationary fractions of abandoning customers and of customers who have to
wait in the queue, as well as with computing expectations of functions of the waiting time. Similar asymptotics
for the overloaded case are obtained in Whitt [17], who assumes a finite waiting room, and Talreja and Whitt
[16]. In addition, Whitt [17] provides insight into the case where the number of servers is much greater than
the abandonment rate. Talreja and Whitt [16] also give a proof of the virtual-waiting-time-process limit for
the critically loaded queue. The Markovian assumptions are relaxed in Zeltyn and Mandelbaum [19] who
study steady-state waiting times. A general framework of Markovian stochastic processing systems with
time-varying rates is studied by Mandelbaum, Massey, and Reiman [10] who obtain fluid- and diffusion-
scale limits for the number-of-customers processes. They do not require certain loading conditions to hold.
The application to many-server queues with abandonment is explored in a series of papers by Mandelbaum,
Massey, Reiman, and Stolyar who consider time-varying rates, allow the possibility of retrials, and incorporate
virtual-waiting-time processes, see, e.g., Mandelbaum, Massey, Reiman, Rider, and Stolyar [9] and references
therein.

The purpose of this paper is a study of Markovian many-server queues with customer abandonment in
heavy traffic for a time-periodic case where the arrival, abandonment, and service rates, and the number
of servers can be modelled as jointly periodic functions of time. Under those hypotheses, the large-time
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distributions of the numbers of customers are periodic. The main result of this paper states that the large-
time distributions of the properly scaled and normalised numbers of customers converge to the periodic
distribution of a limiting diffusion process which arises as a particular case of the results of Mandelbaum,
Massey, and Reiman [10]. The convergence of the periodic one-dimensional distributions is further extended to
convergence of the periodic processes. The method of proof consists in establishing convergence of the number-
of-customers processes and in checking the tightness of the stationary distributions of embedded discrete-time
Markov chains. That makes the results of Mandelbaum, Massey, and Reiman [10] essential. Unfortunately,
the proofs there contain flaws, as specified in Remark 1 below. Therefore, before embarking on the analysis
of the large-time behaviour, I provide a separate proof of the heavy traffic convergence in distribution of the
number-of-customers processes in many-server queues with time-varying rates and abandonment. Unlike the
proof of Mandelbaum, Massey, and Reiman [10], who invoke the strong approximation techniques, the proof
here relies on the martingale theory of weak convergence which seems to be more suitable for this sort of
result. An overview of the general approach and the related literature as well as a heavy-traffic analysis of the
time-homogeneous many-server queue with abandonment in critical loading can be found in Whitt, Pang,
and Talreja [12]. The part dealing with tightness relies on bounds on the first and second moments of the
numbers of customers which are uniform over time and may be of interest in their own right. The approach
used can be traced back to Liptser and Shiryayev [8, Theorem 8.3.2] and Smorodinskii [15]. Along with the
application to the periodic case, I use the convergence of the processes and the moment bounds in order
to establish convergence of the stationary number of customers in the time-homogeneous case for all three
possible loads: supercritical, critical, and subcritical. On the one hand, this provides a unified treatment of
and a different perspective on the results of Fleming, Simon, and Stolyar [3], Garnett, Mandelbaum, and
Reiman [4], and Whitt [17] on the limits of the stationary number of customers. On the other hand, not only
are the limits for the one-dimensional stationary distributions obtained, but also limits for the stationary
versions of the corresponding processes. In addition, it is shown that allowing the abandonment and service
rates to depend on the scaling parameter gives rise to extra terms in the limit distributions.

The rest of the paper is organised as follows. In Section 2, the results on the convergence of the number-
of-customers processes are stated and proved (Theorem 1 concerns the fluid scaling and Theorem 2 concerns
the diffusion scaling). Section 3 is concerned with the periodic case, the main results being presented in
Theorem 3 and Theorem 4. In Section 4, the time-homogeneous case is considered, see Theorem 5 and
Theorem 6. The moment bounds are relegated to the appendix, see Lemma 6. This paper is an expanded
and corrected version of Puhalskii [13].

Notation and conventions. The set of real numbers is denoted by R, the set of nonnegative reals is denoted
by R+, the set of natural numbers is denoted by N, and the set of whole numbers is denoted by Z+. For
real numbers x and y, x ∧ y = min(x, y), x ∨ y = max(x, y), x+ = x ∨ 0, and ⌊x⌋ denotes the integer part;
1A denotes the indicator function of set A. A real-valued function (f(t), t ∈ R+) is said to be strongly
majorised by a real-valued function (g(t), t ∈ R+) if f(0) ≤ g(0) and the function (g(t) − f(t), t ∈ R+) is
nondecreasing. With a slight abuse of notation, this relationship is denoted by f(t) ≺ g(t) . I will say that a
function (f(t), t ∈ R+) is T -periodic, where T > 0, if f(t+ T ) = f(t) for all t and that a stochastic process
(X(t), t ∈ R+) is T -periodic if the distributions of (X(t+ T ), t ∈ R+) and of (X(t), t ∈ R+) coincide.

The space of rightcontinuous R-valued functions on R+ with lefthand limits is denoted by D(R+,R)
and is endowed with Skorohod’s J1-topology and the Borel σ-algebra. For a function (xt, t ∈ R+) from
D(R+,R), xt− represents the lefthand limit at t with the convention that x0− = 0 and ∆xt = xt − xt− .
All stochastic processes are assumed to have trajectories from and are considered as random elements of
D(R+,R) . Convergence in distribution in D(R+,R) has a standard meaning. The predictable quadratic
variation process of a locally square integrable martingale (Mt, t ∈ R+) is denoted by (〈M〉t, t ∈ R+) . (For
more background in weak convergence theory and martingale theory, the reader is referred to Jacod and
Shiryaev [7] and Liptser and Shiryayev [8].) The random entities encountered in the article are defined on a
complete probability space (Ω,F ,P) .

2 Convergence of the number-of-customers processes

I will consider a sequence of Mt/Mt/Kt +Mt queues indexed by n ∈ N. The nth queue is fed by a Poisson
process of customers of rate λn

t at time t. The customers are served by one of the Kn
t servers on a FCFS
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basis. They may abandon the queue after an exponentially distributed time with parameter θnt at time t .
More specifically, conditioned on the arrival time τ , the distribution function of the time until abandonment
is given by 1− exp(−

∫ t

0
θns+τ ds), t ∈ R+ . Similarly, the service times of the customers are exponential with

parameter µn
t at time t . A customer in service may be relegated to the head of the queue before her service

is complete if the server serving the customer becomes unavailable because Kn
t decreases. In that case, the

customer starts service from scratch the next time she enters service. (The specific policy used for choosing
the server to be removed is inconsequential for the results obtained below.)

The functions λn
t , µ

n
t , and θnt are assumed to be R+-valued locally integrable functions, i.e.,

∫ t

0 λn
s ds < ∞,

∫ t

0 µ
n
s ds < ∞, and

∫ t

0 θns ds < ∞ for all t ∈ R+ . The functions Kn
t are R+-valued and Lebesgue measurable.

The number of customers present at time 0, the arrival process, the service times, and the abandonment
times are mutually independent.

Let An
t denote the number of customer arrivals by time t. As mentioned, the process An = (An

t , t ∈ R+)
is a Poisson process with time-varying rate λn

t . Customer abandonment will be modelled via independent
Poisson processes Rn,i = (Rn,i

t , t ∈ R+), i ∈ N, of rate θnt at time t and customer service will be modelled
via independent Poisson processes Bn,i = (Bn,i

t , t ∈ R+), i ∈ N, of rate µn
t at time t. Let Qn

t represent
the number of customers present at time t. The evolution of the customer population is modelled by the
following equation

Qn
t = Qn

0 +An
t −

∞
∑

i=1

t
∫

0

1{Qn

s−
≥Kn

s−
+i} dRn,i

s −
∞
∑

i=1

t
∫

0

1{Qn

s−
∧Kn

s−
≥i} dBn,i

s . (2.1)

For an explanation, the third term on the right represents the number of customers who have abandoned
the queue by time t and the last term represents the number of service completions by time t . Informally, all
customers in service are arranged in order and the ith customer is assigned Poisson process Bn,i . A jump of
Bn,i triggers a service completion. Once that occurs, the customers in service are reordered and are assigned
possibly different processes Bn,i so that there are no gaps in the sequence of the processes Bn,i being used.
Due to the memoryless property of the exponential distribution, this reassignment does not affect the service
time distributions. The indicator function in the fourth term equals one if and only if a jump of Bn,i triggers

a service completion, so the jump of that term at time t equals
∑Qn

t−
∧Kn

t−

i=1 ∆Bn,i
t which is the number of

the processes Bn,i “being used” that jump at time t . (One may want to keep in mind that at most one
of these processes jumps at any given time a.s.) The processes Rn,i are associated with the abandonment
process in a similar fashion. (Equation (2.1) also applies to nonFCFS service disciplines so long as service is
performed when there are customers present. Besides, the customers whose service is interrupted due to a
lack of servers do not have to be put necessarily at the head of the queue. The purpose of those assumptions
is to make the set-up more specific.)

Equation (2.1) has a unique strong solution whose trajectories belong to D(R+,R+) which can be shown
by applying an iterative argument on the jump times of the Poisson processes. Let me also note that the
infinite series, in fact, represent finite sums.

Let processes Mn,A = (Mn,A
t , t ∈ R+), M

n,R = (Mn,R
t , t ∈ R+), and Mn,B = (Mn,B

t , t ∈ R+) be
defined by the relations

Mn,A
t = An

t −
t

∫

0

λn
s ds, (2.2a)

Mn,R
t =

∞
∑

i=1

t
∫

0

1{Qn

s−
≥Kn

s−
+i} dRn,i

s −
t

∫

0

θns (Q
n
s −Kn

s )
+ ds, (2.2b)

Mn,B
t =

∞
∑

i=1

t
∫

0

1{Qn

s−
∧Kn

s−
≥i} dBn,i

s −
t

∫

0

µn
s (Q

n
s ∧Kn

s ) ds. (2.2c)
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By (2.1), (2.2a), (2.2b), and (2.2c),

Qn
t = Qn

0 +

t
∫

0

λn
s ds−

t
∫

0

θns
(

Qn
s −Kn

s

)+
ds−

t
∫

0

µn
s (Q

n
s ∧Kn

s ) ds+ Mn,A
t −Mn,R

t −Mn,B
t . (2.3)

The following martingale characterisation plays a key role in subsequent developments. Let Fn
t denote the

completion with respect to P of the σ-algebra generated by the random variables Qn
0 , A

n
s , B

n,i
s , and Rn,i

s ,
where s ≤ t and i ∈ N . The associated filtration is denoted by Fn so that Fn = (Fn

t , t ∈ R+) . It may be
worth noting that Qn

t is Fn
t -measurable.

Lemma 1 The processes Mn,A, Mn,R, and Mn,B are Fn-locally square integrable martingales with respective
predictable quadratic variation processes

〈Mn,A〉t =
t

∫

0

λn
s ds, (2.4a)

〈Mn,R〉t =
t

∫

0

θns (Qn
s −Kn

s )
+ ds, (2.4b)

〈Mn,B〉t =
t

∫

0

µn
s (Q

n
s ∧Kn

s ) ds. (2.4c)

In addition, these locally square integrable martingales are pairwise orthogonal, i.e., their mutual predictable
characteristics are equal to zero:

〈Mn,A,Mn,R〉t = 〈Mn,A,Mn,B〉t = 〈Mn,R,Mn,B〉t = 0 . (2.5)

Proof According to the definition, Mn,A is an Fn-martingale. Since E(Mn,A
t )2 =

∫ t

0
λn
s ds < ∞, it is a

locally square integrable martingale. One easily checks that
(

(Mn,A
t )2 −

∫ t

0
λn
s ds, t ∈ R+

)

is a martingale.

Similarly, the processes (Hn,R,i
t , t ∈ R+) and (Hn,B,i

t , t ∈ R+), where H
n,R,i
t = Rn,i

t −
∫ t

0
θns ds and Hn,B,i

t =

Bn,i
t −

∫ t

0
µn
s ds, are pairwise orthogonal F

n-locally square integrable martingales with predictable quadratic

variation processes 〈Hn,R,i〉t =
∫ t

0
θns ds and 〈Hn,B,i〉t =

∫ t

0
µn
s ds ,respectively.

One can write by (2.2b) and (2.2c) that

Mn,R
t =

∞
∑

i=1

Mn,R,i
t

and

Mn,B
t =

∞
∑

i=1

Mn,B,i
t ,

where

Mn,R,i
t =

t
∫

0

1{Qn

s−
≥Kn

s−
+i} (dRn,i

s − θns ds)

and

Mn,B,i
t =

t
∫

0

1{Qn

s−
∧Kn

s−
≥i} (dBn,i

s − µn
s ds) .
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As stochastic integrals with respect to locally square integrable martingales, the processes
Mn,R,i = (Mn,R,i

t , t ∈ R+) and Mn,B,i = (Mn,B,i
t , t ∈ R+) are Fn-locally square in-

tegrable martingales. Their mutual predictable characteristics are given by 〈Mn,R,i,Mn,R,i′〉t =
∫ t

0
1{Qn

s−
≥Kn

s−
+i∨i′} d〈Hn,R,i, Hn,R,i′〉s , 〈Mn,B,i,Mn,B,i′〉t =

∫ t

0
1{Qn

s−
∧Kn

s−
≥i∨i′} d〈Hn,B,i, Hn,B,i′〉s , and

〈Mn,R,i,Mn,B,i′〉t =
∫ t

0 1{Qn

s−
≥Kn

s−
+i} 1{Qn

s−
∧Kn

s−
≥i′} d〈Hn,R,i, Hn,B,i′〉s . Therefore, the locally square in-

tegrable martingales Mn,R,i and Mn,B,i are pairwise orthogonal with respective predictable quadratic vari-
ation processes (

∫ t

0
1{Qn

s
≥Kn

s
+i} θns ds, t ∈ R+) and (

∫ t

0
1{Qn

s
∧Kn

s
≥i} µn

s ds, t ∈ R+) . The stopping times
τnk = inf{t ∈ R+ : Qn

t ≥ k}, where k ∈ N, are common localising times for these locally square integrable

martingales and
∑∞

i=1 E(Mn,R,i
t∧τn

k

)2 < ∞ and
∑∞

i=1 E(Mn,B,i
t∧τn

k

)2 < ∞ . It follows that, when stopped at τnk ,

the processes Mn,R and Mn,B are square integrable martingales, so they are locally square integrable mar-
tingales with respective predictable quadratic variation processes (

∑∞
i=1

∫ t

0 1{Qn
s
≥Kn

s
+i} θns ds, t ∈ R+) and

(
∑∞

i=1

∫ t

0 1{Qn
s
∧Kn

s
≥i} µn

s ds, t ∈ R+) . The fact that the locally square integrable martingales Mn,A, Mn,R,

and Mn,B are pairwise orthogonal follows since those processes have P-a.s. pairwise disjoint jumps.

The next theorem establishes a fluid-scale limit. In the rest of the paper, I will assume as fixed R+-valued
locally integrable functions (λt, t ∈ R+), (µt, t ∈ R+), and (θt, t ∈ R+), and an R+-valued Lebesgue
measurable function (κt, t ∈ R+) . Given an R+-valued random variable q0, let qt be defined by the equation

qt = q0 +

t
∫

0

λs ds−
t

∫

0

θs(qs − κs)
+ ds−

t
∫

0

µs (qs ∧ κs) ds. (2.7)

The Lipshitz continuity of (x− κs)
+ and of x ∧ κs in x ensures that the equation has a unique solution.

Theorem 1 Suppose that, as n → ∞,
∫ t

0 λ
n
s /n ds →

∫ t

0 λs ds for all t, that µn
t → µt uniformly on bounded

intervals, that θnt → θt uniformly on bounded intervals, and that Kn
t /n → κt for all t . If the random variables

Qn
0/n converge in distribution to a random variable q0 as n → ∞, then the processes (Qn

t /n, t ∈ R+) converge
in distribution in D(R+,R) to the process (qt, t ∈ R+) . In particular, if q0 is deterministic, then for all L > 0
and ǫ > 0,

lim
n→∞

P( sup
t∈[0,L]

|Q
n
t

n
− qt| > ǫ) = 0 .

Proof Let me first assume that q0 is deterministic so that the Qn
0/n converge to q0 in probability. I prove

that

lim
n→∞

P
( 1

n
sup

t∈[0,L]

|Mn,i
t | > ǫ) = 0 (2.8)

for i = A,R,B, where L > 0 and ǫ > 0 are otherwise arbitrary. The Lénglart-Rebolledo inequality, see, e.g.,
Liptser and Shiryayev [8, Theorem 1.9.3], implies that it suffices to prove that, for t ∈ R+,

lim
n→∞

P
( 1

n2
〈Mn,i〉t > ǫ) = 0 . (2.9)

The validity of (2.9) for i = A follows by (2.4a) and the hypothesis that
∫ t

0

(

λn
s /n − λs

)

ds → 0 . As a

consequence of (2.8) for i = A, I have that the An
t /n converge in probability to

∫ t

0
λs ds as n → ∞ uniformly

on bounded intervals . In order to establish (2.9) for i = R, I note that by (2.1) Qn
t /n ≤ Qn

0/n + An
t /n.

Since the latter quantities converge in probability uniformly on bounded intervals to q0 +
∫ t

0 λs ds as n →
∞, it follows that lim supn→∞ P(sups∈[0,t] Q

n
s /n > q0 +

∫ t

0 λs ds + 1) ≤ lim supn→∞ P(Qn
0/n + An

t /n >

q0 +
∫ t

0 λs ds + 1) = 0 . If n is such that sups∈[0,t]|θns − θs| ≤ 1, then by (2.4b), P(〈Mn,R〉t/n2 > ǫ) ≤
P(sups∈[0,t](Q

n
s /n)

∫ t

0
(θs + 1) ds > nǫ) , which implies (2.9) for i = R. The case i = B is treated similarly.

The limits in (2.8) have been proved.
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By (2.3) and (2.7),

|Q
n
t

n
− qt| ≤ |Q

n
0

n
− q0|+ |

t
∫

0

λn
s

n
ds−

t
∫

0

λs ds|+
t

∫

0

(θns + µn
s )|

Qn
s

n
− qs| ds

+ |
t

∫

0

µn
s

(

qs ∧
Kn

s

n

)

ds−
t

∫

0

µs (qs ∧ κs) ds|+ |
t

∫

0

θns (qs −
Kn

s

n
)+ ds−

t
∫

0

θs(qs − κs)
+ ds|

+
1

n
|Mn,A

t |+ 1

n
|Mn,R

t |+ 1

n
|Mn,B

t | .

By Gronwall’s inequality, see, e.g., p.498 in Ethier and Kurtz [1], for L > 0,

sup
t∈[0,L]

|Q
n
t

n
− qt| ≤

(

|Q
n
0

n
− q0|+ sup

t∈[0,L]

|
t

∫

0

λn
s

n
ds−

t
∫

0

λs ds|

+ sup
t∈[0,L]

|
t

∫

0

µn
s

(

qs ∧
Kn

s

n

)

ds−
t

∫

0

µs (qs ∧ κs) ds|

+ sup
t∈[0,L]

|
t

∫

0

θns (qs −
Kn

s

n
)+ ds−

t
∫

0

θs(qs − κs)
+ ds|+ 1

n
sup

t∈[0,L]

|Mn,A
t |

+
1

n
sup

t∈[0,L]

|Mn,R
t |+ 1

n
sup

t∈[0,L]

|Mn,B
t |

)

e
∫

L

0
(θn

t
+µn

t
) dt .

By (2.8) and the hypotheses, the righthand side tends in probability to zero as n → ∞.
Suppose now that q0 is random. Let Θn

x denote the distribution on D(R+,R) of (Q
n
t /n, t ∈ R+) provided

that Qn
0/n = x ∈ Σn, where Σn = {0, 1/n, 2/n, . . .}, let Ξn represent the distribution of Qn

0/n, and let Ξ

represent the distribution of q0 . By the independence assumptions, it suffices to prove that, for a bounded
continuous function f on D(R+,R),

lim
n→∞

∫

D(R+,R)×Σn

f(z)Θn
x(dz)Ξ

n(dx) =

∫

R+

f(q(x))Ξ(dx) , (2.10)

where q(x) = (qt, t ∈ R+) is defined by (2.7) with q0 = x . By the part just proved, if xn → x, where
xn ∈ Σn, and x ∈ R+, then the Θn

xn weakly converge to the Dirac measure at q(x), so

lim
n→∞

∫

D(R+,R)

f(z)Θn
xn(dz) = f(q(x)) . (2.11)

Given x ∈ R+, let g(x) = f(q(x)) and gn(x) =
∫

D(R+,R) f(z)Θ
n
r(x)(dz), where r(x) represents the element of

Σn which is closest to x on the left. By (2.11), if xn → x, where xn ∈ R+, then gn(xn) → g(x) . The weak
convergence of the Ξn to Ξ implies that

lim
n→∞

∫

R+

gn(x)Ξn(dx) =

∫

R+

g(x)Ξ(dx).

Since Ξn(Σn) = 1, I have that
∫

R+
gn(x)Ξn(dx) =

∫

D(R+,R)×Σn f(z)Θn
x(dz)Ξ

n(dx), so (2.10) follows .

Corollary 1 Suppose that the hypotheses of Theorem 1 hold where q0 is deterministic. Then the processes
Mn,A/

√
n = (Mn,A

t /
√
n, t ∈ R+), M

n,R/
√
n = (Mn,R

t /
√
n, t ∈ R+), and Mn,B/

√
n = (Mn,B

t /
√
n, t ∈ R+)
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jointly converge in distribution in D(R+,R) to the respective processes MA = (MA
t , t ∈ R+), M

R = (MR
t , t ∈

R+), and MB = (MB
t , t ∈ R+), defined as follows:

MA
t =

t
∫

0

√

λs dW
A
s ,

MR
t =

t
∫

0

√

θs(qs − κs)+ dWR
s ,

MB
t =

t
∫

0

√

µs (qs ∧ κs) dW
B
s ,

where WA = (WA
t , t ∈ R+), W

R = (WR
t , t ∈ R+), and WB = (WB

t , t ∈ R+) are independent standard
Wiener processes.

Proof The processes Mn,A/
√
n, Mn,R/

√
n, and Mn,B/

√
n are Fn-locally square integrable martingales. By

(2.4a), (2.4b), (2.4c), and (2.5) they are mutually orthogonal and their respective predictable quadratic
variation processes are given by

〈M
n,A

√
n

〉t =
t

∫

0

λn
s

n
ds,

〈M
n,R

√
n

〉t =
t

∫

0

θns
(Qn

s

n
− Kn

s

n

)+
ds,

〈M
n,B

√
n

〉t =
t

∫

0

µn
s

(Qn
s

n
∧ Kn

s

n

)

ds.

By Theorem 1 and the hypotheses, the random variables on the right converge in probability to the functions
∫ t

0
λs ds,

∫ t

0
θs(qs−κs)

+ ds, and
∫ t

0
µs (qs∧κs) ds, respectively. (Actually the first convergence is deterministic.)

I also have by (2.2a), (2.2b), and (2.2c) that the jumps of the processes Mn,A/
√
n, Mn,R/

√
n, and Mn,B/

√
n

are not greater than 1/
√
n . The proof is finished by an application of Theorem 7.1.4 in Liptser and Shiryayev

[8].

Let me introduce

αn
t =

√
n
(λn

t

n
− λt

)

, (2.12a)

βn
t =

√
n
(

µn
t − µt

)

, (2.12b)

γn
t =

√
n
(

θnt − θt
)

, (2.12c)

and

δnt =
√
n
(Kn

t

n
− κt

)

. (2.12d)

Let processes Xn = (Xn
t , t ∈ R+) be defined by

Xn
t =

√
n
(Qn

t

n
− qt

)

. (2.13)
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By (2.3) and (2.7), I can write

Xn
t = Xn

0 +

t
∫

0

αn
s ds−

t
∫

0

θns

(

(

Xn
s +

√
nqs − (δns +

√
nκs)

)+ −
√
n(qs − κs)

+
)

ds

−
t

∫

0

µn
s

(

(

Xn
s +

√
nqs

)

∧
(

δns +
√
nκs

)

−
√
n (qs ∧ κs)

)

ds−
t

∫

0

γn
s (qs − κs)

+ ds

−
t

∫

0

βn
s (qs ∧ κs) ds+

1√
n
Mn,A

t − 1√
n
Mn,R

t − 1√
n
Mn,B

t . (2.14)

In the rest of the paper, (αt, t ∈ R+), (βt, t ∈ R+), and (γt, t ∈ R+) represent locally integrable functions
and (δt, t ∈ R+) represents a locally bounded Lebesgue measurable function.

The following theorem yields a diffusion-scale limit.

Theorem 2 Let the hypotheses of Theorem 1 hold where q0 ∈ R+ is deterministic. Suppose that
∫ t

0 α
n
s ds →

∫ t

0 αs ds, β
n
t → βt, γ

n
t → γt, and δnt → δt uniformly on bounded intervals as n → ∞, and that the random

variables Xn
0 converge in distribution to a random variable X0 as n → ∞ . Then the processes Xn converge

in distribution in D(R+,R) to the process X = (Xt , t ∈ R+) that is the solution of the equation

Xt = X0 +

t
∫

0

(

αs − γs(qs − κs)
+ − βs(qs ∧ κs)

)

ds−
t

∫

0

θs
(

1{qs>κs} (Xs − δs) + 1{qs=κs} (Xs − δs)
+
)

ds

−
t

∫

0

µs

(

1{qs<κs} Xs + 1{qs=κs} (Xs ∧ δs) + 1{qs>κs} δs
)

ds+

t
∫

0

√

λs + θs(qs − κs)+ + µs (qs ∧ κs) dWs,

where W = (Wt, t ∈ R+) is a standard Wiener process and W and X0 are independent.

Proof The equation for X has a unique strong solution by the fact that the infinitesimal drift coefficients
are Lipshitz continuous, the functions (λs, s ∈ R+), (µs, s ∈ R+), (θs, s ∈ R+), (αs, s ∈ R+), (βs, s ∈ R+),
and (γs, s ∈ R+) are locally integrable, and the function (δs, s ∈ R+) is locally bounded, see, e.g., Ikeda and
Watanabe [6].

Let me first consider the case of deterministic Xn
0 , so Xn

0 = xn ∈ Sn, where Sn represents the set of
numbers of the form

√
n(m/n− q0) for m ∈ Z+, and xn → x ∈ R as n → ∞ . By (2.14),

|Xn
t | ≤ |xn|+ |

t
∫

0

αn
s ds|+

t
∫

0

(θns + µn
s )|Xn

s | ds+
t

∫

0

(θns + µn
s )|δns | ds

+

t
∫

0

|γn
s |qs ds+

t
∫

0

|βn
s | qs ds+

1√
n
|Mn,A

t |+ 1√
n
|Mn,R

t |+ 1√
n
|Mn,B

t | .

Gronwall’s inequality, the hypotheses of Theorem 2, and Corollary 1 imply that for L > 0

lim
r→∞

lim sup
n→∞

P( sup
t∈[0,L]

|Xn
t | > r) = 0 . (2.15)

Also, for s ≤ t,

|Xn
t −Xn

s | ≤ |
t

∫

s

αn
u du|+

t
∫

s

(θnu + µn
u)|Xn

u | du+

t
∫

s

(θnu + µn
u)|δnu | du

+

t
∫

s

|γn
u |qu du+

t
∫

s

|βn
u | qu du +

1√
n
|Mn,A

t −Mn,A
s |+ 1√

n
|Mn,R

t −Mn,R
s |+ 1√

n
|Mn,B

t −Mn,B
s | .
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Given L > 0, η > 0, and r > 0 ,

P( sup
s,t∈[0,L]: |s−t|<δ

|Xn
t −Xn

s | > η) ≤ P( sup
t∈[0,L]

|Xn
t | > r)

+P
(

sup
s,t∈[0,L]: |s−t|<δ

(

|
t

∫

s

αn
u du|+ r

t
∫

s

(θnu + µn
u) du +

t
∫

s

(θnu + µn
u)|δnu | du

+

t
∫

s

|γn
u |qu du+

t
∫

s

|βn
u | qu du+

1√
n
|Mn,A

t −Mn,A
s |

+
1√
n
|Mn,R

t −Mn,R
s |+ 1√

n
|Mn,B

t −Mn,B
s |

)

> η
)

.

Hence, by Corollary 1 and the hypotheses,

lim sup
n→∞

P( sup
s,t∈[0,L]: |s−t|<δ

|Xn
t −Xn

s | > η) ≤ lim sup
n→∞

P( sup
t∈[0,L]

|Xn
t | > r)

+P
(

sup
s,t∈[0,L]: |s−t|<δ

(

|
t

∫

s

αu du|+ r

t
∫

s

(θu + µu) du+

t
∫

s

(θu + µu)|δu| du

+

t
∫

s

|γu|qu du +

t
∫

s

|βu| qu du+ |MA
t −MA

s |+ |MR
t −MR

s |+ |MB
t −MB

s |
)

>
η

2

)

.

By the continuity of the processes MA, MB, and MR, and absolute continuity of the Lebesgue integral, the
limit of the second probability on the right, as δ → 0, equals zero, so

lim sup
δ→0

lim sup
n→∞

P( sup
s,t∈[0,L]: |s−t|<δ

|Xn
t −Xn

s | > η) ≤ lim sup
n→∞

P( sup
t∈[0,L]

|Xn
t | > r) .

By (2.15), the righthand side can be made arbitrarily small by choosing r great enough. Therefore,

lim
δ→0

lim sup
n→∞

P( sup
s,t∈[0,L]: |s−t|<δ

|Xn
t −Xn

s | > η) = 0 .

It follows that the sequence Xn is C-tight, i.e., it is tight for convergence in distribution in D(R+,R), and
all limit points are continuous-path processes. Let X̃ = (X̃t, t ∈ R+) represent a subsequential limit of the
Xn.

Let me note that if a sequence of functions (xn
t , t ∈ R+) from D(R+,R) converges for Skorohod’s J1-

topology to a continuous function (xt, t ∈ R+) as n → ∞, then

t
∫

0

θns
((

xn
s +

√
nqs − (δns +

√
nκs)

)+ −
√
n(qs − κs)

+
)

ds →
t

∫

0

θs
(

1{qs>κs} (xs − δs)+ 1{qs=κs} (xs − δs)
+
)

ds

(2.16)
and

t
∫

0

µn
s

((

xn
s +

√
nqs

)

∧(δns +
√
nκs)−

√
n (qs∧κs)

)

ds →
t

∫

0

µs

(

1{qs<κs} xs+ 1{qs=κs} (xs∧δs)+ 1{qs>κs} δs
)

ds .

(2.17)

To see (2.16), one could first note that θns
((

xn
s +

√
nqs− (δns +

√
nκs)

)+−√
n(qs−κs)

+
)

→ θs
(

1{qs>κs} (xs−
δs) + 1{qs=κs} (xs − δs)

+
)

for each s, for if qs > κs, then
(

xn
s +

√
nqs − (δns +

√
nκs)

)+ −√
n(qs − κs)

+
)

=
(

xn
s +

√
nqs−(δns +

√
nκs)

)

−√
n(qs−κs)

)

= xn
s −δns for all n great enough, if qs = κs, then

(

xn
s +

√
nqs−(δns +√

nκs)
)+−√

n(qs−κs)
+
)

= (xn
s −δns )

+, and if qs < κs, then
(

xn
s +

√
nqs−(δns +

√
nκs)

)+−√
n(qs−κs)

+
)

= 0
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for all n great enough. Since |θns
((

xn
s +

√
nqs−(δns +

√
nκs)

)+−√
n(qs−κs)

+
)

| ≤ θns |xn
s −δns |, the convergence

in (2.16) follows by Lebesgue’s dominated convergence theorem. The argument for (2.17) is similar.
On recalling Corollary 1, I conclude from (2.14) and the continuous mapping principle that X̃ must

satisfy the equation

X̃t = x+

t
∫

0

αs ds−
t

∫

0

θs
(

1{qs>κs} (X̃s − δs) + 1{qs=κs} (X̃s − δs)
+
)

ds−
t

∫

0

γs(qs − κs)
+ ds

−
t

∫

0

µs

(

1{qs<κs} X̃s + 1{qs=κs} (X̃s ∧ δs) + 1{qs>κs} δs
)

ds−
t

∫

0

βs(qs ∧ κs) ds

+

t
∫

0

√

λs + θs(qs − κs)+ + µs (qs ∧ κs) dW̃s ,

where (W̃t, t ∈ R+) is a standardWiener process. Since the latter equation has a unique solution, X̃ coincides
in law with X , so the Xn converge in distribution to X .

I will now consider the case of general Xn
0 . The argument is similar to the one used in the proof of

Theorem 1. Let Φn
x denote the distribution on D(R+,R) of X

n provided that Xn
0 = x ∈ Sn, let Φx denote

the distribution on D(R+,R) of X provided that X0 = x ∈ R , let Ψn denote the distribution of Xn
0 , and let

Ψ denote the distribution of X0 . By the independence assumptions, it suffices to prove that, for a bounded
continuous function f on D(R+,R),

lim
n→∞

∫

D(R+,R)×Sn

f(z)Φn
x(dz)Ψ

n(dx) =

∫

D(R+,R)×R

f(z)Φx(dz)Ψ(dx) . (2.18)

By the part just proved, if xn → x, where xn ∈ Sn and x ∈ R, then the Φn
xn weakly converge to Φx , so

lim
n→∞

∫

D(R+,R)

f(z)Φn
xn(dz) =

∫

D(R+,R)

f(z)Φx(dz) . (2.19)

Given x ∈ R, let g(x) =
∫

D(R+,R) f(z)Φx(dz) and gn(x) =
∫

D(R+,R) f(z)Φ
n
r(x)(dz), where r(x) represents

the element of Sn which is closest to x on the left. By (2.19), if xn → x, where xn ∈ R and x ∈ R, then
gn(xn) → g(x) . The weak convergence of the Ψn to Ψ implies that

lim
n→∞

∫

R

gn(x)Ψn(dx) =

∫

R

g(x)Ψ(dx).

Since Ψn(Sn) = 1, I have that
∫

R
gn(x)Ψn(dx) =

∫

D(R+,R)×Sn f(z)Φn
x(dz)Ψ

n(dx), so (2.18) follows .

Remark 1 The assertions of Theorem 1 and Theorem 2 are contained in Theorem 2.2 and Theorem 2.3,
respectively, in Mandelbaum, Massey, and Reiman [10], albeit under slightly stronger hypotheses. However,
the proof of Lemma 9.3 there depends on the erroneous claim that if a sequence of nonnegative random
variables defined on the same probability space is tight, then it has a finite limit superior a.s. There are also
problems with establishing the martingale property in the proof of Lemma 9.1.

3 Convergence of the periodic queue lengths

In this section, I will assume that the functions λn
t , µ

n
t , θ

n
t , K

n
t , λt, µt, θt, and κt are T -periodic, where

T > 0 . I will also assume that

T
∫

0

λs ds > 0 (3.1)
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and

T
∫

0

(µs ∧ θs) ds > 0 . (3.2)

In the long term, one expects a periodic pattern to emerge for the number of customers. The next lemma
confirms that to be the case. Let Qn,ℓ = (Qn

ℓT+t, t ∈ R+), where ℓ ∈ Z+ . The sequence {Qn,ℓ, ℓ ∈ Z+} is a
discrete-time homogeneous Markov process with values in D(R+,R) .

Lemma 2 Suppose that
∫ T

0 (µn
s ∧ θns ) ds > 0 . As ℓ → ∞, given an arbitrarily distributed Qn

0 , the sequence

of the distributions of the processes Qn,ℓ converges in the distance of total variation in D(R+,R) to the
distribution of a process Q̆n = (Q̆n

t , t ∈ R+) , which is a unique T -periodic Markov process with the same
transition probability function as Qn . The distribution of (Q̆n

t , t ∈ R+) is a stationary initial distribution
for {Qn,ℓ, ℓ ∈ Z+} .

Remark 2 For the definition of the distance of total variation, see, e.g., p.274 in Jacod and Shiryaev [7].

Proof If
∫ T

0
λn
s ds = 0, then An

t = 0 for all t ∈ R+, so 0 is an absorbing state for Qn and Qn
t → 0 in the

distance of total variation as t → ∞ , so Q̆n
t = 0 .

Suppose that
∫ T

0 λn
s ds > 0 . Then the sequence {Qn

ℓT , ℓ ∈ Z+} is a time-homogeneous, irreducible and
aperiodic discrete-time Markov chain. One can show as follows that it converges in the distance of total
variation to a unique stationary distribution as ℓ → ∞. It suffices to prove that the chain is positive
recurrent, which, by Foster’s criterion, will follow if, for some N ∈ Z+,

ExQ
n
T ≤ x− 1 for all x ∈ {N + 1, N + 2, . . .} , (3.3)

where Ex denotes expectation with respect to the probability measure Px such that Px(Q
n
0 = x) = 1 , see,

e.g., Theorem 11.3.4 on p.265 and Proposition 13.2.4 on p.319 in Meyn and Tweedie [11], or Theorem 2.2.3

on p.29 in Fayolle, Malyshev, and Men’shikov [2]. Since Qn
t ≤ Qn

0 + An
t by (2.1), ExQ

n
t ≤ x +

∫ t

0 λn
s ds .

By Lemma 1, the processes Mn,A, Mn,R, and Mn,B are Fn-locally square integrable martingales under
Px with respective predictable quadratic variation processes (

∫ t

0 λ
n
s ds , t ∈ R+), (

∫ t

0 θ
n
s (Qn

s −Kn
s )

+ ds, t ∈
R+), and (

∫ t

0 µ
n
s (Q

n
s ∧ Kn

s ) ds, t ∈ R+) . Since the latter processes are of finite expectation, E(Mn,A
t )2 <

∞, E(Mn,R
t )2 < ∞, and E(Mn,B

t )2 < ∞ . In particular, the processes Mn,A, Mn,R, and Mn,B are Fn-
martingales, so by (2.3),

−ExQ
n
t ≺ −x+

t
∫

0

(θns ∨ µn
s )ExQ

n
s ds ,

which implies by Lemma 5 that

inf
t≤T

ExQ
n
t ≥ xe−

∫
T

0
(µn

s
∨θn

s
) ds .

By (2.3),

ExQ
n
T ≤ x+

T
∫

0

λn
s ds−

T
∫

0

(µn
s ∧ θns )ExQ

n
s ds ≤ x+

T
∫

0

λn
s ds− xe−

∫
T

0
(µn

s
∨θn

s
) ds

T
∫

0

µn
s ∧ θns ds .

Therefore, (3.3) holds if

N ≥ e
∫

T

0
(µn

s
∨θn

s
) ds

1 +

T
∫

0

λn
s ds

T
∫

0

µn
s ∧ θns ds

.
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Thus, the distributions of Qn
ℓT converge in the distance of total variation to a limit distribution as ℓ → ∞.

Since the transition probability function of Qn,ℓ is periodic, the finite-dimensional distributions of Qn,ℓ

converge in the distance of total variation to limit distributions as ℓ → ∞. Since the Borel and cylindrical
σ-algebras on D(R+,R) coincide, it follows that the distributions of the Markov processes Qn,ℓ converge in
the distance of total variation to the distribution of a process Q̆n = (Q̆n

t , t ∈ R+), which is a T -periodic
Markov process with the same transition probability function as Qn . Since the limiting distribution of the
Qn

ℓT is specified uniquely, the distribution of Q̆n is specified uniquely. Since the sequence {Q̆n
ℓT , ℓ ∈ Z+}

is stationary and the processes (Q̆n
ℓT+t , t ∈ R+) are Markov processes with the same transition probability

function, it follows that the sequence {(Q̆n
ℓT+t , t ∈ R+), ℓ ∈ Z+} is stationary.

Remark 3 Note that the sequence {Qn,ℓ, ℓ ∈ Z+} is deterministic once the initial condition (Qn
t , t ∈ R+)

has been chosen.

My next step is to consider periodic regimes for the deterministic approximation.

Lemma 3 1. There exists a unique q0 ∈ R+ such that the function (qt, t ∈ R+) defined by equation (2.7)
is T -periodic. An arbitrary solution converges to this periodic solution as t → ∞.

2. If q0 is a random variable such that the process (qt, t ∈ R+) is T -periodic, then q0 is deterministic and
has the value specified in part 1.

Proof By uniqueness, no two solutions have a point in common. In particular, if q′0 > q0, then for the
corresponding solutions, q′t > qt for all t ∈ R+. Given q0, there are three possibilities: either qT = q0, or
qT > q0, or qT < q0 . If qT = q0, then the solution starting at q0 is a periodic solution. Suppose that
qT > q0 . Then on taking qT as a new initial condition, by periodicity, qt+T > qt for all t ∈ R+, so q2T > qT .
Continuing on, I obtain an increasing sequence of solutions (qℓT+t, t ∈ R+), where ℓ = 0, 1, 2, . . . . By part
1(a) of Lemma 6 found in the appendix, supt∈R+

qt < ∞ , so there exists a limit of qℓT+t as ℓ → ∞ . I
denote this limit by q̆t . Since qℓT → q̆0 and qℓT+T → q̆T , (q̆t, t ∈ R+) is a T -periodic function. By bounded
convergence, it is also a solution. If qT < q0, then (qℓT+t, t ∈ R+) is a monotonically decreasing sequence of
functions converging to a T -periodic solution.

To show the uniqueness of a T -periodic solution, note that if (q̆t, t ∈ R+) is a T -periodic solution, then

q̆0 = q̆T , so
∫ T

0 λs ds =
∫ T

0 θs(q̆s−κs)
+ ds+

∫ T

0 µs (q̆s∧κs) ds . Now, if (q
′
t, t ∈ R+) is a solution with q′0 > q̆0,

then q′t > q̆t for all t, so on recalling (3.2),

T
∫

0

θs(q
′
s − κs)

+ ds+

T
∫

0

µs (q
′
s ∧ κs) ds >

T
∫

0

θs(q̆s − κs)
+ ds+

T
∫

0

µs (q̆s ∧ κs) ds =

T
∫

0

λs ds,

which implies that q′T < q′0. Similarly, if q′0 < q̆0, then q′T > q′0 . Thus, (q
′
t, t ∈ R+) is not T -periodic. Part 1

is proved.
Let (qt, t ∈ R+) represent a T -periodic process. The reasoning used to show the uniqueness of a T -

periodic solution shows that |qT − q̆0| < |q0 − q̆0| when q0 6= q̆0 . Since the distributions of |qT − q̆0| and
|q0 − q̆0| are the same, q0 = q̆0 a.s.

In what follows, (q̆t, t ∈ R+) represents the T -periodic solution of Lemma 3.

Theorem 3 Suppose that, as n → ∞,
∫ t

0
λn
s /n ds →

∫ t

0
λs ds for all t, that µn

t → µt uniformly on bounded
intervals, that θnt → θt uniformly on bounded intervals, and that Kn

t /n → κt for all t . Then, for all ǫ > 0
and L > 0,

lim
n→∞

P( sup
t∈[0,L]

| Q̆
n
t

n
− q̆t| > ǫ) = 0 .

Proof Since Q̆n
0 is a limit in distribution of the Qn

t as t → ∞, by part 1(b) of Lemma 6 (with Qn
0 = 0),

the sequence {Q̆n
0/n, n ∈ N} is tight. (Note that by (3.2), lim infn→∞

∫ T

0
(µn

s ∧ θns ) ds > 0.) By Theorem 1

and Prohorov’s theorem, the sequence of processes {(Q̆n
t /n, t ∈ R+), n ∈ N} is tight and any limit point

(qt, t ∈ R+) is the solution of (2.7) for a suitable q0 . Since the processes (Q̆n
t /n, t ∈ R+) are T -periodic, so

is the process (qt, t ∈ R+) . By Lemma 3, qt = q̆t a.s., which concludes the proof.



On the Mt/Mt/Kt +Mt queue in heavy traffic 13

Let

X̆n
t =

√
n
( Q̆n

t

n
− q̆t

)

. (3.4)

The process (X̆n
t , t ∈ R+) is a T -periodic Markov process.

Theorem 4 Suppose that
∫ t

0
αn
s ds →

∫ t

0
αs ds, βn

t → βt, γn
t → γt, and δnt → δt uniformly on bounded

intervals as n → ∞. Then the processes (X̆n
t , t ∈ R+) converge in distribution as n → ∞ to process

(X̆t, t ∈ R+) , which is a unique T -periodic Markov process satisfying the equation

X̆t = X̆0 +

t
∫

0

(

αs − γs(q̆s − κs)
+ − βs(q̆s ∧ κs)

)

ds−
t

∫

0

θs
(

1{q̆s>κs} (X̆s − δs) + 1{q̆s=κs} (X̆s − δs)
+
)

ds

−
t

∫

0

µs

(

1{q̆s<κs} X̆s + 1{q̆s=κs} (X̆s ∧ δs) + 1{q̆s>κs} δs
)

ds+

t
∫

0

√

λs + θs(q̆s − κs)+ + µs (q̆s ∧ κs) dW̆s,

where (W̆t, t ∈ R+) is a standard Wiener process and X̆0 and (W̆t, t ∈ R+) are independent.

Proof By Lemma 2 and Lemma 3, the processes (Xn
ℓT+t, t ∈ R+), where Qn

0 = q0 = 0, converge in distri-

bution in D(R+,R) to (X̆n
t , t ∈ R+) as ℓ → ∞ and the sequence {(X̆n

ℓT+t, t ∈ R+), ℓ ∈ Z+} is stationary.
By part 1(c) of Lemma 6, limV →∞ lim supn→∞ lim supt→∞ P(|Xn

t | > V ) = 0. Therefore, the sequence
{X̆n

0 , n ∈ N} is tight. By Theorem 2 and Prohorov’s theorem, the sequence {(X̆n
t , t ∈ R+) , n ∈ N} is tight.

Let (X̆t, t ∈ R+) represent a limit point of that sequence for convergence in distribution in D(R+,R) as
n → ∞ . As follows by Theorem 2, it satisfies the equation in the statement and is a Markov process. In
addition, {(X̆ℓT+t, t ∈ R+), ℓ ∈ Z+} is a limit point of {(X̆n

ℓT+t, t ∈ R+), ℓ ∈ Z+} as n → ∞ for convergence

in distribution in D(R+,R)
Z+ . Since the sequence {(X̆n

ℓT+t, t ∈ R+), ℓ ∈ Z+} is stationary, so is the sequence

{(X̆ℓT+t, t ∈ R+), ℓ ∈ Z+}. Hence, (X̆t, t ∈ R+) is a T -periodic Markov process.
The following coupling argument shows that the distribution of (X̆t, t ∈ R+) is specified uniquely and is

the limit of the distributions of processes (X̃ℓT+t, t ∈ R+), as ℓ → ∞ , where the process X̃ = (X̃t, t ∈ R+)
is defined by the equation

X̃t = x+

t
∫

0

(

αs − γs(q̆s − κs)
+ − βs(q̆s ∧ κs)

)

ds−
t

∫

0

θs
(

1{q̆s>κs} (X̃s − δs) + 1{q̆s=κs} (X̃s − δs)
+
)

ds

−
t

∫

0

µs

(

1{q̆s<κs} X̃s + 1{q̆s=κs} (X̃s ∧ δs) + 1{q̆s>κs} δs
)

ds+

t
∫

0

√

λs + θs(q̆s − κs)+ + µs (q̆s ∧ κs) dW̃s ,

where x ∈ R and (W̃t, t ∈ R+) is a standard Wiener process. Let me consider a process X̃ ′ = (X̃ ′
t, t ∈ R+)

which starts at y ∈ R and is driven by the negative of the Wiener process (W̃t, t ∈ R+) so that

X̃ ′
t = y +

t
∫

0

(

αs − γs(q̆s − κs)
+ − βs(q̆s ∧ κs)

)

ds−
t

∫

0

θs
(

1{q̆s>κs} (X̃
′
s − δs) + 1{q̆s=κs} (X̃

′
s − δs)

+
)

ds

−
t

∫

0

µs

(

1{q̆s<κs} X̃
′
s + 1{q̆s=κs} (X̃

′
s ∧ δs) + 1{q̆s>κs} δs

)

ds−
t

∫

0

√

λs + θs(q̆s − κs)+ + µs (q̆s ∧ κs) dW̃s .

Obviously, the distribution of X̃ ′ is the same as the distribution of X̃ if the latter were started at y . Assuming
that x > y, I have that until X̃ and X̃ ′ meet,

X̃t − X̃ ′
t ≤ x− y + 2

t
∫

0

√

λs + θs(q̆s − κs)+ + µs (q̆s ∧ κs) dW̃s .



14 A.A.Puhalskii

For τx,y = inf{t : X̃t = X̃ ′
t},

P(τx,y > t) ≤ P(2 inf
u∈[0,t]

u
∫

0

√

λs + θs(q̆s − κs)+ + µs (q̆s ∧ κs) dW̃s ≥ y − x) .

Let Γ (u) = inf{v :
∫ v

0

(

λs + θs(q̆s − κs)
+ +µs (q̆s ∧ κs)

)

ds = u} , which is finite by (3.1). Since the processes

(
∫ u

0

√

λs + θs(q̆s − κs)+ + µs (q̆s ∧ κs) dW̃s, u ∈ R+) and (W̃∫
u

0
(λs+θs(q̆s−κs)++µs (q̆s∧κs)) ds, u ∈ R+) have the

same distribution, Γ−1(u) =
∫ u

0
(λs+θs(q̆s−κs)

++µs (q̆s∧κs)) ds, the random variables (− infu∈[0,Γ−1(t)] W̃u)

and |W̃Γ−1(t)| have the same distribution, and the random variables W̃Γ−1(t) and
√

Γ−1(t)W̃1 have the same
distribution, I conclude that

P(2 inf
u∈[0,t]

u
∫

0

√

λs + θs(q̆s − κs)+ + µs (q̆s ∧ κs) dW̃s ≥ y − x) = P(2 inf
u∈[0,Γ−1(t)]

W̃u ≥ y − x)

= P(2|W̃Γ−1(t)| ≤ x− y) = P(2|W̃1| ≤ (x− y)/
√

Γ−1(t)) → 0 as t → ∞,

It follows that P(τx,y > t) → 0 as t → ∞ . Furthermore, the latter convergence is uniform over x and y from

bounded sets. Therefore, the T -periodic version of X̃ is unique in distribution and one has convergence in
the distance of total variation to the distribution of that process from an arbitrary initial distribution. (For
a sample argument, let ν denote the distribution of X̆0, let ν̃ denote a probability distribution on R, and let
νx,ℓ denote the distribution of (X̃ℓT+s, s ∈ R+) with X̃0 = x, where ℓ ∈ Z+. Then, for a bounded measur-
able function f on D(R+,R) and U ∈ R+, |

∫

R

∫

D(R+,R)
f(z)νx,ℓ(dz)ν̃(dx) −

∫

R

∫

D(R+,R)
f(z)νx,0(dz)ν(dx)| ≤

2 sup|x|≤U |
∫

D(R+,R)
f(z)νx,ℓ(dz)−

∫

D(R+,R)
f(z)ν0,ℓ(dz)|+ 2 supx∈R|f(x)|(ν̃(x : |x| > U) + ν(x : |x| > U)) ≤

2 supx∈R|f(x)|
(

sup|x|≤U P(τx,0 > ℓT )+ ν̃(|x| > U)+ ν(|x| > U)
)

. The latter expression converges to zero as
ℓ → ∞ and U → ∞ .)

Remark 4 If the functions (θt, t ∈ R+) and (µt, t ∈ R+) are bounded, then the existence of the periodic
version of X̃ can be deduced from Theorem 5.2 on p.90 of Has’minskii [5] (with V (t, x) = x2). I haven’t found
other results in the literature which directly apply, the sticking point being that the equation coefficients are
not differentiable functions of time and space.

4 Convergence of stationary distributions

In this section I will assume constant arrival, service, and abandonment rates, so λn
t = λn ≥ 0, θnt = θn > 0,

µn
t = µn > 0, λt = λ ≥ 0, θt = θ > 0, µt = µ > 0, αt = α, βt = β, and γt = γ. The number of servers Kn

t

is also assumed to be constant which I will take as the scaling parameter n, so κt = 1. Accordingly, δt = 0.
The equations for the fluid- and diffusion-scale limits which appear in Theorem 1 and Theorem 2 assume
the following form:

qt = q0 + λt−
t

∫

0

θ(qs − 1)+ ds−
t

∫

0

µ (qs ∧ 1) ds, (4.1)

Xt = X0 +

t
∫

0

(

α− γ(qs − 1)+ − β(qs ∧ 1)
)

ds−
t

∫

0

θ
(

1{qs>1} Xs + 1{qs=1} X
+
s

)

ds

−
t

∫

0

µ
(

1{qs<1} Xs + 1{qs=1} Xs ∧ 0
)

ds+

t
∫

0

√

λ+ θ(qs − 1)+ + µ (qs ∧ 1) dWs . (4.2)

First, I investigate stationary solutions of (4.1).

Lemma 4 If λ ≥ µ, then limt→∞ qt = (λ − µ)/θ + 1. If λ ≤ µ, then limt→∞ qt = λ/µ. For all t, qt 6= 1
except when q0 = 1 and λ = µ in which case qt = 1 for all t .
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Proof Suppose that λ > µ . Then by (4.1),

d

dt

(

qt −
λ− µ

θ
− 1

)2
= 2

(

qt −
λ− µ

θ
− 1

)

(λ− θ(qt − 1)+ − µ (qt ∧ 1)) .

If qt − (λ − µ)/θ − 1 ≥ ǫ for ǫ > 0, then λ − θ(qt − 1)+ − µ (qt ∧ 1) = λ − θ(qt − 1) − µ ≤ −θǫ . If
qt − (λ − µ)/θ − 1 ≤ −ǫ for ǫ ∈ (0, (λ − µ)/θ), then λ − θ(qt − 1)+ − µ (qt ∧ 1) ≥ λ − θ(qt − 1)+ − µ ≥ θǫ .
Hence, qt → (λ− µ)/θ + 1 as t → ∞ .

If λ < µ, then a similar reasoning applied to the function (qt−λ/µ)2 shows that qt → λ/µ . Suppose λ = µ .
Then q̇t = µ(1−qt)

+−θ(qt−1)+ . Hence, (d/dt)(qt−1)2 = 2(qt−1)
(

µ(1−qt)
+−θ(qt−1)+

)

≤ −2(µ∧θ)(qt−1)2 .
Consequently, qt → 1 .

The Markov chain Qn is a birth-and-death process on Z+ with birth rates λn and death rates µn(i ∧ n) +

θn(i−n)+ . Since
∑∞

k=1(λ
n)k/

∏k
i=1

(

µn(i∧n)+ θn(i−n)+
)

< ∞, it admits a unique stationary distribution
which is a limit in the distance of total variation of the transient distributions for any initial condition. Let
Q̂n = (Q̂n

t , t ∈ R+) represent the stationary version of Qn and let q̂0 = limt→∞ qt .

Theorem 5 Suppose that λn/n → λ, that µn → µ, and that θn → θ as n → ∞ . Then, for all ǫ > 0 and
L > 0,

lim
n→∞

P( sup
t∈[0,L]

| Q̂
n
t

n
− q̂0| > ǫ) = 0 .

Proof By part 2(b) of Lemma 6, supn∈N
EQ̂n

0/n < ∞, so the sequence Q̂n
0/n is tight. By Theorem 1, the

sequence of processes (Q̂n
t /n, t ∈ R+) is tight and any limit point (qt, t ∈ R+) for convergence in distribution

is a solution to (4.1) for a suitable R+-valued random variable q0 where, by Fatou’s lemma, Eq0 < ∞ . Since
(Q̂n

t /n, t ∈ R+) is stationary, so is (qt, t ∈ R+) . By the proof of Lemma 4, |qt − q̂0| decreases in t and tends
to zero as t → ∞ , so by dominated convergence E|qt − q̂0| → 0 . By stationarity, E|qt − q̂0| = 0 .

Let process X̂n = (X̂n(t), t ∈ R+) represent the stationary version of Xn ,i.e., X̂n(t) =
√
n(Q̂n

t /n− q̂0) .

Theorem 6 Suppose that
√
n(λn/n − λ) → α,

√
n(µn − µ) → β, and

√
n(θn − θ) → γ as n → ∞. Then

the processes X̂n converge in distribution in D(R+,R) as n → ∞ to a stationary continuous-path Markov
process X̂ = (X̂t, t ∈ R+).

If λ < µ, then the process X̂ is Gaussian with EX̂t = α/µ− β λ/µ2 and Cov (X̂u, X̂v) = (λ/µ)e−µ|u−v|.
If λ > µ, then the process X̂ is Gaussian with EX̂t = α/θ − γ(λ − µ)/θ2 − β/θ and Cov (X̂u, X̂v) =
(λ/θ)e−θ|u−v|. If λ = µ, then

X̂t = X̂0 + (α− β)t− θ

t
∫

0

X̂+
s ds+ µ

t
∫

0

(−X̂s)
+ ds+

√

2µŴt ,

where the distribution of X̂0 has density C exp
((

(α− β)x− (x2/2)(θ 1{x≥0} + µ1{x<0} )
)

/µ
)

, (Ŵt, t ∈ R+)

is a standard Wiener process, and X̂0 and (Ŵt, t ∈ R+) are independent.

Proof The distributions of the random variables Xn
t with Qn

0 = q0 = 0 converge in the distance of total
variation as t → ∞ to the distribution of X̂n

0 . By part 2(c) of Lemma 6 and Fatou’s lemma, supn∈NE(X̂n
0 )

2 <

∞, so the sequence of the distributions of the X̂n
0 is tight. By Theorem 2, the sequence of the distributions

of the X̂n is tight and any limit point in distribution (X̀t, t ∈ R+) satisfies the equation

X̀t = X̀0 +
(

α− γ(q̂0 − 1)+ − β(q̂0 ∧ 1)
)

t−
t

∫

0

θ
(

1{q̂0>1} X̀s + 1{q̂0=1} X̀
+
s

)

ds

−
t

∫

0

µ
(

1{q̂0<1} X̀s + 1{q̂0=1} (X̀s ∧ 0)
)

ds+
√

λ+ θ(q̂0 − 1)+ + µ (q̂0 ∧ 1) Ẁt,

where (Ẁt, t ∈ R+) is a standard Wiener process and X̀0 and (Ẁt, t ∈ R+) are independent. Since the Xn

are stationary, so is X̀ . Stationary distributions of one-dimensional diffusions are available in the literature,
see, e.g., Skorokhod [14].
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Remark 5 Fleming, Simon, and Stolyar [3] obtain the distribution of X̂t provided λ = µ starting with an
explicit formula for the stationary distribution of Qn .

Remark 6 If λ ≤ µ, then the condition that
√
n(θn − θ) → γ can be disposed of and one can merely require

that θn → θ, as in Theorem 2 in Garnett, Mandelbaum, and Reiman [4].

Remark 7 The limits obtained in Theorems 2.1 and 2.3 in Whitt [17] correspond to the case where λn = nλ,
µn = µ, θn = θ, and λ > µ, so α = β = γ = 0 .

A Appendix

Lemma 5 Let (F (t), t ∈ R+) be a function of locally bounded variation and (f(t), t ∈ R+) be a locally bounded Lebesgue

measurable function. If a locally integrable function (y(t), t ∈ R+) is such that y(t) ≺ F (t) −
∫ t
0
f(s)y(s) ds, then

y(t) ≤ e−
∫
t

0
f(s) dsF (0) + e−

∫
t

0
f(s) ds

t
∫

0

e
∫
s

0
f(u) du dF (s) .

Proof Let g(t) = F (t) −
∫ t
0 f(s)y(s) ds− y(t) . The function (g(t)) is nondecreasing, g(0) ≥ 0, and

y(t) = F (t) − g(t) −
t

∫

0

f(s)y(s) ds .

Hence,

y(t) = e−
∫
t

0
f(s) ds(F (0) − g(0)) + e−

∫
t

0
f(s) ds

t
∫

0

e
∫
s

0
f(u) du d(F (s)− g(s))

≤ e−
∫
t

0
f(s) dsF (0) + e−

∫
t

0
f(s) ds

t
∫

0

e
∫
s

0
f(u) du dF (s) .

The next lemma provides the bounds that have been used for the analysis of large-time behaviour. Let T > 0 and σn
s =

|αn
s − γn

s (qs − κs)+ − βn
s (qs ∧ κs)|+ |(θns − µn

s )δ
n
s | . Let me recall that qt is defined by (2.7).

Lemma 6 1. (a) If the functions (λt, t ∈ R+), (µt, t ∈ R+), and (θt, t ∈ R+) are T -periodic and
∫ T
0 (µs ∧ θs) ds > 0 , then,

for all t ∈ R+,

qt ≤ e−⌊t/T⌋
∫
T

0
(µs∧θs) ds q0 +

e
∫
T

0
(µs∧θs) ds

1− e−
∫
T

0
(µs∧θs) ds

T
∫

0

λs ds .

(b) If the functions (λn
t , t ∈ R+), (µn

t , t ∈ R+), and (θnt , t ∈ R+) are T -periodic and
∫ T
0 (µn

s ∧ θns ) ds > 0 , then, for all
t ∈ R+ and V > 0 ,

EQn
t 1{Qn

0
≤V } ≤ e−⌊t/T⌋

∫
T

0
(µn

s
∧θn

s
) ds EQn

0 1{Qn

0
≤V } +

e
∫
T

0
(µn

s
∧θn

s
) ds

1− e−
∫
T

0
(µn

s
∧θn

s
) ds

T
∫

0

λn
s ds .

.
(c) If the functions (λn

t , t ∈ R+), (µn
t , t ∈ R+), (θnt , t ∈ R+), (λt, t ∈ R+), (µt, t ∈ R+), and (θt, t ∈ R+) are T -periodic,

∫ T
0
(µs ∧ θs) ds > 0 , and, for some ǫ > 0,

∫ T
0

(

2(µn
s ∧ θns ) − ǫ σn

s − (µn
s ∨ θns )/(2

√
n)

)

ds > 0, then, for all t ∈ R+ and
V > 0,

E(Xn
t )2 1{|Xn

0
|≤V }

≤ e−⌊t/T⌋
∫
T

0

(

2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)
)

ds+
∫
T

0
|2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)| ds

E(Xn
0 )2 1{|Xn

0
|≤V }

+
e2

∫
T

0
|2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)| ds

1− e−
∫
T

0

(

2(µn
s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)
)

ds

T
∫

0

(1

ǫ
σn
s +

λn
s

n

+ (µn
s ∨ θns ) sup

u∈R+

qu +
1

2
√
n
(µn

s ∨ θns )
)

ds .
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2. (a) If supt∈R+
λt < ∞ and inft∈R+

(µt ∧ θt) > 0, then, for all t ∈ R+,

qt ≤ e−
∫
t

0
(µs∧θs) dsq0 +

sups∈R+
λs

infs∈R+
(θs ∧ µs)

.

(b) If supt∈R+
λn
t < ∞ and inft∈R+

(µn
t ∧ θnt ) > 0, then, for all t ∈ R+ and V > 0 ,

EQn
t 1{Qn

0
≤V } ≤ e−

∫
t

0
(µn

s
∧θn

s
) ds EQn

0 1{Qn
0
≤V } +

sups∈R+
λn
s

infs∈R+
(θns ∧ µn

s )
.

(c) If supt∈R+
λt < ∞, inft∈R+

(µt ∧ θt) > 0, supt∈R+
λn
t < ∞, supt∈R+

θnt < ∞, supt∈R+
µn
t < ∞, supt∈R+

σn
t < ∞, and

inft∈R+

(

2(µn
t ∧ θnt )− ǫ σn

t − (µn
t ∨ θnt )/(2

√
n)

)

> 0 for some ǫ > 0 , then, for all t ∈ R+ and V > 0,

E(Xn
t )2 1{|Xn

0
|≤V } ≤ e−

∫
t

0

(

2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)
)

ds
E(Xn

0 )2 1{|Xn

0
|≤V }

+
sups∈R+

(

σn
s /ǫ+ λn

s /n+ (µn
s ∨ θns )qs + (µn

s ∨ θns )/(2
√
n)

)

infs∈R+

(

2(µn
s ∧ θns )− ǫ σn

s − (µn
s ∨ θns )/(2

√
n)

) .

Proof Let me start with part 1(b). Since Qn
t ≤ Qn

0 + An
t by (2.1), I have that EQn

t 1{Qn

0
≤V } ≤ V +

∫ t
0
λn
s ds . By

Lemma 1, the processes (Mn,A
t 1{Qn

0
≤V } , t ∈ R+), (Mn,R

t 1{Qn

0
≤V } , t ∈ R+), and (Mn,B

t 1{Qn

0
≤V } , t ∈ R+) are Fn-

locally square integrable martingales with respective predictable quadratic variation processes (1{Qn
0
≤V }

∫ t
0
λn
s ds , t ∈ R+),

(1{Qn

0
≤V }

∫ t
0
θns (Qn

s −Kn
s )

+ ds, t ∈ R+), and (1{Qn

0
≤V }

∫ t
0
µn
s (Qn

s ∧Kn
s ) ds, t ∈ R+) . Since the latter processes are of finite

expectation, I obtain that E(Mn,A
t )2 1{Qn

0
≤V } < ∞, E(Mn,R

t )2 1{Qn

0
≤V } < ∞, and E(Mn,B

t )2 1{Qn

0
≤V } < ∞ . In particular,

(Mn,A
t 1{Qn

0
≤V } , t ∈ R+), (Mn,R

t 1{Qn
0
≤V } , t ∈ R+), and (Mn,B

t 1{Qn
0
≤V } , t ∈ R+) are martingales . By (2.3),

EQn
t 1{Qn

0
≤V } ≺ EQn

0 1{Qn

0
≤V } +

t
∫

0

λn
s ds−

t
∫

0

(µn
s ∧ θns )EQn

s 1{Qn

0
≤V } ds . (A.1)

By Lemma 5,

EQn
t 1{Qn

0
≤V } ≤ e−

∫
t

0
(µn

s
∧θn

s
) dsEQn

0 1{Qn

0
≤V } + e−

∫
t

0
(µn

s
∧θn

s
) ds

t
∫

0

e
∫
s

0
(µn

u
∧θn

u
) duλn

s ds . (A.2)

If vT ≤ t < (v + 1)T , where v ∈ Z+, then by T -periodicity,

e−
∫
t

0
(µn

s
∧θn

s
) ds

t
∫

0

e
∫
s

0
(µn

u
∧θn

u
) duλn

s ds ≤ e−
∫
vT

0
(µn

s
∧θn

s
) ds

v+1
∑

i=1

e
∫
iT

0
(µn

u
∧θn

u
) du

iT
∫

(i−1)T

λn
s ds

= e−v
∫
T

0
(µn

s
∧θn

s
) ds

v+1
∑

i=1

ei
∫
T

0
(µn

u
∧θn

u
) du

T
∫

0

λn
s ds = e−(v−1)

∫
T

0
(µn

s
∧θn

s
) ds e

(v+1)
∫
T

0
(µn

u
∧θn

u
) du − 1

e
∫
T

0
(µn

u
∧θn

u
) du − 1

T
∫

0

λn
s ds

≤ e2
∫
T

0
(µn

u
∧θn

u
) du

e
∫
T

0
(µn

u
∧θn

u
) du − 1

T
∫

0

λn
s ds .

In addition, e−
∫
t

0
(µn

s
∧θn

s
) ds ≤ e−⌊t/T⌋

∫
T

0
(µn

s
∧θn

s
) ds . Part 1(b) has been proved.

Part 1(a) follows by a similar argument if one observes that by (2.7),

qt ≺ q0 +

t
∫

0

λs ds−
t

∫

0

(θs ∧ µs)qs ds

so that, by Lemma 5,

qt ≤ e−
∫
t

0
(θs∧µs) dsq0 + e−

∫
t

0
(θs∧µs) ds

t
∫

0

e
∫
s

0
(θu∧µu) du λs ds . (A.3)
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In order to prove part 1(c), let me note that by (2.14),

(Xn
t )2 = (Xn

0 )2 + 2

t
∫

0

Xn
s− dXn

s +
∑

0<s≤t

(∆Xn
s )2 = (Xn

0 )2 + 2

t
∫

0

αn
sX

n
s ds

− 2

t
∫

0

θns X
n
s

(

(

Xn
s − δns +

√
n(qs − κs)

)+ −
√
n(qs − κs)

+
)

ds− 2

t
∫

0

γn
s (qs − κs)

+Xn
s ds

− 2

t
∫

0

µn
sX

n
s

(

(

Xn
s +

√
nqs

)

∧ (δns +
√
nκs)−

√
n (qs ∧ κs)

)

ds− 2

t
∫

0

βn
s (qs ∧ κs)X

n
s ds

+
2√
n

t
∫

0

Xn
s− dMn,A

s − 2√
n

t
∫

0

Xn
s− dMn,R

s − 2√
n

t
∫

0

Xn
s− dMn,B

s

+
1

n

∑

0<s≤t

(∆Mn,A
s )2 +

1

n

∑

0<s≤t

(∆Mn,R
s )2 +

1

n

∑

0<s≤t

(∆Mn,B
s )2 .

On noting that

θns X
n
s

(

(

Xn
s − δns +

√
n(qs − κs)

)+ −
√
n(qs − κs)

+
)

+ µn
sX

n
s

(

(

Xn
s +

√
nqs

)

∧ (δns +
√
nκs)−

√
n (qs ∧ κs)

)

≥ (µn
s ∧ θns )(X

n
s )2 − |(θns − µn

s )δ
n
s X

n
s | ,

I obtain that, for ǫ > 0,

(Xn
t )2 ≺ (Xn

0 )2 + 2

t
∫

0

σn
s |Xn

s | ds− 2

t
∫

0

(µn
s ∧ θns )(X

n
s )2 ds+

2√
n

t
∫

0

Xn
s− dMn,A

s − 2√
n

t
∫

0

Xn
s− dMn,R

s

− 2√
n

t
∫

0

Xn
s− dMn,B

s +
1

n

∑

0<s≤t

(∆Mn,A
s )2 +

1

n

∑

0<s≤t

(∆Mn,R
s )2 +

1

n

∑

0<s≤t

(∆Mn,B
s )2

≺ (Xn
0 )2 +

1

ǫ

t
∫

0

σn
s ds−

t
∫

0

(

2(µn
s ∧ θns ) − ǫσn

s

)

(Xn
s )2 ds+

2√
n

t
∫

0

Xn
s− dMn,A

s − 2√
n

t
∫

0

Xn
s− dMn,R

s

− 2√
n

t
∫

0

Xn
s− dMn,B

s +
1

n

∑

0<s≤t

(∆Mn,A
s )2 +

1

n

∑

0<s≤t

(∆Mn,R
s )2 +

1

n

∑

0<s≤t

(∆Mn,B
s )2 .

Hence, for V > 0,

(Xn
t )2 1{|Xn

0
|≤V } ≺ (Xn

0 )2 1{|Xn
0
|≤V } +

1

ǫ

t
∫

0

σn
s 1{|Xn

0
|≤V } ds−

t
∫

0

(

2(µn
s ∧ θns )− ǫ σn

s

)

(Xn
s )2 1{|Xn

0
|≤V } ds

+
2√
n

t
∫

0

Xn
s− dMn,A,V

s − 2√
n

t
∫

0

Xn
s− dMn,R,V

s − 2√
n

t
∫

0

Xn
s− dMn,B,V

s

+
1

n

∑

0<s≤t

(∆Mn,A,V
s )2 +

1

n

∑

0<s≤t

(∆Mn,R,V
s )2 +

1

n

∑

0<s≤t

(∆Mn,B,V
s )2 (A.4)

where Mn,i,V
s = Mn,i

s 1{|Xn

0
|≤V } , for i = A,R,B .

By Lemma 1, the processes Mn,i,V = (Mn,i,V
t , t ∈ R+) are Fn-locally square integrable martingales with predictable

quadratic variation processes 〈Mn,i,V 〉 = 〈Mn,i〉1{|Xn

0
|≤V } . Since Qn

t ≤ Qn
0 + An

t by (2.1) and E(An
t )

2 =
∫ t
0 λn

s ds +
(∫ t

0 λn
s ds

)2
< ∞, I have that E(Qn

t )
2 1{|Xn

0
|≤V } < ∞ . Hence, by (2.4a), (2.4b), (2.4c), E〈Mn,i,V 〉t < ∞, which implies

that E
(

sups≤t(M
n,i,V
s )2

)

< ∞, that the Mn,i,V are Fn-martingales, and that E(Mn,i,V
t )2 = E〈Mn,i,V 〉t . Consequently, the

processes
(∫ t

0 Xn
s− dMn,i,V

s , t ∈ R+

)

are Fn-martingales. Since the Mn,i,V are purely discontinuous locally square integrable

martingales by being of locally bounded variation, E
∑

0<s≤t(∆Mn,i,V
s )2 = E〈Mn,i,V 〉t .
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On taking expectations in (A.4),

E(Xn
t )2 1{|Xn

0
|≤V } ≺ E(Xn

0 )2 1{|Xn
0
|≤V } +

1

ǫ

t
∫

0

σn
s ds+

1

n

(

E〈Mn,A〉t 1{|Xn
0
|≤V }

+ E〈Mn,R〉t 1{|Xn

0
|≤V } + E〈Mn,B〉t 1{|Xn

0
|≤V }

)

−
t

∫

0

(

2(µn
s ∧ θns )− ǫ σn

s

)

E(Xn
s )2 1{|Xn

0
|≤V } ds .

By (2.4a), (2.4b), (2.4c), and (2.13),

1

n

(

E〈Mn,A〉t 1{|Xn

0
|≤V } + E〈Mn,R〉t 1{|Xn

0
|≤V } +E〈Mn,B〉t 1{|Xn

0
|≤V }

)

≺
t

∫

0

λn
s

n
ds+

t
∫

0

(µn
s ∨ θns )

EQn
s 1{|Xn

0
|≤V }

n
ds ≺

t
∫

0

λn
s

n
ds+

t
∫

0

(µn
s ∨ θns )

(
EXn

s 1{|Xn
0
|≤V }√

n
+ qs

)

ds

≺
t

∫

0

λn
s

n
ds+

t
∫

0

(µn
s ∨ θns )

(

qs +
1

2
√
n

)

ds+
1

2
√
n

t
∫

0

(µn
s ∨ θns )E(Xn

s )2 1{|Xn

0
|≤V } ds .

Thus, for t ∈ R+,

E(Xn
t )2 1{|Xn

0
|≤V } ≺ E(Xn

0 )2 1{|Xn

0
|≤V } +

1

ǫ

t
∫

0

σn
s ds+

t
∫

0

λn
s

n
ds+

t
∫

0

(µn
s ∨ θns )

(

qs +
1

2
√
n

)

ds

−
t

∫

0

(

2(µn
s ∧ θns )− ǫ σn

s − 1

2
√
n
(µn

s ∨ θns )
)

E(Xn
s )2 1{|Xn

0
|≤V } ds .

By Lemma 5,

E(Xn
t )2 1{|Xn

0
|≤V } ≤ e−

∫
t

0

(

2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)
)

ds
E(Xn

0 )2 1{|Xn

0
|≤V }

+ e−
∫
t

0

(

2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)
)

ds

t
∫

0

e
∫
s

0

(

2(µn

u
∧θn

u
)−ǫ σn

u
−(µn

u
∨θn

u
)/(2

√
n)
)

du(σ
n
s

ǫ
+

λn
s

n

+ (µn
s ∨ θns )

(

qs +
1

2
√
n

))

ds . (A.5)

In analogy with the earlier argument, if vT ≤ t < (v + 1)T , where v ∈ Z+, recalling that supu∈R+
qu < ∞ by part 1(a),

e−
∫
t

0

(

2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)
)

ds

t
∫

0

e
∫
s

0

(

2(µn

u
∧θn

u
)−ǫ σn

u
−(µn

u
∨θn

u
)/(2

√
n)
)

du( σn
s

ǫ
+

λn
s

n

+ (µn
s ∨ θns )

(

qs +
1

2
√
n

))

ds ≤ e−v
∫
T

0

(

2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)
)

ds+2
∫
T

0
|2(µn

s
∧θn

s
)−ǫ σn

s
−(µn

s
∨θn

s
)/(2

√
n)| ds

v
∑

i=0

ei
∫
T

0

(

2(µn

u
∧θn

u
)−ǫ σn

u
−(µn

u
∨θn

u
)/(2

√
n)
)

du

T
∫

0

(1

ǫ
σn
s +

λn
s

n
+ (µn

s ∨ θns )
(

sup
u∈R+

qu +
1

2
√
n

))

ds

≤ e2
∫
T

0
|2(µn

u
∧θn

u
)−ǫ σn

u
−(µn

u
∨θn

u
)/(2

√
n)| du

1− e−
∫
T

0

(

2(µn
u
∧θn

u
)−ǫ σn

u
−(µn

u
∨θn

u
)/(2

√
n)
)

du

T
∫

0

( 1

ǫ
σn
s +

λn
s

n
+ (µn

s ∨ θns )
(

sup
u∈R+

qu +
1

2
√
n

))

ds ,

where the last inequality uses the fact that
∫ T
0

(

2(µn
u ∧ θnu)− ǫ σn

u − (µn
u ∨ θnu)/(2

√
n)

)

du > 0 . The latter expression furnishes
the required bound. Part 1 has been proved.

The assertions of part 2 also follow from the respective inequalities (A.2), (A.3), and (A.5) . For instance part 2(b) is
obtained by applying the bound

t
∫

0

e
∫
s

0
(θn

u
∧µn

u
) du λn

s ds ≤
supt∈R+

λn
t

inft∈R+
(θnt ∧ µn

t )

(

e
∫
t

0
(θn

s
∧µn

s
) ds − 1

)

.
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