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We consider the problem of minimizing a polynomial function over the
integer lattice. Though impossible in general, we use a known sufficient con-
dition for the existence of continuous minimizers to guarantee the existence
of integer minimizers as well. In case this condition holds, we use sos pro-
gramming to compute the radius of a p-norm ball which contains all integer
minimizers. We prove that this radius is smaller than the radius known from
the literature. Furthermore, we derive a new class of underestimators of the
polynomial function. Using a Stellensatz from real algebraic geometry and
again sos programming, we optimize over this class to get a strong lower
bound on the integer minimum.

Our radius and lower bounds are evaluated experimentally. They show a
good performance, in particular within a branch and bound framework.

Keywords integer optimization; polynomials; lower bounds; branch and bound

1. Introduction

Given a multivariate polynomial f : Rn → R, we consider its minimization over the
integer lattice, i.e., the problem

min f(x)

s.t. x ∈ Zn.
(IP)

This is a special type of a nonlinear integer optimization problem and is incomputable in
general: Hilbert’s tenth problem asks if there exists an algorithm that decides whether
for a given polynomial f with integer coefficients the equation f(x) = 0 has a solution
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x ∈ Zn. Seventy years later it was proved by Matiyasevich [Mat70] that no such
algorithm can exist. So if there was an algorithm to solve IP, we would also get an
algorithm to decide whether f(x) = 0 has an integer solution by minimizing f2 over Zn.
Consequently, IP cannot be solved for general polynomials f . In this paper we consider
a subclass that leads to solvable problems.

1.1. Outline

Once the notation, a little background on sos (sum of squares) programming and a
Stellensatz from algebraic geometry are introduced (Section 2), we review, in order to
make the problem tractable, a sufficient criterion from the literature for the existence of
continuous minimizers (Section 3). This criterion actually holds for integer minimzers,
too: Integer minimizers exist if the highest order terms of f attain positive values on
Rn \ {0}, we say that the leading form of f is positive definite. But deciding positive
definiteness is NP hard, hence we approximate this problem by sos programming. How-
ever, this only tells us that minimizers exists, but not where they are located. We locate
the minimizers by computing – again using sos programming – the radius of a p-norm
ball that contains all integer minimizers (Section 4), or simply norm bounds on the min-
imizers. In principle, once a norm bound is known, IP is solvable by enumeration. We
proceed by deriving a class of polynomials with obvious integer minimizer (Section 5)
that serve as underestimators to f . Using sos programming, we may choose the underes-
timator g with the strongest lower bound. Firstly, we search for a global underestimator
which is later refined to underestimation on sublevel sets, yielding stronger bounds. This
refinement further allows to prove that, provided f has a positive definite leading form,
there always are underestimators in our class that can be found by sos programming.
To find the optimal solution to IP, instead of enumeration, we use an underestimator g
from our class to obtain lower bounds within a branch and bound approach (Section 6).
We continue with an experimental evaluation of the norm bounds, of the lower bounds
and of the performance of the underestimators within branch and bound on random
instances. The paper ends with a conclusion and ideas for future research (Section 7).

1.2. Literature review

The literature on nonlinear integer programming is vast. For an overview, a presentation
of key techniques and complexity results as well as numerous references for further read-
ing, see the article [HKLW10], which comes as chapter of [JLN+10]. For a recent survey
on nonlinear mixed-integer programming (a subset of the variables may be continuous),
see [LL12].

Throughout our work we rely heavily on methods from constrained continuous polyno-
mial optimization. Based on work of Shor [Sho87, SS97], Parrilo [Par00] suggested a
method now known as sos programming that makes continuous polynomial optimiza-
tion accessible to semidefinite programming (see, e.g., [WSV00] for the latter), whilst
Lasserre [Las01] published the dual approach, based on moment sequences. Since the
emergence of the two ground-breaking publications by Parrilo and Lasserre, many results
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on continuous polynomial optimization via sos techniques and its theoretical background
have been published: The expository paper [PS03] shows that existing algebraic tech-
niques are outperformed by the sos method. As in-depth treatments, we refer to [AL12]
for the interplay of semidefinite, conic and polynomial optimization, and [BPT13] for
a focus on the geometry involved. For an algebraic treatment, we mention Marshall’s
book [Mar08]. We point out Laurent’s elegant survey [Lau09], which treats, among other
aspects, the duality of the sos and moment approach.

A special case of our problem, unconstrained quadratic integer minimization, is con-
sidered by [BHS14]. We did not find results in the literature that consider the uncon-
strained integer minimization problem for multivariate polynomials of arbitrary degree.
Regarding nonlinear integer minimization with constraints or additional assumptions,
integrality turns even seemingly simple problems incomputable: Using the aforemen-
tioned result of Matiyasevich, Jeroslow [Jer73] proved that there cannot be an algorithm
for integer minimization of a linear form subject to quadratic constraints.

But substantial special cases are solvable, for example, every integer problem with a
bounded feasibile set is solvable. More specifically, an important case is boolean pro-
gramming, see [BH02] for a survey. A classic approach is linearization by introducing
new variables and constraints (for early results see, e.g., [For60]). In theory, also a gen-
eral bounded integer polynomial optimization problem can be reduced to the binary case
[Wat67], but this is not practicable since the number of variables grows too quickly. An-
other technique for boolean programming is the reduction to a quadratic problem which
can be done with significantly fewer variables and constraints [Ros75, BR07]. Another
substantial case that gained attention are (quasi-)convex problems, as the incomputabil-
ity results do not hold for this case [Kha83, KP00]. [HK13] present a Lenstra type
algorithm for quasiconvex integer polynomial optimization.

For integer minimization of arbitrary polynomials, a common way of solving IP is branch
and bound as proposed (originally only for convex functions) by [GR85]. A popular
method is to calculate convex underestimators (see, e.g., [LT11]) to obtain lower bounds.
As a different approach, if the feasible set is a box, [BD14] compute separable underesti-
mators wich give lower bounds that are easy to obtain. In contrast, [LHKW06] directly
compute lower and upper bounds, i.e., no underestimators, for nonnegative polynomials
on polytopes.

2. Preliminaries

In this section we collect some basic notation and facts as well as a few theorems from
algebraic geometry that we use to derive our main results.
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Notation and basic properties of polynomials

We write a polynomial f : Rn → R in n unknowns X1, . . . , Xn using multi-indices
α = (α1, . . . , αn) ∈ Nn0 via

f =
∑
α∈Nn0

aαX
α =

∑
α∈Nn0

aαX
α1
1 · · ·X

αn
n ,

for some unique coefficients aα ∈ R, only finitely many nonzero, and monomials Xα :=
Xα1 · · ·Xαn . The modulus of α ∈ Nn0 is |α| = α1 + . . . + αn. With these conventions,
the degree of f is given by

deg f := max
{
|α|
∣∣ aα 6= 0

}
.

The ring of polynomials in the unknowns X1, . . . , Xn is denoted by R[X1, . . . , Xn], which
we abbreviate to R[X]. We use X here in order to distinguish the multivariate from the
univariate case.

A polynomial f is homogeneous if all monomials in f have the same degree, say d. That
is, f is homogeneous if f =

∑
|α|=d aαX

α. In this case one has

f(λx) = λdf(x), x ∈ Rn, λ ∈ R.

This implies that a homogeneous polynomial is uniquely determined by its values on any
of the p-norm unit spheres

Sn−1p :=
{
x ∈ Rn

∣∣ ‖x‖p = 1
}
, p ∈ [1,∞].

A homogeneous polynomial f is positive definite if f(x) > 0 for x 6= 0. Similarly,
a (possibly nonhomogeneous) polynomial f is positive semidefinite if f(x) ≥ 0 for all
x ∈ Rn, for short f > 0 and f ≥ 0. For a homogeneous polynomial f and some p ∈ [1,∞],
we often use the following equivalent characterization:

f ≥ 0⇐⇒ ∃c ≥ 0 : f(x) ≥ c for all x ∈ Sn−1p ,

f > 0⇐⇒ ∃c > 0 : f(x) ≥ c for all x ∈ Sn−1p .
(1)

A homogeneous polynomial is also called a form. Any polynomial f ∈ R[X] can be
uniquely decomposed as

f =
d∑
j=0

fj

where d := deg f and the fj are homogeneous polynomials of degree j, called the homo-
geneous components of f . The highest degree component, fd, is called the leading form
of f .

Given a vector h ∈ Rn, we denote by bhe the vector resulting of rounding each component
of h to its nearest integer. Finally, we need the notion of a sublevel set : For a function
f : U → R from some set U , the sublevel set of level z ∈ R is defined by

Lf≤(z) = {x ∈ U | f(x) ≤ z}.
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Nonnegativity and sums of squares

Continuous minimization of a polynomial as well as deciding non-negativity of a poly-
nomial are well known to be NP-hard problems, even if one fixes the degree to d = 4
[Nes00]. Deciding if g is an underestimator of f means to decide if f − g is nonnegative.
As this is NP-hard we use a tractable sufficient criterion for nonnegativity in the follow-
ing: We search for a decomposition into a sum of squares, or sos for short, which is a
sufficient, but not necessary condition for nonnegativity [Mar08]. Formally, a polynomial
f ∈ R[X] is a sum of squares if there are u1, . . . , ul ∈ R[X] such that f =

∑l
i=1 u

2
i . We

sometimes use the following property:

Lemma 1. Suppose v = u21 + · · · + u2k for some given u1, . . . , uk ∈ R[X] and u1 6= 0.
Then v 6= 0, and

deg v = 2 max
1≤i≤k

deg ui.

Proof. See, e.g., [Mar08, Cor. 1.1.3].

The convex cone

Σ :=

{
f ∈ R[X]

∣∣ ∃u1, . . . , ul ∈ R[X] s.t. f =

l∑
i=1

u2i

}
in R[X] contains all polynomials f which are sos in R[X]. It is possible to optimize a
linear form such that affine combinations of the decision variables and given polynomials
lie in this cone: Such an sos optimization problem or sos program is tractable, as it
is equivalent to a semidefinite program. For details, see e.g. [AL12, BPT13] on sos
programming and [WSV00] for semidefinite programming. Formally, an sos program
has the form

max b1y1 + · · ·+ bmym

s.t. ai0 + y1ai1 + · · ·+ ymaim ∈ Σ, i = 1, . . . , k, (2)

yi ∈ R, i = 1, . . . ,m,

where yi ∈ R are the decision variables, and bi ∈ R as well as aij ∈ R[X1, . . . , Xn] are
fixed. In our paper we use sos programming for two purposes: To find an optimal un-
derestimator, see Section 5, and for constrained continuous minimization of polynomials
as done at the end of Section 2. For both, we use a result from real algebraic geometry,
known as Putinar’s Stellensatz, outlined next.

A result from algebraic geometry

In this section we introduce Putinar’s Stellensatz. See [NS07] and the references therein
for a discussion and the origins of the Stellensatz. For a finite collection of multivariate
polynomials S = {g1, . . . , gs} ⊂ R[X], define the semi-algebraic set KS as

KS := {x ∈ Rn | g1(x) ≥ 0, . . . , gs(x) ≥ 0} , (3)
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where our notation follows [Mar08]. The Stellensatz we consider gives a sufficient condi-
tions which allows to construct every polynomial f ∈ R[X] with f > 0 on KS from the
given inequalities gi(x) ≥ 0. To this end, for S as above, the quadratic module generated
by S is given by

MS :=

{
s∑
i=0

σigi| σ0, . . . , σs ∈ Σ

}
(4)

where g0 := 1. For the Positivstellensatz to hold we need MS to be Archimedean. This
is the case if there is a polynomial q ∈MS such that the set K{q} = {x ∈ Rn | q(x) ≥ 0}
is compact.

Theorem 2 (Putinar). Let MS be Archimedean and f ∈ R[X]. Then f(x) > 0 for all
x ∈ KS implies f ∈MS.

Lower bounds for constrained continuous minimization

In Section 3 we will see that in order to decide existence of minimizers, we need to
compute a lower bound on the minimum of the leading form on the sphere Sn−1p . As
the sphere is semi-algebraic for even p, sos methods can be applied to find such a lower
bound.

In the following we describe how lower bounds on

min f(x)

s.t. x ∈ KS ,
(5)

where KS defined as in (3) can be derived by sos-programming. The method we outline
follows Schweighofer [Sch05], based on Lasserre’s [Las01] work. We consider a hierarchy
Qk, k = 1, 2, . . ., of sos programs

max y1

s.t. f − y1 −
s∑
i=1

σigi ∈ Σ

deg(σigi) ≤ k, i = 1, . . . , s

σi ∈ Σ, i = 1, . . . , s

y1 ∈ R.

(Qk)

In Qk, the decision variables are y1 ∈ R and the real coefficients of σ1, . . . , σs ∈ R[X].
We then have that every feasible solution y1 to Qk gives a lower bound on (5), i.e., on
min{f(x) | x ∈ KS}. Indeed, if y1 is feasible, there are σ0, . . . , σs ∈ Σ, deg(σigi) ≤ k for
i = 1, . . . , s, such that

f = y1 + σ0 +
s∑
i=1

σigi

=⇒ f(x) = y1 + σ0(x) +
s∑
i=1

σi(x)gi(x) ≥ y1, x ∈ KS ,
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as σi ∈ Σ, hence σi are nonnegative, and gi(x) ≥ 0 on KS by definition of KS . Hence f is
bounded from below by y1 on KS , i.e., every feasible solution to Qk is a lower bound on
(5). A justification for the ansatz Qk is the following well-known and easy consequence
of Putinar’s Positivstellensatz (Theorem 2):

Corollary 3. Let MS be Archimedean. Denote the minimum of (5) by f∗ and the

minimum of Qk by y
(k)
1 . Then y

(k)
1 ↗ f∗ for k →∞.

Although finite convergence is not guaranteed [Las01], there are cases where an optimal
solution x ∈ KS to (5) can be extracted from Qk, see e.g. [HL05]. In the uncon-
strained case min{f(x) | x ∈ Rn} given by s = 0 (i.e. KS = Rn) in (5) even more
is known: Instead of solving Qk with respect to KS = Rn which would be given as
max{y1 | f − y1 ∈ Σ}, one can consider the gradient variety1, resulting in 2n con-
straints corresponding to the equations ∂x1f = . . . = ∂xnf = 0 and solve Q′k with
respect to

S′ = {∂x1f, . . . , ∂xnf,−∂x1f, . . . ,−∂xnf}. (6)

Then we have:

Theorem 4 ([NDS06]). Consider the set of polynomials of degree at most d ∈ N0 that
possess a global continuous minimizer:

Fd := {f ∈ R[X] | deg(f) ≤ d and ∃x∗ ∈ Rn s.t. f(x∗) = f∗ = inf
x∈Rn

f(x)}.

Then, for the sos-programs Q′k with gradient variety constraints S′ from (6), finite con-
vergence holds for almost all polynomials f ∈ Fd. More precisely, there is a k0 ∈ N0

s.t. for the optimal solutions y
(k)
1 of Q′k one has y

(k)
1 = y

(k0)
1 = f∗ for k ≥ k0. Moreover,

a minimizer x∗ of (5) can then be extracted.

3. Existence of minimizers: sufficient and necessary conditions

Before we search for integer minimizers of a polynomial f ∈ R[X], we review sufficient
and necessary conditions to decide whether integer or continuous minimizers exist at
all. For nonconstant univariate polynomials, this is equivalent to an even degree and
a positive leading coefficient, which is in turn closely related to the behavior of f(x)
as |x| → ∞. For multivariate f , the situation is similar once we decompose f into its
homogeneous components (see Section 2 for the definition). A positive definite leading
form is a sufficient condition for the existence of continuous minimizers whilst positive
semidefiniteness is a necessary condition [Mar03, Mar09]. In our next result we show
that this holds for integer minimizers as well. Together with some observations that will
be of use later on, these results are reorganized in the following proposition.

1In case of unconstrained continuous minimization, provided minimizers exist, restricting minimization
of f to the subset of Rn where the gradient vanishes does not change the set of optimal solutions.
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Proposition 5. Let f ∈ R[X] with deg f = d > 0. The following implications hold:

fd > 0 +3 all Lf≤(z) compact +3
KS

��

f has i.m. +3 inf
x∈Zn

f(x) > −∞ +3 fd ≥ 0 +3 d even

lim inf
|x|→+∞

f(x) = +∞ +3 f has c.m. +3 inf
x∈Rn

f(x) > −∞

KS

where i.m. abbreviates integer and c.m. continuous minimizers. In addition, none of
the implications above can be strengthened.

Proof. Let fd > 0, and c∗j := minx∈Sn−1
p

fj(x), j = 0, . . . , d, where c∗j > −∞ for

j = 0, . . . , d − 1 by compactness of the sphere and c∗d > 0 since fd is positive defi-
nite. For 0 6= x ∈ Rn and p ∈ [1,∞] this means

f(x) =
d∑
j=0

fj(x) =
d∑
j=0

fj

(
x

‖x‖p

)
‖x‖jp ≥

d∑
j=0

c∗j‖x‖jp.

The expression on the right can be considered as a univariate polynomial in ‖x‖p with
positive leading coefficient, so lim inf |x|→+∞ f(x) = +∞ follows. If the latter holds, the

sublevel sets Lf≤(z) must be bounded for all z ∈ R. As f is continuous, the sublevel sets
are moreover closed, and compactness follows. In case the limit inferior is s ∈ [−∞,+∞),
pick z ∈ (s,+∞). There must be a sequence xk ∈ Rn, ‖xk‖p → ∞ as k → ∞, such

that f(xk) ≤ z for all k. Put differently, xk ∈ Lf≤(z) for all k, hence the level set
is unbounded, and the only equivalence in the diagram is proven. We show the two
rightmost implications in the first row next, the remaining ones are straightforward. So
suppose there is x ∈ Rn such that fd(x) < 0. By homogeneity, we may assume x ∈ Sn−1∞ .
By continuity, there is a whole neighborhood W of x s.t. fd(y) < 0 for all y ∈ W . As
W ∩ Sn−1∞ 6= ∅, there is a point r ∈ W ∩ Sn−1∞ with rational coordinates ri = zi

ni
, zi ∈ Z,

ni ∈ N, i = 1, . . . , n. Now for all λ ∈ R,

f(λr) =

d∑
j=0

fj(r)λ
j ,

and since fd(r) < 0, we have f(λr) → −∞ as λ → ∞. Since ri = zi
ni

, i = 1, . . . , n,
there is a lowest common denominator l ∈ N of the ri. For k ∈ N, we have especially
f(klr) → −∞ as k → ∞. But since klr ∈ Zn, f is unbounded from below on Zn.
For the last implication, let d be odd. As fd is a nonzero polynomial, there is x ∈ Rn
s.t. fd(x) 6= 0. Homogeneity of (odd) order d implies either fd(x) < 0 or fd(−x) < 0,
therefore fd is not positive semidefinite.

Finally, a collection of counterexamples proving that none of the implications of the
proposition can be strengthened can be found in [Beh13].
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In the following, we rely on the sufficient condition fd > 0 to ensure the existence of
integer minimizers. As deciding nonnegativity of fd is NP hard, we compute a lower
bound cd on the leading form fd restricted to the sphere, i.e.,

cd ≤ c∗d = min
x∈Sn−1

p

fd(x). (7)

If cd > 0 we know from (1) that fd > 0, so integer minimizers exist by Proposition 5.
Our approach fails if cd ≤ 0 unless we find a point x ∈ Sn−1p s.t. fd(x) < 0 which certifies
that fd is not positive semidefinite, and hence f cannot have minimizers.

4. Norm bounds on the minimizers

4.1. A new bound on the norm of integer minimizers

If f =
∑

α aαX
α satisfies c∗d = minx∈Sn−1

p
fd(x) > 0, i.e., fd is positive definite and a

lower bound cd on the minimum with 0 < cd ≤ c∗d is known, it is possible to give a
bound R ≥ 0 on the norm of the continuous minimizers. We only found one bound in
the literature, which assumes p = 2,

Rlit := max

1,
1

cd

d−1∑
j=1

‖fj‖1

 = max

1,
1

cd

∑
0<|α|<d

|aα|

 , (8)

from Marshall where ‖f‖1 :=
∑

α |aα| for f =
∑

α aαX
α; it is a special case (empty

constraint set) of a more general result [Mar03]. Laurent [Lau09] gives a more elementary
proof for Marshall’s bound (8) by showing f(x) > f(0) for ‖x‖2 > Rlit. Hence Rlit gives
a valid bound on integer minimizers as well. However, for non-sparse polynomials,
this bound may get quite large. Within branch and bound approaches it is crucial
to find a small bound R to reduce the number of feasible solutions – scaling R by a
constant C > 0, the number of integer points that satisfy the norm bound scales with
a factor of (roughly) Cn. We hence suggest a different approach: In the following
theorem, we still compute R ≥ 0 with f(x) > f(0) for ‖x‖p > R, but instead of
bounding all homogeneous components simultaneously, we compute constants cj such
that cj ≤ c∗j = minx∈Sn−1

p
fj(x) on a suitable sphere Sn−1p .

Theorem 6. Let f ∈ R[X] with deg f = d > 0. For a fixed p ∈ [1,∞], let cj ∈ R s.t.
fj(x) ≥ cj for all x ∈ Sn−1p , j = 1, . . . , n. Suppose cd > 0. Let R denote the largest
nonnegative real root of the univariate polynomial q : R→ R,

q(λ) :=

d∑
j=1

cjλ
j .

1. Then, integer as well as continuous minimizers x′ of f (do exist and) satisfy
‖x′‖p ≤ R.

9



Let x∗ be any of the integer minimizers.

2. We have |x∗i | ≤ bRc, for i = 1, . . . , n.

Proof. We prove 1., the other assertion follows directly from integrality of x∗. By com-
pactness of the sphere, every fj is bounded below by some cj ∈ R. We observed in (1)
that cd > 0 implies positive definiteness of fd, hence integer and continuous minimizers
exist and d is even (Proposition 5). Using homogeneity,

f(x)− f(0) =

d∑
j=1

fj(x) =

d∑
j=1

fj

(
x

‖x‖p

)
‖x‖jp ≥

d∑
j=1

cj‖x‖jp = q (‖x‖p) (9)

for x 6= 0. Since q is univariate and of degree d > 0, it has at most d real roots. As
q(0) = 0, q has roots in [0,∞), and we denote the largest of them by R. As before,
cd > 0 yields limλ→+∞ q(λ) = +∞. This together with the intermediate value theorem
implies q(λ) > 0 for λ > R. Thus, eq. (9) forces f(x) > f(0) for ‖x‖p > R.

Remark 7. The larger the cj the smaller the resulting norm bound R. Formally, let
q =

∑n
j=1 cjλ

j , q̃ =
∑n

j=1 c̃jλ
j , such that cj ≥ c̃j , and call the largest nonnegative roots

R and R̃, respectively. Wlog, it suffices to consider the case that cj = c̃j for j 6= k and
ck > c̃k for some k ∈ {1, . . . , n}. Now q(λ) − q̃(λ) = (ck − c̃k)λk > 0 for λ > 0 and by
assumption on ck, c̃k. Thus, q(λ) > q̃(λ) for λ > 0, hence R < R̃ – unless R̃ = 0. In this
case R = R̃ = 0.

Before we present different methods of computing valid cj , we compare R and Rlit. In
the experiments in Section 6, we show that our norm bound R is drastically smaller
than Rlit. Also, it can be proven that our norm bounds are never larger and, except for
special cases, are actually strictly smaller than the bound from the literature.

Proposition 8. Let f with deg f = d > 0 and cd > 0 such that fd(x) ≥ cd for all
x ∈ Sn−12 , j = 1, . . . , n. Compute R ∈ [0,∞) as in Theorem 6 for

cj := −‖fj‖1, j = 1, . . . , d− 1, (10)

and compute Rlit ∈ [1,∞) as in (8). Then R ≤ Rlit. If moreover d > 2 and there is a
coefficient aα 6= 0 of f with |α| < d−1, then R < Rlit for R 6= 1 and R = Rlit for R = 1.

Proof. At first we observe that the numbers cj = −‖fj‖1 in (10) are indeed valid lower
bounds, for general p ∈ [1,∞]: As ‖x‖p ≤ 1 implies ‖x‖∞ ≤ 1 and hence |xα| ≤ 1, one
has

fj(x) =
∑
|α|=j

aαx
α ≥

∑
|α|=j

−|aα||xα| ≥
∑
|α|=j

−|aα| = −‖fj‖1 = cj , x ∈ Sn−1p .

We prove the case d > 2 and aα 6= 0 for some α with |α| < d − 1. The claim obviously
holds in case R < 1. For the cases R = 1 and R > 1, define q(λ) =

∑d
j=1 cjλ

j as before

and let q̃(λ) = cdλ
d +

(∑d−1
j=1 cj

)
λd−1. Then we have

q(λ) > q̃(λ) for λ > 1, q(λ) = q̃(λ) for λ = 1 (11)
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as cj ≤ 0 for j = 1, . . . , d − 1 and one ck < 0 for some k ∈ {1, . . . , d − 2} by the
assumption on aα. By definition, the largest nonnegative real root of q is R, and the
largest nonnegative real root R̃ of q̃ is

R̃ = − 1

cd

d−1∑
j=1

cj =
1

cd

∑
0<|α|<d

|aα|

and, by definition, Rlit = max(1, R̃). If R = 1, we infer from (11) that 0 = q(1) = q̃(1),
so Rlit = 1. In case R > 1, we infer from (11) that 0 = q(R) > q̃(R), so R < Rlit as
q̃(λ) → +∞ for λ → +∞. The proof for the two remaining cases, d = 2 or all aα = 0
for |α| < d− 1, is similar as q = q̃ in these cases.

We now present different ways of computing bounds cj on c∗j = minx∈Sn−1
p

fj(x).

1. We saw in the proof of Proposition 8 that cj = −‖fj‖1 gives valid lower bounds
for any p ∈ [1,∞]. However, this bound is rather rough and only useful for the
lower order forms, that is those fj with j < d.

2. The arguably easiest way to find such cj by sos programming is to minimize fj
on the sphere Sn−1p : More specifically, for p ∈ 2N, the constraint ‖x‖p = 1 is
equivalent to the constraint

∑n
i=1 x

p
i = 1, which is semi-algebraic for even p > 0.

The hierarchy Qk with g1 = 1−
∑n

i=1X
p
i and g2 =

∑n
i=1X

p
i − 1 can be rewritten

as
max y1

s.t. fj − y1 − q ·

(
1−

n∑
i=1

Xp
i

)
∈ Σ

q ∈ R[X], deg q ≤ k
y1 ∈ R

(12)

where we used σ1g1 +σ2g2 = (σ1−σ2)g1 = qg1, some q ∈ R[X], as any polynomial
can be written as the difference of sums of squares, e.g. using 4q = (q+1)2−(q−1)2.

3. A different lower bound on the leading form can be computed via the program

max γ s.t. fd − γ ·
n∑
i=1

Xd
i ∈ Σ, (13)

from [Nie12] choosing p = d.

4. We present two refined approaches of item 1 in the Appendix: As a first step, we
replace the underlying estimate ‖xα‖ ≤ 1 by ‖xα‖ ≤ ‖x̂α‖, where x̂ is a maximizer
of xα on the sphere. In a second step, considering all orthants separately allows
then to furthermore get rid of approximately half of the terms.

Remark 9. If p ∈ 2N, the set MS with S = {1−
∑n

i=1X
p
i ,
∑n

i=1X
p
i −1} is Archimedean.

Hence, from Corollary 3, the optimal objective values of (12) converge, for k → ∞, to
c∗j = minx∈Sn−1

p
fj(x) – which are, by Remark 7, the best possible bounds cj .
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4.2. Application to systems of polynomial equations

In this section, we consider an application to systems of polynomial equations; we test
our approach on random instances of polynomials in the next section. It is a common
approach to solve a system of equations gi(x) = 0, i = 1, . . . , s, with solutions restricted
to, say, x ∈ Zn, Qn or Rn, by minimizing f = g21 + . . . g2s over the integers, rationals or
reals, respectively. If the minimum is 0 at some x, the equations have a solution at x; if
the minimum is nonzero, there cannot be any solution.

4.2.1. Diophantine equations

As an example, does the system

−3x31 + x21x2 − x21 + 2x1x2 + x1 − 2x22 − 2x2 + 4 = 0

2x32 + x1x
2
2 + 4x2 − 5 = 0

possess an integer solution? Denote the polynomials in Z[X1, X2] on the left hand side
in the first and second equation by g1 and g2, respectively, and consider f := g21 + g22.
The homogeneous components of f are bounded from below on S16 by

(c1, . . . , c6) = (−60.49,−13.03,−41.76,−7.85,−24.45, 2.59),

we found the values by solving (12) numerically. The univariate polynomial q(λ) =∑6
j=1 cjλ

j has only two real roots: 0 and R ≈ 9.90. Thus, by Theorem 6, integer

minimizers exist and must be in the box [−9, 9]2. Iterating over all integer points in the
box one finds f(x1, x2) = 0 at (x1, x2) = (−1, 1). From the perspective of number theory,
our method provides search bounds on solutions of a system of Diophantine equations if
the leading form of f =

∑s
j=1 g

2
j is positive definite.

4.2.2. Bounds on algebraic varieties

Similarly to the systems of Diophantine equations, our bounds apply to real algebraic va-
rieties: Given g1, . . . , gs ∈ R[X], the variety of the gi is V (g1, . . . , gs) = {x ∈ Rn | g1(x) =
0, . . . , gs(x) = 0}. If the leading form of f =

∑s
j=1 g

2
j is positive definite, we may give

a norm bound on all points of the variety. As an example, let us consider the system
from [CLO07, Example 2, Sec. 2 § 8]:

x2 + y2 + z2 = 1 (14)

x2 + z2 = y

x = z

x, y, z ∈ C

Computing the cj by solving (12) for p = 2 yields (c1, . . . , c4) = (0,−2.0,−0.77, 1.0) and
gives us R ≈ 1.86 as a 2-norm bound on all points in the variety. It is known that the
variety consists of exactly four points: The system has two real and two complex solutions

(x, y, zi) with zi ∈ {±1
2

√
±
√

5− 1}, where the real solutions suffice ‖(x, y, z)‖2 = 1 by
(14). We conclude that in this case our bound is not far off.

12



5. A class of underestimators

5.1. Global underestimation

Now let f, g : Rn → R. We then have

(∀x ∈ Rn : g(x) ≤ f(x)) =⇒ inf
x∈Zn

g(x) ≤ inf
x∈Zn

f(x) (15)

where infx∈Zn g(x) gives a stronger bound on the integer minimum of f than infx∈Rn g(x).
Using the integer minimum of g to derive a lower bound on the integer minimum of f
makes only sense if integer minimization of g is easy compared to integer minimization
of f . We motivate our class of easy-to-minimize underestimators g with an observation
on monomials with a shift in the argument which shall serve as the building blocks to
the more general underestimators.

Observation 10. For some h ∈ Rn and α ∈ Nn0 , let

g = (X − h)α =

n∏
j=1

(Xj − hj)αj

be a shifted monomial. If all αi are even, g has a continuous minimizer at h and an
integer minimizer at bhe. If one αi is odd, g is not bounded from below and does not
have continuous or integer minimizers.

Our underestimators are conic combination of shifted monomials with even αj , j =
1, . . . , n, as the combinations inherit the integer minimizer bhe. More precisely:

Proposition 11. Let a polynomial g ∈ R[X] be given as g =
∑

α bα(X − h)2α with
bα ≥ 0 for α 6= 0, and h ∈ Rn.

1. The restriction of g to
∏k−1
i=1 {xi}×R×

∏n
i=k+1{xi} that is, the univariate function

y 7→ g(x1, . . . , xk−1, y, xk+1, . . . , xn) for fixed x ∈ Rn is nonincreasing for y ≤ hk
and nondecreasing for y ≥ hk, k ∈ {1, . . . , n}.

2. We have g(x1, . . . , xn) ≥ g(x1, . . . , xk−1, bhke, xk+1, . . . , xn) for every x ∈ Zn.

3. h is a continuous and bhe an integer minimizer of g.

Proof. The claimed properties hold for every term (X − h)2α. Thus they hold for conic
combinations of such terms.

Three properties make these polynomials g useful underestimators: integer minimization
is trivial, and all nonlinearity is confined to the parameter h. Also, the fact that the
expression is linear in the bα makes them accessible to optimization. Proposition 11
motivates

13



Notation 12. We denote the set of conic combinations of monomials with a shift of h
by

C (h) :=

{
g ∈ R[X]

∣∣∣∣ g =
∑
α∈J

bα(X − h)2α, bα ∈ R≥0 for all α 6= 0, J ⊂ Nn0 finite

}
.

As an example, the polynomial

g = (X1 − 1.5)4(X2 − 2)6 + 0.3(X1 − 1.5)2(X3 − 3.2)8 − 1 ∈ C (1.5, 2, 3.2)

with J = {(4, 6, 0), (2, 0, 8), (0, 0, 0)} has an integer minimizer at (1, 2, 3).

Proposition 13. Let g ∈ C (h) satisfy g(x) ≤ f(x) for all x ∈ Rn. Then

g(bhe) ≤ inf
x∈Zn

f(x)

Proof. This follows from (15) and Proposition 11.

For determining an underestimator g we still have to choose h and the coefficients bα.
This is described next.

Choice of h: In principle, every h ∈ Rn may be chosen. Heuristically, we chose an
(approximate) continuous minimizer of f since g has its continuous minimizer at h. In
fact, every nontrivial g looks like an elliptic paraboloid or a parabolic cylinder near h,
as does f near every local minimum. For almost all f , the continuous minimizer of f
can be found using sos methods (Theorem 4).

Choice of bα: We choose the bα so that the lower bound g(bhe) is maximized. In other
words, we wish to maximize the expression

g(bhe) =
∑
α∈J

bα(bhe − h)2α

subject to g ≤ f . The higher order terms in g ensure a certain aggressiveness in the
growth behavior away from h, even for small coefficients bα, which leads to strong bounds.
Using the notation wα := (bhe − h)2α, we get the following optimization problem:

max
J, bα

∑
α∈J

wαbα

s.t. f(x)−
∑
α∈J

bα(x− h)2α ≥ 0 ∀x ∈ Rn

bα ≥ 0 for α 6= 0

with decision variables bα ∈ R, α ∈ J and J ⊂ Nn0 finite. Since this program is not
tractable in general, we consider the following sos version instead:

14



y = max
∑
α∈J

wαbα (GLOB)

s.t. f −
∑
α∈J

bα(X − h)2α is sos in R[X1, . . . , Xn],

bα is sos in R[X1, . . . , Xn] for α 6= 0.

The decision variables are the real bα, α ∈ J . Note that bα ∈ Σ is equivalent to bα ≥ 0.
Once J is fixed, GLOB is a valid sos program. We show in Corollary 17 that it is
sufficient to choose J = {α ∈ Nn0 | |α| ≤ deg(f)/2}.

In the following we identify a solution bα, α ∈ J , with the polynomial g it defines, that
is with g =

∑
α∈J bα (X − h)2α, and hence may say that a polynomial is a feasible or

optimal solution to GLOB. We note that every feasible solution to GLOB (for any choice
of h) gives valid lower bounds on IP:

Theorem 14. Let f ∈ R[X], h ∈ Rn and g =
∑

α∈J bα(X − h)2α ∈ C (h) be a feasible
solution to GLOB for some J . Then

1. g(bhe) ≤ infx∈Zn f(x).

If moreover f − f(h) ∈ Σ holds and g is an optimal solution to GLOB, then

2. g(bhe) ≥ f(h).

Proof. Claim 1 holds as g being feasible to GLOB implies f − g ∈ Σ, hence f − g ≥ 0,
and the claim follows by Proposition 13. Concerning Claim 2, observe that f −f(h) ∈ Σ
implies that h is a continuous minimizer of f and that the constant polynomial g̃ = f(h)
is a feasible solution to GLOB, hence g(bhe) ≥ g̃(bhe) = f(h) for every optimal solution
g ∈ C (h).

5.2. Improving the underestimators

Motivation

A quite restrictive condition in GLOB is that it requires g(x) ≤ f(x) globally, i.e., for
all x ∈ Rn. Actually, this is not necessary for our purposes. It is enough to require
g(x) ≤ f(x) only for those x ∈ Rn that satisfy f(x) ≤ f(q) for some q ∈ Zn. That is, for
all q ∈ Zn, we have(

∀x ∈ Lf≤(f(q)) : g(x) ≤ f(x)
)

=⇒ inf
x∈Zn

g(x) ≤ inf
x∈Zn

f(x), (16)

in other words, the integer minimum of g is a lower bound on the integer minimum of
f even if g is an underestimator of f only on a sublevel set Lf≤(f(q)). If we make use of
this in our sos program, the lower bound can only improve.
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But before we delve into the details, let us consider the potential payoff by taking a look
at the example in Figure 1a. The plot depicts the univariate polynomial

f = 0.2 · (X − 0.3)6 − 5 · (X − 0.3)4 + 32 · (X − 0.3)2.

along with two underestimators gGLOB, gSLS. A short calculation shows that f has five

local extrema at 0.3 and 0.3 ±
√

25±
√
145

3 , and that the local minimizers are at x = 0.3

and at x± = 0.3 ±
√

25+
√
145

3 ≈ 0.3 ± 3.51. Considering that f has a positive definite
leading form, one of the local minimizers must be a global one, and comparing the
function values shows that x = 0.3 is the continuous minimum. Moreover, f must have
its integer minimizer in [−3, 3] as min{f(x+), f(x−)} > f(0); comparing the function
values shows that f has a single integer minimizer at x = 0 with value f(0) ≈ 2.84. The
underestimator gGLOB ∈ C (h), computed as optimal solution to GLOB is given by2

gGLOB ≈ 8.71 ·10−11 · (X−0.3)6 +1.09 ·10−09 · (X−0.3)4 +0.75 · (X−0.3)2−1.22 ·10−09,

is globally below f . To find an underestimator on a sublevel set, we first fix the level
z = f(q) heuristically. Note that any q ∈ Z is a feasible solution to IP and hence an

upper bound; any integer minimum must be contained in Lf≤(f(q)). As h = 0.3 is the
global minimizer, we choose q = bhe = 0 here. The polynomial gSLS, given by

gSLS ≈ 9.09 · (X − 0.3)6 + 11.80 · (X − 0.3)4 + 39.36 · (X − 0.3)2 − 0.81,

is an underestimator on the sublevel set Lf≤(f(0)) = [0, 0.6], as can be seen in Figure
1b. It will be shown in the next section how this function can be found. The plot
reveals the shortcomings of global underestimation: Any global underestimator in C (0.3)
cannot go above the local minimizers of f . This “barrier” from above turns gGLOB in
this example essentially into a quadratic underestimator for small x as the ratio of the
higher order coefficients and the one in front of the quadratic term is of order 10−10. The
underestimator gSLS however is a degree 6 polynomial whose higher order coefficients
are not small at all. Note that gGLOB is much closer to f near 0.3 compared to the new
underestimator gSLS. However, the quality of the resulting lower bound depends on the
function values at 0 and there gSLS is closer to f than gGLOB. The lower bounds the
two underestimators provide are gGLOB(0) ≈ 0.07 and gSLS(0) ≈ 2.84. In this case, we
are lucky as the lower bound on the integer minimum and f(0) coincide, showing once
more that f has its integer minimizer at 0.

The sos program for computing the improved underestimator

How do we compute the improved underestimator? At first, we observe that every
sublevel set Lf≤(z), z ∈ R, of f is semi-algebraic. Indeed, with the notation from (3) and

S̃ := {z − f}, we have

Lf≤(z) = {x ∈ Rn | z − f(x) ≥ 0} = KS̃ .

2For this example we solved GLOB for h = 0.3 and deg g = 6, using SOSTOOLS 3.00 and CSDP 6.1.0.
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Figure 1: Global underestimator gGLOB and an underestimator gSLS on a sublevel set.

Moreover, Lf≤(z) is compact if the leading form of f is positive definite (see Propo-

sition 5). Compactness of Lf≤(z) in turn implies that the quadratic module MS ⊂
R[X1, . . . , Xn] generated by S := {f − g, z − f}, for any g ∈ R[X1, . . . , Xn], is thus by
definition Archimedean. Hence, for every feasible underestimator g ∈ C (h) the existence
of a representation for f−g as in Putinar’s Positivstellensatz (Theorem 2) is guaranteed.
This motivates the following program:

y(k) = max
∑
α∈J

wαbα (SLS)

s.t. f −
∑
α∈J

bα(X − h)2α − σ(z − f) is sos in R[X1, . . . , Xn],

bα for α 6= 0, σ are sos in R[X1, . . . , Xn],

deg σ ≤ k

The decision variables are the real bα as for GLOB and, additionally, the real coefficients
of the polynomial σ. As before, we use the notation wα := (bhe − h)2α. SLS is a valid
sos program once J and the degree of σ are fixed.

Theorem 15. Let f ∈ R[X], h ∈ Rn and g ∈ C (h) be a feasible solution to SLS with
z ≥ f(q) for some q ∈ Zn.
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1. Then g(bhe) ≤ infx∈Zn f(x).

2. If J is fixed, y(−∞) ≤ y(0) ≤ y(2) ≤ y(4) ≤ . . .3

3. If fd is positive definite, there is k0 ∈ N0 such that SLS is feasible for all k ≥ k0.

4. SLS with k = −∞ is GLOB.

5. If f − f(h) ∈ Σ and g is optimal, then g(bhe) ≥ f(h).

Proof. Statement 1 holds as g feasible implies f−g−σ(z−f) ∈ Σ. Hence f(x)−g(x) ≥ 0
for those x with f(x) ≤ z, especially for those x with f(x) ≤ f(q) as f(q) ≤ z by
assumption. The claim follows by (16).
Statement 2 is clear as we only allow more coefficients for σ.
To see Statement 3, note that Lf≤(z) is nonempty as z ≥ f(q) and moreover compact

(Theorem 5), so f(x) > c for some c ∈ R and all x ∈ Lf≤(z). Hence f − c ∈ M{z−f} by
Putinar’s Positivstellensatz (Theorem 2). This means f − c = σ0 + σ(z − f) for some
sos σ0, σ ∈ R[X]. Thus g := c is a feasible solution, and k0 := deg σ.
To see Statement 4, we note that k = −∞ corresponds to σ = 0, in which case SLS is
GLOB.
Statement 5 is a consequence of Statements 2 and 4 and Theorem 14.

We have not yet addressed the degree of g in GLOB and SLS nor the degree of σ in SLS.
The following proposition shows that once the degree of σ in SLS is fixed, the degree of
g in any feasible solution is bounded from above in terms of deg f and deg σ.

Proposition 16. Let f ∈ R[X], g ∈ C (h) with deg f > 0, deg g > 0, z ∈ R and σ ∈ Σ
such that

f − g − σ(z − f) is sos. (17)

Then
deg(g) ≤ deg(f) + max{deg(σ), 0}.

Proof. Eq. (17) is equivalent to f − g − σ(z − f) = σ0 for some σ0 ∈ Σ, or

g + σ0 = f(1 + σ)− zσ. (18)

Hence deg(g) ≤ max {deg(g),deg(σ0)}
(I)
= deg(g + σ0)

(II)
= deg (f(1 + σ)− zσ)

(III)
= max {deg (f(1 + σ)) ,deg(zσ)} (IV)

= deg (f(1 + σ))

(V)
= deg(f) + deg(1 + σ)

(VI)
= deg(f) + max{deg(σ), 0}.

As g − g(h) ∈ Σ and deg g > 0, equality (I) follows from Lemma 1. Equality in (II)
follows from eq. (18). Using deg f > 0, the equalities in (III) and (IV) follow from
a typical degree argument: If u, v ∈ R[X], deg u 6= deg v, we have u + v 6= 0 and
deg(u + v) = max(deg u,deg v). Equality in (V) holds as the degree is multiplicative,
(VI) follows easily if one distinguishes the cases σ = 0, σ ∈ R≥0 and deg σ > 0.

3Note that every sos polynomial σ 6= 0 has even degree.
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Corollary 17. Let g ∈ C (h) be a feasible solution for GLOB. Then deg g ≤ deg f .

Proof. Use Proposition 16 with σ = 0 and the result follows from Statement 4 of Theo-
rem 15.

6. Implementation and results on random instances

6.1. Experimental setup

To evaluate our results, we ran computer experiments: For a fixed number of variables n
and an even degree d, we created instances of random polynomials

f =
∑
|α|≤d

aαX
α =

∑
|α|≤d

aαX
α1
1 · · ·X

αn
n , aα ∼ U(−1, 1) i.i.d.. (19)

As we are only interested in polynomials with positive definite leading form, we restricted
ourselves to those polynomials that satisfy

a(d,0,...,0) > 0, a(0,d,0,...,0) > 0, . . . , a(0,...,0,d) > 0 (A)

since a polynomial with at least one of these coefficients nonpositive cannot be positive
definite. Then, we solved program (12) with k = d + 2 to compute a lower bound
cd on minx∈Sn−1

2
fd(x) to determine whether f indeed has a positive definite leading

form. If cd ≤ 0, we discarded the instance, else we know that fd is positive definite.
In the first part of the experiments, for every tuple (n, d) with n = 2, 3, 4 and d =
2, 4, 6, 8, 10, we created 1000 random instances of polynomials that satisfy condition
(A). In Figure 2 we plot how many of these have been detected to satisfy fd > 0. As
d and n increase, the probability of positive definiteness should decrease – as, loosely
speaking, more (independent) random variables aα simultaneously influence the result –
which is reflected in the plot. We then use these instances to evaluate the norm bounds
(see Section 6.2). In the second part of the experiments, for four tuples (n, d), we again
generated polynomials according to (19) and took the first 50 of them that were detected
to have a positive definite leading form as input for the optimization problem which is
in turn solved by branch and bound (see Section 6.3).

We use MATLAB4 2014b 64-bit, SOSTOOLS 3.00 [PAV+13] to translate the sos pro-
grams into semidefinite programs and CSDP 6.1.0 [Bor99] to solve the latter. The experi-
ments were conducted on GNU/Linux (Ubuntu 12.04) running on 2 Intel R© Xeon R©X5650
CPUs (each 6 cores) with a total of 96 GB RAM.

4MATLAB is a registered trademark of The MathWorks Inc., Natick, Massachusetts
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Figure 2: Instances with detected positive definite leading form.

6.2. Evaluating the norm bounds

Once positive definiteness is certificated by some cd > 0, the bounds on the norm of the
minimizers can be computed. We summarize the steps to compute a norm bound on the
minimizer5 in algorithmic form (Algorithm 1).
For n and d as described above, and each of the 1000 randomly created polynomials
that has been detected to have a positive definite leading form, we computed the bound
from the literature Rlit from eq. (8) and our new bound R (Theorem 6) such that
‖x′‖2 ≤ min(Rlit, R) holds for every continuous and integer minimizer of f . Figure 3
depicts a selection of d and n: Those with smallest degree, d = 2, and the maximal
degree d ≤ 10 such that we still detected some instances with fd > 0. We conclude that
for the quadratic case d = 2, our approach does not yield significantly better results.
However, for a higher number of variables and d ≥ 4 we outperform the classic norm
bound on all instances. Most prominently of this selection, for (n, d) = (3, 8), we are
better by a factor C = Rlit/R of 50 throughout and in some instances we are better by
a factor of C ≈ 100. This means the number of feasible solutions decreases by a factor
of up to Cn ≈ 1003 in this example.

6.3. Evaluating our underestimators within branch and bound

We evaluated the underestimators in a branch and bound framework. Firstly, we present
an algorithm that shows how special properties of our underestimators can be exploited

5In the algorithm, we abbreviate integer minimizer(s) to i.m. and continuous minimizer(s) to c.m..
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Algorithm 1 Norm bound on minimizers

input f ∈ R[X1, . . . , Xn] with deg f ∈ 2N, parameters p ∈ 2N, kmax ∈ N0

k ← 0
cd ← −∞
x← NULL

while k ≤ kmax and cd < 0 and x = NULL do
solve program (12) for j = d and parameter k
cd ← optimal value
if optimal solution can be extracted then

x← optimal solution
end if
k ← k + 1

end while
if cd < 0 and x 6= NULL then

output x
print fd(x) < 0 so f has neither i.m. nor c.m.. // Proposition 5

else if cd ≤ 0 then
print Cannot decide fd > 0 for k ≤ kmax.

else // cd > 0 in the following
print f has integer and continuous minimizers. // fd > 0 by (1)
for j = 1, . . . , d− 1 do

cj ← max of (10) and (12) // can be improved by also taking (22) into account
end for
define q : R→ R, q(λ) =

∑d
j=1 cjλ

j

R← largest root of q in R // R ≥ 0 by Theorem 6
output R
print The minimizers x′ suffice ‖x′‖p ≤ R. // Theorem 6

end if
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Figure 3: Bounds on the norm of minimizers for different dimensions n and degrees d.

to speed up branching and pruning. In the actual experiments, we generated polynomials
according to (19), where we restricted ourselves to the tuples (n, d) = (2, 4), (2, 6), (3, 4)
and (4, 2) to keep the problem size tractable and to have an acceptably high ratio of
positive definite polynomials (compare Figure 2). We generated random polynomials
until we had 50 that were detected to have a positive definite leading form and which
were then used as input to the optimization problem. In the following we present an
evluation of the initial lower bound g(bhe) and a runtime comparison with other lower
bounds from the literature.

6.3.1. Algorithm

Our branch and bound framework is depth first. This keeps memory usage small
and allows us to quickly obtain good feasible solutions. We do not reorder the vari-
ables. Subproblems are collected in a list L; every subproblem P ∈ L is of the form
P = (m, r1, . . . , rm), where m ∈ {0, . . . , n} encodes the number of fixed variables
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(r1, . . . , rm) ∈ Zm; i.e.,

min f(r1, . . . , rm, xm+1, . . . , xn)

xm+1, . . . , xn ∈ Z
(P = (m, r1, . . . , rm))

and (0) encodes the initial problem. Algorithm 2 states the whole procedure.

Algorithm 2 Branch and Bound

input f ∈ R[X1, . . . , Xn], h ∈ Rn, p-norm bound R on minimizers, k ∈ 2N0

x∗ ← bhe // initial guess for integer minimizer
u← f(x∗) // upper bound on integer minimum

4: L ← {(0)} // initial list of subproblems
find underestimator g: solve SLS with h, deg g ≤ deg σ = k // or GLOB, resp.
while L 6= ∅ do

pick P = (m, r1, . . . , rm) ∈ L with m maximal
8: L ← L \ {P}

if m < n then
L←

⌊
p
√
Rp − |r1|p − · · · − |rm|p

⌋
let g̃ : R→ R, g̃(xm+1) = g(r1, . . . , rm, xm+1, bhm+2e, . . . , bhne)

12: if g̃(bhm+1e) ≤ u then // otherwise prune
find L1 ∈ [−L,L] ∩ Z minimal with g̃(L1) ≤ u
if such an L1 exists then

find L2 ∈ [−L,L] ∩ Z maximal with g̃(L2) ≤ u
16: else

L1 ← +∞, L2 ← −∞.
end if
for all rm+1 ∈ [L1, L2] ∩ Z do // [L1, L2] = ∅ if L1 = +∞

20: L ← L ∪ {(m+ 1, r1, . . . , rm+1)} // actual branching
end for

end if
else // all variables xi were fixed to values ri

24: if f(r) < u then // update upper bound
x∗ ← r
u← f(r)

end if
28: end if

end while
output x∗, u
print f attains its integer minimum u at x∗.

Proposition 18. 1. Algorithm 2 is correct, that is, it always terminates after a finite
number of steps with an optimal integer solution x∗ that satisfies f(x∗) = u.
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2. The integers L1 and L2 (in lines 13 & 15) can be found with binary search in
dlog2(L)e+ 2 ≤ dlog2(R)e+ 2 evaluations of g̃ if L > 0.

Proof. Let x∗ be any optimal solution. To prove 1. it suffices to show that the algorithm
terminates and no problem with (n, x∗) as subproblem gets pruned in Step 12 or lost in
Step 19. To see termination of the algorithm, we observe that the number of subproblems
is finite as the sets Bm = {y ∈ Zm | ‖y‖p ≤ R}, m = 1, . . . , n are finite, every subproblem
(m, r1, . . . , rm) suffices (r1, . . . , rm) ∈ Bm and no subproblem is inserted into the list L
more than once. To see that x∗ does not get discarded in Step 12, define

g̃(xm+1) := g(x∗1, . . . , x
∗
m, xm+1, bhm+2e, . . . , bhne) (20)

and suppose g̃(bhm+1e) > u. Hence

g̃(bhm+1e) > u ≥ f(x∗) ≥ g(x∗) ≥ g(x∗1, . . . , x
∗
m, bhm+1e, . . . , bhne) = g̃(bhm+1e),

a contradiction, where we used the monotonicity property of g (Proposition 11) and

that g(x) ≤ f(x) for x ∈ Lf≤(f(q)), a fortiori for x ∈ Lf≤(f(x∗)). Suppose that x∗ gets
lost in Step 19. Necessarily, x∗m+1 < L1 or x∗m+1 > L2. We derive a contradiction for
x∗m+1 < L1, the other case is identical. Observe that x∗m+1 ∈ [−L,L] as every optimal

integer solution satisfies
∑n

j=1 |x∗j |p ≤ Rp, so we must have |x∗m+1| = p
√
|x∗m+1|p ≤

p
√
Rp − |x∗1|p − . . .− |x∗m|p. As x∗m+1 is integer, we may round down – in other words,

x∗m+1 ∈ [−L,L]. By definition of L1 and Proposition 11, we have g̃(x∗m+1) > u with g̃
from (20), thus, using Proposition 11 again,

g̃(x∗m+1) > u ≥ f(x∗) ≥ g(x∗) ≥ g̃(x∗m+1),

a contradiction.
We finally show that Claim 2 holds. We prove the claim for hk+1 ≥ 0, the proof for
hk+1 ≤ 0 is similar. In case hk+1 > L, L1 exists if and only if g̃(L) ≤ u as g̃(xk+1)
is non-increasing for xk+1 ≤ hk+1 (by Proposition 11); necessarily, L2 := L. Using
binary search on [−L,L], L1 can be found using at most dlog2(2L)e = dlog2(L)e + 1
further evaluations of g̃. In case 0 ≤ hk+1 ≤ L, L1 exists as g̃(bhk+1e) ≤ u in Step 12.
Again using binary search, L1 ∈ [−L, bhk+1e] can be found in no more than dlog2(2L)e
evaluations. As g̃(xk+1) = g̃(hk+1 − xk+1), it only needs at most one more evaluation
of g̃ to find L2, so we find both numbers in no more than dlog2(L)e + 2 evaluations of
g̃.

Remark 19. Concerning our implemenation, we chose deg g = deg f for GLOB and
SLS and deg σ = 2 for SLS. For the parameter h ∈ Rn we chose an (approximate)
continuous minimizer computed via the SOSTOOLS function findbound.m – however,
the algorithm accepts arbitrary h ∈ Rn. We determined R using Algorithm 1.
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6.3.2. The initial lower bound on the minimum

Before we compare our underestimators with lower bounds from the literature, we di-
rectly evaluate our initial lower bound g(bhe). To this end, we define a ratio Q as follows:
Let h be a continuous minimizer of f (if found by sos methods), x∗ an integer minimizer
of f found during B&B and g be a solution to GLOB or SLS. Then

Q :=
g(bhe)− f(h)

f(x∗)− f(h)

takes values in [0, 1], is invariant under scaling of f by constants λ > 0 and addition of
constants c ∈ R to f – and, needless to say, the larger Q, the tighter the lower bound.
See Figure 4 for the results.
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Figure 4: Lower bound comparison using the ratio Q.

By Theorem 15, SLS gives bounds that are at least as good as GLOB. The plots show
that SLS often gives strictly tighter bounds.

6.3.3. Presentation of other bounds

It is not straightforward to compare the performance of our lower bounds with bounds
from the literature. In our setting, we compute a single underestimator per instance –
which is then merely evaluated during the branch and bound process.6 We could not
find other underestimators with this property that give sensible results in branch and
bound. However, there are lower bounds in the literature that are more general than
ours since they consider restricted polynomial optimization problems and can hence be
applied to any polynomial – not only to those with positive definite leading form –
and are suitable for branch and bound if computed anew at each node. In addition to
Algorithm 2 (with GLOB and SLS) we implemented the following four algorithms in a

6By fixing some variables at each node and then computing new underestimators, this could be improved
but would need additional runtime for the computation of the new underestimator.
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MATLAB framework for solving IP: three of them are branch and bound approaches as
Algorithm 2 which use other bounds (taken from [BD14], [LHKW06], and the continuous
relaxation) while our last algorithm is a simple brute force approach.

• For arbitrary polynomials on boxes, Buchheim and D’Ambrosio [BD14] suggested
to compute, for every term of f , the L1-best separable underestimator. The sum
of the underestimators is again separable, so its integer minimization is a uni-
variate problem. For degree d ≤ 4 and arbitrary n, they provide explicit un-
derestimators. We hardcoded the explicit underestimators, and used the MAT-
LAB builtins polyval, polyder and roots to evaluate and differentiate the sep-
arable underestimators, and to compute their roots, respectively. As a suitable
box at the subproblem P = (m, r1, . . . , rm) we chose the box [−L,L]n−m where

L =
⌊

p
√
Rp − |r1|p − · · · − |rm|p

⌋
. The authors suggest to successively halve the

box into subboxes which does not fit into our scheme. This approach is abbreviated
SEP in the plots.

• For nonnegative polynomials on polytopes P , De Loera et al. [LHKW06] approxi-

mate the maximum of f on P ∩Zn by the sequence k

√∑
x∈P∩Zn f(x)k. Each mem-

ber of the sequence can be computed in polynomial time, using a reformulation as
a limit of a rational function which in turn is based on the generating function of
P . We did experiments with k = 2 and k = 4, the latter taking significantly longer,
without giving much better results, so we restricted ourselves to k = 2. Note that
the suggested implementation uses residue techniques, while we just use symbolic
limit computations. On the other hand, we improved the bounds as follows: To
make their approach applicable to not necessarily nonnegative polynomials, the
authors suggest to add the sufficiently large constant

c := ‖f‖0‖f‖∞Md

to obtain f = f + c nonnegative on P . Here, M ≥ 0 is a bound on the poly-
hedron s.t. |xi| ≤ M for all x ∈ P ; for f =

∑
α aαX

α, we use the zero “norm”
‖f‖0 := #{α | aα 6= 0} and the infinity norm ‖f‖∞ := maxα{|aα|}. However,
the constant c′ :=

∑d
j=0 ‖fj‖1M j suffices to ensure that f+c′ is nonnegative on P .

A short calculation shows that c′ ≤ c if M ≥ 1, and in dense instances one often
has c′ � c. As polyhedron we again chose the box [−L,L]n−m from the previous
bound. This bound is abbreviated to POLYFIX in the plots.

• We compute an sos approximation of the global continuous relaxation (CR in the
plots) at each subproblem P = (m, r1, . . . , rm), that is

max λ

s.t. f(r1, . . . , rm, Xm+1, . . . , Xn)− λ is sos in R[Xm+1, . . . , Xn]

• Brute force enumeration with no lower bounds, abbreviated BF. As f has to be
evaluated at each node, we use matlabFunction to convert the Symbolic Math
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Toolbox object that encodes f into a function handle that can be evaluated signif-
icantly faster.

• Algorithm 2 using GLOB with parameters as described in Remark 19.

• Algorithm 2 using SLS with parameters as described in Remark 19.

6.3.4. Runtime comparison

The implementation of the six different algorithms from Section 6.3.3 into our B&B-
framework gave the runtimes in Figure 5 (logarithmic scale). On every instance each of
the lower bounds had a maximum of 5 minutes to complete; if this time constraint was
violated, the process was interrupted and the lower bound considered as unsuccessful
on this instance. If the parameter h could not be found by SOSTOOLS’ findbound.m
function, GLOB and SLS were considered to have violated the time constraint.
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Figure 5: Runtimes in [s].
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We infer from the plots that for a small number of variables, the problem size (i.e., R), is
mostly so small that brute force is often the fastest approach. However, if instances get
larger, brute force fails necessarily as the processing time is linear in the number of nodes.
SEP is quite fast in small instances, but for large instances the running time deteriorates
as an underestimator is computed at each node. In our setting, POLYFIX takes too long
to be competitive. The continuous relaxation is satisfactory for smaller instances but
fails in some large instances. Concerning our bounds, in the two plots of Figure 5 with
n = 2, there is a surprisingly little variance in runtime for GLOB and SLS. This can be
explained from a further plot, see Figure 6, in which we break down the preprocessing
time, i.e., the time needed to compute a approximate continuous minimizer h and the
underestimator g, and the time needed for the actual branch and bound. It can be seen
that the preprocessing time is more or less independent from the instance and takes in
most instances significantly longer than the actual branch and bound. Also, it seems
at first that SLS takes mostly longer than GLOB. However, this holds only true for the
preprocessing phase: The corresponding sos program is larger, and so are preprocessing
times. Indeed, Figure 6 reveals that GLOB has shorter preprocessing times throughout,
but is inferior in B&B, as expected.
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Figure 6: Preprocessing (P) and B&B (B) times – GLOB on the left, SLS on the right.

7. Conclusion and Outlook

In this paper we presented a new way of finding underestimators for integer polynomial
optimization and improved the bounds on the norm of integer and continuous minimiz-
ers. We implemented both ideas within a branch & bound approach showing how they
improve its performance.

Currently we compute one underestimator at the beginning of the branch and bound
process which is used for generating lower bounds throughout the whole algorithm. In-
stead, one could also compute a new underestimator at each node of the branch and
bound tree. This would improve the bounds but due to the comparatively large compu-
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tation time for solving an sos-program does not pay off in terms of overall efficiency. We
currently analyze in which nodes the computation of a new underestimators improves the
procedure. Along the lines of [BHS14] we plan to analyze how to find an underestimator
which is likely to be a good one for all subnodes.

We also point out that our procedure can be extended to mixed-integer polynomial
optimization: The norm bounds apply in the mixed-integer case as well, and we may use
the proposed class of underestimators, but with their mixed-integer minima (which are
also simple to obtain). Our underestimators can in principle also be used for constrained
polynomial optimization; however, it is subject to further investigation if the bounds
provided are sharp enough for this case. We hence work on sos-programs which provide
underestimators which are able to take into account given constraints.

A. Computing the norm bounds

In Remark 7 we saw that we get a tighter norm bound R on the minimizers the closer
the cj get to their optimal value c∗j . In the following, we present two means that improve
on the approach 1. in Section 4.1 that do not rely on sos programming. The second
method we present is a refinement of the first. For both, we improve the norm bound
R by replacing the estimate |xα| ≤ 1 on Sn−1p with |xα| ≤ x̂α, where x̂ is a continuous
maximizer of the function Sn−1p → R, x 7→ xα.

A.1. A direct improvement

One has the following closed form for the continuous minimizer x̂ with nonnegative
coordinates:

Lemma 20. Let 0 6= α ∈ Nn0 and p ∈ [1,∞). Then, the monomial Xα attains its
maximum on Sn−1p at x̂ with coordinates

x̂i = p

√
αi∑n
i=1 αi

, i = 1, . . . , n. (21)

Proof. By a simple analysis, the proof can be reduced to αi ≥ 1 for i = 1, . . . , n and
then to maximization of Xα on {x ∈ Sn−1p | x1 > 0, . . . , xn > 0}. Using the method of
Lagrange multipliers, the claim follows from a short calculation.

Observation 21. Denote by x̂(α) the maximizer of Xα on Sn−1p as in (21). Hence for
x ∈ Sn−1p we have

fj(x) =
∑
|α|=j

aαx
α ≥

∑
|α|=j

−|aα| · (x̂(α))α =: cj . (22)

This cj is as least as large as approach 1. from Section 4.1 since, for 0 6= α, (x̂(α))
α < 1

– unless Xα ∈ R[Xi] for some i, in which case x̂(α) = ei, the i-th unit vector, and thus
(x̂(α))

α = 1.
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A.2. A different approach

This last approach on computing bounds cj is different to the ones before, as we actually
compute 2n norm bounds: We restrict f to each of the 2n orthants

Hτ = {x ∈ Rn | τixi ≥ 0} for τ ∈ {−1, 1}n

and compute norm bound on integer minimizers of every f |Hτ . This has the advantage
that, roughly speaking, we may neglect half of the terms of f =

∑
aαX

α. Also, mini-
mization on Hτ can be reduced to minimization on H(1,...,1), i.e., the set of those x ∈ Rn
with x ≥ 0, as we shall see in a moment.
Introducing the notation |a|− = |min(a, 0)| for a ∈ R and with x̂ from (21), we have for
every term aαx

α ≥ −|aα|−xα ≥ −|aα|−x̂α as x ≥ 0, thus

fj(x) =
∑
|α|=j

aαx
α ≥

∑
|α|=j

−|aα|−x̂α︸ ︷︷ ︸
=:c

(1,...,1)
j

, x ∈ Sn−1p and x ≥ 0,

which means about half of the coefficients are neglected in comparison to (22), if signs
are distributed equally among the aα. Now let R(1,...,1) be the largest real root of

q(1,...,1)(λ) := cdλ
d +

d−1∑
j=1

c
(1,...,1)
j λj .

The verbatim argument of Theorem 6 shows that f(x) > f(0) for ‖x‖p > R(1,...,1) and
x ≥ 0. This bounds integer and continuous minimizers onH(1,...,1). Bounding the norm of
minimizers of f on Hτ , τ ∈ {−1, 1}n, can be reduced to bounding the norm of minimizers
on H(1,...,1) by a simple change of coordinates. To this end, let τ(x) = (τ1x1, . . . , τnxn),
x ∈ Rn, and f τ be the polynomial

f τ (x) := f(τ(x)) =
∑
α

aατ
αxα, τ ∈ {−1, 1}n.

As τα ∈ {−1, 1}, f and f τ merely differ in the sign of their coefficients, and f τd (x) ≥ cd
still holds for x ∈ Sn−1p as the sphere is τ -invariant, that is τ(Sn−1p ) = Sn−1p . Similarly to
before, denote by Rτ the largest real root of

qτ (λ) = cdλ
d +

d−1∑
j=1

cτjλ
j ,

with cτj = −|aατα|−x̂α. It is now clear that f τ (x) > f(0) for ‖x‖p > Rτ and x ≥ 0,
equivalently, f(x) > f(0) for ‖x‖p > Rτ and x ∈ Hτ .

This results in more effort in the preprocessing, but reduces the number of feasible
solutions.
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