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Dynamic mean-variance investment model can not be solved by dynamic programming di-

rectly due to the nonseparable structure of variance minimization problem. Instead of adopting

embedding scheme, Lagrangian duality approach or mean-variance hedging approach, we trans-

fer the model into mean field mean-variance formulation and derive the explicit pre-committed

optimal mean-variance policy in a jump diffusion market. Similar to multi-period setting, the

pre-committed optimal mean-variance policy is not time consistent in efficiency. When the

wealth level of the investor exceeds some pre-given level, following pre-committed optimal mean-

variance policy leads to irrational investment behaviours. Thus, we propose a semi-self-financing

revised policy, in which the investor is allowed to withdraw partial of his wealth out of the mar-

ket. And show the revised policy has a better investment performance in the sense of achieving

the same mean-variance pair as pre-committed policy and receiving a nonnegative free cash flow

stream.

Key Words: mean field approach, pre-committed optimal mean-variance policy, jump

diffusion market, time consistency in efficiency, semi-self-financing revised policy.

1 INTRODUCTION.

Since Markowitz (1952) published his seminal paper on mean-variance model, a return-risk invest-

ment framework have been extensively investigated in financial economics. The extension of the

mean-variance model to dynamic settings, however, has been unsuccessful for many years, due to

an inherent nonseparable structure of the variance minimization problem in the sense of dynamic

programming. There are mainly four approaches in the literature to tackle this difficulty. First

approach is embedding scheme proposed by Li and Ng (2000) and Zhou and Li (2000). They con-

sidered a class of auxiliary linear quadratic stochastic control (LQSC) problems and derived the
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optimal mean-variance policy through identifying the best auxiliary parameter. Second approach

is Lagrangian duality approach proposed by Li et al. (2001). They considered the Lagrangian

relaxation of continuous time mean-variance model, and solved the original mean-variance model

by identifying the best Lagrangian parameter. Third approach is mean-variance hedging approach

proposed by Sun and Wang (2006). They proved that the optimal terminal wealth of mean-variance

model takes a particular form of the terminal wealth of a mean-variance hedging problem. Then,

the mean-variance portfolio selection problem is reduced into a mean-variance hedging problem,

which is also a LQSC problem. All these three approaches attempt to embed the nonseparable

mean-variance model into a family of tractable LQSC problems (or one particular LQSC problem).

Fourth approach is mean field approach proposed by Cui et al. (2014). They considered multi-

period mean-variance models and reformulated them into corresponding mean field type models,

where both the wealth dynamics and the objective functional involve the wealth states as well as

the expected values of the wealth states. By enlarging the state space and control space, they

derived the optimal mean-variance policies by dynamic programming directly. In the first part of

this paper, we extend Cui et al. (2014)’s multi-period mean field approach to consider continuous

time mean-variance model in a jump diffusion market.

The optimal dynamic mean-variance policy obtained at the beginning of investment is termed

by Basak and Chabakauri (2010) as pre-committed optimal mean-variance policy. For Bellman’s

principle of optimality is not applicable for dynamic mean-variance models, mean-variance in-

vestors’ global and local interests are not consistent, which implies the pre-committed optimal

mean-variance policy may not be optimal for a truncated mean-variance investment problem at

some intermediate time t and for certain realized wealth level. Thus, the investors may have

incentives to deviate from the pre-committed optimal mean-variance policy before reaching the

terminal time (see Zhu et al., 2003; Basak and Chabakauri, 2010). This phenomenon is called time

inconsistency.

To resolve the contradiction between mean-variance investors’ global and local interests, Basak

and Chabakauri (2010) reformulated dynamic mean-variance model as an interpersonal game, where

the investor at time t optimally chooses the policy adopted at any time t, on the premise that

he has already decided his policies in the future. The subgame Nash equilibrium policy of the

interpersonal game is called time consistent policy, which is the extension of Strotz (1955-1956)

and Laibson (1997)’s strategy of consistent planning in dynamic mean-variance world. Björk et

al. (2014), Hu et al. (2012), Cui et al. (2014) extended Basak and Chabakauri (2010)’s work by

assuming that the mean-variance investor has different forms of state-dependent risk aversion.

Different from investigating time consistent mean-variance policy, Cui et al. (2012) relaxed the

concept of time consistency in the literature (see Rosazza Gianin, 2006; Artzner et al., 2007; Jobert

and Rogers, 2008) to time consistency in efficiency (TCIE) based on a multi-objective version of

the principle of optimality: The principle of optimality holds if any tail part of an efficient policy

is also efficient for any realizable state at any intermediate period. TCIE is nothing, but requiring

the efficiency for any truncated investment problem at every time instant during the investment

horizon. Cui et al. (2012) showed that multi-period mean-variance model does not satisfy TCIE

and developed a better revised mean-variance policy by relaxing the self-financing restriction to

allow withdrawal of money out of the market. Dang and Forsyth (2014) termed this type of mean-

variance policy as semi-self-financing mean-variance policy and studied its property when there
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exist portfolio constraints. In the second part of this paper, we extend Cui et al. (2012)’s analysis

to construct a better semi-self-financing mean-variance policy in a jump diffusion market.

In this paper, we focus on studying the continuous time mean-variance investment model in

a jump diffusion market. We derive the pre-committed optimal mean-variance policy via newly

proposed mean field approach and construct a better semi-self-financing mean-variance policy,

which can achieve the same mean-variance pair as pre-committed optimal mean-variance policy

and receive a free cash flow stream during the investment. Our work enriches the research on

the solution schemes of dynamic mean-variance models and time consistency issue of dynamic

investment problems.

The organization of this paper is as follows. In Section 2, we reformulate continuous time mean-

variance model in a jump diffusion market into mean field mean-variance model. In Section 3, we

derive the pre-committed optimal mean-variance policy by dynamic programming. In Section 4,

we demonstrate that the pre-committed optimal mean-variance policy does not satisfy TCIE and

construct a better revised mean-variance policy. Finally, we conclude our paper in Section 5.

2 MEAN FIELD MEAN-VARIANCE FORMULATION IN JUMP DIFFUSION

MARKETS

Throughout this paper (Ω,F , {Ft}t≥0, P ) is a filtered complete probability space and F0 is the

trivial algebra over Ω. T > 0 is given and fixed representing the terminal time of an investment.

In addition, we use M ′ to denote the transpose of any vector or matrix M , and L2
F (0, T ;Rn)

to denote the set of all Rn-valued, Ft-progressively measurable stochastic processes f(t) with

E
[∫ T

0 |f(t)|2dt
]
< +∞.

There is a capital market in which m + 1 assets are traded continuously. One of the assets is

a risk-free bank account whose value process S0(·) is subject to the following ordinary differential

equation (ODE):

(1)

{
dS0(t) = r(t)S0(t)dt, t ≥ 0,

S0(0) = s0 > 0,

where r(·) > 0 is the interest rate. The other m assets are risky stocks whose price processes

S1(·), S2(·), · · · , Sm(·) satisfy the following stochastic differential equations (SDE):

(2)


dSi(t) = Si(t)

{
µi(t)dt+

m∑
k=1

σik(t)dWk(t) +
∑̀
j=1

∫
R
γij(t, zj)Nj(dt, dzj)

}
, t ≥ 0,

Si(0) = si > 0, i = 1, 2, · · · ,m,

where µi(·) is the appreciation rate, σik(·) is the volatility or dispersion rate of the i-th stock,

and γij(·, zj) is the relative change in the price Si(·) given an arrival of the jth stochastic Poisson

process with jump size zj . W (·) = (W1(·),W2(·), · · · ,Wm(·))′ is m-dimensional Brownian motion,

N(dt, dz) = (N1(dt, dz1), · · · , N`(dt, dz`))
′ is `-dimensional Poisson random measure with Levy

measure (ν1, · · · , ν`) and Ft = σ(W (t), N(dt, dz)). We assume that W , Nj are independent and all

the market parameters, r(t) > 0, µi(t), σik(t) and γij(t, zj) ≥ −1 a.s. with respect to Lévy measure

νj , are uniformly bounded deterministic functions in t ≥ 0 and zj ∈ R.
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Stochastic differential equation (2) can be further written as

(3)



dSi(t) = Si(t)

[
µi(t) +

∑̀
j=1

∫
R
γij(t, zj)νj(dzj)

]
dt

+ Si(t)

[ m∑
k=1

σik(t)dWk(t) +
∑̀
j=1

∫
R
γij(t, zj)Ñj(dt, dzj)

]
, t ≥ 0,

Si(0) = si > 0, i = 1, 2, · · · ,m,

where

Ñ(dt, dz) = (Ñ1(dt, dz1), · · · , Ñ`(dt, dz`))
′

= (N1(dt, dz1)− ν1(dz1)dt, · · · , N`(dt, dz`)− ν`(dz`)dt)′

is the compensated Poisson random measure.

Consider an investor, with an initial wealth x0 and an investment horizon [0, T ], whose total

wealth at time t ∈ [0, T ] is denoted by X(t). Assume that the trading of shares is self-financed and

takes place continuously, and that transaction cost and consumptions are not considered. Then

X(·) satisfies

(4)



dX(t) =

{
r(t)X(t) +

m∑
i=1

[
µi(t) +

∑̀
j=1

∫
R
γij(t, zj)νj(dzj)− r(t)

]
πi(t)

}
dt

+
m∑
i=1

m∑
k=1

πi(t)σik(t)dWk(t) +
m∑
i=1

∑̀
j=1

πi(t)

∫
R
γij(t, zj)Ñj(dt, dzj), 0 ≤ t ≤ T,

X(0) = x0,

where πi(t), i = 1, 2 · · · ,m, denotes the market value of the investor’s wealth in the i-th stock at

time t. We call the process π(t) = (π1(t), · · · , πm(t))′, 0 ≤ t ≤ T , a portfolio of the investor.

To simplify our analysis, we introduce the following notation

σ(·) := (σik(·))m×m,
γi(·, zi) := (γ1i(·, zi), · · · , γmi(·, zi))′, i = 1, · · · , `,
γ(·, z) := (γ1(·, z1), · · · , γ`(·, z`)) := (γij(·, zj))m×`,

B(·) :=
(
µ1(·) +

∑̀
j=1

∫
R
γ1j(·, zj)νj(dzj)− r(·), · · · , µm(·) +

∑̀
j=1

∫
R
γmj(·, zj)νj(dzj)− r(·)

)′
,

Γ(·) :=
(∑̀
j=1

∫
R
γij(·, zj)γkj(·, zj)νj(dzj)

)
m×m

.

Then, the wealth dynamic system (4) can be rewritten as

(5)

 dX(t)=[r(t)X(t) +B(t)′π(t)]dt+ π(t)′σ(t)dW (t) + π(t)′
∫
R`
γ(t, z)Ñ(dt, dz), 0 ≤ t ≤ T,

X(0)=x0,

where
∫
R` γ(t, z)Ñ(dt, dz) is the notation of vector(∑̀

j=1

∫
R
γ1j(t, zj)Ñj(dt, dzj), · · · ,

∑̀
j=1

∫
R
γmj(t, zj)Ñj(dt, dzj)

)′
.
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Definition 2.1 A portfolio π(·) is said to be admissible if π(·) ∈ L2
F (0, T ;Rm) and the SDE (4)

(or SDE (5)) has a unique solution X(·) corresponding to π(·).

Along the admissible portfolio {π(·)}, the corresponding wealth process {X(·)} is a Markov

process and Ft = σ(X(·)). The investor’s objective is to find an optimal portfolio π∗(·) such

that the expected terminal wealth E0[X(T )] = E[X(T )|F0] is maximized and the variance of the

terminal wealth Var0(X(T )) = Var(X(T )|F0) = E
[
X(T ) − E[X(T )|F0]

∣∣F0

]2
is minimized. The

problem of choosing such a portfolio π∗(·) is referred to as the mean-variance portfolio selection

problem. Mathematically, we have the following formulation,

(MVλ)

{
min
π(·)

Var0(X(T ))− λE0[X(T )],

subject to (X(·), π(·)) satisfies (5),

where λ ≥ 0 is the trade-off of two conflict objectives and called the risk aversion parameter. The

larger λ, the less risk aversion of the investor. To ensure problem (MVλ) is well posed, we need

two regular assumptions:

Assumption 1 Σ(t) := σ(t)σ(t)′ + Γ(t) � δI, ∀t ∈ [0, T ] for some δ > 0.

Assumption 2 There is no arbitrage opportunity in the market.

Next, we derive the mean-field formulation for problem (MVλ). The F0-expected equation of

the wealth system can be written as the following ODE

(6)

{
dE0[X(t)]=

{
r(t)E0[X(t)] +B(t)′E0[π(t)]

}
dt, 0 ≤ t ≤ T,

E0[X(0)]=x0.

Then, we have

(7)



d
(
X(t)− E0[X(t)]

)
=
{
r(t)

(
X(t)− E0[X(t)]

)
+B(t)′

(
π(t)− E0[π(t)]

)}
dt

+π(t)′σ(t)dW (t) + π(t)′
∫
R`
γ(t, z)Ñ(dt, dz)

=
{
r(t)

(
X(t)− E0[X(t)]

)
+B(t)′

(
π(t)− E0[π(t)]

)}
dt

+
{(
π(t)− E0[π(t)]

)′
σ(t) + E0[π(t)]′σ(t)

}
dW (t)

+
{(
π(t)− E0[π(t)]

)′
+ E0[π(t)]′

}∫
R`
γ(t, z)Ñ(dt, dz), 0 ≤ t ≤ T,

X(0)− E0[X(0)] = 0.

What we are actually doing here is to enlarge the state space (X(t)) into
(
X(t)−E0[X(t)],E0[X(t)]

)
and the control space (π(t)) into

(
π(t) − E0[π(t)],E0[π(t)]

)
. Although the two control vectors

E0[π(t)] and π(t)−E0[π(t)] can be derived independently at time t, there exists an intrinsic property

that

E0

[
π(t)− E0[π(t)]

]
= 0, t = 0, 1, · · · , T − 1,

where 0 is m-dimensional vector of all zeros.
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Definition 2.2 A portfolio
(
π(t) − E0[π(t)],E0[π(t)]

)
is said to be admissible if π(t) − E0[π(t)] ∈

L2
F (0, T ;Rm), E0[π(t)] ∈ Rm, E0

(
π(t)−E0[π(t)]

)
= 0, ODE (6) and SDE (7) have unique solutions

corresponding to
(
π(t)− E0[π(t)],E0[π(t)]

)
, respectively.

We see that
(
X(t)−E0[X(t)],E0[X(t)]

)
is a Markov process and Ft = σ(X(t)−E0[X(t)],E0[X(t)]).

Therefore, the mean-variance portfolio selection problem (MVλ) can be then reformulated as the

following mean field mean-variance problem

(MV −MF )



min
(π(·)−E0[π(·)],E0[π(·)])

E0

[(
X(T )− E0[X(T )]

)2]− λE0[X(T )],

subject to (E0[X(·)],E0[π(·)]) follows (6),

(X(·)− E0[X(·)], π(·)− E0[π(·)],E0[π(·)]) follows (7),

E0

[
π(t)− E0[π(t)]

]
= 0, 0 ≤ t ≤ T,

which is a linear quadratic optimal control problem and can be solved by dynamic programming.

3 THE PRE-COMMITTED OPTIMAL MEAN-VARIANCE POLICY

In this section, we solve mean field mean-variance problem (MV −MF ) via dynamic programming

and derive the pre-committed optimal mean-variance policy of original problem (MVλ).

To simplify our analysis, we denote the portfolio policy and state, respectively, as

u(·) = (u1(·), u2(·)) := (π(·)− E0[π(·)],E0[π(·)]),
Y (·) = (Y1(·), Y2(·)) := (X(·)− E0[X(·)],E0[X(·)]),

and the set of admissible portfolio policies between time s and t as U [s, t]. Then, the cost function

and the value function of problem (MV −MF ) at time t are defined as

J(t, y1, y2;u(·)) = Et
[
(Y1(T ))2 − λ(Y2(T ))

]
,

V (t, y1, y2) = min
u(·)∈U [t,T ]

J(t, y1, y2;u(·)),

respectively, where Et[·] = E[·|Ft]. Obviously, V (T, y1, y2) = (y1)2 − λ(y2). We assume that

both J(t, y1, y2;u) ∈ C1,2,2 and V (t, y1, y2) ∈ C1,2,2 (once continuously differentiable on t, twice

continuously differentiable on y1 and y2).

Define the infinitesimal generator for any function F (t, y1, y2) ∈ C1,2,2 as

AuF (t, y1, y2)

= Ft + Fy2 [r(t)y2 +B(t)′u2] + Fy1
[
r(t)y1 +B(t)′u1

]
+

1

2
Fy1y1

∣∣u′1σ(t) + u′2σ(t)
∣∣2

+
∑̀
j=1

∫
R

{
F
(
t, y1 +

[
u′1 + u′2

]
γj(t, zj), y2

)
− F (t, y1, y2)− Fy1

[
u′1 + u′2

]
γj(t, zj)

}
vj(dzj),

where Ft, Fy2 , Fy1 , Fy1y1 represent corresponding derivatives. We can always write AuF (t, y1, y2)

into summation of two parts,

AuF (t, y1, y2) = Au1F (t, y1, y2) +Au2F (t, y1, y2),
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where Au2F (t, y1, y2) is a deterministic function such that

E
[ ∫ T

0
|Au2F (t, Y1(t), Y2(t))|dt

]
< +∞,

E0

[
Au2F (t, Y1(t), Y2(t))

]
= 0,

hold for all admissible u(·) ∈ U [0, T ].

Then, we have the following important proposition according to the value function V (0, y1, y2).

Proposition 3.1 The value function of problem (MV −MF ) at time 0 is

V (0, y1, y2) = V̄ (0, y1, y2),

where V̄ (t, y1, y2) is the solution of following HJB equation,

(8)



Auv(t, y1, y2) = Au1v(t, y1, y2) +Au2v(t, y1, y2),

E0

[ ∫ T

0
|Au2v(t, Y1(t), Y2(t))|dt

]
< +∞, ∀u(·) ∈ U [0, T ],

E0[Au2v(t, Y1(t), Y2(t))] = 0, ∀u(·) ∈ U [0, T ],

min
u
Au1v(t, y1, y2) = 0,

v(T, y1, y2) = (y1)2 − λy2.

Moreover, the optimal portfolio policy of problem (MV −MF ) at time t can be derived through

u∗(t, y1, y2) = arg min
u

{
Au1 V̄ (t, y1, y2)

}
.(9)

Proof. See Appendix A. �

Remark 3.1 The HJB equation in Proposition 3.1 is a little different from classical HJB equation.

Actually, Proposition 3.1 suggests that if unconditional expectation of one part of the value function

is not influenced by any admissible portfolio policy and equals to zero, we can just eliminate that

part in the dynamic programming.

Theorem 3.1 The pre-committed optimal mean-variance policy of problem (MVλ) can be uniquely

represented as a feedback strategy

(10) π∗(t,X∗(t)) = −
(
Σ(t)

)−1
B(t)

(
X∗(t)− βe−

∫ T
t r(s)ds

)
,

where the risk attitude parameter d is given by

β = x0e
∫ T
0 r(s)ds +

λ

2
e
∫ T
0 B(s)′(Σ(s))−1B(s)ds.

The mean and variance of the optimal terminal wealth process X∗(T ) are

E0[X∗(T )] = x0e
∫ T
0 r(s)ds − λ

2

(
1− e

∫ T
0 B(s)′(Σ(s))−1B(s)ds

)
(11)

and

Var0(X∗(T )) =
λ2

4

(
e
∫ T
0 B(s)′(Σ(s))−1B(s)ds − 1

)
,(12)
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respectively. Moreover, the efficient frontier can be expressed as

Var0(X∗(T )) =
1

e
∫ T
0 B(s)′(Σ(s))−1B(s)ds − 1

(
E0[X∗(T )]− x0e

∫ T
0 r(s)ds

)2
,(13)

for E0[X∗(T )] ≥ x0e
∫ T
0 r(s)ds.

Proof. See Appendix B. �

The advantage of adopting mean field formulation instead of other approaches is that the

optimal portfolio policy can be derived by dynamic programming directly.

4 A BETTER REVISED MEAN-VARIANCE POLICY

Consider the following truncated mean-variance portfolio selection problem faced by the investor

at time t,

(MVλt)

{
min
π(·)

Vart(X(T ))− λ(t,X(t))Et[X(T )],

subject to (X(·), π(·)) satisfies (5),

where the trade-off parameter is denoted by λ(t,X(t)). Based on Theorem 3.1, we can derive the

optimal policy of this truncated mean-variance model as, for t ≤ s ≤ T ,

π̂∗(s, X̂∗(s)) = −
(
Σ(s)

)−1
B(s)

(
X̂∗(s)− β(t,X(t))e−

∫ T
s r(τ)dτ

)
,

where the risk attitude parameter is

β(t,X(t)) = X(t)e
∫ T
t r(s)ds +

1

2
λ(t,X(t))e

∫ T
t B(s)′(Σ(s))−1B(s)ds.

Then, the mean and variance of the corresponding terminal wealth X̂∗(T ) are as follows,

Et
[
X̂∗(T )

]
= X(t)e

∫ T
t r(s)ds − 1

2
λ(t,X(t))

(
1− e

∫ T
t B(s)′(Σ(s))−1B(s)ds

)
(14)

and

Vart
(
X̂∗(T )

)
=

1

4
[λ(t,X(t))]2

(
e
∫ T
t B(s)′(Σ(s))−1B(s)ds − 1

)
,(15)

respectively. Comparing the optimal policy of truncated mean-variance portfolio selection prob-

lem π̂∗(·) and the pre-committed optimal mean-variance policy π∗(·), we can get the following

proposition.

Proposition 4.1 When the trade-off parameter, λ(t,X(t)), takes the following linear form of X(t),

λ(t,X(t)) = 2
(
β −X(t)e

∫ T
t r(s)ds

)
e−

∫ T
t B(s)(Σ(s))−1B(s)ds,(16)

the optimal policy of truncated mean-variance portfolio selection problem and the pre-committed

optimal mean-variance policy are the same, i.e., the truncated pre-committed optimal mean-

variance policy is the solution of truncated problem (MVλt).
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Remark 4.1 Similar to multi-period setting in Cui et al. (2012), we call the trade-off parameter

in Proposition 4.1 as trade-off parameter induced by pre-committed policy (or induced trade-off

parameter for short). If the induced trade-off parameter is negative for some state X(t), i.e.,

wealth level at time t, X(t), exceeds a deterministic threshold βe−
∫ T
t r(s)ds, the investor aims to

minimize the variance and the expected value of terminal wealth level. In this situation, the

investor changes his (her) risk attitude for the remaining investment horizon and the truncated

pre-committed optimal mean-variance policy is no longer mean-variance efficient policy for the

truncated mean-variance problem. Thus, the pre-committed optimal mean-variance policy does

not satisfy TCIE in general.

An important question is when X(t) > βe−
∫ T
t r(s)ds happens. Consider the dynamics of X̃(t) :=

X(t)− βe−
∫ T
t r(s)ds along the pre-committed optimal policy π∗(t,X(t)). Applying Itô Lemma, we

can show that X̃(·) is a geometric Lévy process and follows

dX̃(t) = X̃(t)
{[
r(t)−B(t)′(Σ(t))−1B(t)

]
dt−B(t)′(Σ(t))−1σ(t)dW (t)

−
∑̀
j=1

B(t)′(Σ(t))−1γj(t, zj)Ñj(dt, dzj)

}
, 0 ≤ t ≤ T,

X̃(0) = −1
2λe

∫ T
0 [B(s)′(Σ(s))−1B(s)−r(s)]ds ≤ 0.

It is easy to see that a necessary and sufficient condition of Pr
(
X(t) ≤ de−

∫ T
t r(s)ds for all t

)
= 1

is the following Condition 1.

Condition 1 The inequality B(t)′(Σ(t))−1γj(t, zj) ≤ 1 almost surely holds with respect to Lévy

measure νj , for all j = 1, 2, · · · , ` and t ∈ [0, T ].

In other words, under Condition 1, the pre-committed optimal mean-variance policy is always

efficient for any possible wealth state X(t) at time t. There are two very important types of market

settings such that Condition 1 holds. One is pure diffusion market and another is complete market

with only jumps. For pure diffusion market, X̃(t) is a geometric diffusion process, which is always

non-positive. For complete market with only jumps, we have the following proposition.

Proposition 4.2 If the market is a complete market with only jumps,

(17) B(t)′(Σ(t))−1γj(t, zj) ≤ 1, t ∈ [0, T ],

holds for all j = 1, 2, · · · , `.

Proof. See Appendix C. �

If Condition 1 does not hold, we relax the self-financing into semi-self-financing, under which

the investor is allowed to withdraw money out of the market. And then introduce a better revised

semi-self-financing mean-variance policy.

Assume that the Poisson jumps happen at a series of time instances denoted by a sequence of

stopping times {τ̃i}, and the truncated stopping times are denoted as {τi = τ̃i ∧ T}. It is easy

to see that X̃(·) is a geometric diffusion process in time intervals [0, τ1) or [τi, τi+1). Therefore,
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for τi ≤ t < τi+1, X̃(t) has the same sign of X̃(τi) after i-th jump. In other words, X̃(·) may

only become positive at stopping times {τ1, τ2, · · · }. We propose the following semi-self-financing

revised mean-variance policy:

For 0 ≤ t < τ1, an investor implements pre-committed optimal mean-variance policy,

π̄(t, X̄(t)) = −
(
Σ(t)

)−1
B(t)

(
X̄(t)− β0e

−
∫ T
t r(s)ds

)
,

where the wealth process follows the following SDE
dX̄(t) = [r(t)X̄(t) +B(t)′π̄(t, X̄(t))]dt+ π̄(t, X̄(t))′σ(t)dW (t) + π̄(t, X̄(t))′

∫
R`
γ(t, z)Ñ(dt, dz),

0 ≤ t ≤ τ1,

X̄(0) = x̄0,

the initial wealth invested in the market x̄0 and the risk attitude parameter β0 are given as x̄0 = x0

and β0 = β = x0e
∫ T
0 r(s)ds + λ

2 e
∫ T
0 B(s)′(Σ(s))−1B(s)ds, respectively. Denote the wealth process level

on or after the first jump by X̄(τ1).

Then, similarly, denote the wealth process level on or after the i-th jump by X̄(τi). Set

x̄i=

 X̄(τi), if X̄(τi) ≤ βi−1e
−

∫ T
τi
r(s)ds

,

X̄(τi) + 2
(
βi−1e

−
∫ T
τi
r(s)ds − X̄(τi)

)(
1− e−

∫ T
τi
B(s)′(Σ(s))−1B(s)ds

)
, if X̄(τi) > βi−1e

−
∫ T
τi
r(s)ds

,

(18)

βi=

βi−1, if X̄(τi) ≤ βi−1e
−

∫ T
τi
r(s)ds

,

2X̄(τi)e
∫ T
τi

[r(s)−B(s)′(Σ(s))−1B(s)]ds
+βi−1

(
1− 2e

−
∫ T
τi
B(s)′(Σ(s))−1B(s)ds

)
, if X̄(τi) > βi−1e

−
∫ T
τi
r(s)ds

.

(19)

For τi ≤ t < τi+1, the investor implements the linear feedback policy

π̄(t, X̄(t)) = −
(
Σ(t)

)−1
B(t)

(
X̄(t)− βie−

∫ T
t r(s)ds

)
,(20)

where the wealth process follows the following SDE
dX̄(t) = [r(t)X̄(t) +B(t)′π̄(t, X̄(t))]dt+ π̄(t, X̄(t))′σ(t)dW (t) + π̄(t, X̄(t))′

∫
R`
γ(t, z)Ñ(dt, dz),

τi ≤ t ≤ τi+1,

X̄(τi) = x̄i.

Note that both x̄i and βi (i = 1, 2, · · · ) are path-dependent. One major feature of this revised

mean-variance policy is that, when the wealth process exceeds some threshold after i-th jump, i.e.,

X̄(τi) > βi−1e
−

∫ T
τi
r(s)ds

, the investor withdraws a positive cash flow,

X̄(τi)− x̄i = 2
(

1− e−
∫ T
τi
B(s)′(Σ(s))−1B(s)ds

)(
X̄(τi)− βi−1e

−
∫ T
τi
r(s)ds

)
> 0,(21)

out of the market and takes another efficient mean-variance policy with the risk attitude parameter

βi for the remaining amount in the market, x̄i, until the (i + 1)-th jump. The efficiency of newly

adopted policy π̄(t, X̄(t)) can be proved by checking x̄i ≤ βie
−

∫ T
τi
r(s)ds

.
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Theorem 4.1 The revised mean-variance policy achieves the same mean-variance pair of the termi-

nal wealth as does the original pre-committed optimal mean-variance policy, while having possibility

to take a positive cash flow stream out of the market during the investment horizon.

Proof. See Appendix D. �

Remark 4.2 Theorem 4.1 is an extension of Cui et al. (2012)’s main result in a jump diffusion

market. The current revised mean-variance policy satisfies time consistent in efficiency and achieves

better investment performance than pre-committed optimal mean-variance policy. Furthermore,

the positive cash flow stream may only occur at time instances when there is a Poisson jump.

5 CONCLUSION

By formulating continuous-time mean-variance model in a jump diffusion market into a mean-field

type model, we can derive the pre-committed optimal mean-variance policy easily and directly by

dynamic programming. Thus, it has been proved again that mean field approach is a powerful

tool to tackle dynamic mean-variance models and an efficient method to solve other nonseparable

stochastic control problems.

After studying the induced trade-off parameter, we show that pre-committed optimal mean-

variance policy in a jump diffusion market is not TCIE. By relaxing the self-financing restriction

to allow withdrawal of money out of the market, we construct a better semi-self-financing mean-

variance policy, achieving the same mean-variance pair as the pre-committed optimal mean-variance

policy and receiving a free cash flow stream during the investment horizon. This finding motivates

us to study similar semi-self-financing policies for other general return-risk portfolio selection models

in the future.

APPENDIX

Appendix A: The Proof of Proposition 3.1

Proof. Consider the following auxiliary optimal control problem

min
u(·)∈U [0,T ]

{
E0

[
J(T, Y1(T ), Y2(T );u(·))−

∫ T

0
Au2 V̄ (τ, Y1(τ), Y2(τ))dτ

]}
,

where

V̄ (s, y1, y2) = min
u(·)∈U [s,T ]

{
Es
[
J(T, Y1(T ), Y2(T );u(·))−

∫ T

s
Au2 V̄ (τ, Y1(s), Y2(τ))dτ

]}
is the value function of the problem.

Due to assumptions made on Au2 V̄ (t, Y1(t), Y2(t)) and Fubini’s theorem, we have

V̄ (0, y1, y2) = min
u(·)∈U [0,T ]

{
E0

[
J(T, Y1(T ), Y2(T );u(·))−

∫ T

0
Au2 V̄ (τ, Y1(τ), Y2(τ))dτ

]}
= min
u(·)∈U [0,T ]

{
E0

[
J(T, Y1(T ), Y2(T );u(·))

]}
=V (0, y1, y2).
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This means that the value function of auxiliary optimal control problem is the same as the value

function of problem (MV −MF ) at time 0.

Furthermore, we have

arg min
u(·)∈U [0,T ]

{
E0

[
J(T, Y1(T ), Y2(T );u(·))−

∫ T

0
Au2 V̄ (τ, Y1(τ), Y2(τ);u)dτ

]}
= arg min
u(·)∈U [0,T ]

{
E0

[
J(T, Y1(T ), Y2(T );u(·))

]}
,

which implies the optimal control set of auxiliary control problem is the same as the optimal control

set of problem (MV −MF ).

The HJB equation of auxiliary optimal control problem reads,{
min
u
{−Au2v(t, y1, y2) +Auv(t, y1, y2)} = 0,

v(T, y1, y2) = y2
1 − λy2,

with assumptions on Au2 V̄ (t, Y1(t), Y2(t)) holding. It can be reduced to

Auv(t, y1, y2) = Au1v(t, y1, y2) +Au2v(t, y1, y2),

E0

[ ∫ T

0
|Au2v(t, Y1(t), Y2(t))

∣∣∣∣dt] < +∞, ∀u(·) ∈ U [0, T ],

E0[Au2v(t, Y1(t), Y2(t))] = 0, ∀u(·) ∈ U [0, T ],

min
u
Au1v(t, y1, y2) = 0,

v(T, y1, y2) = (y1)2 − λy2.

And the optimal control is given by

u∗(t, y1, y2) = arg min
u

{
Au1 V̄ (t, y1, y2)

}
.

�

Appendix B: The Proof of Theorem 3.1

Proof. We conjecture the solution of HJB (8) as the quadratic form

V̄ (t, y1, y2) = P (t)(y1)2 + Π(t)y2 +Q(t).

It is easy to see

AuV̄ (t, y1, y2)

= Ṗ (t)y2
1 + Π̇(t)y2 + Q̇(t) + Π(t)

[
r(t)y2 +B(t)′u2

]
+ 2P (t)y1

[
r(t)y1 +B(t)′u1

]
+ P (t)

∣∣u′1σ(t) + u′2σ(t)
∣∣2 + P (t)

[
u′1 + u′2

]
Γ(t)

[
u1 + u2

]
=
[
Ṗ (t) + 2r(t)P (t)

]
y2

1 + 2P (t)y1B(t)′u1 + P (t)u′1Σ(t)u1

+ P (t)u′2Σ(t)u2 + Π(t)B(t)′u2 + Π̇(t)y2 + r(t)Π(t)y2 + Q̇(t) + 2P (t)u′1Σ(t)u2

= Au1 V̄ (t, y1, y2) +Au2 V̄ (t, y1, y2),
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where Ṗ (t) = dP (t)
dt , Π̇(t) = dΠ(t)

dt , Q̇(t) = dQ(t)
dt and

Au1 V̄ (t, y1, y2) =
[
Ṗ (t) + 2r(t)P (t)

]
y2

1 + 2P (t)y1B(t)′u1 + P (t)u′1Σ(t)u1

+ P (t)u′2Σ(t)u2 + Π(t)B(t)′u2 + Π̇(t)y2 + r(t)Π(t)y2 + Q̇(t),

Au2 V̄ (t, y1, y2) = 2P (t)u′1Σ(t)u2.

Due to Definition 2.2 of admissible portfolio, it is also easy to check that

E0

[ ∫ T

0
|Au2 V̄ (t, Y1(t), Y2(t))|dt

]
< +∞, ∀u(·) ∈ U [0, T ],

E0

[
Au2 V̄ (t, Y1(t), Y2(t))

]
= 0.

Furthermore, taking completion of the square yields

Au1 V̄ (t, y1, y2)

=
[
Ṗ (t) + 2r(t)P (t)− P (t)B(t)′(Σ(t))−1B(t)

]
y2

1

+ P (t)
[
u1 +

(
Σ(t)

)−1
B(t)y1

]′
Σ(t)

[
u1 +

(
Σ(t)

)−1
B(t)y1

]
+
[
Π̇(t) + r(t)Π(t)

]
y2 −

1

4
B(t)′

(
P (t)Σ(t)

)−1
B(t)Π(t)2 + Q̇(t)

+ P (t)
[
u2 +

1

2
Π(t)

(
P (t)Σ(t)

)−1
B(t)

]′
Σ(t)

[
u2 +

1

2
Π(t)

(
P (t)Σ(t)

)−1
B(t)

]
.

We first identify the candidate optimal control without considering the linear constraint E0

[
π(t)−

E0[π(t)]
]

= 0 and verify then the derived optimal policy satisfies the constraint automatically. The

candidate optimal control is given as

u∗1(t) = −
(
Σ(t)

)−1
B(t)y1,(22)

u∗2(t) = −1

2

(
P (t)Σ(t)

)−1
B(t)Π(t).(23)

Then, according to {
min
u
Au1 V̄ (t, y1, y2) = 0,

V̄ (T, y1, y2) = (y1)2 − λy2,

we have {
Ṗ (t) + 2r(t)P (t)− P (t)B(t)′(Σ(t))−1B(t) = 0,

P (T ) = 1,{
Π̇(t) + r(t)Π(t) = 0,

Π(T ) = −λ,{
Q̇(t)− 1

4B(t)′
(
P (t)Σ(t)

)−1
B(t)Π(t)2 = 0,

Q(T ) = 0.

Solving the above ODEs, we obtain

P (t) = e
∫ T
t [2r(s)−B(s)′(Σ(s))−1B(s)]ds,

Π(t) = −λe
∫ T
t r(s)ds,

Q(t) =
λ2

4

(
1− e

∫ T
t B(s)′(Σ(s))−1B(s)ds

)
.
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Thus,

(24)

E0[π∗(t)]=−1

2

(
P (t)Σ(t)

)−1
B(t)Π(t)

=
λ

2

(
Σ(t)

)−1
B(t)e−

∫ T
t [2r(s)−B(s)′(Σ(s))−1B(s)]dse

∫ T
t r(s)ds

=
λ

2

(
Σ(t)

)−1
B(t)e−

∫ T
t [r(s)−B(s)′(Σ(s))−1B(s)]ds.

Solving the ODE equation (6) yields the solution

(25) E0[X∗(t)] =
(
x0 +

∫ t

0
B(s)E0[π∗(s)]e−

∫ s
0 r(v)dvds

)
e
∫ t
0 r(s)ds.

Substituting (24) into (25) yields

E0[X∗(t)]=
(
x0 +

∫ t

0
B(s)′E0[π∗(s)]e−

∫ s
0 r(v)dvds

)
e
∫ t
0 r(s)ds

=
(
x0 +

λ

2

∫ t

0
B(s)′(Σ(s))−1B(s)e−

∫ T
s [r(v)−B(v)′(Σ(v))−1B(v)]dve−

∫ s
0 r(v)dvds

)
e
∫ t
0 r(s)ds

=
(
x0e

∫ T
0 r(s)ds +

λ

2

∫ t

0
B(s)′(Σ(s))−1B(s)e

∫ T
s B(v)′(Σ(v))−1B(v)dvds

)
e−

∫ T
0 r(v)dve

∫ t
0 r(s)ds

=
[
x0e

∫ T
0 r(s)ds − λ

2

(
e
∫ T
t B(s)′(Σ(s))−1B(s)ds − e

∫ T
0 B(s)′(Σ(s))−1B(s)ds

)]
e−

∫ T
t r(s)ds

=
(
x0e

∫ T
0 r(s)ds +

λ

2
e
∫ T
0 B(s)′(Σ(s))−1B(s)ds

)
e−

∫ T
t r(s)ds − λ

2
e−

∫ T
t [r(s)−B(s)′(Σ(s))−1B(s)]ds.

Hence,

(26) E0[X∗(T )] = x0e
∫ T
0 r(s)ds − λ

2

(
1− e

∫ T
0 B(s)′(Σ(s))−1B(s)ds

)
.

Also, based on (22) and (23), we have

π∗(t,X(t)) =−
(
Σ(t)

)−1
B(t)

(
X(t)− E0[X(t)]|π∗

)
+ E0[π∗(t)]

=−
(
Σ(t)

)−1
B(t)

[
X(t)−

(
x0e

∫ T
0 r(s)ds +

λ

2
e
∫ T
0 B(s)′(Σ(s))−1B(s)ds

)
e−

∫ T
t r(s)ds

+
λ

2
e−

∫ T
t (r(s)−B(s)′(Σ(s))−1B(s))ds

]
+ E0[π∗(t)]

=−
(
Σ(t)

)−1
B(t)

[
X(t)−

(
x0e

∫ T
0 r(s)ds +

λ

2
e
∫ T
0 B(s)′(Σ(s))−1B(s)ds

)
e−

∫ T
t r(s)ds

]
=−

(
Σ(t)

)−1
B(t)

(
X(t)− βe−

∫ T
t r(s)ds

)
,

where

β = x0e
∫ T
0 r(s)ds +

λ

2
e
∫ T
0 B(s)′(Σ(s))−1B(s)ds.

Substituting E0[π∗(t)] and π∗(t) − E0[π∗(t)] into (7) yields the optimal process X∗(·) − E0[X∗(·)]
and

(27)



d
(
X∗(t)− E0[X∗(t)]

)
=
[(
r(t)−B(t)′

(
Σ(t)

)−1
B(t)

](
X∗(t)− E0[X∗(t)]

)
dt

+
[λ

2
e−

∫ T
t [r(s)−B(s)′(Σ(s))−1B(s)]ds −

(
X∗(t)− E0[X∗(t)]

)]
·
(
Σ(t)

)−1
B(t)′

[
σ(t)dW (t) +

∫
R` γ(t, z)Ñ(dt, dz)

]
,

X∗(0)− E0[X∗(0)] = 0.
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Applying Itô Lemma and taking expectation, we get
d
(
E0

[
(X∗(t)− E0[X∗(t)])2

])
=
{[

2r(t)−B(t)′
(
Σ(t)

)−1
B(t)

]
E0

[
(X∗(t)− E0[X∗(t)])2

]
+
λ2

4
B(t)′

(
Σ(t)

)−1
B(t)e−

∫ T
t 2[r(s)−B(s)′(Σ(s))−1B(s)]ds

}
dt,

E0

[
(X∗(0)− E0[X∗(0)])2

]
= 0.

Hence,

E0

[
(X∗(t)− E0[X∗(t)])2

]
= −λ

2

4
e−

∫ T
t [2r(s)−B(s)′(Σ(s))−1B(s)]ds

(
e
∫ T
t B(s)′(Σ(s))−1B(s)ds − e

∫ T
0 B(s)′(Σ(s))−1B(s)ds

)
.

Therefore, we have the variance at the terminal

Var0(X∗(T )) =
λ2

4

(
e
∫ T
0 B(s)′(Σ(s))−1B(s)ds − 1

)
=

1

e
∫ T
0 B(s)′(Σ(s))−1B(s)ds − 1

(
E0[X∗(T )]− x0e

∫ T
0 r(s)ds

)2
.

Finally, we show the optimal portfolio policy satisfies the linear constraint E0

[
π∗(t)−E0[π∗(t)]

]
= 0.

According to (27), we have E0

[
X(t)− E0[X(t)]

]
= 0 for all t, which implies

E0

[
π∗(t)− E0[π∗(t)]

]
= −(Σ(t))−1B(t)E0

[
X∗(t)− E0[X∗(t)]

]
= 0, ∀t ∈ [0, T ].

�

Appendix C: The Proof of Proposition 4.2

Proof. Let us recall the first and second fundamental theories of asset pricing before we prove the

theorem. The first fundamental theory of asset pricing states that there is no arbitrage opportunity

in the market if and only if there exists at least one martingale measure under which the discounted

price processes of all risky assets in the market are martingales. While the second fundamental

theory of asset pricing states that the market is complete if and only if the martingale measure is

unique (See Delbaen and Schachermayer, 1994; Levental and Skorohod, 1995).

Based on the price process (2) and our assumption of only jumps, the discounted price of the

i-th risky assets, Ŝi(t) = Si(t)e
−

∫ t
0 r(s)ds, follows,

dŜi(t) = Ŝi(t)
[
µi(t) +

∑̀
j=1

∫
R
γij(t, zj)νj(dzj)− r(t)

]
dt+ Ŝi(t)

∑̀
j=1

∫
R
γij(t, zj)Ñj(dt, dzj),

Ŝi(0) = si > 0.

The Girsanov theorem for jump processes (Theorem 1.35 in Øsendal and Sulem , 2005) states that

if the equivalent (local) martingale measure Q exists, it can be expressed by

dQ(ω) = Z(T )dP (ω),

15



where

Z(t) := exp

(∑̀
j=1

∫ t

0

∫
R

[ln(1− θj(s, zj))Nj(ds, dzj) + θj(s, zj)νj(dzj)ds]

)
,

and θj(t, zj) satisfies

θj(t, zj) ≤ 1, 0 ≤ t ≤ T,(28) ∑̀
j=1

∫
R
γij(t, zj)θj(t, zj)νj(dzj) = Bi(t), 0 ≤ t ≤ T,(29)

for i = 1, 2, · · · ,m, j = 1, 2, · · · , `.
It is easy to check that

θj(t, zj) = (γj(t, zj))
′(Σ(t))−1B(t)

is the solution of equation (29). Furthermore, the complete market assumption ensures there exists

a unique solution for equation (29), and the unique solution also satisfies (28). Therefore, we have

B(t)′(Σ(t))−1γj(t, zj) = (γj(t, zj))
′(Σ(t))−1B(t) ≤ 1.

�

Appendix D: The Proof of Theorem 4.1

Proof. We adopt the mathematical induction to prove the main result. Before the proof, we

introduce the following notations throughout this proof procedure. Suppose that X(s; t, x, {u}st )
is the wealth level at time s depending on the initial pair (t, x) and self-financing policy {u(·)}st ,
while X̄(s; t, x, {v}st ) is the wealth level at time s depending on the initial pair (t, x) and semi-self-

financing policy {v(·)}st .
First, assume that the revised semi-self-financing policy only makes adjustment on or after the

first jump, which is denoted by π̄1(·). This means that the revised policy π̄1(·) is the same as the

pre-committed optimal policy π∗(·) during [0, τ1). Thus, the wealth levels on or after the first jump

are the same, i.e., X(τ1; 0, x0, {π∗}τ10 ) = X̄(τ1; 0, x0, {π̄1}τ10 ). The conditional mean and variance

achieved by the truncated pre-committed optimal policy is

E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]
=X(τ1; 0, x0, {π∗}τ10 )e

∫ T
τ1
r(s)ds − 1

2
λ(τ1, X(τ1; 0, x0, {π∗}τ10 ))

(
1− e

∫ T
τ1
B(s)′(Σ(s))−1B(s)ds

)
,

Var
(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

))
=

1

4
[λ(τ1, X(τ1; 0, x0, {π∗}τ10 ))]2

(
e
∫ T
τ1
B(s)′(Σ(s))−1B(s)ds − 1

)
,

where the induced trade-off parameter is

λ(τ1, X(τ1; 0, x0, {π∗}τ10 )) = 2
(
β0 −X(τ1; 0, x0, {π∗}τ10 )e

∫ T
τ1
r(s)ds

)
e
−

∫ T
τ1
B(s)(Σ(s))−1B(s)ds

.
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If X̄(τ1; 0, x0, {π̄1}τ10 ) ≤ β0e
−

∫ T
τ1
r(s)ds

, i.e. X(τ1; 0, x0, {π∗}τ10 ) ≤ β0e
−

∫ T
τ1
r(s)ds

, the truncated

pre-committed optimal policy is also efficient after the first jump. Thus, we need not adjust the

policy, i.e., π̄1(s) = π∗(s) for s ∈ [τ1, T ], and we have{
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]
= E

[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]
,

Var
(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

))
= Var

(
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

))
.

While X̄(τ1; 0, x0, {π̄1}τ10 ) > β0e
−

∫ T
τ1
r(s)ds

, i.e. X(τ1; 0, x0, {π∗}τ10 ) > β0e
−

∫ T
τ1
r(s)ds

, the truncated

pre-committed optimal policy becomes inefficient on or after the first jump. Therefore, we replace

it by another efficient policy with a new starting wealth level x̄1 and a new risk attitude parameter

β1,

π̄1(t, X̄(t)) = −
(
Σ(t)

)−1
B(t)

(
X̄(t)− β1e

−
∫ T
t r(s)ds

)
, τ1 ≤ t ≤ T,

where the new wealth process invested in the market X̄(·) follows dX̄(t)=[r(t)X̄(t) +B(t)′π̄1(t, X̄(t))]dt+ π̄1(t, X̄(t))′σ(t)dW (t) + π̄1(t, X̄(t))′
∫
R`
γ(t, z)Ñ(dt, dz),

X̄(τ1)=x̄1.

The conditional mean and variance of the terminal wealth determined by this new policy π̄1(·) are

as follows

E
[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]
= x̄1e

∫ T
τ1
r(s)ds − 1

2
λ(τ1, x̄1)

(
1− e

∫ T
τ1
B(s)′(Σ(s))−1B(s)ds

)
Var
(
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

))
=

1

4
[λ(τ1, x̄1)]2

(
e
∫ T
τ1
B(s)′(Σ(s))−1B(s)ds − 1

)
with

λ(τ1, x̄1) = 2
(
β1 − x̄1e

∫ T
τ1
r(s)ds

)
e
−

∫ T
τ1
B(s)(Σ(s))−1B(s)ds

.

Equalizing two conditional mean-variance pairs,{
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]
= E

[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]
,

Var
(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

))
= Var

(
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

))
,

we get x̄1 and β1 given in (18) and (19), respectively.

Furthermore, we have

E
[
X
(
T ; 0, x0, {π∗}T0

)]
=E
[
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]∣∣∣(0, x0, {π∗}τ10 )
]

=E
[
E
[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]∣∣∣(0, x0, {π∗}τ10 )
]

=E
[
E
[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]∣∣∣(0, x0, {π̄1}τ10 )
]

=E
[
X̄
(
T ; 0, x0, {π̄1}T0

)]
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and

Var
(
X
(
T ; 0, x0, {π∗}T0

))
=E
[
Var
(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

))∣∣∣(0, x0, {π∗}τ10 )
]

+ Var
(
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]∣∣∣(0, x0, {π∗}τ10 )
)

=E
[
Var
(
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

))∣∣∣(0, x0, {π∗}τ10 )
]

+ Var
(
E
[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]∣∣∣(0, x0, {π∗}τ10 )
)

=E
[
Var
(
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

))∣∣∣(0, x0, {π̄1}τ10 )
]

+ Var
(
E
[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]∣∣∣(0, x0, {π̄1}τ10 )
)

=Var
(
X̄
(
T ; 0, x0, {π̄1}T0

))
.

This means that mean and variance of the terminal wealth are equivalent under the above different

policies.

Second, assume that the result of the theorem holds when the revised policy makes adjustment

for k jumps, which is denoted by π̄k(·). We now proceed to prove that the result of the theorem

still holds when the revised policy makes adjustment for (k + 1) jumps.

At time τ1, we have X(τ1; 0, x0, {π∗}τ10 ) = X̄(τ1; 0, x0, {π̄k+1}τ10 ). When X̄(τ1; 0, x0, {π̄k+1}τ10 ) ≤
β0e
−

∫ T
τ1
r(s)ds

, the truncated pre-committed optimal policy with the risk attitude parameter β0

and the initial wealth X(τ1; 0, x0, {π∗}τ10 ) is efficient policy, which yields the efficient conditional

mean-variance pair(
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]
,Var

(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)))
.

For time interval [τ1, T ], the revised policy π̄k+1(·) is the same as the revised policy π̄k(·) with β0

and initial pair
(
τ1, X̄(τ1; 0, x0, {π̄k+1}τ10 )

)
. From the assumption of the mathematical induction,

we have the following{
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]
= E

[
X̄
(
T ; τ1, x̄1, {π̄k}Tτ1

)]
= E

[
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

)]
,

Var
(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

))
= Var

(
X̄
(
T ; τ1, x̄1, {π̄k}Tτ1

))
= Var

(
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

))
.

While X̄(τ1; 0, x0, {π̄k+1}τ10 ) > β0e
−

∫ T
τ1
r(s)ds

, the truncated pre-committed optimal policy with

the risk attitude parameter β0 and the initial wealth X(τ1; 0, x0, {π∗}τ10 ) is no longer mean-variance

efficient policy, which yields the inefficient conditional mean-variance pair(
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]
,Var

(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)))
.

We have shown that the revised policy π̄1(·) achieves an efficient conditional mean-variance pair

such that {
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]
= E

[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]
,

Var
(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

))
= Var

(
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

))
,

On the other hand, for time interval [τ1, T ], the revised policy π̄k+1(·) is the same as revised policy

π̄k(·) with initial condition β1 and (τ1, x̄1). From the assumption of the mathematical induction,

we have the following,{
E
[
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

)]
= E

[
X̄
(
T ; τ1, x̄1, {π̄k}Tτ1

)]
= E

[
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

)]
,

Var
(
X̄
(
T ; τ1, x̄1, {π̄1}Tτ1

))
= Var

(
X̄
(
T ; τ1, x̄1, {π̄k}Tτ1

))
= Var

(
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

))
.
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which implies{
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]
= E

[
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

)]
,

Var
(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

))
= Var

(
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

))
.

Finally, we have

E
[
X
(
T ; 0, x0, {π∗}T0

)]
=E
[
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]∣∣∣(0, x0, {π∗}τ10 )
]

=E
[
E
[
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

)]∣∣∣(0, x0, {π∗}τ10 )
]

=E
[
E
[
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

)]∣∣∣(0, x0, {π̄k+1}τ10 )
]

=E
[
X̄
(
T ; 0, x0, {π̄k+1}T0

)]
and

Var
(
X
(
T ; 0, x0, {π∗}T0

))
=E
[
Var
(
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

))∣∣∣(0, x0, {π∗}τ10 )
]

+ Var
(
E
[
X
(
T ; τ1, X(τ1; 0, x0, {π∗}τ10 ), {π∗}Tτ1

)]∣∣∣(0, x0, {π∗}τ10 )
)

=E
[
Var
(
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

))∣∣∣(0, x0, {π∗}τ10 )
]

+ Var
(
E
[
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

)]∣∣∣(0, x0, {π∗}τ10 )
)

=E
[
Var
(
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

))∣∣∣(0, x0, {π̄k+1}τ10 )
]

+ Var
(
E
[
X̄
(
T ; τ1, x̄1, {π̄k+1}Tτ1

)]∣∣∣(0, x0, {π̄k+1}τ10 )
)

=Var
(
X̄
(
T ; 0, x0, {π̄k+1}T0

))
,

which completes our proof. �
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