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1 Introduction

Consider a simple cargo elevator system where a single elevator can carry at most
one pallet from one floor to another without preemption. Future requests are not
known, stochastic information maybe available. The goal is to find a policy to control
the elevator system in such a way that the average or the maximal waiting time is
minimized in expectation. This is the seemingly easiest of the many elevator control
problems that have been studied the literature [28,6,16,23,21,22].

Even for this simple elevator problem an optimal policy is still unknown – the
curse of dimensionality renders impossible any direct computation of an optimal
policy for a corresponding Markov decisions problem (MDP) model (value iteration,
policy iteration, or linear programming). Whereas practically satisfying policies could
be identified, rigorous knowledge is scarce about which policy out of two is provably
better or how close is a policy to an unknown optimal policy.

Our goal in this paper is to employ

– induced MDPs with “small” state spaces that can be handled and that yield upper
and lower bounds for the original large MDP,

– a column generation framework generating increasingly suitable induced MDPs
an their cost-to-go functions

– application and state dependent bounds for the future evolution of the system
beyond a certain point to be utilized inside the column generation procedure

to obtain statements like the following:

– Policy A is better than Policy B when starting in State i.
– Policy A is not optimal.
– Action a in State i is not optimal.
– Policy A starting in State i is at most x % more expensive than an optimal policy

Our algorithm employs the linear programming characterization of optimal policies
in discounted MDPs. It starts with a small part of the state space and adds states driven
by the reduced-cost criterion from linear programming. The reduced cost of state
variables is the additional information that comes for free in the linear programming
setting. Our tool exploits this extra-information.

1.1 Related Work

A broad field of methods targeting large-scale MDPs (and generalizations) where
exact methods become infeasible is approximate dynamic programming (ADP) [26,
30,5], which evolved in the computer science community under the name reinforce-
ment learning. Contrary to the classical computational methods mentioned above, an
advantage of many techniques in this area is that an explicit model of the environment,
i. e., a precise specification of the MDP, is often not required. Instead, a simulator of
the system can be employed. Similar to simulation, there is virtually no limit on the
complexity of the state and transition structure. We refer to the books [26,30,5] for
details concerning ADP.



Computational Bounds for Elevator Control Policies 3

A special version of ADP is approximate linear programming (ALP), where the
cost-to-go function is approximated by a weighted combination of basis functions.
The weights are then computed by linear programming techniques. There are a few
methods that provide performance guarantees, e. g., [12,11,14,9].

The main difference of our effort to ADP and ALP is that we do not need to
assume that the cost-to-go can be closely approximated by a space of prescribed
basis functions. Our approach is complementary to ADP/ALP in the sense that we
provide a tool to analyze policies in the original problem. In fact, policies stemming
from ADP/ALP can be analyzed by our method to find bounds on their expected
performance.

Our main tool, column generation, has been studied also in the context of ALP,
see e. g., [1,32]. We have not seen yet column generation as a tool for the exact
LP formulation, which can in principle produce bounds that are independent of an
approximation architecture.

The approach described in the literature that yields results closest to ours for the
exact cost-to-go function is a sparse sampling algorithm proposed by Kearns et al.
[24]. The authors also give theoretical bounds on the necessary size of a subset of the
state space that is needed by their approach in order to obtain an ε-approximation,
see Remark 3 on Page 15. However, for the applications we aim at, their bounds are
substantially weaker than ours.

Other approaches to locally explore the state space have been proposed by Dean et al.
[7] and Barto et al. [3]. The former employs policy iteration with a concept of locality
similar to ours. This way, their method comes closest to our approach concerning the
algorithm used. However, the method does not provide any approximation guarantees.

1.2 Our contribution

With our method we can show rigorously for an 8-floor elevator system with sparse
requests that if the objective is to minimize the average waiting, the nearest-neighbor
policy NN is better than many other policies. It is, however, provably non-optimal.
This adds theoretical learnings to the simulation knowledge from [17]. Non-optimality
is already implied by the property that NN never moves the elevator in an empty
system. By evaluating this single action in the empty system state with our tool, we
can guarantee that all policies that do not move in the empty system are suboptimal.
We present a new policy NNPARK- f that positions the elevator optimally when no
request is in the system.

In a similar fashion, we improve NN to a better policy NNMAXPARK- f when
the goal is to minimize the maximum waiting time among all requests. And for this
objective, we can show with our tool that NN is one of the weakest policies.

Although rigorous computational proofs could only be obtained for a relatively
small discount factor of 0.8 emphasizing short-term effects, the new policies – with
improvements guided by our analysis method – outperformed the original policies by
a large margin also in long-term simulations. Most notably, NNMAXPARK- f showed
the most balanced behaviour with good results for both average and maximal waiting
times.
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1.3 Outline of the Paper

The paper is organized as follows: In Section 2 we fix an MDP model of our elevator
control problem. Section 3 introduces the three corner stones of our method. In
Section 4, we present the new knowledge obtained for the elevator control problem.
We conclude in Section 5.

2 Formal Problem Statement

In the following, we introduce a Markov decision problem (MDP) formulation of the
elevator problem. We then briefly introduce the policies under investigation. In order
to settle on notation, we repeat what a Markov Decision Problem is (see [4,27] for
background on MDP-theory). A Markov decision process is a tuple M = (S,A, p,c)
with:

– S is a finite set of states.
– A is a mapping specifying for each state i ∈ S a non-empty and finite set A(i) of

possible actions at state i.
– For all states i, j∈ S, the mapping pi j : A(i)→ [0,1] gives the transition probability

pi j(a) conditioned on the assumption that the system is in state i and moves to
state j when using action a ∈ A(i). For each state i ∈ S and each action a ∈ A(i),
we have ∑ j∈S pi j(a) = 1.

– For all i ∈ S, the mapping ci : A(i)× S→ R+ specifies the stage cost ci(a, j)
when action a ∈ A(i) is chosen and the system moves to state j ∈ S. The ex-
pected stage cost of using action a ∈ A(i) at state i ∈ S is denoted by ci(a) :=
∑ j∈S pi j(a)ci(a, j).

A policy for M is a mapping π : S→ A(S). It is feasible if π(i) ∈ A(i). Let PM denote
the set of all feasible policies for M. Let M = (S,A, p,c) be a Markov decision process
and let α ∈ [0,1). The total expected α-discounted cost of a policy π for M for an
initial state i ∈ S is defined by

vα
i (π) :=

∞

∑
t=0

Ei,π [α
t · cXt (π(Xt))]

=
∞

∑
t=0

α
t
∑
j∈S

Pi,π [Xt = j] · c j(π( j))

where Xt is a random variable stating the possible state at time t, Pi,π and Ei,π giving
the probability of being in a certain state and having an expected value after starting at
the initial state i and applying policy π . Let V α : PM→RS be the value vector function
defined for each policy π ∈ PM by the value vector vα(π) with elements vα

i (π) for
each i∈ S as given above. The combination (M,V α) of M and the value vector function
V α is called an α-discounted cost Markov Decision Problem, or short discounted MDP,
and is denoted for short as (M,α). We denote with vα the optimal value vector which
is vα

i = minπ∈PM vα
i (π) for all i ∈ S. A policy π∗ is optimal for (M,α) if vα

i (π
∗) = vα .
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In order to formulate a Markov decision process model for the elevator control
problem, we consider the following situation. The system operates a set of eleva-
tors E = {1, . . . ,nE} in a building with a set of floors F = {1, . . . ,nF}. Each elevator
can load at most one request. At each floor there is a waiting area that accommodates
at most q ∈ N∪{∞} transport requests. We limit our considerations to a discrete time
model. At each time slot the current situation is described by the following data:

– Each elevator e ∈ E is situated at one floor fe ∈ E and is either loaded or empty.
– For each floor f ∈ F , there exists a sequence σ f = r1, . . . ,rn f of waiting requests,

where n f ∈{0, . . . ,q} is their number. Moreover, each request rk for k∈{1, . . . ,n f }
is of the form rk = ( f , fk,wk), where fk ∈ F \ { f} is its destination floor and
wk ∈ N0 is the waiting time of request rk so far with wk ≥ wk+1. Denote by
wσ f := w1 the maximum waiting time of a request in sequence σ f if it is non-
empty, and let Σ f be the set of all possible sequences at floor f .

Feasible Actions If elevator e ∈ E is loaded, let de ∈ F be the destination floor of the
request being transported, and let de = 0 otherwise. In one time unit an elevator e ∈ E
can execute exactly one of the following operations:

WAIT at its current floor fe,
MOVE UP one floor if fe < nF (this is the only feasible action if de > fe),
MOVE DOWN one floor if fe > 1 (this is the only feasible action if 0 < de < fe),
LOAD the next request at the current floor fe if de = 0 and σ fe 6= /0, i. e., the elevator is

empty and there is at least one request waiting at floor fe, or
DROP the loaded request if fe = de, i. e., the elevator is loaded and its current floor

equals the destination floor of the loaded request (this is the only feasible action if
de = fe).

State Space A state i ∈ S in the Markov decision process model (S,A, p,c) is of the
following form:

i = (wmax,(σ f ) f∈F ,( fe,de)e∈E),

where wmax ∈ N0 specifies the maximum waiting time of a request so far. Moreover,
a state captures all data concerning waiting requests and possibly loaded requests as
well as the positions of the elevators. We will also denote the parameters of a state i
by wmax(i), σ f (i) for each f ∈ F , and fe(i),de(i) for each e ∈ E. The resulting state
space S is given by:

S= {(wmax,(σ f ) f∈F ,(( fe,de)e∈E) | wmax ∈ N0,wmax ≥ wσ f ∀ f ∈ F : σ f 6= /0,

σ f ∈ Σ f ∀ f ∈ F,

( fe,de) ∈ F× ({0}∪F) ∀e ∈ E}.

As the stored waiting times in a state may become arbitrarily large even if the waiting
queue length q is bounded, the state space S is infinite.

Each action in A(i) for a state i ∈ S is composed of one control decision a(e) for
each elevator e ∈ E, i. e., an action a ∈ A(i) is of the form a = (a(e1), . . . ,a(enE )).
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The control decision of an elevator may be any one of the operations mentioned
above: WAIT, MOVE UP, MOVE DOWN, LOAD, DROP. However, we assume that a loaded
elevator e ∈ E immediately serves the request being transported: if fe < de or fe > de,
the elevator e will move up or down, respectively, and if fe = de, the request will be
dropped. This means that for a loaded elevator the set of feasible actions contains only
one action. Thus, all requests are served without preemption.

Transitions In our model each transition between two states is assumed to last exactly
one time step, moving from one time slot to the next one. Moreover, we assume that
at most one new request is released at each time slot. Hence, all queued requests have
a unique waiting time. We describe possible state transitions only for the case of a
single elevator since the general case is obtained by handling the control decisions of
all elevators consecutively. If no new request arrives, the deterministic successor j ∈ S
of a state i ∈ S when using action a = (a(e)) ∈ A(i) is given by:

– The maximum waiting time at state j equals:

wmax( j) = max{wmax(i), max
f∈F : σ f ( j)6= /0

wσ f ( j)}.

– For each floor f ∈ F \{ fe}, we have σ f ( j) = r̄1, . . . , r̄n fe
with r̄k = ( f , fk,wk +1)

where fk and wk are the destination and the waiting time of the k-th request in σ f (i).
If a(e) = LOAD, the update for the waiting queue at floor fe is σ fe( j) = r̄2, . . . , r̄n fe

.
Otherwise, we have σ fe( j) = r̄1, . . . , r̄n fe

. Again r̄k = ( fe, fk,wk +1).
– The current floor and load of elevator e are updated by:

( fe( j),de( j)) =



( fe(i),de(i)), if a(e) = WAIT,

( fe(i)+1,de(i)), if a(e) = MOVE UP,

( fe(i)−1,de(i)), if a(e) = MOVE DOWN,

( fe(i), f1), if a(e) = LOAD,

( fe(i),0), if a(e) = DROP,

where f1 denotes the destination of the first request r1 = ( fe, f1,w1) in the se-
quence σ fe(i) in the loading case.

When a new request r = (a,b,0) is released at a floor a ∈ F with destination
floor b ∈ F \{a}, we obtain the successor (wmax( j),(σ ′f ) f∈F ,( fe( j),de( j))) of state i.
In this state, we have σ ′f = σ f ( j) for each floor f ∈ F \{a} and

σ
′
a =

{
σa( j)+ r, if |σa( j)|< q,
σa( j), if |σa( j)|= q,

where σa( j)+ r denotes the sequence with request r added to σa( j).
The transition probabilities p are defined by a two step process. Firstly, we have

a fixed probability that a new request is released at a state transition (Bernoulli
distribution). If that is the case, the start and destination floor of the new request are
determined according to some probability distribution in the second step.
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Depending on the used objective function, the stage costs are given as follows.
If we focus on minimizing the maximum waiting time of a request, it is always
assumed that the waiting queues are unbounded, i. e., q = ∞. In this case, the stage
cost ci(a, j) = cmax

i (a, j) associated with states i, j ∈ S and action a ∈ A(i) equals the
increase of the maximum waiting time due to action a:

cmax
i (a, j) = wmax( j)−wmax(i).

Notice that the total sum of stage costs for the transitions of an (i, j)-path equals the
total increase of the maximum waiting time in this sequence of states.

For minimizing the average waiting time, we assume the waiting queue length to
be bounded, i. e., q < ∞. This way, we can work with the sum of all waiting times
in our MDP formulation. Otherwise, the stage cost in such an MDP, which is the
increment of the sum of all waiting times in a single time slot, may become infinite.

Whenever a request is released at a floor f ∈ F where the waiting queue is full, i. e.,
|σ f |= q, the request is rejected from the system at a penalty cost of cp ≥ 1. For each
floor f ∈ F , let 0≤ p f ≤ 1 be the probability that a request is released at some time
slot at floor f . Given states i, j ∈ S and an action a ∈ A(i), let j′ ∈ S be the successor
of i using action a if no new request arrives. Then, the stage cost ci(a, j) = cavg

i (a, j)
is defined as the sum of all requests waiting at state i that are not loaded by action a
plus the expected penalty cost:

cavg
i (a, j) = ∑

f∈F
|σ f (i)|− |{e ∈ E | a(e) = LOAD}|+ cp · ∑

f∈F : |σ f ( j′)|=q
p f

In the case the waiting queues of the states j and j′ differ, a new request has been
released at a floor where the waiting queue was not full w. r. t. state j′. Thus, the
transition does not involve a penalty cost.

Notice that cavg
i (a, j) equals the increase of the sum of all waiting times plus the

expected penalty cost. Thus the sum of the expected stage costs for all transitions of
an (i, j)-path equals the sum of all accumulated waiting times and expected penalty
costs during the associated time period. Minimizing this objective for a finite sequence
of requests is equivalent to minimizing the average waiting time.

We want to point out, that the basic Markov decision process model we consider
here differs substantially from the one used by Crites and Barto [6].

Originally the goal is to find an optimal policy for an MDP. Our goal is to obtain
the following for the elevator control MDP above: Given a policy, and an ε > 0, find
ε-exact performance guarantees for single start states, maybe relative to an unknown
optimal policy or relative to some other policy. That is, more formally:

Problem 1 Given a policy π , a state i0 with vα
i0 > 0, and an ε > 0, find in state i0 a

lower bound vi0 for the optimal cost and an upper bound vi0(π) for the cost of π such
that

vi0(π)− vi0
vi0

≤ ε. (Relative Performance Guarantee)

Alternatively, find in state i0 a lower bound vi0(π) for the cost of π and an upper
bound vi0 for the optimal cost such that

vi0(π)> vi0 . (Non-Optimality Certificate)
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In this paper, we present an algorithm that can provide such bounds and related data
without necessarily touching all states. States used for the computation are selected
dynamically, dependent on the individual data of the instance. The algorithm detects
automatically when the desired guarantee can be given and stops with a proven result.

We want to generate information of this type for the following policies that have
been of interest, e. g., in [2,17,18]

FIRSTINFIRSTOUT (FIFO) Serve the request with the smallest current waiting time
next. This request is unique by our assumption that at most one request is released
at each time slot.

NEARESTNEIGHBOR (NN) Determine a waiting request whose start floor is located
nearest to the current floor of the elevator. If there exists a unique request with this
property, serve it next. Otherwise, such a request exists in both directions. Then,
serve the one with smaller floor number next.

REPLAN Compute a schedule minimizing the makespan (without returning to some
origin), i. e., the time needed to serve all waiting requests, and serve the requests ac-
cording to this schedule. We implemented a branch-and-bound method to compute
these schedules.

IGNORE As long as a schedule is available, serve the waiting requests accordingly. If
no schedule is available, do the same as the policy REPLAN and store the schedule.
The policy IGNORE requires a modified MDP where each state encodes a schedule
containing a (possibly empty) subset of the waiting requests. Moreover, if for some
state this schedule is empty and a request is waiting, each associated action has a
second component that sets the schedule for all waiting requests.

Remark 1 The policies REPLAN and IGNORE may appear counter-intuitive at first
glance: they repeatedly opimize the makespan instead of the original objective. This
is motivated by the fact that for those policies there are positive theoretical results
known (see, e.g., [2,19,25]). In contrast to this, for the variants optimizing the original
objectives there are no positive results known yet. Moreover, examples are known
where REPLAN with original objective defers some of the requests infinitely long.
Therefore, we chose to investigate REPLAN and IGNORE as described above.

3 Methods

We use the following three ingredients:

– induced MDPs with “small” state spaces that can be handled and that yield upper
and lower bounds for the original large MDP,

– a column generation framework generating increasingly suitable induced MDPs
an their cost-to-go functions

– state dependent bounds for the future evolution of the system beyond a certain
point to be utilized inside the column generation procedure

3.1 Induced MDPs

In this section, we derive from a given MDP new MDPs whose value functions:
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– can be computed easier,
– yield bounds for the value function of the original MDP.

Our method also aims at classifying single actions into optimal and not-optimal,
not only policies.

Definition 1 (Optimal actions) Let (M,α) be an discounted MDP with α ∈ [0,1).
A possible action a ∈ A(i) at a state i ∈ S is called optimal if there exists an optimal
deterministic policy π for M such that π(i) = a.

The classical methods for computing the optimal value vector vα of a discounted MDP
include value iteration, policy iteration, and linear programming. For details and
possible variants and extensions of the methods, see [27, chapter 6], [15, chapter 2.3],
or [4, volume 2, chapter 1.3].

The central theorem concerning the linear programming method for computing
the optimal value vector of a discounted MDP reads as follows.

Theorem 1 (See, e.g., [4, Volume 2, Section 1.3.4]) The optimal value vector vα ∈
RS of a discounted MDP (M,α) equals the unique optimal solution v of the following
linear program:

max ∑
i∈S

vi (PΣ )

subject to vi−α ∑
j∈S

pi j(a)v j ≤ ci(a) ∀i ∈ S ∀a ∈ A(i)

vi ∈ R ∀i ∈ S.

Therefore, one can obtain the optimal value vector by solving the linear pro-
gram (PΣ ). This linear programming formulation was first proposed by d’Epenoux [8]
and has been the starting point for several approaches, e. g., see [29,12,13].

We define the matrix Q with rows for each (i,a) ∈ S×A and columns for each
state j ∈ S by:

Q(i,a), j =

{
1−α pi j(a), if i = j,
−α pi j(a), if i 6= j.

The components of the vector c are given by:

cia = ci(a)

for each (i,a) ∈ S×A. Now the linear program (PΣ ) can be written as:

max 1
tv (PΣ )

subject to Qv≤ c

v ∈ RS,

where 1t = (1,1, . . . ,1) denotes the all-ones vector.
The approximation algorithm to be proposed is motivated by the fact that for

the huge state spaces arising in MDPs modeling practical problems, it is currently
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impossible to solve the associated linear program (PΣ ) in reasonable time. Our idea
is to evaluate the value vector at one particular state i0 ∈ S alone. Since we are only
interested in vα

i0 , we can restrict the objective function of (PΣ ) by maximizing the
value vi0 only:

max vi0 (Pi0 )
subject to Qv≤ c

v ∈ RS

In contrast to (PΣ ), there does not exist a unique solution for the linear program (Pi0 )
in general for the following reasons. On the one hand, there may be states in S that
cannot be reached from i0. On the other hand, there are typically some actions that
are not optimal. Such a state j ∈ S, that is either not reached at all or only reached
via non-optimal actions, is not required to have a maximized value v j in order to
maximize vi0 , i. e., the objective function of (Pi0 ). The value v j may even be negative
in an optimal solution.

Similar to the original linear programming formulation, solving the linear pro-
gram (Pi0 ) is still infeasible considering the huge state spaces for practical applications.
In order to obtain a linear program that is tractable independently of the size of the
state space S, we reduce the set of variables and constraints in the linear program (Pi0 )
by taking into account only a restricted state space. Given a subset of states S⊆ S with
i0 ∈ S, consider the submatrix QS ∈ R(S×A)×S of the constraint matrix Q consisting of
all rows (i,a) with i ∈ S and all columns j with j ∈ S. Moreover, let cS ∈ RS×A be the
subvector of vector c consisting of all the components with indices (i,a) satisfying
i ∈ S.

It is obvious that the α-discounted cost-to-go in any state is between zero and
cmax
1−α

, where cmax is the maximal stage cost. In order to make use of more sophisticated
knowledge we assume that we are given application-specific, state-dependent lower
and upper bounds vα

min( j) and vα
max( j), respectively, for the cost-to-go functions 0≤

vα
min( j)≤ vα

j ≤ vα
max( j)≤ cmax

1−α
in State j ∈ S\S. From this information, we construct

lower and upper bound vectors for each (i,a) ∈ S×A:

rS
ia = α ∑

j∈S\S
pi j(a)vα

min( j), rS
ia = α ∑

j∈S\S
pi j(a)vα

max( j).

With these data, we can derive the following straight-forward bounding scheme:

Lemma 1 Define

v := max
{
1

tv|QSv≤ cS + rS,v ∈ RS},
v := max

{
1

tv|QSv≤ cS + rS,v ∈ RS},
vi0 := max

{
vi0 |Q

Sv≤ cS + rS,v ∈ RS}, (Li0
S )

vi0 := max
{

vi0 |Q
Sv≤ cS + rS,v ∈ RS}. (Ui0

S )

Then the optimal values of (PΣ ) and (Pi0 ) can be bounded as follows:

v≤ 1tvi0 ≤ v

vi0 ≤ vi0 ≤ vi0



Computational Bounds for Elevator Control Policies 11

In the sequel, we refer to the linear programs in Lemma 1 as the lower/upper-bound
LP and the single-state lower/upper-bound LP, respectively. We will make use of them
in the following form:

Corollary 1 The optimal value vector vα is bounded componentwise by optimal
solutions v and v of the bounding linear programs in Lemma 1.

Of course, finding a suitable S for these bounds to be useful requires substantial work
in both the lower and the upper bound LPs. Thus, in the following we aim at utilizing
the lower bound LP for both lower and upper bounds.

By adding an absorbing state to S and adjusting its stage costs accordingly, we can
construct a lower-bound induced MDP M(S) and an upper-bound induced MDP M(S)
with optimal cost-to-go v and v, respectively. Moreover, by extending any policy for
one of the induced MDPs arbitrarily outside S, we obtain a policy π for (M,α). In
particular, we can produce two special upper bounds: extend an optimal policy π for
M(S) or extend an optimal policy π for M(S) to (M,α).

Since the policy π might produce lower cost outside S than estimated by rS, its
cost is bounded from above by the value of the upper-bound LP.

On the other hand, the policy π is just some policy in M(S). Thus, its cost in M(S)
is bounded from below by the value of the upper-bound LP. Its value lies in the fact
that this way we can derive a lower and an upper bound from the same lower-bound
LP.

Summarized, we obtain:

Lemma 2 Given a discounted MDP (M,α), a state i0 ∈ S, a subset of states S ⊆ S
with i0 ∈ S, optimal policies π for M(S) and π for M(S), let vπ be the cost of π in
M(S) and vπ be the cost of π in M(S). Moreover, let vi0 be the optimal value of the
single-state upper-bound LP. Then,

vα
i0 ≤ vπ

i0 ≤ vi0 ≤ vπ

i0
.

Moreover, the value vπ

i0
equals the optimal value of the linear program

vπ

i0
= max

{
vi0 |Q

S,π v≤ cS,π + rS,π ,v ∈ RS},
whose optimal solution equals the unique solution of the linear system

QS,π v = cS,π + rS,π . (1)

Here, QS,π , cS,π , and rS,π are the submatrices of QS, cS, and rS corresponding to
state-action pairs induced by π .

Thus, by computing an optimal solution of the lower-bound LP (small dimension)
and extracting an optimal policy π of M(S) we obtain by solving the system of linear
equations describing the cost of π in M(S) (small dimension again) lower and upper
bounds on vα

i0 (large dimension) at the same time. In contrast to this, the (possibly
tighter) bound vπ

i0 requires to compute the cost of a policy in the original MDP (large
dimension), and the other (possibly tigher) bound vi0 requires the solution of another
LP (the upper-bound LP).
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So far, our goal was to approximate the optimal cost-to-go by smaller induced
MDPs. By adding suitable further restrictions to the lower/upper bound LPs we can
also assess given policies and actions. The value vector of an MDP M w. r. t. a given
discount factor α will be denoted by vα

M in the following.
We now address the local approximation of the value vector vα

M(π) of a given
policy π . The basic idea is to restrict the possible state-action pairs to the actions of
the given policy. We call this restricted MDP π-induced MDP.

Lemma 3 Given an MDP M = (S,A, p,c) and a policy π , define the policy induced
MDP M(π) = (S,A′, p′,c′) by A′(i) = {π(i)} for each state i ∈ S and suitable re-
strictions p′ and c′ of the transition probabilities and stage costs. Then, we have
vα

M(π) = vα

M(π) for any discount factor α ∈ [0,1).

Thus, all the above local approximation tools apply in particular for policy evaluation.
Similarly, we can restrict the set of possible actions in a given state i0 to a single

action a0. The corresponding MDP is denoted by M(i0,a0). We define the cost-to-go
vα

M,i0(a0) of action a0 in a state i0 as follows:

vα
M,i0(a0) = vα

M(i0,a0),i0
.

With this we can characterize the optimality of given actions in given states. Since we
are usually only computing bounds on vα

M , the tool can mainly be used to certify that a
given action is not optimal.

Lemma 4 Given an MDP M = (S,A, p,c) and a state i0 ∈ S, an action a0 ∈ A(i0) is
optimal for a discount factor α if and only if vα

M,i0(a0) = vα
M,i0 .

In the following we present a structural approximation theorem justifying the
approach theoretically. It shows that – even without sophisticated state-dependent
bounds – an ε-approximation of one component of the optimal value vector can be
obtained by taking into account only a small local part of the entire state space, not
depending on the total number of states. The bound can be seen as a yard stick for all
application specific efforts: a tailor-made method is only useful if it beats the bound of
the following theorem by a significant margin.

Definition 2 (r-neighborhood) For an MDP (S,A, p,c), a particular state i0 ∈ S, and
a number r ∈ N, the r-neighborhood S(i0,r) of i0 is the subset of states that can be
reached from i0 within at most r transitions. That is, S(i0,0) := {i0} and for r > 0 we
define:

S(i0,r) := S(i0,r−1)∪
{

j ∈ S | ∃i ∈ S(i0,r−1)∃a ∈ A(i) : pi j(a)> 0
}
.

It is straight-forward that the size of the r-neighborhood can not grow too fast under
certain conditions.

Lemma 5 Let M = (S,A, p,c) be an MDP, α ∈ [0,1) a discount factor, and D ∈ N
such that for each i∈ S the number of states j ∈ S with positive transition probabilities
pi j(a) for some a ∈ A(i) is bounded by D, then |S| ≤max

{
Dr+1,r+1

}
.

Such a D exists, e.g., when in each state there are at most b feasible actions and at
most d possible successor states for that action. Then, D can be set to bd.
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Proof Let i0 ∈ S. Since the number of possible successors is bounded by D we have:

|S| ≤
r

∑
k=0

Dk =
Dr+1−1

D−1
≤ Dr+1,

if D≥ 2. In the trivial case D = 1 we obviously have |S|= r+1. ut
Note that the stage costs accounted in the total expected discounted cost decrease
geometrically. Thus, for a given approximation guarantee ε it is clear that the r-
neighborhood S(i0,r) of i0 for some radius r = r(ε)∈N will provide an ε-approximation
for vα

i0 via the associated linear programs. The value of the following theorem lies in
the explicit formula for the radius r required for a given approximation guarantee (we
already documented a weaker version of this result in the preprint [20]).

Theorem 2 Let M = (S,A, p,c) be an MDP, α ∈ [0,1) a discount factor, and D ∈ N
such that for each i∈ S the number of states j ∈ S with positive transition probabilities
pi j(a) for some a ∈A(i) is bounded by D. Let cmax := maxi∈S,a∈A(i) ci(a) and vα

max :=
cmax/(1−α). Then, for each state i0 ∈ S and for each ε > 0, the subset of states
S = S(i0,r)⊆ S with

r = max
{

0,
⌈

log
(

ε

vα
max

)
/ logα

⌉
−1
}

satisfies the following properties:

(i) |S| ≤max
{

Dr+1,r+1
}

, in particular, the number of states in S does not depend
on |S|.

(ii) For state i0, any optimal solution v of the lower-bound LP and the unique
solution vπ of system (1) w. r. t. any optimal policy π for the lower-bound induced
MDP M(S) satisfy:

vπ

i0
− vi0 ≤ ε.

In particular, vi0 and vπ

i0
themselves are ε-close lower and upper bounds on the

optimal value vector vα at state i0, i. e.,

0≤ vα
i0 − vi0 ≤ ε,

0≤ vπ

i0
− vα

i0 ≤ ε.

Proof Part (i) follows from Lemma 5.
The proof of Property (ii) is as follows. Let ε > 0. Consider the extension vext ∈RS

of the solution v of the lower-bound LP:

vext
i =

{
vi, if i ∈ S,
0, if i ∈ S\S.

Moreover, let π be an optimal policy for M(()S) and construct an extension vext ∈ RS

of the solution vπ of system (1) w. r. t. policy π as follows:

vext
i =

{
vπ

i , if i ∈ S,
vα

max, if i ∈ S\S.
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The optimal solution v of the lower-bound LP equals the optimal value vector of
the MDP M(S). Since π is optimal for M(S), the corresponding constraints in the
lower-bound LP are satisfied with equality by v, i. e.,

vi = ci(π(i))+α ∑
j∈S

pi j
(
π(i)

)
v j ∀i ∈ S,

which implies for the extension vext:

vext
i = ci(π(i))+α ∑

j∈S
pi j(π(i))vext

j ∀i ∈ S. (2)

On the other hand, since vπ satisfies the system of equations (1) we have the following
relation for the extension vext:

vext
i = ci(π(i))+α ∑

j∈S
pi j(π(i))vext

j ∀i ∈ S. (3)

From the Equations (2) and (3) we obtain:

vext
i − vext

i = α ∑
j∈S

pi j(π(i))(vext
j − vext

j ) ∀i ∈ S. (4)

In the following, we show by reverse induction on k = r, . . . ,0 for each state i∈ S(i0,k):

vext
i − vext

i ≤ α
r+1−kvα

max. (5)

Note that all i to which (5) refers are contained in S because of k≤ r. For k = r and for
each state i ∈ S(i0,k), Inequality (5) follows from (4) due to vext

j ≤ vα
max and vext

j ≥ 0
for each j ∈ S:

vext
i − vext

i ≤ α ∑
j∈S

pi j(π(i))
(
vα

max−0
)

= αvα
max.

Here, the equality follows from the fact that ∑ j∈S pi j(π(i)) = 1 for each state i ∈ S.
Now assume that Inequality (5) holds for each state j ∈ S(i0,k) with 0 < k ≤ r.

For each i ∈ S(i0,k−1), we again apply Equality (4):

vext
i − vext

i = α ∑
j∈S

pi j(π(i))(vext
j − vext

j )

= α ∑
j∈S(i0,k)

pi j(π(i))(vext
j − vext

j ),

where the second identity is due to the fact that each state j ∈ S with pi j(π(i))> 0 is
contained in S(i0,k) since i ∈ S(i0,k−1). We can apply the induction hypothesis for
each state j ∈ S(i0,k):

vext
i − vext

i ≤ α ∑
j∈S(i0,k)

pi j(π(i))αr+1−kvα
max

= α
r+1−(k−1)vα

max,



Computational Bounds for Elevator Control Policies 15

which completes the inductive proof of (5).
For i = i0 and k = 0, Inequality (5) implies:

vπ

i0
− vi0 = vext

i0 − vext
i0 ≤ α

r+1vα
max.

Finally, we distinguish two cases to show Property (ii). If ε ≥ αvα
max, we have r = 0,

and thus vπ

i0
−vi0 ≤ αvα

max ≤ ε . Otherwise, if ε < αvα
max, it follows that log(ε/vα

max)<

logα < 0 and r = dlog(ε/vα
max)/ logαe−1 which implies:

vπ

i0
− vi0 ≤ α

dlog(ε/vα
max)/ logαevα

max

≤ α
log(ε/vα

max)/ logα vα
max

= ε.

It remains to be proven that vi0 and vπ

i0
are ε-close lower and upper bounds for the

component vα
i0 . From Lemmas 1 and 2 it is already known that vi0 ≤ vα

i0 ≤ vπ

i0
. By these

inequalities we obtain:

vπ

i0
− vα

i0 ≤ vπ

i0
− vi0 ≤ ε,

vα
i0 − vi0 ≤ vπ

i0
− vi0 ≤ ε.

ut

We mention that Theorem 2 and its proof are still true (with minor modifications) in
the case of an infinite state space S if there exists a finite upper bound for the expected
stage costs, i. e., supi∈S,a∈A(i) ci(a)< ∞. This is because, under this assumption, the
cost outside S(i0,r) can still be bounded from above by the infinite geometric series
of the α-discounted supremum of stage costs.

Since the optimal value of the upper-bound LP is at least as tight as vπ

i0
(see

Lemma 2), we also have the following result.

Corollary 2 Under the same assumptions as used in Lemma 1, let vi0 be the optimal
value of the upper-bound LP for the subset of states S = S(i0,r). Then, we have:

vi0 − vi0 ≤ ε.

Particularly, vi0 is also an ε-close upper bound on vα
i0 , i. e., vi0 − vα

i0 ≤ ε .

Remark 2 The size of the restricted state space is optimal in some sense, as can be
seen from the example of a “tree like” MDP, in which every state has exactly D
possible successor states that can only be reached via this state. In this case, one
can show that S = S(i0,r) as above is the smallest restricted state space to obtain the
desired approximation. Of course, incorporating additional parameters of the MDP
might give better results in special cases.

Remark 3 Of all the approaches from the literature the random sampling algorithm
of Kearns et al. [24] gives the results most comparable to Theorem 2. However, the
size of the restricted state space in our construction is significantly smaller than that
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for random sampling. This algorithm samples states within the neighborhood of the
considered state i0 up to a radius rs with:

rs =

⌈
logx
logα

⌉
, where x :=

ε(1−α)3

4cmax
.

Obviously, this gives a considerably larger subset of states since rs is greater than
the radius r = dlog(ε(1−α)/cmax)/ logαe− 1 used in Theorem 2. For instance, if
cmax = 1, α = 0.7, and ε = 0.1, the radius rs equals rs = 21, while the radius in our
construction equals r = 10.

However, the setting considered in [24] is quite different as the authors assume the
maximum number of successor states d for an action to be very large or even infinite.
Indeed, the number of states sampled by their algorithm is independent of d. This way,
their approach deals with the third curse of dimensionality also, i. e., a huge number
of possible successors. They sample for each considered state in radius smaller than
rs, at most

T = x−2
[

ln
(

1−α

x

)
+2r ln

(
x−2br ln

(
1−α

x

))]
consecutive states if T < d. Note that this restriction only makes a difference when d
is really large: even fairly simple situations imply huge values for T , e. g., if cmax = 1,
b = 4, α = 0.7, and ε = 0.1, we obtain for T a value greater than 1.9 billion.

Our proposal is not to use the state space restricted by the bound on the necessary
radius but a state space dynamically computed by column generation techniques. This
will be the topic of the next section.

3.2 Column Generation

In order to compute local approximations of the optimal value vector vα
i0 around a

particular state of a given MDP, it is usually inappropriate to apply the construction of
Theorem 2 directly.

The general idea of our approximation algorithm is to start with a small subset
of states S1 ⊂ S containing the considered state i0 ∈ S. The state space S1 provides
initial lower and upper bounds on vα

i0 via the solution of the corresponding linear

programs (Li0
S1
) and (Ui0

S1
). Then, in order to improve the approximation on vα

i0 , the state
space S1 is successively extended by adding new states. Note that each newly added
state i∈ S\S1 results in one additional variable and |A(i)| additional constraints in both
linear programs (Li0

S1∪{i}
) and (Ui0

S1∪{i}
). This way, the algorithm constructs a finite

sequence of subsets S1 ⊂ S2 ⊂ ·· · ⊂ Sn ⊆ S for some n ∈ N together with a sequence
of improving lower and upper bounds on vα

i0 obtained as the optimal values of the
corresponding linear programs. Using policy iteration instead of linear programming
a similar algorithmic approach has already been proposed by Dean et al. [7]. However,
our approach has several advantages as we will see later.

Recall that the theoretical approximation results given in Theorem 2 and Corol-
lary 2 provide an approximation in terms of the absolute difference between upper
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Algorithm 1 Generic approximation algorithm
1: Input: an MDP (S,A, p,c) (given implicitly), a discount factor α ∈ [0,1), a state i0 ∈ S, a subset of

states S⊆ S with i0 ∈ S, ε > 0
2: Output: lower and upper bounds vi0 ,vi0 on vα

i0
with (vi0 − vi0 )/vi0 ≤ ε

3: compute vi0 and vi0 as the optimal values of the lower/upper-bound LPs
4: if (vi0 − vi0 )/vi0 ≤ ε then
5: return vi0 ,vi0
6: else
7: S← S∪Snew for some Snew ⊆ S\S
8: go to step 3
9: end if

and lower bounds. In practice, however, a relative guarantee is typically more suitable
when vi0 > 0. Therefore, the usual goal of our algorithm is to obtain an approximation
on vα

i0 , where the relative difference between the upper and lower bounds is less than a
desired guarantee ε > 0, i. e.,

vi0 − vi0
vi0

≤ ε for vi0 > 0.

Once this approximation guarantee is obtained, the algorithm terminates. In the
following, we tacitly assume that vi0 > 0 whenever the relative performance guarantee
is referred to. The generic approximation algorithm is summarized in Algorithm 1.
Clearly, Algorithm 1 terminates after a finite number of iterations whenever the state
space S is finite.

Remark 4 It has been shown in Lemma 2 that by solving the upper-bound LP for
some state space S⊆ S with i0 ∈ S, one can easily derive a policy π for the original
MDP with the property vα

i0(π)≤ vi0 . Consequently, our approximation algorithm also
determines a near-optimal action a0 at state i0 in the sense that there exists a policy π

with π(i0) = a0 such that (vα
i0(π)− vα

i0)/vα
i0 ≤ ε .

Our implementation of Algorithm 1 is based on the idea to extend the considered
state space dynamically by means of column generation, which is a standard technique
for solving large-scale linear programs. We refer to the book of Desaulniers et al. [10]
for details about column generation. The original problem we aim to solve (approxi-
mately) here is (Li0

S ), which equals the linear program (Pi0 ). Consequently, the master
problem that is to be solved in each iteration of the column generation is (Li0

S ) for
some subset of states S ⊆ S with i0 ∈ S. Thus, for computing the sequence of state
spaces S1 ⊂ S2 ⊂ ·· · ⊂ Sn ⊆ S we solely consider the linear programs providing the
lower bounds on vα

i0 . The upper-bound LP only contribute in terms of the computed
upper bounds. We mention that it is not straight-forward to solve the pricing problem
in a column generation algorithm w. r. t. the upper-bound LP with S ⊂ S, since an
associated feasible solution cannot be extended trivially to one for (Li0

S ).
In order to keep the pricing problem of our column generation tractable, we employ

incomplete pricing: as long as we find state-action pairs with positive reduced profits
that can be reached from the current set of state-action pairs by one transition (distance
one), we do not consider other state-action pairs. Only if we do not find positive
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reduced profits at distance one, we extend the search to distance two, three, etc. In
various tests with various pricing strategies it turned out that choosing state-action
pairs with maximal reduced profits (inside the restricted search space) worked the best.
(For a detailed documentation of these tests see [31].)

Finally, we briefly discuss our method compared to the approach of Dean et al. [7].
The aim of their method is to find an optimal policy for a state space restricted to
those states which are likely to be encountered within a smaller number of transitions.
Similar to our approach, their algorithm computes an optimal policy for the induced
MDP in each iteration and extends the restricted state space dynamically depending on
the obtained policy. Instead of linear programming, policy iteration is used to compute
the optimal policies. The main advantages of Algorithm 1 compared to their method
are the following. Firstly, in the approximation process we are able to monitor the
current approximation guarantee, while the approach of Dean et al. only provides lower
bounds on vα

i0 . Thus, they cannot determine how good the current approximation really
is. Secondly, we are able to properly guide the expansion of the restricted state space as
the reduced profits of the candidate states are available. This way, our approximation
algorithm benefits substantially (see [31] for computational results). The method of
Dean et al. must use heuristic ideas to increase S, in particular, one strategy aims
to estimate the reduced profits. Probably, both algorithms have a similar run-time
per iteration since the policy iteration method and linear programming method for
computing the optimal value vector are in some sense equivalent. Our algorithm may
be a bit slower per iteration when a second linear program is solved.

3.3 State-Dependent Bounds

We exploit involved lower and upper bounds on the components vα
i of the optimal

value vector. Recall that we consider two different elevator control MDPs, one for
analyzing the average waiting time and another for dealing with the maximum waiting
time.

3.3.1 Average waiting time

The construction of state-specific bounds for the MDP modeling the average waiting
time is as follows. For each state i ∈ S, we employ a lower bound vα

min(i) ≤ vα
i

consisting of two parts, i. e., vα
min(i) = vα,1

min(i)+ vα,2
min(i).

The first lower bound vα,1
min(i) takes into account future requests arriving in the sys-

tem. It is based on a lower bound for the probability pno elevator that a request arrives at a
floor, where no elevator is located. Let again 0≤ p f ≤ 1 be the probability that a request
with start floor f ∈ F is released at a time slot. Consider a permutation f1, . . . , f|F | ∈ F
of the floors such that the probabilities are non-decreasing w. r. t. the permutation:
p f1 ≤ ·· · ≤ p f|F | . Since in each state there exist at least |F |− |E| floors where no ele-
vator is located, the probability pno elevator is at least the sum of the |F |− |E| smallest



Computational Bounds for Elevator Control Policies 19

arrival probabilities p f1 , . . . , p f|F |−|E| , i. e., we have:

pno elevator ≥
|F |−|E|

∑
k=1

p fk .

Since each request arriving at a floor where no elevator is located will have a waiting
time greater or equal 1 and such a request can arrive at each time slot, we obtain:

vα
i ≥

pno elevator

1−α
≥ ∑

|F |−|E|
k=1 p fk
1−α

=: vα,1
min(i).

Note that the first inequality above is only valid since the penalty cost satisfies by
assumption cp ≥ 1≥ pno elevator. This gives the first part of the lower bound.

The second part vα,2
min(i) of the lower bound on vα

i for a state i ∈ S captures the
total α-discounted cost resulting from the requests waiting in state i.

In the following, we restrict ourselves to the case of one elevator for the ease
of exposition. (A similar bound can be obtained for more elevators.) We consider a
relaxation of the elevator control problem where the elevator requires no time for
moving empty, and all requests waiting at the same floor can be served in arbitrary
order. Note that the resulting problem is equivalent to a scheduling problem where the
machine corresponds to the elevator and the jobs correspond to the waiting requests. In
the following, the current time slot at state i will be denoted by 0 and the consecutive
time slots by 1,2, . . . .

Theorem 3 Let i = (wmax,(σ f ) f∈F ,( fe,de)e∈E) be a state in a Markov decision pro-
cess with a single elevator e and floor set F. Let r1,r2, . . . ,rn be the waiting requests
sorted in non-decreasing order of transportation times, and let ∆1 ≤ ∆2 ≤ ·· · ≤ ∆n
be the transportation times plus loading and dropping times. Moreover, let ∆0 be the
earliest boarding time of any request given the current state of the elevator and the
origins of the requests. Then for each 0 < α ≤ 1, the α-discounted cost ist at least

vα
i ≥

n

∑
i=1

(n− i)
∆i−1

∑
k=∆0+∆1+···+∆i−1

α
k =: vα,2

min(i). (6)

Proof The bound vα,2
min(i) arises as the α-discounted sum of all already released waiting

requests at a time slot over all time slots. It therefore equals the α-discounted sum of
waiting times that is achieved when

– no further requests arrive;
– the elevator can move to the first request in time ∆0 and from the destination of a

request to the origin of the next request in time zero;
– the requests are served in the order of non-decreasing transportation times.

Thus, vα,2
min(i) is the α-discounted cost of a schedule that is feasible for a relaxed

problem with only the known requests, minimal time for the starting move and zero
time for empty moves and no precedence constraints for the requests waiting on
the same floor. Assume, an optimal algorithm OPT to the relaxed problem does not
schedule the requests in the order of non-decreasing transportation times. Assume,
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moreover, that OPT incurs a strictly smaller cost than vα,2
min(i). Then there are two

consecutive requests ri and ri+1 with ∆i < ∆i+1 that are scheduled in the order (ri+1,ri)
in OPT. Let w be the waiting time of ri+1 in OPT. Consider the modified schedule S
that arises from OPT by switching ri and ri+1. Then at all time slots the numbers of
waiting requests for OPT and S stay the same except for the non-empty set of time
slots

{w+∆i, . . . ,w+∆i+1−1},

in which S produces one waiting request less. This is because ri+1 is not waiting
anymore in S (ri is completed and there is no transition time) but ri is still waiting in
OPT (ri+1 is not yet completed). Thus, the α-discounted sum of waiting times in S is
strictly less than that of OPT: contradiction. Hence, vα,2

min(i) is the optimal value of a
relaxed problem and, therefore, a lower bound to vα

i . ut

Remark 5 The exchange in the proof of Theorem 3 is completely analogous to the
one in the usual optimality proof for the “shortest processing time first” rule in single-
machine scheduling. Only the bookkeeping changed a little in order to account for the
discounting.

Notice that vα,2
min(i) takes into account the costs incurred from currently waiting

requests only, while vα,1
min(i) solely considers costs due to future requests. Therefore,

their sum vα
min(i) := vα,1

min(i)+ vα,2
min(i) is a valid lower bound for the component vα

i of
the optimal value vector, too.

Obviously, the trivial upper bound vα
max = cmax/(1−α) is very weak in the con-

sidered elevator control MDP for most states since the maximum expected stage
cost equals cmax = |F |q+ cp ∑ f∈F p f . The approach to determine a suitable upper
bound vα

max(i) ≥ vα
i for each state i ∈ S is to compute the expected total number of

waiting requests and the expected penalty for each future time slot t up to some limit
assuming that no requests are served.

Let Nwait
t ∈ N0 and Nwait

t, f denote the random variables for the total number of
waiting requests and the number of requests waiting at floor f ∈ F for time slot t ∈N0,
respectively. By the linearity of the expectation we have:

E[Nwait
t ] = E[∑

f∈F
Nwait

t, f ] = ∑
f∈F

E[Nwait
t, f ].

For each f ∈ F , the expected value E[Nwait
t, f ] can be computed according to the arrival

probability p f at floor f by:

E[Nwait
t+1, f ] = min{E[Nwait

t, f ]+ p f ,q}.

Moreover, let Pt ≥ 0 denote the random penalty cost for a stage t ∈ N0. In order to
determine the expected penalty E[Pt ], we compute the probability pfull

t, f that the waiting
queue at a floor f ∈ F is full at time slot t. Let c f := q− |σ f (i)| be the remaining
capacity at each floor f ∈ F in state i. Note that we always have pfull

t, f = 0 as long as
t < c f since at most one request is released each stage. Generally, pfull

t, f equals the
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probability that at least c f new requests have arrived at floor f by time t. Therefore,
we obtain for each t ∈ N0:

pfull
t, f =

t

∑
k=c f

(
t
k

)
pk

f (1− p f )
t−k.

Again by the linearity of the expectation, the expected penalty E[Pt ] at time t ∈ N0
equals:

E[Pt ] = cp ∑
f∈F

pfull
t, f · p f .

Given the expected number of waiting requests E[Nwait
t ] and the expected penalty

cost E[Pt ] under the assumption that no requests are served, for each time slot t ∈ N0,
we have:

vα
i ≤

∞

∑
t=0

α
t(E[Nwait

t ]+E[Pt ]).

Clearly, it is impossible to determine an infinite number of expectations. We stop the
expensive computation described above at a time slot tmax when the maximum total
α-discounted expected cost α tmax vα

max after time tmax falls below some threshold value
(e. g., 0.1) and add α tmaxvα

max. Thus, we obtain the upper bound:

vα
i ≤ α

tmax vα
max +

tmax

∑
t=0

α
t(E[Nwait

t ]+E[Pt ]) =: vα
max(i).

Notice that the construction above assumes that none of the requests currently
waiting in a state are ever served. We mention that for approximating the component vα

i
of the optimal value vector for some i ∈ S, it is possible to take into account the
processing of the requests waiting in state i according to any feasible schedule. In
doing so, the expected stage costs E[Nwait

t ] and E[Pt ] reduce for some time slots t due to
serving requests in state i. Consequently, we obtain an improved upper bound vα

max(i).
Our implementation applies the feasible schedule obtained by the policy NN. Note
that this construction is generally infeasible when the goal is to approximate the
value vα

i0(π) for a policy π since the schedule of π may change when additional
requests arrive. Obviously, this is not the case for FIFO, i. e., we can employ the
improved bound according to the schedule obtained by FIFO. For all other policies
under consideration we have to assume that no requests are served.

3.3.2 Maximum waiting time

In the elevator control MDP for the maximum waiting time, a lower bound vα
min(i)≤ vα

i
for a state i ∈ S is obtained as follows. Let Fwait(i)⊆ F be the subset of floors where
at least one request is waiting in state i, i. e., Fwait(i) = { f ∈ F | σ f (i) 6= /0}. Moreover,
for each floor f ∈ Fwait(i), let r f denote the first request in the waiting queue σ f (i) in
state i.

The idea for constructing the lower bound on vα
i is to determine for each floor f ∈

Fwait(i) the smallest time t f by which an elevator can reach floor f , after possibly
having served a loaded request. That is, each request r f for a floor f ∈ Fwait(i) cannot
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be loaded before time t f . Consequently, the smallest possible final waiting time of
request r f equals wfinal

f := w f (i)+ t f , where w f (i) denotes the present waiting time
of request r f in state i. Note that the current maximum waiting time wmax(i) will
increase if we have max f∈Fwait(i) wfinal

f > wmax(i). By considering all floors f ∈ Fwait(i)
in order of decreasing current waiting times w f (i), one can determine a subset of time
slots T ⊂N0, where the maximum waiting time will increase, i. e., the associated stage
cost equals 1.

Such a set T implies the following lower bound on vα
i :

vα
i ≥ ∑

t∈T
α

t =: vα
min(i).

Clearly, an upper bound vα
max(i) for a state i ∈ S can be derived by arbitrarily

serving the requests waiting in state i and assuming that another request is released at
time slot 1 and never served. Consider any policy to compute a feasible schedule for
all waiting requests. In our implementation we use FIFO. According to the schedule
we obtain the subset of time slots T ⊂ N0, where the maximum waiting time will
increase. For constructing the second part of the bound let wmax be the maximum
final waiting time of a request in state i w. r. t. the used schedule. Note that the
waiting time of a request released at time slot 1 will be bounded by wmax until
time wmax +1. Therefore, never serving this request implies a stage cost of 1 for the
time slots wmax +1,wmax +2, . . . . Putting the two parts of the construction together,
we obtain the following upper bound on vα

i :

vα
max(i) := ∑

t∈T
α

t +
∞

∑
t=wmax+1

α
t = ∑

t∈T
α

t +
αwmax+1

1−α
≥ vα

i .

Similar as before, this upper bound is in general not valid if a component vα
i0(π) of

the value vector of a given policy π is to be approximated, although the bound is again
valid for FIFO. For other policies, we use a simple upper bound for vα

i (π) with i ∈ S
obtained by computing the maximum current waiting time w(i) of a request in state i.
It is clear that the stage cost will equal 0 for the time slots 0, . . . ,wmax(i)−w(i)−1.
This implies the upper bound:

vα
max(i) :=

αwmax(i)−w(i)

1−α
≥ vα

i (π).

4 Computational Results

In this section, we present some selected results which show how our analysis tool can
be used to assess and improve policies for the elevator control problem. For a more
detailed, extensive computational study we refer to [31].
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Table 1 Considered instances of the elevator control Markov decision processes. The considered start-
to-destination floor probability distributions, denoted by ud and sp are given in Table 2 and Table 3,
respectively.

instance nF nE q cp pr psd |S|

ela-1-4-10-02-sp 8 1 4 10 0.2 sp 2 086 898 858
elm-1-02-ud 8 1 ∞ – 0.2 ud ∞

Table 2 The start-to-destination floor probability distribution ud representing combined up and down
traffic of equal intensities. f1 and f2 denote arbitrary start and destination floors with f1, f2 ∈ {2, . . . ,8}.

start floor destination floor
1 f2

1 – 1/14
f1 1/14 –

Table 3 The start-to-destination floor probability distribution sp representing a special situation.

start floor destination floor
1 2 3 4 5 6 7 8

1 – – – 1/20 – 3/20 – 2/20
2 – – – – – – – –
3 – – – – – – – –
4 2/20 – – – – 1/20 – 1/20
5 – – – – – – – –
6 3/20 – – – – – 2/20 1/20
7 – – – – – – – –
8 2/20 – – – – 2/20 – –

4.1 Studied Instances

We introduce the instances of the two described Markov decision processes for online
elevator control that are studied in the sequel. Recall that the two models differ only
in the stage costs. In each case we can specify an instance by the following data:

– a number of floors nF ∈ N defining the set of floors F := {1, . . . ,nF},
– a number of elevators nE ∈ N defining the elevator set E := {1, . . . ,nE},
– a waiting queue length q ∈ N∪{∞},
– a penalty cost cp ≥ 1,
– a probability 0≤ pr ≤ 1 that exactly one new request is released at a time slot, and
– a probability distribution for the start and destination floor of a new request

given by a function psd : F ×F → R with psd( f , f ) = 0 for each floor f ∈ F
and ∑ f1∈F ∑ f2∈F psd( f1, f2) = 1, i. e., the probability that a new request has start
floor f1 ∈ F and destination floor f2 ∈ F equals psd(s,d).

The two instances we consider are given in Table 1. We keep the same names as
in [31]. The instance ela-1-4-10-02-sp is a Markov decision process for the case
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of minimizing the average waiting time, while the one for minimizing the maximum
waiting time is called elm-1-02-ud. Here, we only look at problems featuring
a single elevator (see [31] for more tests). We focus on two different distributions
for the start and destination floors of new requests. On the one hand, we look at
combined up and down traffic, i. e., for each transport request, Floor 1 is either its start
floor or its destination floor (see Table 2). This setting is natural for a cargo elevator
system in an automated warehouse, where goods are placed into storage and retrieved
over time. On the other hand, Table 3 shows a special traffic situation that may be
representative for some time in the course of a day. One can think of this situation as
follows. Still, there are some requests arriving at Floor 1 to be placed into storage and
some requests are retrieved, but only a subset of floors are currently utilized. Moreover,
there is some interfloor traffic, i. e., requests have start and destination floors that
are different from Floor 1. This may be due to production processes taking place or
required relocations of the stored goods.

4.2 Reading the Charts

We aim at monitoring during the computation for a selected state i0 ∈ S that is reached
while running a simulation or real-world system the following quantity:

ε
α
i0 (π) :=

vα
i0(π)− vα

i0
vα

i0

whenever vα
i0 > 0, (7)

where π is a particular policy for the considered MDP. The value εα
i0 (π) gives the

relative increase of the total α-discounted expected cost for the initial state i0 ∈ S
when using policy π or action π(i0) instead of an optimal policy. Since it is generally
impossible to compute the quantities defined in Equation (7) exactly, we aim at
providing lower bounds. This requires an upper bound on the component vα

i0 of the
optimal value vector and a lower bound on vα

i0(π) or vα
i0(π(i0)), respectively, which

are all obtained by our approximation algorithm.
The evaluation figures are arranged as follows. One chart may show for one

particular state i0, the approximation progress of

– an optimal policy: vα
i0 and

– a concrete policy π: vα
i0(π).

In the following we will refer to the values vα
i0 and vα

i0(π) simply as the optimal cost
and the cost of policy π , respectively.

For each cost value reported, we depict the progress of lower and upper bounds
computed in the approximation process depending on the number of explored states
and generated variables, respectively. Additionally, we will provide the best obtained
lower bounds on the value εα

i0 (π) for each analyzed policy π .
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Fig. 1 (a) Trivial state i2 in an elevator control MDP w. r. t. the average waiting time for a single elevator
and 8 floors. The initial state i2 has no waiting requests and the elevator at Floor 1 (b) Approximation results
for the elevator control MDP with 8 floors, one elevator, 4 waiting slots per floor and the special request
distribution. We have εα

i2
(NN) ≥ 3.6%, εα

i2
(FIFO) ≥ 7.9%, εα

i2
(REPLAN) ≥ 5.1%, and εα

i2
(IGNORE) ≥

7.5%.

4.3 Approximation Results for the Average Waiting Time

For this test, we selected a discount factor of α = 0.8 and the trivial initial state i2 =
ielv

1 where no transport request is waiting and the elevator is situated at Floor 1. The
associated approximation results for the MDP are depicted in Figure 1. Obviously,
none of the considered policies (see Section 2 for a description of the policies) is really
close to an optimal policy for the initial state i2.

Observe the effectivity of the column generation: Our method proves that NN is
not optimal using less than 10 000 states. It proves that NN is better than REPLAN

using around 60 000 states. The proof that IGNORE and FIFO are worse than REPLAN

takes around 50 000 states. After the generation of no more than 10 000 states, we
know the cost of an optimal policy up to approximately 0.1, i.e., by then we have
reached an accuracy of better than 5 %. Compared to this, the size of a static set of
states determined by the formula of Theorem 2(i) for an approximation guarantee of
0.1 would be larger than the whole state space with 2 086 898 858 states.

The most interesting constructive observation we made relating to these results is
the following: an optimal action at state i2 is to move the elevator upwards. In the case
no request is to be served by an elevator we face the task to position it such that future
requests can be handled well. This issue is often referred to as the parking policy
in the literature. Obviously, all of the considered policies do trivial parking, i. e., an
elevator that is not dedicated to serve a request simply waits at its current floor. Our
approximation method proves that this parking policy is not optimal for the state i2.
This result motivates to compare the actions WAIT, MOVE DOWN, and MOVE UP also for
each state, where no request is waiting and the elevator is located at an arbitrary floor
in F \ {1}. That is, for each state i = ((σ f ) f∈F , fe,de) with σ f = /0 for each f ∈ F ,

1 We chose the notation i2 instead of i0 to be consistent with the states considered in [31]
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Fig. 2 (a) State i1 in an elevator control MDP w. r. t. the maximum waiting time for a single elevator and
8 floors. The initial state i1 has one waiting requests at Floor 8 with destination at Floor 1, zero waiting time
so far, and the elevator in Floor 1. (b) Approximation results for the elevator control MDP with 8 floors,
1 elevator, infinity queuing capacity, and up-down traffic. We have εα

i1
(NN) ≥ 2.5%, εα

i1
(FIFO) ≥ 0%,

εα
i1
(REPLAN)≥ 0.6%, and εα

i1
(IGNORE)≥ 0%.

de = 0, and arbitrary floor fe ∈ F , we evaluate the total expected 0.8-discounted costs
of all feasible actions. This way, we could determine a unique optimal action for
each of these states according to the approach due to Lemma 4. It turned out that the
action WAIT is only optimal if the elevator is located at Floor 6. Otherwise, moving the
elevator closer to Floor 6 can be proven to be optimal. Thus, we obtained an optimal
parking policy for the corresponding MDP.

4.4 Approximation Results for the Maximum Waiting Time

Next, we analyze the performance of the policies NN, FIFO, REPLAN, and IGNORE

when the objective is to minimize the maximum waiting time of a request. That is,
we study the proposed elevator control MDP w. r. t. the maximum waiting time. We
report on the results for the MDP with 8 floors, 1 elevator, infinity queuing capacity
and the up-down traffic distribution from Table 2. The initial state i1 has one waiting
requests at Floor 8, a maximal waiting time of 0 so far, and the elevator in Floor 1.
The discount factor α is set to 0.8 again.

Figure 2 shows the associated results obtained by our approximation algorithm for
the initial state i1. Obviously, the policy NN performs badly, and is provably worse
than FIFO and IGNORE. Moreover, the cost of REPLAN is shown to be greater than the
cost of FIFO and the optimal cost.

Although the studies for average and maximum waiting time elevator control
MDPs can only partitially reflect the behavior observed in simulations, we want to
point out that our analysis provided useful information to improve existing online
algorithms. For instance, let us consider the policy NN. Computational results (see [31])
reveale that NN has the following weaknesses:
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– NN does not employ a parking policy,
– its tie-breaking rule may lead to bad decisions, and
– the maximum waiting times achieved by NN are quite bad.

Due to these observations, we define the policy NNPARK- f as the following modifica-
tion of NN:

– If the elevator is empty and there does not exist a waiting request, move the elevator
towards Floor f .

– If the elevator is empty and the nearest waiting request is not unique, serve that
request with the greater waiting time first.

The parameter f can in general be computed by checking the optimality of parking at
every floor by our method. As already mentioned, f = 6 is optimal in our example.

In order to focus even more on good maximum waiting times, we propose the
following extension of NNPARK- f : if the elevator is empty and there exists a wait-
ing request whose current waiting time equals the maximum waiting so far, this
request is served next ignoring all other requests. We denote this online algorithm
by NNMAXPARK- f .

4.5 Assessment of Long-Term Effects

The weakness of our tool in the elevator control problem is the following: since a
relatively small discounting factor of 0.8 was necessary to reach conclusive results in
the computations, long-term effects that, e.g., would rule out FIFO as an efficient policy
(compare [16]) cannot be detected. Maybe, the computation starting in a different
start state (full system) can yield more information, but the general problem persists.
In other words, further research is needed to capture long-term effects. So far, our
method is – used in isolation – only well-suited to assess the short-term performance
issues of policies.

However, once improved policies have been identified, it is possible to assess their
long-term behavior by simulation. We therefore simulated our modifications of NN.
The system defined by the Markov decision process cconsists of one elevator, eight
floors, and the objective is to minimize the maximum waiting time, i. e., the queue
length is infinite: We simulated for 10000 time steps and computed average values for
the observed average and maximum waiting times for 100 simulation runs. Table 4
shows simulation results for two Markov decision processes featuring a probability of
pr = 0.1 for the arrival of a new request at a time slot (this generates quite a high load).
Obviously, NNPARK- f improves over NN for both, average and the maximum waiting
times. Moreover, the NNMAXPARK- f achieves by far the best maximum waiting
times, while the average waiting times are similar to those of the originial online
algorithm NN, but slightly inferior compared to NNPARK- f .

We can therefore recommend to replace NN by NNMAXPARK- f on the basis of the
evidence provided by our new analysis method and the evidence created by a standard
simulation technique.
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Table 4 Average value for the average and maximum waiting times achieved by the online algorithms NN
and its variants NNPARK- f and NNMAXPARK- f according to 100 simulation runs for 10000 time steps. The
parking floor is chosen to be f = 6 for the MDP with start-to-destination probability distributions sp (see
Table 3) and f = 1 for ud (see Table 2).

Probability NN NNPARK- f NNMAXPARK- f
distribution avg. max. avg. max. avg. max.

sp 13.66 116.15 13.34 113.38 13.69 98.76
ud 12.26 139.33 11.93 128.59 12.26 97.94

5 Conclusion

In this paper we analyzed policies for the elevator control problem by a new approxi-
mation algorithm of the cost-to-go vector based on column generation for the exact
linear programming formulation in MDP theory. The key-learnings led to the design
of two new policies with provable better performance in critical states. This result
was confirmed by a simulation study that is independent of our tool. We believe,
that the ability of the tool to reveal weak spots (i.e., states in which decisions are far
from optimal) of otherwise not-so-bad policies can help to selectively modify widely
accepted policies in states in which they fail. Further research is needed in finding fast
solutions to the pricing problem and state dependent bounds. It can be expected that
only application specific methods will fit the bill.
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28. Schröder, J.: Advanced dispatching: Destination hall calls + instant car-to-call assignments: M10.
Elevator World pp. 40–46 (1990)

29. Schweitzer, P.J., Seidmann, A.: Generalized polynomial approximations in Markov decision processes.
Journal of Mathematical Analysis and Applications 110, 568–582 (1985)

30. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 1st edn. MIT Press, Cambridge
(1998)

31. Tuchscherer, A.: Local evaluation of policies for discounted Markov decision problems. Ph.D. thesis,
Technische Universität Berlin (2010)

32. Veatch, M.H., Walker, N.: Approximate linear programming for network control: Column generation
and subproblems. Working paper, Gordon College (2008)


