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Abstract

We investigate a class of optimal stopping problems arising in, for example, studies consid-

ering the timing of an irreversible investment when the underlying follows a skew Brownian

motion. Our results indicate that the local directional predictability modeled by the presence

of a skew point for the underlying has a nontrivial and somewhat surprising impact on the

timing incentives of the decision maker. We prove that waiting is always optimal at the skew

point for a large class of exercise payoffs. An interesting consequence of this finding, which is

in sharp contrast with studies relying on ordinary Brownian motion, is that the exercise region

for the problem can become unconnected even when the payoff is linear. We also establish

that higher skewness increases the incentives to wait and postpones the optimal timing of an

investment opportunity. Our general results are explicitly illustrated for a piecewise linear payoff.
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1 Introduction

Standard Brownian motion constitutes without a doubt the most commonly utilized model for the

factor dynamics driving the underlying stochasticity in financial models. Its analytical tractabil-

ity and computational facility makes it a compelling model with many desirable properties rang-

ing from the independence of its increments to the Gaussianity of its probability distribution.

Unfortunately, for many financial return variables the presence of autocorrelation of the driv-

ing dynamics and/or skewness of the probability distributions constitutes a rule rather than an

exception. It is clear that in such a case relying on a simple Gaussian structure may result in

wrong conclusions concerning both the valuation and the timing of investment opportunities.

In contrast with the standard Gaussian framework, relatively recent empirical research indi-

cates that even though the exact value of an asset is unpredictable, the direction towards which

the asset value is expected to develop may be predictable to some extent (see, for example, [3],

[2], [9], [10], [13], [15], [16], [30], [34], and [39]). More precisely, expressing the return of an asset

as the product of its sign and its absolute value and investigating the behavior of these factors

separately indicates that the sign variable capturing the directional behavior of the return can

be forecasted correctly with an accuracy ranging from 52% to even 60% (for a recent survey of

studies focusing on directional predictability, see [25]). This empirical observation has not went

completely unnoticed in theoretical finance studies and it has resulted into the introduction and

the analysis of driving dynamics possessing at least some of the skewness and the local (in space)

predictive properties encountered in financial data. One of the proposed modeling approaches is

based on skew Brownian motion and skew diffusion processes in general (cf. [17], [20], [21, 22],

and [33]). Basically, a skew Brownian motion behaves like an ordinary Brownian motion outside

the origin (see, for example, [4], [5], [6], [11], [12], [24], [26], [27], [28], [31], [40], [41]). However,

at the origin the process has more tendency to move, say, upwards than downwards resulting in

a sense into a larger number of positive than negative excursions starting from the origin. In

that way it offers a mathematical model for local directional predictability of the driving random

factor and, consequently, to an asymmetric and skewed probability distribution of the underlying

random dynamics.

In this paper we investigate how the singularity generated by the skewness of the underlying

driving diffusion affect optimal stopping policies within an infinite horizon setting. Our approach

for solving the considered optimal stopping problem is based on the scrutinized analysis of the

superharmonic functions (see, for example, [1], [7], [8], [14], [18], [19], [23], [36], and [37] and
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references therein). In particular, we use the Martin representation theory of superharmonic

functions (cf. [14] and [35]). We demonstrate that positive skewness increases the incentives to

wait at the singularity so radically that the skew point is always included in the continuation

region provided that the exercise payoff is increasing at the skew point. This observation is

in sharp contrast with results based on standard Brownian motion and illustrates how even

relatively small local predictability of the underlying diffusion generates incentives to wait and,

in that way, postpone the optimal stopping of the underlying process. An interesting and to some

extent surprising implication of this observation is that the optimal stopping policy for skew BM

can become a three-boundary policy even in the case where the exercise payoff is piecewise linear

(call option type). Such configurations cannot appear in models relying on standard BM. We

also demonstrate that the sign of the dependence of the value of the optimal policy and the

skewness of the underlying diffusion is positive. Consequently, higher skewness increases the

value of the optimal policy and expands the continuation region. An interesting implication

of this observation is that the value of the optimal stopping strategy for a positively skew BM

dominates the corresponding value for standard BM.

The contents of this study are as follows. The basic properties of the underlying dynamics,

i.e., skew Brownian motion, are discussed in Section 2. In Section 3 the considered stopping

problem and some key facts are presented. Our main findings on optimal stopping of skew

Brownian motion are summarized in Section 4. These results are then numerically illustrated in

an explicitly parameterized piecewise linear model in Section 5. Finally, Section 6 concludes our

study.

2 Underlying Dynamics: Skew Brownian Motion

Our main objective is to investigate how the potential directional asymmetry of the underlying

diffusion affects the optimal exercise strategies and their values. In order to accomplish this task,

we assume that the underlying diffusion process is a skew Brownian motion (abbreviated from

now on as SBM) characterized as the unique strong solution of the SDE (cf. [24])

Xt = x+Wt + (2β − 1)lXt , (1)

where x ∈ R is the initial value of the process, β ∈ [0, 1] is a parameter capturing the skewness of

the process, {Wt}t≥0 is a standard Brownian motion and {lXt }t≥0 is the local time at zero of the

process {Xt}t≥0 normalized with respect to Lebesgue’s measure. As is clear from (1), the process
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{Xt}t≥0 coincides with standard Brownian motion when β = 1/2 and with reflected Brownian

motion when β = 0 or β = 1. The process {Xt}t≥0 behaves like ordinary Brownian motion

outside the skew point 0 and has for all t > 0 the property P0[Xt ≥ 0] = β (cf. [11], p. 130).

Thus, the process has in a sense more tendency to move up than down from the origin whenever

β > 1/2. Moreover, utilizing the known transition probability density (see, for example, [11], p.

130 or [27], p. 420)

Px [Xt ∈ dy] =

(

1√
2πt

e−
(x−y)2

2t + (2β − 1)sgn(y)
1√
2πt

e−
(|x|+|y|)2

2t

)

dy, (2)

of SBM yields

Ex [Xt] = x+ 2(2β − 1)
√
t φ

( |x|√
t

)

− 2(2β − 1)|x| Φ
(

− |x|√
t

)

, (3)

where Φ is the standard univariate normal distribution function and φ is its density. Setting

x = 0 in (3) yields

E0[Xt] = (2β − 1)

√

2t

π
.

The moment generating function, in turn, reads as

Ex

[

eλXt
]

= eλx+
1
2λ

2t

(

1 + (2β − 1)e−λ(|x|+x)Φ

(

λt− |x|√
t

)

− (2β − 1)eλ(|x|−x)Φ

(

−λt+ |x|√
t

))

.

The scale function and the speed measure of X are given by

S(x) =











x/β, x ≥ 0,

x/(1− β), x ≤ 0,

and

m(dx) =











2βdx, x > 0,

2(1− β)dx, x < 0,

respectively. The fact that S(x) → ±∞ as x → ±∞ implies that X is recurrent. Finally, the

increasing and the decreasing fundamental solutions associated with X are (cf. [11], p. 130)

ψr(x) = eθx −
(

1− 1

2β

)

(

eθx − e−θx
)+

=











1
2β e

θx +
(

1− 1
2β

)

e−θx, x ≥ 0,

eθx, x ≤ 0,

(4)

and

ϕr(x) = e−θx +
2β − 1

2(1− β)
(e−θx − eθx)+ =











e−θx, x ≥ 0,

1
2(1−β)

(

(1− 2β)eθx + e−θx
)

, x ≤ 0,

(5)

respectively, where θ =
√
2r is the so-called Wronskian of the fundamental solutions with respect

to the scale function. It is easily seen that ψr and ϕr are differentiable with respect to S

everywhere (also at 0), but not in the ordinary sense at 0.
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3 Problem Setting and Some Preliminary Results

Our task is to investigate for SBM X with β > 1/2 how the skewness and the resulting local

directional predictability of the underlying affects the value and optimal exercise policy in the

optimal stopping problem (OSP):

Find a stopping time τ∗ such that

V (x) := sup
τ∈T

Ex

[

e−rτg(Xτ )
]

= Ex

[

e−rτ
∗

g(Xτ∗)
]

, (6)

where r > 0 denotes the prevailing discount rate, T is the set of all stopping times with respect

to the natural filtration generated by X , and g : R 7→ R+ is the exercise reward satisfying:

(g1) g is continuous, non-decreasing, non-negative, and has finite left and right derivatives,

(g2) limx→∞ g(x)/ψr(x) = 0 and limx→−∞ g(x)/ψr(x) = 0.

In (6) we use the convention that if τ(ω) = ∞ then

e−rτ(ω)g(Xτ(ω)(ω)) := lim sup
t→∞

e−rtg(Xt(ω)).

As is known from the literature on optimal stopping V is the smallest r-excessive majorant

of g (cf. Theorem 1 on p. 124 of [38]). As usual, we call Γ := {x : V (x) = g(x)} the stopping

region and C := {x : V (x) > g(x)} the continuation region. Let

M := argmax
x∈R

{g(x)/ψr(x)} (7)

denote the set of points at which the ratio g/ψr is maximized. We can now prove the following:

Lemma 3.1. The value of the optimal policy is finite, i.e. V (x) < ∞ for all x ∈ R, and the

stopping region is nonempty, i.e. Γ 6= ∅.

Proof. Assumptions (g1) and (g2) guarantee that the set of maximizers M is non-empty. Hence,

for all x ∈ R it holds that

V (x) = sup
τ∈T

Ex

[

e−rτ
g(Xτ )

ψr(Xτ )
ψr(Xτ )

]

≤ sup
y∈R

g(y)

ψr(y)
sup
τ∈T

Ex

[

e−rτψr(Xτ )
]

≤ ψr(x) sup
y∈R

g(y)

ψr(y)
. (8)

For the last inequality in (8) we use the optional sampling theorem which is justified since

{e−rtψr(Xt)}t≥0 is a positive supermartingale. This proves that V (x) < ∞ for all x ∈ R. In

order to show that Γ 6= ∅ let x∗ ∈ M and utilize (8) to obtain

V (x∗) ≤ ψr(x
∗)
g(x∗)

ψr(x∗)
= g(x∗)

proving that x∗ ∈ Γ.
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Next we establish a result used to verify that a candidate strategy is optimal. This is essen-

tially Corollary on p. 124 in [38]. We present the proof for readability and completeness.

Lemma 3.2. Let A ⊂ I be a nonempty Borel subset of I and τA := inf{t ≥ 0 : Xt ∈ A}.
Assume that the function

V̂ (x) := Ex

[

e−rτAg(XτA)
]

is r-excessive and dominates g. Then, V = V̂ and τA is an optimal stopping time. Moreover, τA

is finite almost surely.

Proof. Clearly, τA <∞ almost surely since X is recurrent and A is nonempty. By the definition

of V it holds for all x

V (x) = sup
τ∈T

Ex

[

e−rτg(Xτ )
]

≥ Ex

[

e−rτAg(XτA)
]

= V̂ (x).

On the other hand, V̂ being an r-excessive majorant of g yields

V (x) = sup
τ∈T

Ex

[

e−rτg(Xτ )
]

≤ sup
τ∈T

Ex

[

e−rτ V̂ (Xτ )
]

≤ V̂ (x).

Consequently, V = V̂ and τA is an optimal stopping time.

In many optimal stopping problems the set A appearing in Lemma 3.2 turns out to be Γ

explaining the terminology ”stopping set” for Γ. This is also the case in our subsequent analysis

where we establish conditions under which the optimal stopping rule equals τΓ.

4 Main Results

Typically optimal stopping problems of the type (6) can be investigated quite efficiently by

relying on variational inequalities and approaches utilizing the differential operator associated

with the generator of the underlying diffusion. Unfortunately, the use of those approaches for

SBM is challenging due to the extra drift component involving a local time term at the skew

point, see SDE (1). In order to circumvent this problem, we first focus on the general properties

of r-excessive functions and characterize general conditions under which the skew point (i.e. the

origin) is in the continuation region.

Proposition 4.1. Assume that either 0 ≤ g′(0−) < g′(0+) or 0 < g′(0−) ≤ g′(0+). Then, for

SBM with β > 1/2 the state 0 is for all r > 0 in the continuation region C = {x : V (x) > g(x)} .
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Proof. Since ψr and ϕr are differentiable everywhere with respect to the scale function S it

follows that any r-excessive function h has the left and the right scale derivatives d−h/dS and

d+h/dS, respectively, and these satisfy for all x (cf. Corollary 3.7 in [35])

d−h

dS
(x) ≥ d+h

dS
(x). (9)

Let V be the value function defined in (6) and recall that V is the smallest r-excessive majorant

of g. Assume now that 0 ∈ Γ. Then V (0) = g(0) and since V (x) ≥ g(x) for all x ∈ R we have

for δ > 0
V (0)− V (−δ)
S(0)− S(−δ) ≤ g(0)− g(−δ)

S(0)− S(−δ) .

Letting δ ↓ 0 yields
d−V

dS
(0) ≤ (1− β)g′(0−).

Similarly, for δ > 0
V (δ)− V (0)

S(δ)− S(0)
≥ g(δ)− g(0)

S(δ)− S(0)

leading, when letting δ ↓ 0, to
d+V

dS
(0) ≥ βg′(0+).

Therefore, using the assumptions on g,

d−V

dS
(0)− d+V

dS
(0) ≤ (1 − β)g′(0−)− βg′(0+) ≤ (1− 2β)g′(0+) < 0

since β > 1/2. But this contradicts (9) and, hence, 0 6∈ Γ.

Remark 4.2. 1. In the proof of Proposition 4.1 we do not rely on particular properties of

SBM and, therefore, the conclusions can be extended to all appropriately defined general skew

diffusions.

2. The conclusions of Proposition 4.1 could alternatively be proved by investigating the behavior

of the ratio

uλ(x) :=
g(x)

λψr(x) + (1− λ)ϕr(x)
,

where λ ∈ [0, 1]. By Theorem 2.1 in [14] 0 ∈ Γ if and only if there exists a λ ∈ [0, 1] such that

0 ∈ argmax{uλ(x)}. Assuming that this is the case implies that u′λ(0+) ≤ 0 ≤ u′λ(0−) which can

be shown to coincide with the requirement βg′(0+) ≤ (1−β)g′(0−). Noticing that this inequality

cannot be satisfied under the conditions of Proposition 4.1 demonstrates that 0 ∈ C as claimed.

Proposition 4.1 essentially states that if the exercise payoff is increasing in some small open

neighborhood of the origin, then the skew point is always included into the continuation region.
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Put somewhat differently, the directional predictability of the underlying process generates in-

centives to wait in a neighborhood of the skew point whenever the exercise reward is locally

increasing at the state where the underlying process has more tendency to move upwards instead

of moving downwards. Since upward movements are in the present setting more favorable from

the perspective of the decision maker, waiting becomes optimal even in cases where exercising

would be optimal in the absence of skewness. This is an interesting and nontrivial property

generated by the singularity of the process at the origin.

The key comparative static properties of the value and optimal exercise strategy are given in

the following

Proposition 4.3. The value function V is non-decreasing as a function of β and non-increasing

as a function of r. Consequently, higher skewness (discounting) expands (contracts) or leaves

unchanged the continuation region. In particular, the value function of the OSP for SBM with

β > 1/2 dominates the value of the corresponding OSP for standard BM {Wt}t≥0, i.e.,

V (x) ≥ J(x) := sup
τ∈T

E
[

e−rτg(x+Wτ )
]

(10)

and, therefore, {x : J(x) > g(x)} ⊂ C = {x : V (x) > g(x)}.

Proof. Let r̂ > r > 0 and τ ∈ T be an arbitrary stopping time. The non-negativity of the

exercise payoff g then implies that

Ex

[

e−r̂τg(Xτ )
]

= Ex

[

e−(r̂−r)τ−rτg(Xτ )
]

≤ Ex

[

e−rτg(Xτ )
]

for all x ∈ R, demonstrating that increased discounting decreases the value of the optimal policy

and, consequently, does not expand the continuation region.

In order to analyze the impact of skewness on the value of the optimal timing policy, we first

notice that using (2) for a measurable function h : R 7→ R yields

Ex [h(Xt)] = E [h(x+Wt)] + (2β − 1)

∫ ∞

0

1√
2πt

e−
(|x|+y)2

2t (h(y)− h(−y))dy

in case the expectation exist. Consequently, for a non-decreasing h it holds that

∂

∂β
Ex [h(Xt)] = 2

∫ ∞

0

1√
2πt

e−
(|x|+y)2

2t (h(y)− h(−y))dy ≥ 0. (11)

Consider the sequence of functions {Fn}n≥0 defined inductively (cf. [38], pp. 121-122) by

F0(x) := g(x)

Fn+1(x) := sup
t≥0

Ex

[

e−rtFn(Xt)
]

.

7



Then Fn+1(x) ≥ Fn(x) for all x and n. Moreover, x 7→ Fn(x) is non-decreasing for every n since

g is assumed to be non-decreasing and expectation preserves the ordering. Thus, the increased

skewness does not decrease their expected value by (11). On the other hand, since Fn converges

pointwise to V (cf. [38], Lemma 5 on p. 121) we notice that the increased skewness increases or

leaves unchanged V and, consequently, expands the continuation region. Inequality (10) follows

by setting β = 1/2.

Proposition 4.3 demonstrates that the sign of the relationship between the increased skewness

and the value of the optimal exercise strategy is positive. This result is intuitively clear since it

essentially states that the more probable upward excursions are, the larger is the value of waiting

for more favorable states resulting into a higher payoff. It is worth emphasizing that the positive

skewness is not needed for the positivity of the dependence of the skewness and the value, and

the conclusion is valid whenever β ∈ [0, 1]. Proposition 4.3 also shows that higher discounting

accelerates rational exercise by decreasing the expected present value of future payoffs.

Before stating our main results on the single stopping boundary case, we introduce for a

differentiable function F

(LψF )(x) :=
ψ2
r (x)

S′(x)

d

dx

[

F (x)

ψr(x)

]

=











1
2

(

eθx(F ′(x)− θF (x)) + (2β − 1)e−θx(F ′(x) + θF (x))
)

, x > 0,

(1− β)eθx(F ′(x)− θF (x)), x < 0,

(12)

and

(LϕF )(x) :=
ϕ2
r(x)

S′(x)

d

dx

[

F (x)

ϕr(x)

]

=











βe−θx(F ′(x) + θF (x)), x > 0,

1
2

(

e−θx(F ′(x) + θF (x)) − (2β − 1)eθx(F ′(x)− θF (x))
)

, x < 0.

(13)

Recall that if F is an r-excessive function of X then LψF and LϕF are associated with the

representing measure of F (for a precise characterization and the integral representation of ex-

cessive functions, see [11], p. 33, [35] (3.3) Proposition, and [37] Theorem 2.4). In the proofs of

Proposition 4.4 and Proposition 4.6 we use the representation theory to verify the excessivity of

the proposed value function.

Proposition 4.4. (A) Let x∗ ∈ M. Then, (−∞, x∗) \M ⊂ C.

(B) Assume that M = {x∗}, where x∗ > 0, and that in addition to (g1) and (g2) the reward

function g has the following properties
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(i) g ∈ C2([x∗,∞)) i.e. g is twice continuously differentiable on [x∗,∞),

(ii) g′′(x) − 2rg(x) ≤ 0 for all x ≥ x∗.

Then, τx∗ = inf{t ≥ 0 : Xt ≥ x∗} is an optimal stopping time and the value reads as

V (x) = Ex

[

e−rτx∗g(Xτx∗ )
]

=











g(x), x ≥ x∗,

ψr(x)
g(x∗)
ψr(x∗) , x < x∗.

(14)

Proof. (A) Let x ∈ (−∞, x∗) \M. It is then clear that since x 6∈ M

V (x) ≥ Ex

[

e−rτx∗g(Xτx∗ )
]

= ψr(x)
g(x∗)

ψr(x∗)
> g(x) (15)

demonstrating that x ∈ C as well.

(B) Let Ṽ denote the proposed value function on the right hand side of (14). Since

V (x) := sup
τ∈T

Ex

[

e−rτg(Xτ )
]

,

we find that V ≥ Ṽ .

To show that V = Ṽ we apply Lemma 3.2 and establish that Ṽ is an r-excessive majorant

of g. Since x∗ ∈ M it is immediate that Ṽ (x) ≥ g(x) for all x ∈ R (cf. (15)). To show the

r-excessivity of Ṽ we use the representation theory of excessive functions (cf. [35]). Let x0 > x∗

so that g(x0) > 0 and define the mapping H : R 7→ R+ as H(x) := Ṽ (x)/Ṽ (x0) = Ṽ (x)/g(x0).

Moreover, let for x ≥ x0

σHx0
((x,∞]) :=

βψr(x0)

θg(x0)

(

ϕr(x)Ṽ
′(x)− ϕ′

r(x)Ṽ (x)
)

=
ψr(x0)

θg(x0)
(Lϕg)(x) (16)

and for x ≤ x0

σHx0
([−∞, x)) :=

βϕr(x0)

θg(x0)

(

ψ′
r(x)Ṽ (x)− ψr(x)Ṽ

′(x)
)

=











−ϕr(x0)
θg(x0)

(Lψg)(x), x ∈ (x∗, x0],

0, x ≤ x∗.

(17)

We now show that these definitions induce a probability measure on [−∞,+∞]. Firstly, by the

monotonicity and the non-negativity of g we have that g′(x) + θg(x) ≥ 0. Hence, (Lϕg)(x) ≥ 0

for all x ≥ x∗, i.e., σHx0
((x,∞]) ≥ 0 for all x ≥ x0. Moreover, from assumptions (i) and (ii)

(Lϕg)
′(x) = (g′′(x) − 2rg(x))ϕr(x)β ≤ 0

for all x ≥ x∗ implying that x 7→ σHx0
((x,∞]) is non-increasing. Secondly, since x∗ ∈ M we have

(Lψg)(x
∗) = 0. Assumptions (i) and (ii) guarantee that

(Lψg)
′(x) = (g′′(x) − 2rg(x))ψr(x)β ≤ 0,

9



and, therefore, (Lψg)(x) ≤ 0 for all x ≥ x∗, i.e., σHx0
([−∞, x)) ≥ 0 for all x ≤ x0, and x 7→

σHx0
([−∞, x)) is non-decreasing. Thirdly, from the definition of the Wronskian we have that

σHx0
([−∞, x0)) + σHx0

((x0,∞])

=
ψr(x0)

θg(x0)

(

g′(x0)

S′(x0)
ϕ(x0)−

ϕ′(x0)

S′(x0)
g(x0)

)

− ϕr(x0)

θg(x0)

(

g′(x0)

S′(x0)
ψ(x0)−

ψ′(x0)

S′(x0)
g(x0)

)

=
1

θ

(

ψ′(x0)

S′(x0)
ϕr(x0)−

ϕ′
r(x0)

S′(x0)
ψ(x0)

)

= 1.

Combining now the three steps above and setting σHx0
({x0}) = 0 show that σHx0

constitutes

a probability measure on [−∞,+∞]. Thus, σHx0
induces via the Martin representation an r-

excessive function (cf. [11], p. 33 and [35]) which coincides with H . Since Ṽ (x) = Ṽ (x0)H(x)

the proposed value Ṽ is excessive as well. Invoking Lemma 3.2 completes the proof.

Remark 4.5. 1. The conclusions of Part (B) are also valid under the weaker assumptions:

(i) g ∈ C1([x∗,∞)),

(ii) Lϕg and Lψg are non-increasing on [x∗,∞).

2. In the proof of Proposition 4.4 it is seen that σHx0
induces a probability measure on [−∞,+∞].

In fact, σHx0
({−∞}) = 0 and σHx0

({+∞}) = 0. Indeed, the first statement is immediate from (17).

The second one follows if limx→+∞(Lϕg)(x) = 0 (cf. (16)). To verify this, recall from the proof

of Proposition 4.4 that (Lψg)(x) ≤ 0 for x > x∗, and, hence,

g′(x) ≤ ψ′
r(x)

ψr(x)
g(x) =

eθx − (2β − 1)e−θx

eθx + (2β − 1)e−θx
θg(x) ≤ θg(x).

Consequently, for x ≥ x0

(Lϕg)(x) =
β(g′(x) + θg(x))

eθx
≤ 2βθe−θxg(x). (18)

Because limx→∞ e−θxψr(x) = 1 and, by assumption, limx→∞ g(x)/ψr(x) = 0 we have

σHx0
({∞}) = limx↑∞ σHx0

((x,∞]) = 0, as claimed.

Part (A) of Proposition 4.4 shows how the ratio g/ψr can be utilized in the characteriza-

tion of subsets of the continuation region. An interesting implication of these findings is that

(−∞, infM) ⊂ C. Hence, if the maximizing threshold x∗ of the ratio g/ψr is negative, unique,

an the exercise payoff is increasing and either differentiable or locally convex at the origin, then

the continuation region must necessarily contain both the set (−∞, x∗) as well as an open neigh-

borhood of the origin. This result illustrates nicely the intricacies associated with the singularity

of the underlying diffusion at the skew point. As we will later observe, this phenomenon arises

even for piecewise linear reward functions.
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Part (B) of Proposition 4.4 in turn states a set of conditions under which the general optimal

timing problem constitutes a standard single exercise boundary problem where the underlying

process is stopped as soon as it hits the critical threshold x∗ > 0 at which the ratio g/ψr is

maximized. The results of part (B) can naturally be extended to the case where the maximizing

threshold is negative, i.e., to the case where x∗ < 0. However, it is clear from Proposition 4.1

that in that case the exercise payoff has to be constant in a neighborhood of the skew point since

otherwise the origin could not belong to the stopping set.

Our main results on the case where x∗ < 0 are now summarized in the following proposition.

Proposition 4.6. Assume that M = {x∗}, where x∗ < 0, and that in addition to conditions

(g1) and (g2) the exercise payoff g satisfies the conditions

(i) g ∈ C2([x∗,∞)),

(ii) (1 − β)θe−θx
∗

g(x∗) > βg′(0) > 0,

(iii) g′′(x) − 2rg(x) < −ε for all x ≥ x∗ and some ε > 0.

Then, the equation system











(Lψg)(x) = (Lψg)(y)

(Lϕg)(x) = (Lϕg)(y)

(19)

has a unique solution y∗ = (y∗1 , y
∗
2) such that y∗ ∈ (x∗, 0) × (0,∞). Moreover, τ∗ = inf{t ≥ 0 :

Xt ∈ A} with A = [x∗, y∗1 ] ∪ [y∗2 ,∞) is the optimal stopping time, and the value reads as

V (x) =











































g(x), x ∈ [x∗, y∗1 ] ∪ [y∗2 ,∞),

g(x∗) ψr(x)
ψr(x∗) , x ∈ (−∞, x∗),

g(y∗1) Ex
[

e
−rτ̂y∗1 ; τ̂y∗1 < τ̂y∗2

]

+g(y∗2) Ex
[

e
−rτ̂y∗2 ; τ̂y∗2 < τ̂y∗1

]

, x ∈ (y∗1 , y
∗
2),

(20)

where

Ex

[

e
−rτ̂y∗1 ; τ̂y∗1 < τ̂y∗2

]

=
ϕr(x)ψr(y

∗
2)− ψr(x)ϕr(y

∗
2)

ψr(y∗2)ϕr(y
∗
1)− ϕr(y∗2)ψr(y

∗
1)

Ex

[

e
−rτ̂y∗2 ; τ̂y∗2 < τ̂y∗1

]

=
ψr(x)ϕr(y

∗
1)− ϕr(x)ψr(y

∗
1)

ψr(y∗2)ϕr(y
∗
1)− ϕr(y∗2)ψr(y

∗
1)
.

Proof. We first establish that equation system (19) has a unique solution y∗ ∈ (x∗, 0)× (0,∞).

In order to accomplish this task, we first observe that (19) can be re-expressed by using (12) and

11



(13) as











(1− β)(q1(x) + q2(x)) = β(q1(y) + q2(y))

q1(x) − q2(x) = q1(y)− q2(y),

(21)

where q1(x) := eθx(g′(x) − θg(x)) and q2(x) := e−θx(g′(x) + θg(x)). Consider now the behavior

of the functions h1 := q1 + q2 and h2 := q1 − q2. Since x
∗ < 0 and (Lψg)(x

∗) = 0 it follows

from (12) that q1(x
∗) = 0 and, hence, h1(x

∗) = −h2(x∗) = e−θx
∗

2θg(x∗) > 0. Moreover,

h1(0) = 2g′(0) > 0, h2(0) = −2θg(0) < 0, and

h′1(x) = (eθx + e−θx)(g′′(x) − 2rg(x)) (22)

h′2(x) = (eθx − e−θx)(g′′(x) − 2rg(x)). (23)

Our assumption (iii) guarantees that h′1(x) < 0 for all x > x∗. In a completely analogous fashion

we find that h′2(x) < 0 for x > 0 and h′2(x) > 0 for x ∈ (x∗, 0). Moreover, if x > z > 0 then

applying the standard mean value theorem yields

h1(x)− h1(z) =

∫ x

z

(eθt + e−θt)(g′′(t)− 2rg(t))dt

=
(g′′(ξ)− 2rg(ξ))

θ

[

(eθx − e−θx)− (eθz − e−θz)
]

demonstrating that limx→∞ h1(x) = −∞. In an analogous way we find that limx→∞ h2(x) = −∞
as well. Consider now for a given x ∈ [x∗, 0] equation h2(ỹx) = h2(x) where ỹx ∈ [0,∞). The

continuity of h2(x) at the origin implies that for x = 0 we have ỹ0 = 0. Utilizing (23), in turn,

implies that for all x ∈ (x∗, 0) there is a unique ỹx ∈ (0, ỹx∗) satisfying h2(ỹx) = h2(x) (since

h2(x) ↓ −∞ as x ↑ ∞). Implicit differentiation yields

ỹ′x =
h′2(x)

h′2(ỹx)
< 0.

Consider next for a given x ∈ [x∗, 0] equation l(x) = l(ŷx), where

l(x) =











βh1(x), x > 0,

(1− β)h1(x), x < 0,

and ŷx ∈ [0,∞). The monotonicity of h1(x) implies that l(x) is monotonically decreasing on

(x∗, 0) ∪ (0,∞). Moreover, since

l(0+)− l(0−) = βh1(0)− (1− β)h1(0) = (2β − 1)2g′(0) > 0,

l(x∗)− l(0+) = 2((1− β)θe−θx
∗

g(x∗)− βg′(0)) > 0,

12



and l(x) ↓ −∞ as x ↑ ∞ we notice that there exists necessarily a unique x̂ ∈ (x∗, 0) such

that l(x̂) = l(0+) and, consequently, such that ŷx̂ = 0. On the other hand, since l(x) < 0 for

x > l−1(0) we notice that there is a unique ŷ0 ∈ (0, l−1(0)) such that l(ŷ0) = l(0−). Moreover,

implicit differentiation yields

ŷ′x =
(1− β)h′1(x)

βh′1(ŷx)
> 0.

Combining these findings show that ỹ0 = 0 < ŷ0 and ỹx∗ > ỹx̂ > 0 = ŷx̂. The continuity and the

monotonicity of the solution curves x 7→ ỹx and x 7→ ŷx, x ∈ (x∗, 0) then proves that they have

a unique interception point x∗∗ ∈ (x̂, 0) such that ỹx∗∗ = ŷx∗∗ and, consequently, such that (21)

holds.

We now prove that (20) constitutes the value and τ∗ the optimal stopping strategy of (6). To

this end, let Ṽ denote the proposed value function on the right hand side of (20) with y∗1 := x∗∗

and y∗2 := ỹx∗∗ = ŷx∗∗. It is again clear that V ≥ Ṽ . In order to prove the opposite inequality,

we first notice that Ṽ is continuous and non-negative. To demonstrate that Ṽ is r-excessive, we

let x0 > y∗2 and define the mapping Ĥ : R 7→ R+ as Ĥ(x) := Ṽ (x)/Ṽ (x0) = Ṽ (x)/g(x0). As in

the proof of Proposition 4.4, define for x ≥ x0

σĤx0
((x,∞]) :=

ψr(x0)

θg(x0)
(Lϕg)(x)

and for x ≤ x0

σĤx0
([−∞, x)) :=

ϕr(x0)

θg(x0)

(

Ṽ (x)
d−ψr
dS

(x)− ψr(x)
d−Ṽ

dS
(x)

)

=











































−ϕr(x0)
θg(x0)

(Lψg)(x), x ∈ (y∗2 , x0],

−ϕr(x0)
θg(x0)

(Lψg)(y
∗
1), x ∈ (y∗1 , y

∗
2 ],

−ϕr(x0)
θg(x0)

(Lψg)(x), x ∈ (x∗, y∗1 ],

0, x ∈ (−∞, x∗],

where the identity (Lψg)(y
∗
1) = (Lψg)(y

∗
2) is used. We now show that these definitions induce

a probability measure on [−∞,+∞]. Firstly, the monotonicity and the non-negativity of the

exercise payoff g imply that g′(x) + θg(x) > 0 and, therefore, from (13) (Lϕg)(x) ≥ 0 for all

x ≥ y∗2 , i.e., σ
Ĥ
x0
((x,∞]) ≥ 0 for x ≥ x0. Moreover,

(Lϕg)
′(x) = β(g′′(x)− 2rg(x))ϕr(x) < 0

for all x ∈ [x0,∞) implying that x 7→ σĤx0
((x,∞]) is non-increasing. Secondly, since (Lψg)(x

∗) =

13



0 and

(Lψg)
′(x) =











β(g′′(x)− 2rg(x))ψr(x), x ∈ (0,∞),

(1− β)(g′′(x) − 2rg(x))ψr(x), x ∈ (x∗, 0),

(24)

it is seen by applying assumption (iii) that Lψg is decreasing and negative on (x∗,∞). Conse-

quently, x 7→ σĤx0
([−∞, x)) is non-negative and non-decreasing for x ≤ x0. Thirdly, we should

check that

σĤx0
([−∞, x0)) + σĤx0

([x0,+∞]) = 1,

but this follows similarly as in the proof of Proposition 4.4 exploiting the Wronskian relation-

ship. This concludes the proof that σĤx0
constitutes a probability measure on [−∞,+∞]. The

probability measure σĤx0
induces via the Martin representation an r-excessive function (cf. [11],

p. 33 and [35]) which coincides with Ĥ . Since Ṽ (x) = Ṽ (x0)Ĥ(x) we find that the proposed

value Ṽ (x) is r-excessive as well.

It remains to prove that Ṽ dominates the exercise payoff g. It is clear that Ṽ ≥ g for all

x ∈ (−∞, y∗1 ] ∪ [y∗2 ,∞). It is, thus, sufficient to analyze the difference ∆(x) := Ṽ (x) − g(x)

on (y∗1 , y
∗
2). Notice that ∆(y∗1) = ∆(y∗2) = 0. Applying formula (3.4) in [35] where we choose

x0 = y∗2 results in

Ṽ (x)

Ṽ (x0)
=
σĤx0

([−∞, x))

ϕr(y∗2)
ϕr(x) +

σĤx0
((x,∞])

ψr(y∗2)
ψr(x), x ∈ (y∗1 , y

∗
2).

Since σĤx0
([y∗1 , y

∗
2 ]) = 0 this expression simplifies and yields

Ṽ (x) = g(y∗2)

(

−ϕr(y
∗
2)

θg(y∗2)
(Lψg)(y

∗
2)

)

ϕr(x)

ϕr(y∗2)
+ g(y∗2)

(

ψr(y
∗)

θg(y∗2)
(Lϕg)(y

∗
2)

)

ψr(x)

ψr(y∗2)

= − (Lψg)(y
∗
2)

θ
ϕr(x) +

(Lϕg)(y
∗
2)

θ
ψr(x).

Moreover, utilizing (24), assumption (iii), and noticing that

d

dx

[

∆(x)

ψr(x)

]

=
S′(x)

ψ2
r(x)

((Lψg)(y
∗
i )− (Lψg)(x))

for x ∈ (y∗1 , 0)∪ (0, y∗2) show that ∆/ψr is increasing on (y∗1 , 0) and, consequently, that ∆(x) > 0

for all x ∈ (y∗1 , 0). In an completely analogous fashion, we find that ∆(x)/ψr(x) is decreasing for

x ∈ (0, y∗2) and, therefore, that ∆(x) > 0 for all x ∈ (0, y∗2) as well. The continuity of ∆ then

proves that ∆(x) > 0 for all x ∈ (y∗1 , y
∗
2) and, consequently, that the proposed value Ṽ dominates

the exercise payoff g.

We may now evoke Lemma 3.2 to complete the proof of the proposition,
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Remark 4.7. The conclusions of Proposition 4.6 are derived from the general properties of

excessive mappings and their representing measures and as such do not require detailed process

specific information besides the singularity at the skew point and the generator of the driving

process. In that respect, the developed proof applies even under more general circumstances than

in the SBM setting.

As the proof of Proposition 4.6 indicates, there are circumstances under which the problem

can be reduced into a two boundary problem where the lower boundary x∗ = y∗1 constitutes a

tangency point of the value. A set of conditions under which this observation is true are stated

in the following corollary.

Corollary 4.8. Assume that M = {x∗, y∗2}, where x∗ < 0 < y∗2 . Assume also that conditions

(i) - (iii) of Proposition 4.6 are satisfied. Then Γ = {x∗} ∪ [y∗2 ,∞), C = (−∞, x∗) ∪ (x∗, y∗2),

and the value is

V (x) =











g(x), x ∈ {x∗} ∪ [y∗2 ,∞),

ψr(x)
g(y∗2 )
ψr(y∗2)

, x ∈ (−∞, x∗) ∪ (x∗, y∗2).

(25)

Proof. The statement is a direct implication of part (A) of Proposition 4.4 and Proposition

4.6.

5 Explicit Illustration

Our objective is now to illustrate the main results in Section 4 explicitly by assuming that the

exercise reward reads as g(x) := (x + K)+ with K > 0. Recall that M denotes the set of

maximum points of the ratio g/ψr, cf. (7). Our main result on the value and the optimal

stopping strategy are presented in the following:

Proposition 5.1. For all β ∈ (1/2, 1) and K > 0 there is a unique critical discount rate

r̂ = r̂(β,K) satisfying the identity

β + β ln

(

β +

√

β2 + (2β − 1)e2(
√
2r̂K−1)

)

=

√

β2 + (2β − 1)e2(
√
2r̂K−1). (26)

Moreover, r̂ is increasing as a function of β.

(A) Assume that r < r̂. Then, M = {x∗} with x∗ > 0. The optimal stopping strategy is

τ∗ = inf{t ≥ 0 : Xt ≥ x∗} and the value is as in (14).

(B) Assume that r = r̂. Then M = {x∗1, x∗}, where x∗ > 0 and

x∗1 =
1

θ
−K < 0. (27)
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The optimal stopping strategy is τ∗ = inf{t ≥ 0 : Xt ∈ {x∗1} ∪ [x∗,∞)} and the value is as in

(25).

(C) Assume that r > r̂. Then, M = {x∗1} where x∗1 is as given in (27). The optimal stopping

strategy is τ∗ = inf{t ≥ 0 : Xt ∈ [x∗1, y
∗
1 ] ∪ [y∗2 ,∞)}, where (y∗1 , y

∗
2) ∈ (x∗1, 0) × (0,∞) constitute

the unique solution of the equation system (19), and the value is as in (20).

Proof. In what follows we will show that the three different cases (A)-(C) appearing above and

corresponding to the cases characterized in Proposition 4.4, Corollary 4.8, and Proposition 4.6

arise depending on the precise magnitude of the key parameters β, r and K. We start by proving

that for any β ∈ (1/2, 1) and K > 0 equation (26) has a unique solution r̂. To this end, fix

K > 0 and consider for θ > 0 and β ∈ [1/2, 1] the function

C(θ, β) := β + β ln

(

β +
√

β2 + (2β − 1)e2(θK−1)

)

−
√

β2 + (2β − 1)e2(θK−1).

Standard differentiation yields

Cθ(θ, β) = − (2β − 1)e2(θK−1)K

β +
√

β2 + (2β − 1)e2(θK−1)
< 0 (28)

Cβ(θ, β) = 1 + ln

(

β +
√

β2 + (2β − 1)e2(θK−1)

)

+
β −

√

β2 + (2β − 1)e2(θK−1)

2β − 1
(29)

Consequently, from (28), C is monotonically decreasing as a function of θ. In particular, for all

β ∈ (1/2, 1) we have

C(1/K, β) = β + β ln
(

β +
√

β2 + 2β − 1
)

−
√

β2 + 2β − 1 > 0,

C(θ∗, β) = β

(

ln

(

β

1− β

)

− 2β − 1

1− β

)

< 0,

where

θ∗ =

(

1 + ln

(

β

1− β

))

1

K
>

1

K
. (30)

Invoking the monotonicity and the continuity of C as a function of θ shows that equation (26)

has a unique solution, as claimed.

Next we show that β 7→ r̂(β) is increasing. To see that this is indeed the case, consider the

function θ̂ :=
√
2r̂ and observe that implicit differentiation of equation C(θ̂, β) = 0 yields

θ̂′ = −Cβ(θ̂, β)
Cθ(θ̂, β)

. (31)

Since Cθ < 0 by (28), it is sufficient to study the sign of Cβ along the solution curve β 7→ θ̂(β).

Since θ̂ < θ∗ and θ̂K − 1 < ln (β/(1− β)), we have from (29) using the identity C(θ̂, β) = 0 that

Cβ(θ̂, β) =
1− β

β(2β − 1)

(

β2

1− β
−
√

β2 + (2β − 1)e2(θ̂K−1)

)

> 0. (32)
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Therefore, from (31) and (28) it follows that θ̂′ > 0 and, hence, r̂ is increasing.

We now proceed to proving (A)-(C). From our general analysis we known that we should

consider the maximum points of the function

ur(x) :=
(x+K)+

ψr(x)
=















2β(x+K)

eθx + (2β − 1) e−θx
, x > 0,

e−θx(x+K)+, x ≤ 0.

Standard differentiation yields

l(x) := ψ2
r (x)u

′
r(x)

=



























1
2β e

θx(1− θ(x +K)) +
(

1− 1
2β

)

e−θx(1 + θ(x+K)), x > 0,

eθx(1− θ(x +K)), −K < x < 0,

0, x < −K.

We immediately notice the following

l(0−) = 1− θK, l(0+) = 1−
(

1

β
− 1

)

θK, l(0+)− l(0−) =
2β − 1

β
θK > 0,

and limx→∞ l(x) = −∞. Moreover, since for x > −K

l′(x) =











−θ2(x+K)
(

1
2β e

θx +
(

1− 1
2β

)

e−θx
)

, x > 0,

−eθxθ2(x+K), −K < x < 0,

two different configurations may arise depending on the precise values of θ, β, and K. First, if

θK ≤ 1, then l(0−) ≥ 0 and the monotonicity of l guarantees that ur attains a unique global

maximum at x∗ > 0 satisfying the ordinary first order condition u′r(x
∗) = 0 which is equivalent

with

eθx
∗

(1− θ(x∗ +K)) + (2β − 1) e−θx
∗

(1 + θ(x∗ +K)) = 0. (33)

This case corresponds to the one characterized in part (B) of Proposition 4.4 and, hence, proves

claim (A) when θK ≤ 1.

Second, if θK > 1 then l(−K) = e−θK > 0 and the monotonicity of l on (−K, 0) guarantees
that ur attains a local maximum at the point

x∗1 =
1

θ
−K < 0.

If l(0+) = 1−
(

1
β − 1

)

θK > 0, then ur attains a local maximum at the threshold x∗ > 0 satisfying

(33) as well. However, if l(0+) ≤ 0, then the monotonicity of l implies that x∗1 constitutes a
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global maximum point of ur and M = {x∗1}. Hence, in the case where l(0+) > 0 the set M
has at most two points. In order to determine the parameter values for which M = {x∗1, x∗} we

consider the equation

ur(x
∗)− ur(x

∗
1) = 0. (34)

Since u′r(x
∗) = u′r(x

∗
1) = 0 it holds that ur(x

∗) = 1/ψ′
r(x

∗) and ur(x∗1) = 1/ψ′
r(x

∗
1). Hence, (34)

is equivalent with

1

ψ′
r(x

∗)
− 1

ψ′
r(x

∗
1)

=
2β

θ(eθx∗ − (2β − 1)e−θx∗)
− 1

θ
eθK−1 = 0. (35)

Consequently, M = {x∗1, x∗} with x∗ > 0 as in (33) if and only if x∗ satisfies also (35), which is

equivalent with

e2θx
∗ − 2βe1−θKeθx

∗ − (2β − 1) = 0 (36)

implying that

x∗ =
1

θ
ln

(

βe1−θK +
√

β2e2(1−θK) + (2β − 1)

)

. (37)

Substituting the expression for 2β − 1 obtained from (36) into (33) yields

eθx
∗

= βe1−θK(1 + θ(x∗ +K)). (38)

By applying (37) in (38) we conclude that M = {x∗1, x∗} if and only if β ∈ [1/2, 1] and θ > 0 are

such that C(β, θ) = 0, as claimed. This proves case (B), and also (A) and (C) since the value is

a non-increasing function of r.

Remark 5.2. For β = 1 equation (26) with θ̂ :=
√
2r̂ reads as

1 + ln

(

1 +

√

1 + e2(θ̂K−1)

)

=

√

1 + e2(θ̂K−1),

and the unique solution is given by θ̂K ≈ 1.64132. Notice that β 7→ θ(β) being increasing the

limit of θ(β) as β ↓ 1/2 exists. As β ↓ 1/2 then necessarily x∗ in (37) tends to 0. Therefore,

limβ↓1/2 θ(β) = 1/K. Consequently, the critical parameter boundary β 7→ θ(β) is an increasing

function connecting the extremal points (1/2, 1/K) and (1, 1.64132/K). This is illustrated in

Figure 1 when K = 1.

The optimal boundaries associated with the optimal exercise strategies are illustrated as

functions of the skewness parameter β in Figure 2 under the assumptions that K = 1 and
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Figure 1: Critical Boundary; with K = 1

r = 0.95. As is clear from the figure, the considered stopping problem constitutes a three-

boundary problem as long as the skewness parameter β remains below the critical level β∗ which

under our parameter assumptions is β∗ ≈ 0.7445. As soon as skewness exceeds this critical

level, the problem becomes a single boundary problem, where the decision maker waits until the

underlying hits the upper threshold maximizing the ratio (x +K)+/ψr(x). The reason for this

observation is clear: for sufficiently low values of β the attainable intertemporal gains accrued

by waiting and postponing the timing decision further into the future exceed the return accrued

by exercising immediately in a neighborhood of the origin. As the skewness parameter increases,

more and more of the excursions are expected to end to the positive side, thus increasing the

incentives to wait for higher payoffs.
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Figure 2: Optimal Stopping Boundaries; with K = 1 and r = 0.95.

19



The optimal boundaries associated with the optimal exercise strategies are, in turn, illustrated

as functions of the parameter θ in Figure 3 under the assumptions that K = 1 and β = 0.55.

In contrast with the effect of the skewness parameter β, higher discounting accelerates optimal

timing and, thus, decreases the incentives to wait. Accordingly, we now notice from Figure 3

that the considered problem constitutes a single boundary problem only as long as the discount

rate is lower than the critical level r̂ ≈ 0.5983. Above this critical level waiting for for future

potentially higher payoffs is no longer optimal at all states and the optimal exercise strategy

becomes a three-boundary stopping rule.
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Figure 3: Optimal Stopping Boundaries; with K = 1 and β = 0.55.

6 Conclusions

We studied a class of optimal stopping problems for SBM. We showed that the local directional

predictability resulting from the presence of a skew point has a nontrivial and somewhat sur-

prising impact on the optimal stopping policy of the underlying diffusion. More precisely, we

delineated a set of relatively weak monotonicity conditions satisfied by a large class of exercise

payoffs under which the skew point is always included in the continuation region. In that case

postponing rational exercise is always worthwhile on a neighborhood of the skew point. An in-

teresting implication of this finding is that the problem can become a three-boundary problem

even when the exercise payoff is linear. We also analyzed the comparative static properties of

the value and optimal timing policy and established that the value is an increasing function of

skewness for increasing payoffs. In accordance with this observation higher skewness expands

the continuation region and in that way increases the incentives to wait.

20



There are two natural directions towards which our analysis could be extended. First, given

that skewness can be introduced also for other diffusions beyond Brownian motion, it would

be naturally of interest to consider how the singularity of the underlying diffusion affects the

optimal stopping strategies and their values within a more general modeling framework. Second,

given the close connection of optimal stopping with impulse control and bounded variation

control problems, it would naturally be of interest to investigate how skewness affects the

optimal policies in those associated problems. Both these extensions are out of the scope of this

study and left for future research.
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