
ar
X

iv
:1

61
2.

05
47

4v
1

 [
cs

.D
S]

 1
6

D
ec

 2
01

6

A Generalized Approximation Framework for

Fractional Network Flow and Packing Problems∗

Michael Holzhauser Sven O. Krumke

University of Kaiserslautern, Department of Mathematics

We generalize the fractional packing framework of Garg and Koenemann [17] to the

case of linear fractional packing problems over polyhedral cones. More precisely, we pro-

vide approximation algorithms for problems of the form max{cTx : Ax 6 b, x ∈ C}, where

the matrix A contains no negative entries and C is a cone that is generated by a finite

set S of non-negative vectors. While the cone is allowed to require an exponential-sized

representation, we assume that we can access it via one of three types of oracles. For

each of these oracles, we present positive results for the approximability of the packing

problem. In contrast to other frameworks, the presented one allows the use of arbitrary

linear objective functions and can be applied to a large class of packing problems with-

out much effort. In particular, our framework instantly allows to derive fast and simple

fully polynomial-time approximation algorithms (FPTASs) for a large set of network flow

problems, such as budget-constrained versions of traditional network flows, multicom-

modity flows, or generalized flows. Some of these FPTASs represent the first ones of their

kind, while others match existing results but offer a much simpler proof.

1 Introduction

In a fractional linear packing problem, one seeks to find a solution to the problem max{cTx : Ax 6

b, x > 0}, where the matrix A ∈ N
m×n
>0 contains no negative entries and, without loss of generality,

the vectors c ∈ N
n
>0 and b ∈ N

m
>0 have positive entries. Many problems can be formulated as

packing problems, possibly the most intuitive being the fractional knapsack problem (cf. [27]). More

than this, many network flow problems can be seen as fractional packing problems if one allows

exponential sized representations. For example, the traditional maximum flow problem can be seen

as the problem of packing flows on s-t-paths without violating the capacities of the edges.

A large number of authors presented approximation frameworks for such fractional packing prob-

lems, including Plotkin et al. [32], Grigoriadis and Khachiyan [18, 19], Young [38], and Bienstock

∗This work was partially supported by the German Federal Ministry of Education and Research within the project “SinOp-

tiKom – Cross-sectoral Optimization of Transformation Processes in Municipal Infrastructures in Rural Areas”.

1

http://arxiv.org/abs/1612.05474v1

and Iyengar [3] (cf. [2, 17] for an overview of these results). One of the most powerful frame-

works among these was developed by Garg and Koenemann [17], who have shown that a (1 − ε)-

approximate solution to a general fractional packing problem of the above form can be computed

efficiently provided we are able to “handle” the dual problem appropriately. More precisely, in the

dual formulation min{bTy : ATy > c,y > 0}, we need to be able to determine a most violated dual

constraint efficiently: For some given infeasible solution y to the dual, we need to find a dual con-

straint1 (AT)l·y > cl that minimizes the value
(AT)l·y

cl
among all dual constraints with a positive

right-hand side value. This constraint reveals the largest degree of violation. Since the result may

even hold if the number of variables in the primal formulation is of exponential size, the authors were

able to provide efficient FPTASs for network flow problems such as multicommodity flow problems

by using (exponential-sized) path-based formulations of the corresponding problems (cf. Garg and

Koenemann [17]). Fleischer [14] later showed that it suffices to determine an approximately most vio-

lated dual constraint, whose fraction (AT)l·y
cl

may be up to a factor 1+ ε away from the largest violation.

In this paper, we generalize the result of Garg and Koenemann [17] to the case of packing problems

over polyhedral cones. More precisely, we are interested in approximate solutions to problems of the

form

max cTx (1a)

s.t. Ax 6 b, (1b)

x ∈ C, (1c)

where the matrix A ∈ N
m×n
>0 contains no negative numbers and where the cone C is finitely gener-

ated by a set S of non-negative vectors. While the vector b ∈ N
m
>0 is still assumed to contain positive

entries (without loss of generality), we allow the entries of the vector c ∈ N
n to have arbitrary signs.

We will thereby combine a large set of well-known techniques such as the fractional packing frame-

work of Garg and Koenemann [17], the extension of Fleischer [14], the parametric search technique

of Megiddo [29], geometric-mean binary search due to Hassin [21], and transformation strategies for

fractional objectives as described in Lawler [28].

The chosen formulation is motivated by the following observation: Network flow problems often

allow a characterization by some kind of flow decomposition, i.e., each feasible flow is representable by

the sum of flows on much simpler structures, which we call basic components in the following. Viewed

from the other side, we can express each such feasible flow as a conic combination of flows on these

basic components. Hence, if C describes the cone that is generated by flows on basic components, we

can express structural properties of each flow by the containment in the cone. What usually remains

are packing constraints that bound the total flow on each edge, the flow that leaves some node, or the

overall costs of the flow. As it will be shown, most common network flow problems can be modeled

in such a way.

One major advantage of the presented framework is that we do not assume the cone C or the set S that

generates it to be given explicitly. Instead, we only assume that we have some kind of oracle access

1We use the notation Bl· for a matrix B to denote the l-th row of the matrix.

2

to the cone, which allows us to derive polynomial-time algorithms for problems that require cones

with an exponential number of extreme rays. In addition to this benefit, our framework provides the

following advantages:

⊲ The framework allows to derive fast and simple combinatorial FPTASs for a large class of pack-

ing problems and network flow problems. In many cases, we are even able to derive first

strongly polynomial-time FPTASs.

⊲ As our problem is formulated as a packing problem, the addition of further budget-constraints

does not influence the applicability of the procedure, whereas such constraints usually make

the design of exact algorithms significantly harder.

⊲ The application of the framework only requires two “ingredients”, namely the existence of

some kind of flow decomposition theorem and a decent amount of control over the resulting

basic components.

⊲ As the framework is based on the approximation scheme of Garg and Koenemann [17] in its

core, it works without considering some kind of residual network in case of network flow prob-

lems. As a consequence, the framework can be applied to problems that do not offer a concept

of residual networks. One example is the maximum flow problem in generalized processing

networks that will be discussed later. Moreover, it maintains properties of the underlying net-

work such as cycle freeness or signs of costs.

⊲ In contrast to the framework of Garg and Koenemann [17], our formulation allows to stick to

the natural edge-based formulations of the corresponding network flow problems and does not

require an explicit reformulation of the problem as a packing problem.

⊲ Moreover, the presented framework is the first application of the procedure of Garg and Koen-

emann [17] that natively supports the use of arbitrary linear objective functions, which allows

the application to minimum cost flow problems. To the best of our knowledge, all prior ap-

plications instead transformed the objective functions into budget-constraints and searched for

the optimal budget, which requires the restriction to positive costs and which results in weakly

polynomial running times (cf. [17, 14, 13]).

The paper is structured as follows: In Section 2, we briefly introduce the concepts that are inherent to

our framework such as the procedure of Garg and Koenemann [17] and Megiddo’s parametric search

technique [29, 30]. In Section 3, we reformulate the given problem (1) as a packing problem and iden-

tify a subproblem that needs to be solved in each iteration of the algorithm. Moreover, we introduce

three oracle types that will be investigated in the rest of the paper: a minimizing oracle returning a

cost-minimal vector in the ground set, a sign oracle only returning a vector with the same sign as a

cost minimal vector, and a separation oracle either returning a vector with negative costs or stating

that there is no such vector. Based on these considerations, we describe the general procedure in Sec-

tion 4 and show that we can approximate problem (1) efficiently if we are able to find a sufficiently

good initial lower bound on the most violated dual constraint. In Section 5, we provide both weakly

polynomial-time and strongly polynomial-time approaches to find such a lower bound. Finally, we

apply our framework to a large class of network flow and packing problems in Section 6, including

the maximum/minimum cost flow problem, generalized minimum cost flow problem, and the max-

imum/minimum cost flow problem in processing networks as well as budget-constrained versions

3

of these. Moreover, we apply our framework to the maximum (weighted) spanning tree packing

problem and the maximum (weighted) matroid base packing problem as examples of “pure” combi-

natorial problems. In Table 1, we give an overview of the results that will be derived in Section 6.

Problem Previous best FPTAS Our FPTAS

Budget-Constrained Maximum
Flow Problem

— O
(

1
ε2

·m logm · (m+n logn)
)

Budget-Constrained Minimum
Cost Flow Problem

Õ
(

1
ε2

· (nm2 +n3m))
)

[22]
Õ
(

1
ε2

·nm2
)

Budget-Constrained Minimum
Cost Generalized Flow Problem

Õ
(

1
ε2

·nm2 · (log 1
ε + log logM)

)

(positive costs)
[13]

Õ
(

1
ε2

·n2m2
)

(arbitrary costs)

Maximum Flows in Generalized
Processing Networks

O
(

1
ε2

·m2 logm
)

[24]

O
(

1
ε2

·m2 logm
)

(simpler proof)

Minimum Cost Flows in General-
ized Processing Networks

— O
(

1
ε2

·m2 logm
)

Maximum Concurrent Flow
Problem

Õ
(

1
ε2

· (m2 + kn)
)

[25]

Õ
(

1
ε2

·m2 · min{k,n}
)

(simpler proof)

Maximum Weighted Multicom-
modity Flow Problem

Õ
(

1
ε2

·m2 · min{logC, k}
)

[14]
Õ
(

1
ε2

·m2
)

Maximum Spanning Tree Packing
Problem

O
(
n3m log(n2/m)

)

(exact algorithm)
[15]

O
(

1
ε2

·m2 logm ·α(m,n)
)

Maximum Weighted Spanning
Tree Packing Problem

— O
(

1
ε2

·m2 logm ·α(m,n)
)

Maximum Matroid Base Packing
Problem

O
(
m7 · F(m)

)

(exact algorithm)
[33, p. 734]

O
(

1
ε2

·m2 logm · (F(m) + logm)
)

Maximum Weighted Matroid
Base Packing Problem

— Õ
(
m · F(m) ·

(
1
ε2

·m+ log logM
))

Table 1: A summary of our results. Here, m and n denote the number of edges and nodes, respectively. The
variable k denotes the number of commodities and C denotes the largest ratio of any two weights of

commodities. M is the largest integer given in the input. The notation Õ(·) ignores poly-logarithmic

factors in m, so Õ(f(n,m)) = O(f(n,m) · logqm) for some constant q. α(m,n) denotes the inverse
Ackermann function. F(m) is the running time of a independence testing oracle for a given matroid
with m elements in its ground set.

2 Preliminaries

2.1 Approximation Algorithms

An algorithm A is called a (polynomial-time) approximation algorithm with performance guarantee α ∈

[1,∞) or simply an α–approximation for a maximization problem Π with objective function c if, for

each instance I of Π with optimum solution x∗, it computes a feasible solution x with objective value

4

c(x) >
1
αc(x

∗) in polynomial time. An algorithm A that receives as input an instance I ∈ Π and

a real number ε ∈ (0, 1) is called a polynomial-time approximation scheme (PTAS) if, on input (I, ε), it

computes a feasible solution x with objective value c(x) > (1 − ε) · c(x∗) with a running-time that

is polynomial in the encoding size |I| of I. If this running-time is additionally polynomial in 1
ε , the

algorithm is called a fully polynomial-time approximation scheme (FPTAS).

2.2 Garg and Koenemann’s Fractional Packing Framework

Consider a fractional packing problem of the form max{cTx : Ax 6 b, x > 0} with non-negative

entries in the matrix A ∈ N
m×n
>0 . For example, we can model the maximum flow problem in such

a way by interpreting the variables as flows on s-t-paths and requiring that the sum of flows on

all paths that share some specific edge e is bounded by the edge’s capacity. Hence, the vector b

corresponds to the capacities of the edges and the vector c equals the all-one vector. Note that we

need to stick to the path-based formulation of the problem since we are not allowed to introduce flow

conservation constraints as they require negative coefficients. The dual formulation of the general

primal problem is given as min{bTy : ATy > c,y > 0}. In the example, the dual problem is to find

small edge-lengths such that each path has length at least one. Although both the primal and the

dual formulation of the problem are of exponential size in general, the fractional packing framework

of Garg and Koenemann [17] allows us to obtain approximate solutions for the primal problem by

using these formulations only implicitly, which will be shown in the following.

Suppose that we want to find an (1− ε)-approximate solution for the primal problem with ε ∈ (0, 1)

and let ε ′ := ε
2 . The procedure described in [17] starts with the feasible primal solution x = 0 and

the infeasible dual solution given by yi := δ
bi

> 0 for each i ∈ {1, . . . ,m}, where δ :=
(1+ε ′)

((1+ε ′)m)
1
ε ′

.

In each step of the algorithm, the most violated dual constraint is determined based on the current

dual solution y, i.e., we determine a row j in the dual formulation that minimizes
(AT)j·y

cj
among

all rows with negative right-hand side value. For example, although there are exponentially many

constraints in the dual formulation of the maximum flow problem, we can find the most violated

constraint in O(m + n logn) time by computing a shortest s-t-path with edge lengths given by the

dual vector y. We then increase xj by the (in terms of the primal problem) maximum allowed

value ν := mini∈{1,...,m}:Aij>0
bi

Aij
(i.e., in the example, we send ν units of flow on the shortest

path without considering flow that has been sent in previous iterations), which will most likely make

the primal solution infeasible. At the same time, each variable yi will be multiplied by a factor of(
1+ ε ′ · ν

bi
Aij

)
. Intuitively, for the maximum flow problem, the “congested” edges will get “longer”

over time and will, thus, be used less likely in future iterations, which somehow balances the flow

among all paths.

The algorithm stops as soon as the dual solution fulfills
∑

i∈{1,...,m} bi · yi > 1. As noted above,

the primal solution will most likely be infeasible since, in each iteration, the primal variables are

increased regardless of the previous values. However, Garg and Koenemann [17] show that we

obtain a feasible primal solution by scaling down the solution x by log1+ε ′

1+ε ′

δ and that this solution

is within a factor (1− 2ε ′) = (1− ε) of the optimal solution. Moreover, they prove that the described

5

procedure terminates within 1
ε ′ ·m · (1+ log1+ε ′ m) = O

(
1
ε2 ·m logm

)
iterations. We refer to [17, 14,

13] for further details on the procedure.

In a follow-up publication, Fleischer [14] showed that it suffices to determine an approximately most

violated dual constraint in each iteration of the problem: The claimed time bound and approximation

guarantee continue to hold even if we choose a dual constraint (AT)j·y > cj only fulfilling
(AT)j·y

cj
6

(1+ ε) · minl∈{1,...,n}:cl>0
(AT)l·y

cl
. We will make use of this observation in Section 4.

2.3 Megiddo’s Parametric Search Technique

In Section 6, we make use of Megiddo’s parametric search technique (cf. [29]). Since we will go into

the very heart of the method, we will briefly describe its idea in the following. We refer the reader to

[29] and [30] for further details on the method.

Assume that we want to solve an optimization problem Π for which we already know an (exact)

algorithm A that solves the problem, but in which some of the input values are now linear parametric

values that depend linearly on some real parameter λ. Moreover, suppose that an algorithm C is

known (in the following called callback) that is able to decide if some candidate value for λ is smaller,

larger, or equal to the value λ∗ that leads to an optimum solution to the underlying problem Π.

The idea of the parametric search technique is to extend the input of A from constants to affine

functions depending on λ and to simulate the execution of algorithm A step by step. Note that each

variable remains its affine structure as long as the algorithm only performs additions, subtractions,

multiplications with constants, and comparisons. We call such an algorithm strongly combinatorial

in the following. Throughout the execution, an interval I is maintained that is known to contain the

optimal value λ∗. As soon as the simulation reaches the comparisons of two linear parametric values,

since both values depend linearly on λ, it either holds that one of the variables is always larger than

or equal to the other one in I (in which case the result of the comparison is independent from λ) or

that there is a unique intersection point λ ′. For this intersection point, we evaluate the callback C

in order to determine if λ ′ < λ∗, λ ′ > λ∗, or λ ′ = λ∗ and, thus, resolve the comparison, update

the interval I, and continue the execution. Hence, as soon as the simulation of A finishes, we have

obtained an optimum solution to Π. The overall running-time is given by the running-time of A

times the running-time of C and can be further improved using parallelization techniques described

in [30]. We refer to [29, 30] for details on the parametric search technique. Further applications and

extensions of parametric search techniques can moreover be found in [8, 34, 35].

3 Packing over Cones

In this section, we transform the problem (1) to a general (possibly exponential-sized) fractional pack-

ing problem in a first step and then reduce this problem to a more simple subproblem by incorpo-

rating the fractional packing framework of Garg and Koenemann [17]. Moreover, we introduce three

types of oracles that enable us access to the cone C and that will be used throughout the rest of the

paper.

6

Let S := {x(1), . . . , x(k)} denote a finite set of k non-negative n-dimensional vectors x(l) ∈ R
n
>0 with

x(l) 6= 0. The cone that is spanned by these vectors is given by

C :=

{

x ∈ R
n : x =

k∑

l=1

αl · x
(l) with αl > 0 for all l ∈ {1, . . . , k}

}

. (2)

The main result of this paper is that we are able to compute (1 − ε)-approximate solutions for the

problem to maximize a linear function over the cone C subject to a set of packing constraints under

specific assumptions that will be investigated in the following. As we will see in Section 6, this

extended framework is especially useful in the case of network flow problems for which some kind

of flow decomposition theorem is known.

Note that we do neither require the set S to be of polynomial size nor assume the set S or the cone C to

be given explicitly. Instead, as it is common when dealing with implicitly given polyhedra, we only

assume the cone to be well-described, which implies that it has an encoding length of at least n + 1

(cf. [20] for further details). Moreover, we make decisions over S and C via a given oracle A (to be

specified later) that yields information about S based on a given cost vector d. We assume that the

running-time TA of each oracle A fulfills TA ∈ Ω(n) since it would not be able to investigate each

component of d or return a vector x ∈ C otherwise.

In the following, let A ∈ N
m×n
>0 denote a constraint matrix with non-negative entries, b ∈ N

m
>0

a positive right-hand side vector, and c ∈ Z
n a cost vector with arbitrary signs. Without loss of

generality, we assume that at least one entry in each row and each column of A is positive. Moreover,

we define N to be the number of non-zero entries contained in the matrix A.

As described above, the problem we want to approximate is given as follows:

max cTx (1a)

s.t. Ax 6 b, (1b)

x ∈ C. (1c)

Using the definition of the cone C based on equation (2), we obtain the following equivalent formu-

lation of the problem (1):

max cT
k∑

l=1

αl · x
(l)

s.t. A

(
k∑

l=1

αl · x
(l)

)
6 b,

αl > 0 for all l ∈ {1, . . . , k}.

In particular, we replaced the original variables x by the weight vector α and, in doing so, incor-

porated the constraints of the cone. As noted above, this formulation might be of exponential size.

7

However, in the following, we will never need to state it explicitly but will derive results based on its

implicit structure. By rearranging the objective function and the packing constraints, we obtain the

following equivalent formulation of the problem:

max

k∑

l=1

αl ·
(
cTx(l)

)
(4a)

s.t.

k∑

l=1

αl ·
(
Ai·x

(l)
)
6 bi for all i ∈ {1, . . . ,m}, (4b)

αl > 0 for all l ∈ {1, . . . , k}. (4c)

Clearly, we can neglect vectors x(l) for which cTx(l) 6 0 since, without loss of generality, it holds

that αl = 0 for each such l in an optimal solution. Hence, for the moment, we restrict2 our consid-

erations on vectors x(l) with cTx(l) > 0 such that the primal problem (4) becomes in fact a fractional

packing problem (again, possibly of exponential size). The dual formulation of this problem is given

as follows:

min
m∑

i=1

yi · bi (5a)

s.t.
m∑

i=1

yi ·
(
Ai·x

(l)
)
> cTx(l) for all l ∈ {1, . . . , k} with cTx(l) > 0, (5b)

yi > 0 for all i ∈ {1, . . . ,m}. (5c)

As it was shown in Section 2.2, we can apply the fractional packing framework of [17] to the original

problem (1) provided we are able to determine the most violated dual constraint in equation (5b)

efficiently. Hence, given a dual solution y > 0, we need to be able to solve the following subproblem

in polynomial time:

min
l∈{1,...,k}

cT x(l)>0

∑m
i=1 yi ·

(
Ai·x

(l)
)

cTx(l)
= min

l∈{1,...,k}

cT x(l)>0

∑m
i=1 yi ·

∑n
j=1Aij · x

(l)
j

cTx(l)

= min
l∈{1,...,k}

cT x(l)>0

∑n
j=1 x

(l)
j ·

∑m
i=1 yi ·Aij

cTx(l)
.

With aj :=
∑m

i=1 yi ·Aij for j ∈ {1, . . . ,n} and a = (a1, . . . ,an)
T , this subproblem reduces to

min
l∈{1,...,k}

cT x(l)>0

aTx(l)

cTx(l)
. (6)

Note that the vector a depends on y and, thus, changes throughout the course of the procedure of

Garg and Koenemann [17]. However, it always holds that aj > 0 for each j ∈ {1, . . . ,n} since yi > 0

2We will see how we can “filter out” vectors x(l) with negative costs in the following sections.

8

for each i ∈ {1, . . . ,m} throughout the procedure and since the matrix A has at least one positive and

no negative entry in each row as assumed above. Since x(l) 6= 0 and x(l) ∈ R
n
>0 for each l ∈ {1, . . . , k},

this also yields that aTx(l) > 0, so the minimum in equation (6) is always strictly positive.

Observation 1:

It always holds that aj > 0 for each j ∈ {1, . . . ,n}. Moreover, aTx(l) > 0 for each x(l) ∈ S. ⊳

Clearly, if the vectors in S are given explicitly, we immediately obtain an FPTAS for the original prob-

lem (1) using the arguments given in Section 2.2. In the following, we discuss the more elaborate case

that we can access the set S and the cone C only via given oracles. Throughout this paper, we investi-

gate three kinds of oracles with decreasing strength. The most powerful oracle to be considered can

be defined as follows:

Definition 2 (Minimizing Oracle):

For a given vector d ∈ R
n, a minimizing oracle for the set S returns a vector x(l

∗) ∈ S that minimizes

dTx(l) among all vectors x(l) ∈ S. ⊳

Clearly, the notion of minimizing oracles requires very powerful algorithms. For example, if S is the

set of unit-flows on simple cycles in a given graph G, a minimizing oracle would need to be able to

determine a most negative simple cycle, which is NP-complete in general (see Section 6.2). In many

cases, it suffices to consider a much weaker type of oracle given as follows:

Definition 3 (Sign Oracle):

For a given vector d ∈ R
n, a sign oracle for the set S returns a vector x(l) ∈ S with3 sgndTx(l) =

sgndTx(l
∗), where x(l

∗) minimizes dTx(i) among all vectors in S. ⊳

Rather than determining a vector in S with minimum cost, a sign oracle only returns any vector

whose cost have the same sign as a minimum-cost vector, which may be much easier to find. In the

example above, we can easily find a cycle with the same costs as a most negative cycle by computing

a minimum mean cycle in O(nm) time (cf. [26] and Section 6.2). An even simpler kind of oracle is

given as follows:

Definition 4 (Separation Oracle):

For a given vector d ∈ R
n, a separation oracle for the set S either states that dTx(i) > 0 for all vec-

tors x(i) ∈ S or returns a certificate x(l) ∈ S that fulfills dTx(l) < 0. ⊳

Clearly, the notion of separation oracles yields the least powerful yet most natural definition of an

oracle. The name “separation oracle” is based on the fact that such an oracle can be seen as a tradi-

tional separation oracle for the dual cone C∗ := {w ∈ R
n : wTx > 0 for all x ∈ C} of the cone C (cf.

[20]).

Note that each minimizing oracle also induces a sign oracle and that each sign oracle induces a

separation oracle, so the considered oracles have in fact decreasing strength. In particular, each ap-

proximation algorithm that is based on a sign oracle (separation oracle) is also valid for the case of a

minimizing oracle (sign oracle).

3The sign function sgn : R 7→ {−1, 0, 1} returns −1, 0, or 1 depending on whether the argument is negative, zero, or positive,
respectively.

9

For the special case of uniform costs cTx(l) for all vectors x(l) ∈ S, we get the first approximation

result based on the procedure of Garg and Koenemann [17]:

Theorem 5:

Suppose that cTx(l) = ĉ for all x(l) ∈ S and some constant ĉ > 0. Given a minimizing oracle A

for S running in TA time, a (1 − ε)-approximate solution for the problem (1) can be computed in

O
(

1
ε2 ·m logm · (N+ TA)

)
time.

Proof: Since cTx(l) = ĉ for each x(l) ∈ S, the subproblem given in equation (6) reduces to the

problem of finding a vector x(l) with minimum cost
(
1
ĉ · a

)T
x(l) among all vectors in S. Using the

minimizing oracle, we can compute a minimizer for (6) in O(TA) time based on the cost vector d :=
1
ĉ · a. Note that this cost vector can be built in O(N) time as each entry aj of a is defined to be
∑m

i=1 yi ·Aij, where each yi stems from the framework of Garg and Koenemann [17]. Consequently,

we need look at each of the N entries of A once in order to build d. Hence, we are able to determine

a most violated dual constraint of (5) in O(N+ TA) time, so the claim follows immediately from the

arguments outlined in Section 2.2.

Note that the vector d that is constructed in the above procedure is always positive in each component

according to Observation 1. As a consequence, if for example we use the vector d to denote the length

of edges in a graph, we can use Dijkstra’s (1959) algorithm to compute a shortest path. This will be

used in Section 6.

In the following sections, we will focus on the more general cases in which the costs are no longer

uniform and in which we may only have access to the cone via weaker types of oracles.

4 General Algorithm

Throughout this section, we assume that there is a separation oracle A for S running in TA time.

Hence, the presented results are valid for the case of minimizing oracles and sign oracles as well. In

the subsequent section, we will see where the different strengths of the oracles come into play.

The procedure of the upcoming algorithm is based on an idea introduced by Fleischer [14], which was

originally developed for the maximum multicommodity flow problem: For λ∗ to denote the optimal

value of the most violated dual constraint in equation (6), we let λ denote a positive lower bound for

λ∗. We will show in Section 5 how we can find a good initial value for this lower bound efficiently.

In each iteration of the procedure of Garg and Koenemann [17] as described in Section 2.2, we need

to determine an approximately most violated dual constraint corresponding to some vector x(j) ∈ S

fulfilling

aTx(j)

cTx(j)
6 (1+ ε) · λ∗ = (1+ ε) · min

l∈{1,...,k}

cT x(l)>0

aTx(l)

cTx(l)
.

For λ ∈ R, let d(λ) := a− λc and D(λ) := min{d(λ)Tx(l) : l ∈ {1, . . . , k} with cTx(l) > 0}. Similar to

the minimum ratio cycle problem [28, 29, 30], we get the following characterization of the relation

between the sign of D(λ) and the sign of λ∗ − λ:

10

Lemma 6:

For some given value of λ ∈ R, it holds that sgn(D(λ)) = sgn(λ∗ − λ).

Proof: Let L := {l ∈ {1, . . . , k} : cTx(l) > 0}. First, consider the case that D(λ) > 0. The claim follows

by simple arguments:

D(λ) > 0 ⇐⇒ d(λ)Tx(l) > 0 for all l ∈ L

⇐⇒ (a− λc)Tx(l) > 0 for all l ∈ L

⇐⇒
aTx(l)

cTx(l)
> λ for all l ∈ L

⇐⇒ λ∗ > λ.

Conversely, if D(λ) < 0, we get the following equivalences by similar arguments:

D(λ) < 0 ⇐⇒ d(λ)Tx(l) < 0 for some l ∈ L

⇐⇒ (a− λc)Tx(l) < 0 for some l ∈ L

⇐⇒
aTx(l)

cTx(l)
< λ for some l ∈ L

⇐⇒ λ∗ < λ.

Finally, in the remaining case D(λ) = 0, it follows by continuity that λ∗ = λ, which shows the

claim.

Lemma 6 implies that λ∗ is the maximum value of λ such that D(λ) > 0, i.e., such that d(λ)Tx(l) > 0

for each x(l) ∈ S with cTx(l) > 0. In each iteration of our general procedure, we call the given

separation oracle A with the vector d((1+ ε)λ). We distinguish between the two possible outcomes

of one such call:

Case 1: The oracle returns some certificate x(l) ∈ S with d((1+ ε)λ)Tx(l) < 0. In this case, we get

that

(a− (1+ ε) · λ · c)T x(l) < 0

⇐⇒ aTx(l) < (1+ ε) · λ · cTx(l)

=⇒
aTx(l)

cTx(l)
< (1+ ε) · λ

=⇒
aTx(l)

cTx(l)
< (1+ ε) · λ∗.

The third inequality follows from the fact that aTx(l) > 0 (cf. Observation 1) and that λ > 0

such that it also holds that cTx(l) > 0. The returned vector x(l) yields an approximately most

11

violated dual constraint. We use this dual constraint and continue the procedure of Garg and

Koenemann [17]. Note that, during an iteration of the procedure, it holds that cTx(j) remains

constant for each vector x(j) ∈ S (since it does not depend on the dual solution y) and that

aTx(l) does not decrease (since both the entries in x(l) and the entries in A are non-negative).

Hence, λ continues to be a lower bound for the (possibly increased) new value λ∗ of (6).

Case 2: The oracle states that all vectors x(l) fulfill d((1+ ε)λ)Tx(l) > 0. It now holds that

(a− (1+ ε) · λ · c)T x(l) > 0 ∀x(l) ∈ S

⇐⇒ aTx(l) > (1+ ε) · λ · cTx(l) ∀x(l) ∈ S

⇐⇒
aTx(l)

cTx(l)
> (1+ ε) · λ ∀x(l) ∈ S with cTx(l) > 0

⇐⇒ λ∗ > (1+ ε) · λ.

In this case, we can update the lower bound λ to (1+ ε) · λ and continue.

Hence, in each iteration of the algorithm, we either proceed in the procedure of Garg and Koenemann

[17] or we increase the lower bound by a factor of 1+ ε. Again, we want to stress that λ continues

to be a lower bound for λ∗ after an iteration of the above algorithm. The following theorem shows

that this yields an efficient approximation algorithm for the problem (1) provided we are given a

sufficiently good initial estimate for λ∗:

Theorem 7:

Given a separation oracle A for S running in TA time and given an initial lower bound λ for the

initial value of λ∗ fulfilling λ 6 λ∗ 6 m
1
εm · λ, a (1− ε)-approximate solution for problem (1) can be

determined in O
(

1
ε2 ·m logm · (N+ TA)

)
time.

Proof: The correctness of the procedure follows from the arguments outlined in Section 2.2, the pre-

ceding discussion, and the fact that the initial value of λ is a valid lower bound for λ∗.

In each step of the algorithm, we evaluate the given separation oracle and – based on its result – either

perform one iteration of the procedure of Garg and Koenemann [17] and Fleischer [14] or update the

lower bound λ. As noted in Section 2.2, the former case occurs up to O(1
ε2 ·m logm) times. In order to

determine the number of updates to λ, let (λ∗)(k), λ(k), y
(k)
i denote the values of the corresponding

variables after the k-th iteration of the overall algorithm and let τ denote the number of iterations

until the algorithm stops. Note that the procedure stops as soon as
∑m

i=1 bi · y
(k)
i > 1. Hence, after

the (τ− 1)-th iteration, it holds that y
(τ−1)
i < 1

bi
for each i ∈ {1, . . . ,m}. Since each variable y

(τ−1)
i

will be increased by a factor of at most 1 + ε in the final iteration, it holds that y
(τ)
i < (1 + ε) · 1

bi
.

Since the initial value of each variable yi was set to y
(0)
i

:= δ
bi

, every dual variable increases by a

factor of at most 1+ε
δ

during the execution of the algorithm, so y
(τ)
i 6 1+ε

δ
· y(0). However, this also

implies that (λ∗)(τ) 6 1+ε
δ

· (λ∗)(0). Since the lower bound λ remains to be a lower bound after every

step of the algorithm as discussed above, it holds that

λ(τ) 6 (λ∗)(τ) 6
1+ ε

δ
· (λ∗)(0) 6

1+ ε

δ
·m

1
εm · λ(0),

12

where the third inequality follows from the requirement that (λ∗)(0) 6 m
1
εm · λ(0). Since λ is in-

creased by a factor of 1 + ε in each update step, we get that the number of such steps is bounded

by

log1+ε

λ(τ)

λ(0)
6 log1+ε

(
1+ ε

δ
·m

1
εm

)
= log1+ε

1+ ε

δ
+ log1+εm

1
εm

= log1+ε

1+ ε
1+ε

((1+ε)m)
1
ε

+
1

ε
·m log1+εm

= log1+ε((1+ ε)m)
1
ε +

1

ε
·m log1+εm

=
1

ε
· (1+ log1+εm) +

1

ε
·m log1+εm

∈ O

(
1

ε
·m log1+εm

)
= O

(
1

ε
·m ·

logm

log(1+ ε)

)
= O

(
1

ε2
·m logm

)

and, thus, matches the number of iterations of the procedure of Garg and Koenemann [17]. The claim

then follows by the fact that, in each step of the algorithm, we need O(N) time to compute the entries

of the vector d((1+ ε)λ) and TA time to evaluate the oracle.

Note that the allowed deviation of the initial lower bound λ to λ∗ in Theorem 7 is chosen in a way

such that the number of update steps to λ does not dominate the O(1
ε2 ·m logm) steps of the overall

procedure.

5 Determining a lower bound

The proof of Theorem 7 shows that the strongly polynomial number of oracle calls depends on the

assumption that the initial value for the lower bound λ is not “too far away” from the real value λ∗

of the most violated dual constraint. In this section, we present a weakly polynomial-time and a

strongly polynomial-time approach to find such a sufficiently good initial value.

5.1 Weakly Polynomial-Time Approach for Separation Oracles

We start by providing a general approach that is valid for all three types of oracles. The running

time will depend (logarithmically) on the largest number given in the input, denoted by M :=

max{(maxi bi), (maxj cj), (maxi,jAi,j),n,m} ∈ N.

Lemma 8:

Suppose that we are given a separation oracle A running in TA time. An initial lower bound λ for λ∗

fulfilling λ 6 λ∗ 6 m
1
εm · λ can be determined in weakly polynomial time O((TA +N) · (log logM−

(log 1
ε + logm+ log logm))).

13

Proof: Let x(l) ∈ S denote a vector with aTx(l)

cTx(l) = λ∗ that determines the minimum in equation (6).

Using that yi :=
bi

δ for each i ∈ {1, . . . ,m} at the beginning of the procedure, we get that

aTx(l)

cTx(l)
=

∑n
j=1 aj · x

(l)
j

∑n
j=1 cj · x

(l)
j

=

∑n
j=1

(∑m
i=1 yi ·Aij

)
· x

(l)
j

∑n
j=1 cj · x

(l)
j

=

∑n
j=1

∑m
i=1

δ
bi

·Aij · x
(l)
j

∑n
j=1 cj · x

(l)
j

. (7)

Without loss of generality, we can assume the separation oracle A to always return a vector x(l) ∈ S

with maxj∈{1,...,n} xj = 1 (whenever it returns a vector at all): For each x ∈ C, it also holds that

β · x ∈ C for some positive constant β. Hence, if the oracle does not fulfill the required property,

we can wrap it into a new oracle A ′ which divides the vector returned by A by maxj∈{1,...,n} xi > 0.

Using this fact in equation (7), we get the following lower and upper bound on λ∗:

λ∗ >
δ

M
·

∑n
j=1

(∑m
i=1Aij

)
· x

(l)
j

∑n
j=1M · x

(l)
j

>
δ

M
·

∑n
j=1 1 · x

(l)
j

n ·M
>

δ

n ·M2
>

δ

M3
=: λ1

and

λ∗ 6
δ

1
·

∑n
j=1

(∑m
i=1Aij

)
· x

(l)
j

∑n
j=1 1 · x

(l)
j

6 δ ·

∑n
j=1m ·M · x

(l)
j

1
6 δ ·nm ·M 6 δ ·M3 =: λ2.

According to Lemma 6, each feasible lower bound λ for λ∗ is characterized by the fact that D(λ) > 0,

so an oracle call with the vector d(λ) results in the answer that there are no vectors in S with negative

costs. Since λ is required to fulfill λ 6 λ∗ 6 m
1
εm · λ, we only need to consider values for λ of the

form λ1 · (m
1
εm)k in [λ1, λ2] for integral values of k. Moreover, since the oracle returns a vector if and

only if λ > λ∗, we can perform a binary search on these values in order to find the best possible lower

bound for λ∗. In total, we get the following number of iterations:

O

(
log log

m
1
εm

λ2

λ1

)
= O

(
log log

m
1
εm

δ ·M3

δ
M3

)
= O

(
log log

m
1
εm M

)

= O

(
log

logM

logm
1
εm

)
= O

(
log

logM
1
ε
·m logm

)

= O

(
log logM−

(
log

1

ε
+ logm+ log logm

))
.

In combination with the overhead of N+ TA to call the oracle (as in the proof of Theorem 7), we get

the claimed time bound.

Note that the time bound given in Lemma 8 is in fact only weakly polynomial for very large values

of M: The binary search only has an effect on the overall running time if the encoding length logM

of M fulfills logM ∈ ω(1ε ·m logm), i.e., if M is exponential in 1
ε ·m logm.

Theorem 7 in combination with Lemma 8 yields the following theorem:

14

Theorem 9:

Given a separation oracle A for S running in TA time, a (1− ε)-approximate solution for problem (1)

can be determined in weakly polynomial time O((TA+N) · (1
ε2 ·m logm+ log logM−(log 1

ε + logm+

log logm))).

In particular, if the oracle A runs in polynomial time, we immediately obtain an FPTAS for prob-

lem (1) according to Theorem 9.

5.2 Strongly Polynomial-Time Approach for Sign Oracles

In the previous subsection, we introduced a method to determine an initial lower bound for λ∗ that is

valid for each of the investigated types of oracles. However, although the general procedure that was

described in Section 4 performs a strongly polynomial number of steps, the overall procedure would

not yield a strongly polynomial FPTAS, in general, even if the oracle runs in strongly polynomial

time due to the weakly polynomial overhead of the binary search. In this section, we present an

alternative method for minimizing and sign oracles running in strongly polynomial time. In the

subsequent subsection, we generalize the result to separation oracles.

According to Lemma 6, we can decide about the direction of the deviation between some candidate

value λ and the desired value λ∗, if we are able to determine the sign of D(λ). Clearly, this task

is strongly related to the definition a sign oracle for S. However, the value D(λ) is defined to be

the minimum of d(λ)Tx(l) among all vectors x(l) that additionally fulfill cTx(l) > 0 whereas the sign

oracle is not required to consider only such vectors according to Definition 3. Nevertheless, as it will

be shown in the following lemma, we can neglect this additional restriction when evaluating the sign

oracle:

Lemma 10:

For any positive value of λ, it holds that sgn(D(λ)) = sgn(d(λ)Tx(l)) where x(l) is a vector returned

by a sign oracle for S.

Proof: First consider the case that sgn(d(λ)Tx(l)) = −1, i.e., that d(λ)Tx(l) < 0. Using the definition

of d(λ), we get that (a − λc)Tx(l) = aTx(l) − λ · cTx(l) < 0. Since both aTx(l) > 0 according to

Observation 1 and λ > 0, it must hold that cTx(l) > 0 as well. Thus, we can conclude that D(λ) 6

d(λ)Tx(l) < 0.

Now consider the case that sgn(d(λ)Tx(l)) = 0. According to Definition 3, it holds that there are no

vectors x(j) ∈ S with d(λ)Tx(j) < 0, so D(λ) > 0. As in the previous case, we get that (a− λc)Tx(l) =

aTx(l) − λ · cTx(l) = 0 if and only if cTx(l) > 0 since both aTx(l) > 0 and λ > 0. Hence, we also get

that D(λ) 6 d(λ)Tx(l) = 0, so D(λ) = 0.

Finally, if sgn(d(λ)Tx(l)) = 1, there are no vectors x(i) ∈ S with d(λ)Tx(i) 6 0. Thus, it also holds

that D(λ) > 0, which shows the claim.

Lemma 10 now allows us to determine a sufficiently good initial lower bound λ. In fact, as it will be

shown in the following lemma, we are even able to determine an exact most violated dual constraint

in each iteration of the procedure:

15

Lemma 11:

Given a strongly combinatorial and strongly polynomial-time sign oracle A for S running in TA time,

a most violated dual constraint can be determined in O
(
N+ T2

A

)
time.

Proof: Lemma 6 and Lemma 10 imply that λ∗ is the unique value for λ for which the sign oracle

returns a vector x(l) ∈ S with d(λ)Tx(l) = 0. In particular, the returned vector x(l) is a minimizer for

(6). Hence, since the values ai can be computed in O(N) time, we are done if we are able to determine

such a vector x(l) in O(T2
A) time.

Let d(λ) be defined as above, where λ is now treated as a symbolic value that is known to be contained

in an interval I. Initially, we set I to (0,+∞) since the optimal value λ∗ is known to be strictly positive

(cf. equation (6)). Note that the costs (d(λ))i = ai − λ · ci fulfill the linear parametric value property.

We simulate the execution of the sign oracle A at input d(λ) using Megiddo’s (1979) parametric search

technique as described in Section 2.3. The underlying idea is to “direct” the control flow during the

execution of A in a way such that it eventually returns the desired vector minimizing (6).

Whenever we need to resolve a comparison between two linear parametric values that intersect at

some point λ ′ ∈ I, we call the sign oracle itself with the cost vector d := d(λ ′) in order to determine the

sign of D(λ ′). If D(λ ′) = 0, we found a minimizer for equation (6) and are done. If D(λ ′) < 0 (D(λ ′) >

0), the candidate value λ ′ for λ∗ was too large (too small) according to Lemma 6 and Lemma 10 such

that we can update the interval I to I∩ (−∞, λ ′) (I∩ (λ ′,+∞)), resolve the comparison, and continue

the simulation of the oracle algorithm. After O(TA) steps, the simulation terminates and returns a

vector x(l) ∈ S that fulfills d(λ∗)Tx(l) = 0 for the desired value λ∗ ∈ I. Hence, this vector yields

a most violated constraint in (5b). Since the described simulation runs in O(T2
A) time, the claim

follows.

Note that we actually still obtain a polynomial running-time of the above algorithm even if we do

not assume the sign oracle to run in strongly polynomial time but only to run in weakly polynomial

time. However, the running-time of the resulting algorithm might exceed the stated time bound since

the candidate values λ ′ that determine the input to the callback oracle are rational numbers whose

representation might involve exponential-size numbers of the form HTA for some H with polynomial

encoding length. Although the running-time of a weakly polynomial-time oracle algorithm depends

only logarithmically on the size of these numbers, the running-time might still increase by a large

(polynomial) factor.

Lemma 11 can be incorporated into the procedure of Garg and Koenemann [17] to obtain an FPTAS

for problem (1) running in O(1
ε2 ·m logm · (N + T2

A)) time. However, it can also be used to find

an initial lower bound λ for λ∗ (which, in fact, equals λ∗), which yields the following theorem in

combination with Theorem 7:

Theorem 12:

Given a strongly combinatorial and strongly polynomial-time sign oracle A for S running in TA time,

there is a strongly polynomial FPTAS for the problem (1) running in O
(

1
ε2 ·m logm · (N+ TA) + T2

A

)

time.

16

5.3 Strongly polynomial-time approach for Separation Oracles

Although separation oracles are probably the most natural kind of oracle, they are also the weakest

of the considered oracle types. The proof of Lemma 11 relies on the fact that we are able to decide

if some candidate value λ is too small, too large, or equal to the desired value. In the case of a

separation oracle, however, the case that dTx(i) > 0 for all vectors x(i) ∈ S does no longer include

the information whether there is a vector x(l) ∈ S with dTx(l) = 0 (in which case we have found

the desired vector in the parametric search as described above) or if dTx(i) > 0 for all x(i) ∈ S. For

example, if we come across a comparison of the form a0 + λ · a1 6 b0 + λ · b1 during the simulation

where a1 > b1, we are actually interested in the information whether or not the optimal value λ∗

fulfills λ∗ 6 λ ′ := b0−a0

a1−b1
. However, if we use the separation oracle with the cost vector d(λ ′),

we only obtain the information whether λ∗ < λ ′ (in case that the oracle returns a certificate) or if

λ∗ > λ ′. Hence, in the latter case, the outcome of the comparison is not yet resolved since we need

the additional information whether or not λ∗ = λ ′, so we cannot continue the simulation without any

further ado. Nevertheless, as it will be shown in the following lemma, we can gather this additional

information by a more sophisticated approach:

Lemma 13:

Given a strongly combinatorial and strongly polynomial-time separation oracle A for S running in

TA time, a most violated dual constraint can still be determined in O
(
N+ T2

A

)
time.

Proof: The claim directly follows from Lemma 11 if we can show that we can extend the given

separation oracle into a sign oracle for S. As in the proof of Lemma 11, we simulate the execution of

the separation oracle using the parametric cost vector d(λ) := a−λc. Assume that the execution halts

at a comparison that needs to be resolved, resulting in a candidate value λ ′ for the desired value λ∗.

We invoke the separation oracle with the cost vector d := d(λ ′). Clearly, if the oracle returns a

certificate x(l) with dTx(l) < 0, we can conclude that D(λ ′) < 0 such that the value λ ′ was too large

according to Lemma 6 and the result of the comparison is determined. Conversely, if the oracle states

that dTx(i) > 0 for all x(i) ∈ S, we can conclude that D(λ ′) > 0. However, we may not yet be able

to resolve the comparison since its result may rely on the additional information whether D(λ ′) = 0

or D(λ ′) > 0 as shown above. Nevertheless, we can extract this information by one additional call to

the oracle as it will be shown in the following.

First suppose that λ ′ = λ∗. In this situation, it holds that d(λ ′)Tx(i) > 0 for all x(i) ∈ S and there is

at least one vector x(l) ∈ S that fulfills d(λ ′)Tx(l) = 0. Since all the functions f(i)(λ) := d(λ)Tx(i) =

aTx(i)− λ · cTx(i) are linear functions of λ with negative slope (in case that cTx(i) > 0; otherwise, the

function has no positive root at all), it holds that several functions f(l) evaluate to zero at λ ′ while

every other function attains its root at a larger value for λ (cf. Figure 1a). Hence, for every larger

value of λ, the separation oracle changes its outcome and returns a certificate. In particular, for a

sufficiently small but positive value of δ, the separation oracle called with the cost vector d(λ ′ + δ)

returns a vector x(l) ∈ S with d(λ ′ + δ)x(l) < 0 that additionally fulfills d(λ ′)Tx(l) = 0 (so x(l) yields

a most violated constraint in the overall procedure). Clearly, the value of δ must be small enough

to guarantee that we do not reach the root of another function f(i) (i.e., smaller than the distance

between the dashed and the dotted line in Figure 1a).

17

λ

f(i) λ ′ = λ∗

f(1)

f(2)

f(3)

f(4)

(a) λ′ = λ∗

λ

f(i) λ ′ λ∗

f(1)

f(2)

f(3)

f(4)

(b) λ′ < λ∗

Figure 1: Illustration of the two cases that may occur during the simulation of the separation oracle in case
that the separation oracle did not return a certificate when evaluated for a candidate value λ ′.

Now suppose that λ ′ < λ∗ (cf. Figure 1b). In this case, for a sufficiently small but positive value of

δ, the separation oracle returns the same answer when called with the cost vector d(λ ′ + δ) as long as

λ ′ + δ 6 λ∗ (i.e., as long as δ is smaller than the distance between the dotted and the dashed line in

Figure 1b). Consequently, in order to separate this case from the former case, it suffices to specify a

value for δ that is smaller than the distance between any two roots of the functions that occur both in

the instance and during the simulation of A. We can then use a second call to the decision oracle in

order to decide whether a candidate value λ ′ is smaller than or equal to the optimal value λ∗.

First note that the root of each function f(i) is given by the rational number aTx(i)

cTx(i) . Since the coef-

ficients cj are part of the instance I of the problem (1) and since the values aj =
∑m

i=1 yi ·Aij are

generated within the framework of Garg and Koenemann [17], the encoding length of both values

is polynomial in the problem size. Similarly, as noted in Section 3, we can assume that the encoding

lengths of all vectors x(i) returned by the oracle are in Ω(n) and, since the oracle runs in polynomial

time, polynomially bounded in the instance size. Consequently, there is some bound Mf with poly-

nomial encoding length such that the root of each function f(i) can be represented by a fraction pi

qi

with pi,qi ∈ N and qi 6 Mf.

Now consider the root −a0−b0

a1−b1
of some function g of the form g(λ) := (a0 − b0) + λ · (a1 − b1)

that stems from a comparison of two linear parametric values of the forms a0 + λ · a1 and b0+ λ ·b1.

Assume that we are in the k-th step of the simulation. Since the oracle algorithm is strongly combina-

torial, the values a0+ λ ·a1 and b0+ λ ·b1 result from one or more of the input values dj := aj− λ · cj

(which are the only linear parametric values at the beginning of the simulation) as well as a sequence

of up to k additions or subtractions with other linear parametric values and multiplications with con-

stants. Hence, since k ∈ O(TA) and A runs in (strongly) polynomial time, there is a bound Mg with

polynomial encoding length such that the root −a0−b0

a1−b1
of each such function g considered up to the

k-th step of the simulation can be represented by a fraction of the form p
q with p,q ∈ N and q 6 Mg.

Now let µ1 = p1

q1
and µ2 = p2

q2
with µ1 6= µ2 denote the roots of two of the above functions of the

18

form f(i) or g. Since q1,q2 6 Mf ·Mg, we get that

|µ1 − µ2| =

∣∣∣∣
p1

q1
−

p2

q2

∣∣∣∣ =
∣∣∣∣
p1 · q2 − p2 · q1

q1 · q2

∣∣∣∣ >
1

M2
f ·M

2
g

=: µ

Hence, choosing δ := µ
2

, we are able to differentiate between the three cases D(λ) < 0, D(λ) = 0, and

D(λ) > 0. Moreover, by returning any4 vector in S in the case of D(λ) > 0 and returning the certificate

in every other case, the separation oracle is extended into a sign oracle and the correctness follows

from the proof of Lemma 11. Note that the running time remains to be O
(
N+ T2

A

)
(as in the case of

a sign oracle in Lemma 11) since the encoding length of the number δ is polynomially bounded and

since the oracle algorithm is assumed to run in strongly polynomial time.

Lemma 13 now yields one of the main results of this paper:

Theorem 14:

Given a strongly combinatorial and strongly polynomial-time sign oracle A for S running in TA time,

there is a strongly polynomial FPTAS for the problem (1) running in O
(

1
ε2 ·m logm · (N+ TA) + T2

A

)

time.

6 Applications

In this section, we present several applications of the introduced framework. We will be able to derive

new strongly polynomial-time FPTASs for several well-known network flow and packing problems

and complement or even improve upon well-known results. All graphs considered in this section are

assumed to be connected, such that the number of nodes n fulfills n ∈ O(m).

6.1 Budget-Constrained Maximum Flows

In the budget-constrained maximum flow problem, the aim is to determine a flow with maximum value

in an s-t-network that is additionally restricted by a budget-constraint of the form
∑

e∈E be · xe 6 B

for non-negative integers be ∈ N for each e ∈ E a budget B ∈ N. The problem is known to be

efficiently solvable by combinatorial algorithms, both in weakly polynomial-time [1, 4, 5, 6] and in

strongly polynomial-time [23]. In the following, we present a strongly polynomial-time FPTAS for

the problem, which is both much more simple and efficient than the exact strongly polynomial-time

algorithm.

In order to apply our framework, we need to show that each feasible solution is decomposable in

some kind of basic component and that we are able to handle these components appropriately. With-

out loss of generality, since each budget-constrained maximum flow x is also a traditional s-t-flow

and since flows on cycles do not contribute to the flow value, it holds that x can be decomposed

into m ′ 6 m flows x(j) on s-t-paths Pj such that x =
∑m ′

j=1 x
(j). Hence, if x(l) denotes the flow

4Actually, since we do not have direct access to the set S, we need to obtain such a vector via an oracle access. However,
by calling the oracle once more with a very large value for λ or by returning some vector found before, we obtain a
certificate in S, which we can return.

19

with unit flow value on some path Pl in the set of s-t-paths {P1, . . . ,Pk}, it holds that each (budget-

constrained) maximum flow x is contained in the cone C that is generated by the vectors in the

set S := {x(l) : l ∈ {1, . . . , k}}. Consequently, we can formulate the budget-constrained maximum flow

problem as follows:

max
∑

e∈E

ce · xe (8a)

s.t.
∑

e∈E

be · xe 6 B, (8b)

xe 6 ue for each e ∈ E, (8c)

x ∈ C, (8d)

where ce = 1 if e ∈ δ−(t), and ce = 0, else. Note that the flow conservation constraints are now

modeled by the containment in the cone C, such that a packing problem over a polyhedral cone

remains, i.e., a problem of the form (1).

In the above formulation, it holds that cTx(l) = ĉ := 1 for each x(l) ∈ S since each s-t-path con-

tributes equally to the value of the flow. Hence, we can apply Theorem 5 if we can show that there

is a minimizing oracle for S, i.e., that we can determine a vector x(l) minimizing dTx(l) for a given

cost vector d. This simply reduces to the determination of a shortest s-t-path with respect to the

edge lengths d. Note that, since the vector a is always positive in each component according to Ob-

servation 1 and since ĉ = 1, we need to search for a shortest path with non-negative edge lengths in

SP(m,n) ∈ O(m+n logn) time according to the proof of Theorem 5. Thus, we get that there is an FP-

TAS for the budget-constrained maximum flow problem running in O
(

1
ε2 ·m logm · SP(m,n)

)
time

since the number N of non-zero entries in the constraint matrix in (8) is bounded by 2m ∈ O(SP(m,n)).

Note that this running time is still obtained even if we add (a constant number of) different budget-

constraints.

We want to stress that our framework allows to stick to the commonly used edge-based formulation

of the problem, in which there is a linear number of variables defining the flow on single edges.

In contrast, one is required to use the path-based formulation of the problem when using the orig-

inal framework of Garg and Koenemann [17]: The flow conservation constraints, which define the

“shape” of a feasible flow, cannot be directly used in a formulation as a packing problem. These

constraints, however, are now modeled by the containment in the cone C. Moreover, note that the

only ingredients that we used are that (1) each flow decomposes into flows on some type of basic

components (s-t-paths) and (2) that we are able to handle these basic components efficiently, which

allowed us to apply the framework.

6.2 Budget-Constrained Minimum Cost Flows

In the budget-constrained minimum cost flow problem, the aim is to determine a minimum cost flow

subject to a budget constraint of the form
∑

e∈E be · xe 6 B, similarly to the budget-constrained

maximum flow problem that was studied above. The problem is known to be efficiently solvable

20

in weakly and strongly polynomial-time [22, 23]. In [22], a strongly polynomial-time FPTAS was

presented for the budget-constrained minimum cost flow problem, which runs in

O

(
1

ε2
·m logm · (nm logm log logm+n3 logn+nm log2 n log logn)

)

time and which uses similar ideas as the ones presented above. In the following, we improve upon

this result.

When considering the (equivalent) circulation based version of the problem in which there are no

demands and flow conservation holds at each node, it is easy to see that each optimal flow can be

decomposed into flows on simple cycles. Hence, we can restrict our considerations to flows that are

contained in the cone C that is spanned by flows on simple cycles with unit flow value. The result

of Theorem 5 cannot be applied to this problem for two reasons: On the one hand, since we are

dealing with arbitrary costs, it clearly does no longer hold that cTx(l) is constant among all flows on

cycles with unit flow value. On the other hand, any minimizing oracle would be required to return

a vector x(l) that minimizes dTx(l) for a given cost vector d, so it would be necessary to find a most

negative cycle C∗ in the underlying graph. However, this problem is known to be NP-complete in

general since finding a most negative simple cycle in a graph with edge costs de = −1 for each e ∈ E

is equivalent to deciding if the graph contains a Hamiltonian cycle (cf. Garey and Johnson [16]).

Nevertheless, we are able to determine a cycle C with the same sign as the most negative cycle C∗

efficiently by computing a minimum mean cycle in O(nm) time (cf. [26]). Hence, we can apply both

Theorem 9 and Theorem 12 to the budget-constrained minimum cost flow problem in order to obtain

a weakly polynomial-time FPTAS running in

O

(
nm ·

(
1

ε2
·m logm+ log logM− log

1

ε
− logm− log logm

))

time and, since the minimum mean cycle algorithm of Karp [26] is both strongly polynomial and

strongly combinatorial, a strongly polynomial-time FPTAS with a time bound of

O

(
1

ε2
·m logm ·nm+ (nm)2

)
= O

(
nm ·

(
1

ε2
·m logm+nm

))
.

The latter running time can be improved by making use of the following observation: As it was

shown in Lemma 11, the sign oracle is incorporated into Megiddo’s parametric search in order to

determine a minimizer of

min
l∈{1,...,k}

cT x(l)>0

aTx(l)

cTx(l)
(6)

for a positive cost vector a and a vector c. In the case of the budget-constrained minimum cost flow

problem, this reduces to the determination of a minimum ratio cycle C. Megiddo [30] derived an algo-

rithm that determines a minimum ratio cycle in a simple graph in O(n3 logn+ nm log2 n log logn)

time by making use of a parallel algorithm for the all-pairs shortest path problem in combination

with Karp’s minimum mean cycle algorithm [26] as a negative cycle detector in his parametric search.

This running time was later improved by Cole [10] to O(n3 logn+ nm log2 n). Hence, the strongly

21

polynomial FPTAS can be improved to run in

O

(
1

ε2
·m logm ·nm+n3 logn+ nm log2 n

)
= O

(
1

ε2
·nm2 logn

)

time on simple graphs. In the case of multigraphs, one can use a technique introduced in [22] in

order to transform the graph into an equivalent simple graph in O(nm logm log logm) time before

applying Cole’s minimum ratio cycle algorithm, yielding an FPTAS running in

O

(
1

ε2
·m logm ·nm+nm logm log logm+n3 logn+ nm log2 n

)
= O

(
1

ε2
·nm2 logm

)

time. Hence, in both cases, the strongly polynomial-time FPTAS dominates the FPTASs introduced

above. The claimed running time holds even if we add up to O(n) different budget constraints to the

problem.

6.3 Budget-Constrained Minimum Cost Generalized Flows

The generalized minimum cost flow problem is an extension of the minimum cost flow problem, in which

each edge e ∈ E is denoted with an additional gain factor γe. The flow that enters some edge e is mul-

tiplied by γe as soon as it leaves the edge (cf. [36]). In the budget-constrained minimum cost generalized

flow problem, the flow is additionally restricted by a budget-constraint of the form
∑

e∈E be · xe 6 B

as above.

The traditional minimum cost generalized flow problem (without an additional budget constraint) is

known to be solvable by combinatorial algorithms in weakly polynomial-time [37]. Moreover, there is

a strongly polynomial-time FPTAS running in Õ
(
log 1

ε ·n2m2
)

time presented by Wayne [37]. How-

ever, this algorithm makes use of the inherent structure of traditional generalized flows and cannot be

extended to the budget-constrained case without further ado. Earlier, Oldham [31] presented an FP-

TAS for the related generalized minimum cost maximum flow problem with non-negative edge costs

with a weakly polynomial running time of Õ
(

1
ε2 · log 1

ε
·n2m2 · logmCU

)
, which, as well, cannot

be easily extended to the budget-constrained case. Another weakly polynomial-time FPTAS for this

problem running5 in Õ
(

1
ε2 ·nm

2 · (log 1
ε
+ log logM)

)
time was presented by Fleischer and Wayne

[13], which is also based on the procedure of Garg and Koenemann [17] and which can be extended

to the budget-constrained version of the problem. Using our framework, we present two much sim-

pler FPTASs that work for the generalized minimum cost flow with arbitrary edge costs and that

complement the above ones by achieving better time complexities in specific cases.

Again, we consider the circulation based version of the problem in which the excess is zero at each

node v ∈ V . As it was shown in [37], every such generalized circulation x can be decomposed into

at most m flows on unit-gain cycles and bicycles, i.e., flows on cycles C with
∏

e∈C γe = 1 and flows

on pairs of cycles (C1,C2) with
∏

e∈C1
γe < 1 and

∏
e∈C2

γe > 1 that are connected by a path,

respectively. Hence, every generalized circulation lies in the cone C that is generated by flows on

5M denotes the largest absolute value of each number given in the problem instance, assuming gain factor are given as
ratios of integers.

22

such unit-gain cycles and bicycles:

max
∑

e∈E

ce · xe (9a)

s.t.
∑

e∈E

be · xe 6 B, (9b)

xe 6 ue for each e ∈ E, (9c)

x ∈ C. (9d)

Note that this formulation does not differ from the models in the previous applications. Instead, the

“structural complexity” of the problem that comes with the introduction of gain factors is modeled

by the containment in the cone C. We are done if we are able to find a separation oracle for the set

that generates this cone. Wayne [37] shows that there is a unit-gain cycle or bicycle with negative

costs in a given network if and only if a specialized system with two variables per inequality (2VPI)

is infeasible. Among others, Cohen and Megiddo [9] present a procedure that checks the feasibility

of such a system and, in case that it is infeasible, provides a “certificate of infeasibility”, which cor-

responds to a negative cost unit-gain cycle/bicycle [37]. This procedure runs in Õ(n) time on O(nm)

processors. Hence, when used as a separation oracle, we are able to apply Theorem 9. This yields an

FPTAS running in

Õ

(
n2m ·

(
1

ε2
·m+ log logM ′ − log

1

ε

))

time, where M ′ is an upper bound on the absolute costs ce, fees be, and capacities ue of the edges e ∈

E – independent of the numbers involved to represent the gain factors. Moreover, since the separation

oracle is both strongly polynomial and strongly combinatorial [37], we can apply Theorem 12 in order

to obtain a strongly polynomial-time FPTAS. Using parallelization techniques that are common when

using Megiddo’s parametric search [30], the time that is necessary to find an initial most violated dual

constraint using Lemma 13 can be improved from Õ((nm)2) to Õ(n · (nm+nm log(nm) + log(nm) ·

(n2m))) = Õ(n3m). This yields an FPTAS with a strongly polynomial running time in

Õ

(
1

ε2
·m ·n2m+n3m

)
= Õ

(
1

ε2
·n2m2

)
.

This algorithm embodies the first strongly polynomial-time FPTAS for the budget-constrained gener-

alized minimum cost flow problem and improves upon the running time of the weakly polynomial-

time FPTAS. Moreover, this FPTAS outperforms both the algorithm of Oldham [31] and, for large

values of M or small values of ε, the algorithm of Fleischer and Wayne [13].

6.4 Maximum Flows in Generalized Processing Networks

Generalized processing networks extend traditional networks by a second kind of capacities, so called

dynamic capacities, that depend on the flow itself. More precisely, the flow on each edge e = (v,w) ∈ E

23

is additionally constrained to be at most αe ·
∑

e ′∈δ+(v) xe ′ for some edge-dependent constant αe ∈

(0, 1], i.e., the flow on e may only make up a specific fraction αe of the total flow leaving the starting

node v of e. This extension allows to model manufacturing and distillation processes, in particular

(cf. [24]).

Similar to s-t-paths, the “basic component” in the field of generalized processing networks is the

notion of so-called basic flow distribution schemes. For each node v ∈ V with δ+(v) 6= ∅, such a basic

flow distribution scheme β is a function that assigns a value in [0,αe] to each edge e ∈ δ+(v) such

that
∑

e∈δ+(v) βe = 1 and at most one edge e ∈ δ+(v) fulfills βe ∈ (0,αe). Intuitively, a basic

flow distribution scheme describes how flow can be distributed to the outgoing edges at each node

without violating any dynamic capacity constraint.

In [24], the authors show that each flow in a generalized processing network can be decomposed

into at most 2m flows on basic flow distribution schemes. Hence, we can conclude that each maxi-

mum flow in a generalized processing network is contained in the cone C that is generated by unit-flows

on basic flow distribution schemes. Moreover, for the problem on acyclic graphs and for a given

cost vector d, we can determine a basic flow distribution scheme β that allows a unit-flow x with

minimum costs d(x) :=
∑

e∈E de · xe in linear time O(m) (cf. [24]). By using Theorem 5, we get an

FPTAS for the maximum flow problem in generalized processing networks with a strongly polyno-

mial running-time of O(1
ε2 ·m2 logm). This result is in particular interesting since it is unknown

whether an exact solution can be determined in strongly polynomial time since the problem is at least

as hard to solve as any linear fractional packing problem (cf. [24] for further details).

6.5 Minimum Cost Flows in Generalized Processing Networks

Similar to the previous problem, each minimum cost flow in a generalized processing network is contained

in the cone that is generated by flows with unit flow value on basic flow distribution schemes. On

acyclic graphs, we have the same minimizing oracle as described above. Since the costs ce are now

arbitrary, we can no longer apply Theorem 5. Nevertheless, since each minimizing oracle induces

a sign oracle, we are able to apply Theorem 12, which yields an FPTAS for the problem running in

strongly polynomial-time

O

(
1

ε2
·m logm ·m+m2

)
= O

(
1

ε2
·m2 logm

)
.

This matches the time complexity of the maximum flow variant of the problem described in Sec-

tion 6.4.

6.6 Maximum Concurrent Flow Problem

The maximum concurrent flow problem is a variant of the maximum multicommodity flow problem, in

which a demand dj is given for each commodity j with source-sink-pair (sj, tj) ∈ V × V . The task

is to determine the maximum value of λ such that a fraction λ of all demands is satisfied without

violating any edge capacity. While several FPTASs emerged for this problem, the best time bound at

24

present is given by Õ
(

1
ε2 · (m

2 + kn)
)

due to Karakostas [25], where k ∈ O(n2) denotes the number

of commodities.

The problem can be approximated efficiently with our framework by using the following novel ap-

proach: In order to improve the objective function value by one unit, we need to send dj units of

each commodity. Hence, each concurrent flow decomposes into basic components of the following

type: A set of flows on k paths, containing a flow with value dj on an (sj, tj) path for each com-

modity j. For a given (positive) cost vector, a basic component with minimum costs can be found by

determining a shortest path between each commodity. Since Dijkstra’s (1959) algorithm computes

the shortest paths from one node to every other node, we only need to apply it min{k,n} times (once

for each of the distinct sources of all commodities), which yields a minimizing oracle running in

O(min{k,n} · (m+ n logn)) time and an FPTAS running in Õ
(

1
ε2 ·m

2 · min{k,n}
)

time according to

Theorem 5. This algorithm has a worse time complexity than the one of Karakostas [25]. Neverthe-

less, the application of the presented framework is much simpler than the algorithm given in [25]

(and even matches its time complexity in the case of sparse graphs with a large number of commodi-

ties) and inherently allows the incorporation of additional budget-constraints.

6.7 Maximum Weighted Multicommodity flow Problem

The maximum weighted multicommodity flow problem is a generalization of the maximum multicom-

modity flow problem, in which a positive weight cj is denoted with each commodity and the aim is to

maximize the weighted flow value. The problem is known to be solvable in Õ
(

1
ε2 ·m

2 min{logC, k}
)

time as shown by Fleischer [14], where C denotes the largest ratio of any two weights of commodities.

Similar to the multicommodity flow problem, each feasible flow decomposes into flows with unit

flow value on single (sj, tj) paths. Moreover, the determination of such a path with minimal costs

reduces to min{k,n} shortest path computations with possibly negative costs, similar to the maxi-

mum concurrent flow problem considered above. Using similar ideas as in the case of the budget-

constrained minimum cost flow problem (Section 6.2), this would yield an FPTAS with a running

time in Õ
(

1
ε2 · min{n, k} ·nm+ min{n, k} ·n3

)
.

This running time can be improved as follows: As above, we can consider the cone C to be spanned

by flows on (sj, tj) paths for each commodity, but where each flow between any (sj, tj)-pair now has

flow value 1
cj

. Each vector in the ground set S then has uniform costs. In order to apply Theorem 5,

we need to be able to determine a cost-minimal vector with respect to a given positive cost vector d.

One straight-forward way to obtain such a minimizing oracle is to compute a shortest path for each

commodity j using the edge lengths de

cj
for each e ∈ E and to choose a shortest path among all

commodities. This would result in a Õ
(

1
ε2 ·m

2 · k
)

time FPTAS, similar to the previous application.

However, it suffices to compute only min{n, k} shortest paths per iteration, which can be seen as

follows: For each node s out of the set of the min{k,n} distinct source nodes, we perform two steps:

We first compute the shortest path distance to every other node using Dijkstra’s (1959) algorithm.

Afterwards, for each node that corresponds to the sink tj of a commodity j with source sj = s, we

multiply the distance from sj to tj by 1
cj

. By repeating this procedure for each source and keeping

track of the overall shortest path, we obtain a minimizing oracle. This yields an FPTAS running in

25

Õ
(

1
ε2 ·m

2 · min{n, k}
)

time, which complements the result of Fleischer [14]. This example shows that

more sophisticated definitions of the ground set S and the cone C may improve the running time of

the procedure.

Finally, using this approach, we can even further improve the algorithm to obtain a time bound of

Õ
(

1
ε2 ·m

2
)

using an idea that was applied by Fleischer [14] to the (unweighted) multicommodity

flow problem: For an initially tight lower bound L on the length of a shortest path for any com-

modity (which can be computed in Õ(min{n, k} ·m) time as above at the beginning), we can stick to

one commodity j in each iteration of the overall procedure and compute a single shortest path from

the source sj to the sink tj. Once the length of this shortest path multiplied by 1
cj

becomes as large

as (1+ ε) · L, we go on to the next commodity and continue the procedure. After each commodity

was considered, we update L to (1 + ε) · L and continue with the first commodity. Following the

lines of Fleischer [14], this yields an FPTAS running in Õ
(

1
ε2 · (m

2 + km)
)

time as there are Õ
(

1
ε2 · k

)

shortest path computations that lead to a change of the commodity. However, since Dijkstra’s (1959)

algorithm computes the distance to every other node, we only need to consider min{k,n} different

nodes by grouping commodities with the same source as above, which reduces the running time to

Õ
(

1
ε2 ·m

2
)

(see [14] for details on the algorithm). Although Fleischer [14] both considered this tech-

nique and introduced the maximum weighted multicommodity flow problem, she refrained from

applying this procedure to the problem.

6.8 Maximum Spanning Tree Packing Problem

In the maximum spanning tree packing problem, one is given an undirected graph G = (V ,E) with

positive edge capacities ue. Let T denote the set of all spanning trees in G. The aim is to find a

solution to the problem

max
∑

T∈T

xT

s.t.
∑

T∈T:e∈T

xT 6 ue ∀ e ∈ E,

xT > 0 ∀T ∈ T,

i.e., one seeks to pack as many spanning trees as possible (in the fractional sense) without violating

any edge capacity. While the problem was investigated in a large number of publications, the fastest

(exact) algorithm for the problem is due to Gabow and Manu [15] and runs in O
(
n3m log n2

m

)
time.

Let S denote the set of incidence vectors χT of spanning trees T ∈ T, where (χT)e = 1 if e ∈ T and

(χT)e = 0 else. Since each spanning tree contains exactly n− 1 edges, the problem can be stated in

26

an equivalent edge-based fashion as follows:

max
1

n− 1
·
∑

e∈E

xe

s.t. xe 6 ue ∀ e ∈ E,

x ∈ C.

In order to apply Theorem 5 (which is eligible since each spanning tree contributes equally to the

objective function value), we need a minimizing oracle for the set S. However, this simply reduces

to the determination of a minimum spanning tree, which can be done in O(m ·α(m,n)) time, where

α(m,n) denotes the inverse Ackermann function (cf. [7]). This yields a strongly polynomial-time

FPTAS for the problem running in O
(

1
ε2 ·m

2 logm ·α(m,n)
)

time.

Our framework also applies to a weighted version of the problem: Assume that each edge is labeled

with an additional cost ce (with arbitrary sign) and assume that the weight c(T) of each spanning

tree T ∈ T is defined to be the sum of the weights of its edges, i.e., c(T) :=
∑

e∈E ce. The aim is

then to maximize the objective function
∑

T∈T c(T) · xT . As above, we can stick to an equivalent

edge-based formulation using the objective function 1
n−1 ·

∑
e∈E ce · xe. The minimum spanning tree

algorithm can then be used as a sign oracle, which allows us to apply Theorem 12 to the problem.

This yields an FPTAS for the maximum weighted spanning tree packing problem running in strongly

polynomial time

O

(
1

ε2
·m2 logm ·α(m,n) +m2 ·α2(m,n)

)
= O

(
1

ε2
·m2 logm ·α(m,n)

)
.

To the best of our knowledge, this is the first combinatorial approximation algorithm for this problem.

6.9 Maximum Matroid Base Packing Problem

Having a closer look at the results of Section 6.8, one might expect that they can be generalized to

matroids: As spanning trees form the bases of graphic matroids, the presented ideas suggest that the

framework can also be applied to packing problems over general matroids. In the maximum matroid

base packing problem, a matroid M(S, I) with ground set S := {1, . . . ,m} and independent sets in I is

given as well as a positive capacity ui ∈ N>0 for each i ∈ S. For r to be the rank function of M,

let B ⊂ I denote the set of bases such that I ∈ B if and only if r(I) = r(S). The aim of the problem

is to pack as many bases of M as possible (in the fractional sense) without violating any capacity

27

constraints:

max
∑

I∈B

xI

s.t.
∑

I∈B:i∈I

xI 6 ui ∀ i ∈ S,

xI > 0 ∀I ∈ B.

As it is common when dealing with matroids, we assume that the matroid is described by an inde-

pendence testing oracle, which checks if some set S ′ ⊆ S is independent in M (cf. [33]). Let F(m) denote

the running time of this oracle. As it is shown in [33], the problem can be solved in O(m7 · F(m)) time

using a result derived by Cunningham [11].

As it was the case in the maximum spanning tree packing problem in Section 6.8, the problem can be

formulated in an equivalent element-based fashion as follows:

max
1

r(S)
·
∑

i∈S

xi

s.t. xi 6 ui ∀ i ∈ S,

x ∈ C,

where the cone C is spanned by the incidence vectors of bases in B. In order to apply our framework,

we need to be able to handle these bases efficiently. However, as we are dealing with matroids, we can

find a cost-minimal basis I ∈ B of M with respect to a given cost vector d just by applying the Greedy

algorithm (cf. [33]): Starting with I = ∅, we sort the elements by their costs and iteratively add each el-

ement in the sorted sequence unless the independence test fails. This yields a minimizing oracle for B

running in O(m · F(m) +m logm) time. Hence, we immediately get an FPTAS for the maximum ma-

troid base packing problem running in strongly polynomial time O
(

1
ε2 ·m

2 logm · (F(m) + logm)
)

according to Theorem 5.

As it was the case in Section 6.8, we can also extend our results to a weighted version of the problem:

Assume we are additionally given costs ci ∈ Z and want to maximize
∑

I∈B c(I) · xI, where c(I) :=
∑

i∈I ci. Equivalently, we can also maximize 1
r(S)

·
∑

i∈S ci · xi in the element-based formulation

of the problem. Using the above minimizing oracle as a sign oracle, we can apply both Theorem 9

and, in case that the independence testing oracle is strongly polynomial and strongly combinatorial,

Theorem 12 to the problem. This yields two FPTASs for the problem running in

O

(
(m · F(m) +m logm) ·

(
1

ε2
·m logm+ log logM− log

1

ε
− logm− log logm

))

and

O

(
1

ε2
·m2 logm · (F(m) + logm) + (m · F(m) +m logm)2

)

28

time, respectively. To the best of our knowledge, no other polynomial-time algorithm is known for

this problem.

7 Conclusion

We investigated an extension of the fractional packing framework by Garg and Koenemann [17] that

generalizes their results to fractional packing problems over polyhedral cones. By combining a large

diversity of known techniques, we derived a framework that can be easily adopted to a large class

of network flow and packing problems. This framework may in particular be applicable even if

the cone has an exponential-sized representation as it only relies on a strongly polynomial number

of oracle calls in order to gather information about the cone. In many cases, its application allows

the derivation of approximation algorithms that are either the first ones with a strongly polynomial

running time or the first combinatorial ones at all. For a large variety of applications, we were even

able to complement or improve existing results.

The presented paper raises several questions for future research. On the one hand, we believe that

our results can be applied to a much larger set of problems and can be used to obtain combinatorial

FPTASs for complex problems without much effort. It may also be possible that the results continue

to hold for even weaker kinds of oracles. On the other hand, as our framework is based on the

one of Garg and Koenemann [17] in its core, all of the derived approximation algorithms have a

running time in Ω(1
ε2 ·m logm · n) and, in particular, have a quadratic dependency on 1

ε . It may be

possible to achieve a subquadratic dependency on 1
ε by relying on other approaches such as the one

of Bienstock and Iyengar [3]. Nevertheless, it seems that this trade comes with a worse dependence

on other parameters, a worse practical performance, or a worse generality of the presented results.

References

[1] R. K. Ahuja and J. B. Orlin. A capacity scaling algorithm for the constrained maximum flow

problem. Networks, 25(2):89–98, 1995.

[2] D. Bienstock. Potential function methods for approximately solving linear programming problems: the-

ory and practice, volume 53. Springer Science & Business Media, 2006.

[3] D. Bienstock and G. Iyengar. Approximating fractional packings and coverings in o (1/epsilon)

iterations. SIAM Journal on Computing, 35(4):825–854, 2006.

[4] C. Çalışkan. A double scaling algorithm for the constrained maximum flow problem. Computers

& Operations Research, 35(4):1138–1150, 2008.

[5] C. Çalışkan. On a capacity scaling algorithm for the constrained maximum flow problem. Net-

works, 53(3):229–230, 2009.

[6] C. Çalışkan. A faster polynomial algorithm for the constrained maximum flow problem. Com-

puters & Operations Research, 39(11):2634–2641, 2012.

29

[7] B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity.

Journal of the ACM (JACM), 47(6):1028–1047, 2000.

[8] E. Cohen and N. Megiddo. Maximizing concave functions in fixed dimension. World Scientific, 1990.

[9] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two variables per

inequality. SIAM Journal on Computing, 23(6):1313–1347, 1994.

[10] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal of the ACM

(JACM), 34(1):200–208, 1987.

[11] W.H. Cunningham. Testing membership in matroid polyhedra. Journal of Combinatorial Theory,

Series B, 36(2):161–188, 1984.

[12] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):

269–271, 1959.

[13] L. K. Fleischer and K. D. Wayne. Fast and simple approximation schemes for generalized flow.

Mathematical Programming, 91(2):215–238, 2002.

[14] L.K. Fleischer. Approximating fractional multicommodity flow independent of the number of

commodities. SIAM Journal on Discrete Mathematics, 13(4):505–520, 2000.

[15] H.N. Gabow and K.S. Manu. Packing algorithms for arborescences (and spanning trees) in

capacitated graphs. Mathematical Programming, 82(1-2):83–109, 1998.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, New York, 1979.

[17] N. Garg and J. Koenemann. Faster and simpler algorithms for multicommodity flow and other

fractional packing problems. SIAM Journal on Computing, 37(2):630–652, 2007.

[18] M.D. Grigoriadis and L.G. Khachiyan. Fast approximation schemes for convex programs with

many blocks and coupling constraints. SIAM Journal on Optimization, 4(1):86–107, 1994.

[19] M.D. Grigoriadis and L.G. Khachiyan. Coordination complexity of parallel price-directive de-

composition. Mathematics of Operations Research, 21(2):321–340, 1996.

[20] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization,

volume 2 of Algorithms and Combinatorics. Springer Berlin Heidelberg, 1993.

[21] R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics of

Operations research, 17(1):36–42, 1992.

[22] M. Holzhauser, S. O. Krumke, and C. Thielen. On the complexity and approximability of budget-

constrained minimum cost flows. submitted to Information Processing Letters, 2015.

[23] M. Holzhauser, S. O. Krumke, and C. Thielen. Budget-constrained minimum cost flows. Journal

of Combinatorial Optimization, 31(4):1720–1745, 2016.

30

[24] M. Holzhauser, S. O. Krumke, and C. Thielen. Maximum flows in generalized processing net-

works. Journal of Combinatorial Optimization, pages 1–31, 2016.

[25] G. Karakostas. Faster approximation schemes for fractional multicommodity flow problems.

ACM Transactions on Algorithms (TALG), 4(1):13, 2008.

[26] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete mathematics,

23(3):309–311, 1978.

[27] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[28] E. L. Lawler. Combinatorial optimization: networks and matroids. Courier Corporation, 2001.

[29] N. Megiddo. Combinatorial optimization with rational objective functions. Mathematics of Op-

erations Research, 4(4):414–424, 1979.

[30] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. Jour-

nal of the ACM (JACM), 30(4):852–865, 1983.

[31] J.D. Oldham. Combinatorial approximation algorithms for generalized flow problems. Journal

of Algorithms, 38(1):135–169, 2001.

[32] S.A. Plotkin, D.B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional packing

and covering problems. Mathematics of Operations Research, 20(2):257–301, 1995.

[33] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer Science &

Business Media, 2002.

[34] S. Toledo. Maximizing non-linear concave functions in fixed dimension. In Foundations of Com-

puter Science, 1992. Proceedings., 33rd Annual Symposium on, pages 676–685. IEEE, 1992.

[35] S. Toledo. Approximate parametric searching. Information processing letters, 47(1):1–4, 1993.

[36] K. D. Wayne. Generalized Maximum Flow Algorithms. PhD thesis, Cornell University, 1999.

[37] K. D. Wayne. A polynomial combinatorial algorithm for generalized minimum cost flow. Math-

ematics of Operations Research, 27(3):445–459, 2002.

[38] N.E. Young. Randomized rounding without solving the linear program. In SODA, volume 95,

pages 170–178, 1995.

31

	1 Introduction
	2 Preliminaries
	2.1 Approximation Algorithms
	2.2 Garg and Koenemann's Fractional Packing Framework
	2.3 Megiddo's Parametric Search Technique

	3 Packing over Cones
	4 General Algorithm
	5 Determining a lower bound
	5.1 Weakly Polynomial-Time Approach for Separation Oracles
	5.2 Strongly Polynomial-Time Approach for Sign Oracles
	5.3 Strongly polynomial-time approach for Separation Oracles

	6 Applications
	6.1 Budget-Constrained Maximum Flows
	6.2 Budget-Constrained Minimum Cost Flows
	6.3 Budget-Constrained Minimum Cost Generalized Flows
	6.4 Maximum Flows in Generalized Processing Networks
	6.5 Minimum Cost Flows in Generalized Processing Networks
	6.6 Maximum Concurrent Flow Problem
	6.7 Maximum Weighted Multicommodity flow Problem
	6.8 Maximum Spanning Tree Packing Problem
	6.9 Maximum Matroid Base Packing Problem

	7 Conclusion

