
Component Importance

Based on Dependence Measures
Mario Hellmich1

Bundesamt für kerntechnische Entsorgungssicherheit
(Federal Office for the Safety of Nuclear Waste Management)

Willy-Brandt-Straße 5, 38226 Salzgitter, Germany

Dated: November 8, 2018

Abstract

We discuss the construction of component importance measures for binary
coherent reliability systems from known stochastic dependence measures
by measuring the dependence between system and component failures.
We treat both the time-dependent case in which the system and its com-
ponents are described by binary random variables at a fixed instant as
well as the continuous time case where the system and component life
times are random variables. As dependence measures we discuss covari-
ance and mutual information, the latter being based on Shannon entropy.
We prove some basic properties of the resulting importance measures and
obtain results on importance ordering of components.

Keywords: Reliability theory, component importance measure, binary co-
herent system, stochastic dependence, entropy

1 Introduction

Component importance measures are used in reliability theory and engineering
to rank the individual components of a system according to their influence on as-
pects of the system performance (mostly reliability), hence they serve to identify
weaknesses and improvement potential. A large number of importance measures
have been proposed, see the reviews [7, 8, 16, 17] as well as the monograph [18].
In view of this multiplicity it is not surprising to find a variety approaches to
construct importance measures. A recurring idea is, however, to obtain them
in some way from the connection between system failure and failure of an indi-
vidual component, such as in the Birnbaum measure [5] in the time-dependent
case, or the Barlow–Proschan measure [3] in the time-independent case. The
present paper sets out from the question whether it is possible to obtain good
importance measures by using known dependence measures and applying them
to random variables associated with component and system failure. Thereby,
from a more fundamental point of view, we hope to shed some light on the
connection between component importance and dependence.

Generally, one can distinguish between time-dependent importance measures,
which only depend on the system structure and the component reliabilities,
which are considered either at a fixed instant or are assumed static (e. g. to
calculate probabilities of failure on demand), and time-independent measures
which take into account the component life distributions [7]. In the former
case, the system consisting of n components is described by binary random
variables X1, . . . , Xn and X, indicating the functioning or failure of the compo-
nents and the system, respectively, either at a fixed point of time or independent
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of time. The latter case describes the system in continuous time by the nonneg-
ative random variables T1, . . . , Tn and T , which are the component and system
failure instants, respectively. This is important since, in a continuous time set-
ting, time-dependent measures leave it to the analyst at which time points to
evaluate and compare them. In the present paper we shall address both situ-
ations. The idea is to use a dependence measure D(U, V ) ∈ R defined for a
pair of random variables U, V of a sufficiently rich class. We will investigate
whether D(Xi, X) in the binary case and D(Ti, T ) in the continuous time case,
for i = 1, . . . , n, define sensible importance measures for particular choices of D .

It is not self-evident which properties one should require of a sensible depen-
dence measure D in this context. A set of axioms for dependence measures was
proposed by Rényi [26], but other approaches and generalizations have been
discussed as well, see e. g. [28, 27, 15, 29]. For the present purpose we find
that a dependence measure which does not satisfy all of Rényi’s axioms can
yield a good importance measure. On the other hand, from Rényi’s axioms
alone certain desirable properties of importance measures cannot be proved.
For example, Rényi’s approach is non-ordinal, i. e. the axioms do not facilitate
the comparison of different degrees of dependence, hence one cannot establish
properties that compare relative importances, such as that the weakest com-
ponent in a series system should have the largest importance. Specifically, we
shall consider covariance D(U, V ) = cov(U, V ) in the present paper. As is well
known, covariance only detects linear dependence and is not nonnegative and
normalized, hence not all of Rényi’s axioms are satisfied. Still we can show that
covariance can lead to a reasonable importance measure. If the system under
consideration is coherent the variables Xi and X in the binary case and Ti and T
in the continuous time case are associated in the sense of Esary, Proschan and
Walkup [14, 2], and in this case cov(Xi, X) ≥ 0 or cov(Ti, T ) ≥ 0, and moreover
uncorrelatedness implies independence. Thus, in fact, on the set of pairs of as-
sociated random variables, covariance is a proper dependence measure, and we
can use it in this case. Nevertheless, for these reasons we do not define the term
“dependence measure” in a formal way but use it in a rather loose fashion.

In the following we shall consider covariance and mutual information in place
of the dependence measure D . We find that in the binary case covariance leads
to a reasonable importance measure. In the continuous time case there are
several ways to employ covariance, we shall discuss the possibilities cov(Ti, T )
and sup

s,t≥0

(
cov(1{Ti>s},1{T>t})

)
(here 1A denotes the indicator function of the

set A), the former being related to the L1-distance between the joint distribution
functions of Ti and T and the product of its marginals, and the latter to the
L∞-distance. We find that only the latter construction leads to a reasonable
importance measure. Moreover, in the binary case we shall also discuss mutual
information in place of D , which is based on Shannon entropy, and in this way
we complement and extend some results of [11], and we correct an error. We do
not provide a corresponding discussion of mutual information in the continuous
time case due to the added technical complications arising from the fact that
the joint distribution of Ti and T is not absolutely continuous, hence mutual
information is not defined. See however the remarks in [11] as well as [12]. In
order to assess whether an importance measure is reasonable, we investigate if
it is able to detect irrelevant components or complete dependence, and whether
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it assigns large importance to unreliable series components and reliable parallel
components.

The paper is organized as follows. In Section 2 we discuss the application
of covariance and mutual information in the case of binary systems, whereas
Section 3 treats the continuous time case. Section 4 closes with some concluding
remarks.

2 Binary Systems

2.1 Preliminaries

We introduce some terms and notation used throughout the paper, see [2] for
background information on the theory of binary coherent systems. Consider a
system of n components. The state of the components is given by the n binary
random variables X1, . . . , Xn ∈ {0, 1}, defined on some common probability
space (Ω,F ,P); we assume the random variables to be independent throughout.
We write pi = P{Xi = 1} for the component reliabilities, and p̄i = 1 − pi =
P{Xi = 0}, as well as p = (p1, . . . , pn) and 1 = (1, . . . , 1). We shall frequently
use the familiar notation (x, 0i) and (x, 1i), where

(x, yi) = (x1, . . . , xi−1, y, xi+1, . . . , xn), i = 1, . . . , n, y ∈ {0, 1},

and with x = (x1, . . . , xn). The structure function φ : {0, 1}×n −→ {0, 1} of the
system determines its functioning or failure as a function of the states of the
components. We call a structure function monotone if it is nondecreasing (i. e.
if x = (x1, . . . , xn) and y = (y1, . . . , yn) are two binary vectors with xi ≤ yi
for i = 1, . . . , n, which is written as x ≤ y, then φ(x) ≤ φ(y)). Component i
is called irrelevant if φ(x, 1i) = φ(x, 0i) for all x. If φ is both monotone and
has no irrelevant components, it is called coherent. Throughout we will write
X = φ(X1, . . . , Xn) as an abbreviation. The reliability of the system is given
by

hφ(p) = P{φ(X1, . . . , Xn) = 1} = E(φ(X1, . . . , Xn)) = E(X),

where E is the expectation corresponding to P. By independence hφ is a func-
tion of p alone, and in fact a polynomial of degree less or equal than one in
each p1, . . . , pn, as can be seen by pivotal decomposition on component i :

φ(x) = xiφ(x, 1i) + (1− xi)φ(x, 0i). (1)

We call hφ the reliability function of φ. The following obvious fact will be needed
repeatedly:

P{X = x | Xi = y} = hφ(p, yi)
x(1− hφ(p, yi))

1−x, (2)

where x, y ∈ {0, 1} and i = 1, . . . , n.
In this framework the most popular importance measure is the Birnbaum

measure [5]. For a coherent structure function φ it is defined as

IBφ (i) = P{φ(X, 1i)− φ(X, 0i) = 1} = hφ(p, 1i)− hφ(p, 0i)

=
∂hφ
∂pi

(p),
(3)
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with the random vector X = (X1, . . . , Xn). Notice that (3) does not depend
on pi ; however, the ordering of the components induced by IBφ does, in general,
depend on all p1, . . . , pn.

2.2 Covariance

The underlying idea of using dependence measures to construct importance in-
dices is that a component should be important if its failure is strongly correlated
with system failure. Moreover, for a repairable system, we could add that a com-
ponent should be important when its repair is strongly correlated with system
repair [23]. Thus, as explained in Section 1, if D(·, ·) denotes some dependence
measure defined at least on the set of binary variables, we can define a notion
of importance of component i as ID

φ (i) = D(Xi, X). For a sensible importance

measure we should require ID
φ ≥ 0. Generally, what matters is not the absolute

values of the component importances, but in the first place the ordering of the
components induced by a particular measure and secondly the relative differ-
ences between importances. To facilitate comparison between components it is
sometimes advantageous to introduce a normalized version of ID

φ by

ÎD
φ (i) = ID

φ (i)
/ n∑
j=1

ID
φ (j), i = 1, . . . , n, (4)

with the property that ÎD
φ (1) + · · · + ÎD

φ (n) = 1. Notice that the orderings of

the components induced by ID
φ and ÎD

φ are the same.
Consider two random variables U and V and recall that their covariance is

defined as cov(U, V ) = E(UV )−E(U)E(V ). Following the above idea we define
the covariance importance of component i by

Icφ(i) = cov(Xi, X) = cov(Xi, φ(X1, . . . , Xn)), i = 1, . . . , n, (5)

for a not necessarily coherent structure function φ. Recall our remarks in Sec-
tion 1 that covariance, in general, is not a proper dependence measure. However,
in this particular case it will be used on the set of pairs variables which are as-
sociated in the sense of Esary, Proschan and Walkup [14, 2], and we will show
that (5) indeed defines a valid importance measure, cf. Proposition 1 below.

We start by establishing the following representation of Icφ in terms of the
reliability function, using (2) and (5):

Icφ(i) = P{X = 1 | Xi = 1}P{Xi = 1} − P{X = 1}P{Xi = 1}
= pi(hφ(p, 1i)− hφ(p)).

(6)

Notice that, unlike the Birnbaum importance (3), the covariance importance
depends on pi. By pivotal decomposition we find

Icφ(i) = pi(hφ(p, 1i)− hφ(p)) = p̄i(hφ(p)− hφ(p, 0i))

= pip̄i(hφ(p, 1i)− hφ(p, 0i)).
(7)

The quantities appearing in the parentheses in the first line of the last equation
are well known importance measures, Iraφ (i) = hφ(p) − hφ(p, 0i) is called the
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risk achievement, and Irrφ (i) = hφ(p, 1i) − hφ(p) is called the risk reduction or
improvement potential [8]. Thus we have the relations

Icφ(i) = p̄iI
ra
φ (i) = piI

rr
φ (i) = pip̄iI

B
φ (i). (8)

By definition Icφ(i) measures the amount of linear correlation between the
events of system failure and failure of component i. Thus it concerns a different
aspect than the Birnbaum measure, which identifies the component that has
the highest probability of being critical for system operability. According to (3)
this is equivalent to identifying the component for which varying its reliability pi
yields the largest impact on system reliability. Thus for identifying the compo-
nents whose failure has the strongest association with system failure, covariance
importance should be used. In a reliability context this may be applied to test
the balancedness of a safety concept. In contrast, the Birnbaum measure is pre-
ferred for identifying the components to which expenditures should be directed
when the overall system reliability is to be improved. Equation (8) provides
another perspective on covariance importance. For example, if two components
have the same risk achievement in the system, then the more unreliable one
will have higher covariance importance (and correspondingly for risk reduc-
tion). See [9, 8] for of the interpretation of some of the classical time-dependent
importance measures in nuclear applications.

We are now ready to derive some basic properties of the covariance importance
which corroborate that it defines a sensible importance measure.

Proposition 1 For the covariance importance the following three assertions
hold:

(i) If φ is coherent, 0 ≤ Icφ(i) ≤ 1
4 for all i = 1, . . . , n. Moreover, if Icφ(i) = 1

4
then X = Xi a. s., and if Icφ(i) = 0 then Xi and X are independent. If
Icφ(i) = 0 for all p = (p1, . . . , pn) then component i is irrelevant.

(ii) As a function of p the importance measure Icφ(i) is a polynomial Qi, i. e.
Icφ(i) = Qi(p) for i = 1, . . . , n.

(iii) If φ′(x) = 1 − φ(1 − x) denotes the dual structure function, we have
Icφ′(i) = Qi(1− p), with Qi(p) = Icφ(i) as in (ii).

Proof. (i) For a coherent φ, the reliability function hφ is monotonic, hence the
first inequality follows from (6). By the Cauchy–Schwarz inequality we have

Icφ(i) = cov(Xi, X) ≤
√

var(Xi) var(X) =
√
hφ(p)h̄φ(p) · pip̄i ≤ 1

4 . (9)

Now suppose that Icφ(i) = 1
4 . Then we have equality in (9), which means that

the square root attains its maximum, which is at hφ(p) = pi = 1
2 . Thus it

follows that var(X) = var(Xi) = 1
4 . In this case it is well known that

X − E(X)√
var(X)

=
Xi − E(Xi)√

var(Xi)
a. s.,

thus X = Xi a. s. The next assertion is obvious from (6) and the properties
of the reliability function. Finally, if Icφ(i) = 0 for all p, then from (7) we
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have hφ(p, 1i) = hφ(p, 0i) for all p, which implies irrelevance of component i.
Statement (ii) is obvious from (6), and concerning (iii) we notice that

Icφ′(i) = cov(Xi, 1− φ(1−X)) = cov(1−Xi, φ(1−X)) = Qi(1− p),

as was to be shown. �

Remark 2 For a cohernet φ, since Icφ(i) = cov(Xi, X) ≥ 0 and Xi and X
are binary, they are associated. Association of X and Xi can also be proved
directly: Since X1, . . . , Xn are independent, they are associated, so the claim
follows since φ and the projection pri(x1, . . . , xn) = xi are nondecreasing. Then
the last statement in claim (i) of Proposition 1, i. e. independence of Xi and X
if Icφ(i) = 0, follows from cov(Xi, X) = 0 since the variables are associated.

Notice that we have an inequality between IBφ and Icφ, i. e. IBφ (i) ≥ Icφ(i) for
all i = 1, . . . , n if φ is coherent; this follows immediately from (8). We now
calculate covariance importance in some explicit examples.

Example 3 Consider a series system (i. e. φ(x) = x1 · · ·xn), then we obtain
the covariance importance from (7) as

Icφ(i) = p̄ihφ(p) = p̄ipihφ(p, 1i), Îcφ(i) =
p̄i

p̄1 + · · ·+ p̄n
.

For a parallel system we obtain from Proposition 1 the corresponding covariance
importances by replacing p̄i by pi for i = 1, . . . , n in the above equation.

Example 4 Consider a k-out-of-n : G system with independent components,
which is functioning if of its n components at least k are working. Its structure
function is given by

φ(x) =
∑

ε∈{0,1}×n
ε1+···+εn≥k

xε11 · · ·xεnn (1− x1)1−ε1 · · · (1− xn)1−εn , (10)

and reliability function reads

hn,k(p) =
∑

ε∈{0,1}×n
ε1+···+εn≥k

pε11 · · · pεnn p̄
1−ε1
1 · · · p̄1−εnn , (11)

where we denoted the reliability function by hn,k(p) to display the dependence
on k and n explicitly. We obtain from (6) and (7) for the covariance importance
of the k-out-of-n : G system

Icφ(i) = pi(hn−1,k−1(p1, . . . , pi−1, pi+1, . . . , pn)− hn,k(p))

= p̄i(hn,k(p)− hn−1,k(p1, . . . , pi−1, pi+1, . . . , pn)).

From (10) we can derive another representation of the covariance importance of
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the k-out-of-n : G system:

Icφ(i) = cov(Xi, φ(X))

=
∑

ε∈{0,1}×n
ε1+···+εn≥k

cov(Xi, X
εi
i (1−Xi)

1−εi) · pε11 · · · p̌
εi
i · · · p

εn
n p̄

1−ε1
1 · · · ˇ̄p1−εii · · · p̄1−εnn

=
∑

ε∈{0,1}×n
ε1+···+εn≥k

(−1)1−εi(pε11 · · · p
εi−1

i−1 pip
εi+1

i+1 · · · p
εn
n ) ·

· (p̄1−ε11 · · · p̄1−εi−1

i−1 p̄ip̄
1−εi+1

i+1 · · · p̄1−εnn ),

where p1 · · · p̌i · · · pn signifies that pi is to be dropped from the product.

Example 5 In order to demonstrate that the covariance importance induces
a different component ordering than the Birnbaum importance we consider a
2-out-of-3 system, and we suppose without loss of generality that p1 ≤ p2 ≤ p3.
From (11) we obtain for the reliability function h3,2(p) = p1p2 + p1p3 + p2p3 −
2p1p2p3, and thus from (8)

Icφ(1) = p1p̄1 · IBφ (1) = p1p̄1[p2 + p3 − 2p2p3],

Icφ(2) = p2p̄2 · IBφ (2) = p2p̄2[p1 + p3 − 2p1p3],

Icφ(3) = p3p̄3 · IBφ (3) = p3p̄3[p1 + p2 − 2p1p2].

For the component ordering induced by the Birnbaum measure we have the
following result : If p1 ≤ p2 ≤ p3 ≤ 1

2 then IBφ (3) ≥ IBφ (2) ≥ IBφ (1), and if 1
2 ≤

p1 ≤ p2 ≤ p3 then IBφ (3) ≤ IBφ (2) ≤ IBφ (1); this follows by explicit computation
or from a general result [6, 2] on Schur convexity of hn,k. This is to be compared
by the ordering induced by Icφ, which is recorded for some component reliabilities
in Table 1. It is seen that in this example the covariance importance tends to
order the components in the opposite order than the Birnbaum importance.

The next result demonstrates that covariance importance is a sensible impor-
tance measure. It shows that Icφ assigns large importance to unreliable series
components and reliable parallel components. Moreover, it shows a compatibil-
ity property with a modular structure of the system.

Theorem 6 For a coherent structure function φ the following two assertions
hold true:

Table 1: Component ordering according to the Birnbaum and covariance importance
in the 2-out-of-3 system for various component reliabilities. The last two columns
contain the component indices in descending order of importance.

Component reliabilities Induced ordering
p1 p2 p3 IBφ Icφ
0.1 0.2 0.3 3 2 1 1 2 3
0.3 0.4 0.5 3 2 1 1 3 2
0.5 0.6 0.7 1 2 3 3 1 2
0.7 0.8 0.9 1 2 3 3 2 1
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(i) Suppose that component i is in series with a coherent module of the system,
and that this module contains a component j such that pi ≤ pj, where
j 6= i. Then Icφ(i) ≥ Icφ(j).

(ii) Suppose that component i is parallel to a coherent module of the system,
and that this module contains a component j such that pi ≥ pj, where
j 6= i. Then Icφ(i) ≥ Icφ(j).

Proof. (i) By an appropriate numbering of the components we can assume with-
out loss of generality that φ(x) = ψ(x1, . . . , xi−1, xiχ(xi+1, . . . , xn)), i. e. we
assume j > i, and with ψ and χ coherent structure functions. By pivotal de-
composition we have

φ(x) = xiχ(xi+1, . . . , xn)ψ(x1, . . . , xi−1, 1) +

+ (1− xiχ(xi+1, . . . , xn))ψ(x1, . . . , xi−1, 0),

and we obtain for any k ≥ i

Icφ(k) = cov(Xk, X)

= E(ψ(X1, . . . , Xi−1, 1)) cov(Xk, Xiχ(Xi+1, . . . , Xn)) +

+ E(ψ(X1, . . . , Xi−1, 0)) cov(Xk, 1−Xiχ(Xi+1, . . . , Xn))

= E(ψ(X1, . . . , Xi−1, 1)− ψ(X1, . . . , Xi−1, 0)) ·
· cov(Xk, Xiχ(Xi+1, . . . , Xn)).

(12)

Since ψ is coherent the first factor in the last equation is nonnegative, hence
Icφ(i) ≥ Icφ(j) is equivalent to

cov(Xi, Xiχ(Xi+1, . . . , Xn)) =

= E(Xiχ(Xi+1, . . . , Xn))− piE(Xiχ(Xi+1, . . . , Xn))

≥ cov(Xj , Xiχ(Xi+1, . . . , Xn))

= E(XjXiχ(Xi+1, . . . , Xn))− pjE(Xiχ(Xi+1, . . . , Xn)),

which is in turn equivalent to

piE((1−Xj)χ(Xi+1, . . . , Xn)) ≥ (pi − pj)E(Xiχ(Xi+1, . . . , Xn)).

Now since pi − pj ≤ 0 and the expectations are nonnegative we see that this
inequality is satisfied. (ii) Again without loss of generality we can write φ(x) =
ψ(x1, . . . , xi−1, 1− (1− xi)(1−χ(xi+1, . . . , xn))). In the same way as before we
can show that for any k ≥ i

Icφ(k) = cov(Xk, X) = E(ψ(X1, . . . , Xi−1, 1)− ψ(X1, . . . , Xi−1, 0)) ·
· cov(Xk, 1− (1−Xi)(1− χ(Xi+1, . . . , Xn))).

As in (i) we see that Icφ(i) ≥ Icφ(j) is equivalent to

(pj − pi)E((1−Xi)(1− χ(Xi+1, . . . , Xn))) ≤ p̄iE(Xj(1− χ(Xi+1, . . . , Xn))).

Since pj − pi ≤ 0 the last inequality holds and we conclude. �
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Remark 7 The assertions of Theorem 6 also hold for the Birnbaum measure,
as can be seen as follows. For the series case suppose that component i is in
series with the rest of the system, and without loss of generality that i = 1, i. e.
φ(x) = x1ψ(x2, . . . , xn), and pi ≤ pj for some j = 2, . . . , n. Then

IBφ (1) = E(ψ(X2, . . . , Xn))

= pjE(ψ(X2, . . . , 1, . . . , Xn)) + p̄jE(ψ(X2, . . . , 0, . . . Xn))

and

IBφ (j) = p1E
(
ψ(X2, . . . , 1, . . . , Xn)− ψ(X2, . . . , 0, . . . , Xn)

)
,

from which we conclude IBφ (1) ≥ IBφ (j), as desired. Now this result can be
generalized to the case that component i is in series to a coherent module con-
taining component j by using the following simple fact: Suppose that φ(x) =
ψ(χ(x1, . . . , xk), xk+1, . . . , xn) for two arbitrary coherent structure functions ψ
and χ. Moreover, assume that IBχ (i) ≥ IBχ (j) for some i, j = 1, . . . , k. Then
since

IBφ (`) =
∂hφ
∂p`

(p) =
∂hψ
∂hχ

∂hχ
∂p`

(p) =
∂hψ
∂hχ

IBχ (`) for all ` = 1, . . . , k

it follows that IBφ (i) ≥ IBφ (j). The parallel case can be verified in a similar
manner.

2.3 Mutual Information

Another dependence measure that can be used in place of covariance in (5) is
mutual information [30, 1], see also [10, 13] for an overview on the use of in-
formation measures in statistics and reliability. The construction of importance
measures from mutual information was discussed in [11]. We try to generalize
some results from that work, and we correct an error.

If U and V are two (finite valued) random variables, the mutual information
of U and V is defined as I(U | V ) = H(U)−H(U | V ), where H(U) is the Shan-
non entropy of U and H(U | V ) the conditional entropy of U given V . Recall
that if U and V take on the values u1, . . . , un and v1, . . . , vm with probabilities
p(ui) = P{U = ui}, p(vi) = P{V = vi}, and p(ui, vj) = P{U = ui, V = vj},
then

H(U) = −
n∑
i=1

p(ui) log(p(ui)), (13)

H(V | U) = −
n∑
i=1

m∑
j=1

p(ui, vj) log(p(vj | ui)), (14)

where p(vj | ui) = P{V = vj | U = ui} and with the convention 0 log(0) = 0.
If the logarithms are taken with respect to the base 2, as we will assume in
the following, then I(U | V ) is the difference of the average number of bits
(or answers to “yes”-or-“no” questions) required to determine the result of one
observation of U before and after the result of an observation of V is revealed.
The mutual information satisfies I(U | V ) = I(V | U), and I(U | V ) ≥ 0
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with equality if and only if U and V are independent; moreover, I(U | V ) =
H(U) +H(V )−H(U, V ), where H(U, V ) is the Shannon entropy corresponding
to the joint distribution of U and V .

Returning to the framework of Section 2.1, we define the information impor-
tance of component i by

I infφ (i) = I(Xi | X) = I(X | Xi), i = 1, . . . , n. (15)

Using (2), we can, in analogy to (6), express it in terms of the reliability function
as

I infφ (i) =
∑

x,y∈{0,1}

P{X = x | Xi = y}P{Xi = y} ·

· log
(P{X = x | Xi = y}

P{X = x}

)
=

∑
x,y∈{0,1}

pyi p̄
1−y
i hφ(p, yi)

xh̄φ(p, yi)
1−x ·

· log
(hφ(p, yi)

xh̄φ(p, yi)
1−x

hφ(p)xh̄φ(p)1−x

)
, (16)

with h̄φ = 1− hφ.

Proposition 8 The following assertions hold:

(i) For an arbitrary φ, 0 ≤ I infφ (i) ≤ 1 for all i = 1, . . . , n.

(ii) If I infφ (i) = 0 then Xi and X are independent.

(iii) If φ is coherent and I infφ (i) = 1 then Xi = X and P{Xi = 1} = 1
2 .

(iv) If Fi(p) = I infφ (i) denotes I infφ (i) as a function of p, then for the dual

structure function φ′ we have I infφ′ (i) = Fi(1− p).

Proof. (i) From the definition of mutual information we have I(Xi | X) ≤
H(Xi) ≤ 1, since Xi is a binary random variable. (ii) is clear. (iii) If I infφ (i) =
H(Xi) − H(Xi | X) = 1 it follows that H(Xi) = 1 and H(Xi | X) = 0. The
first equality implies P{Xi = 1} = 1

2 and the latter that Xi = f(X) for some
function f : {0, 1} −→ {0, 1}. Now since Xi and X are binary and φ is coherent,
the function f must be strictly monotonic, i. e. Xi = X. (iv) Since X and Xi

are binary random variables, we have H(Xi) = H(1 − Xi) and H(Xi | X) =
H(1−Xi | 1−X) from (13) and (14). Thus is follows that

I infφ′ (i) = I(Xi | 1− φ(1−X)) = H(Xi)−H(Xi | 1− φ(1−X))

= H(1−Xi)−H(1−Xi | φ(1−X)) = I(1−Xi | φ(1−X))

= Fi(1− p),

by using (13) and (14) again. �

We note that a component has information importance H(Xi) if Xi = X, and
information importance 1 if in addition pi = 1

2 .

10



Example 9 Consider a series system (i. e. φ(x) = x1 · · ·xn). We evaluate (16)
explicitly. In this case we have hφ(p, 0i) = 0 and h̄φ(p, 0i) = 1. By an explicit
calculation,

I infφ (i) =
(
pi
∐
j 6=i

p̄j

)
log
(∐
j 6=i

p̄j

/ n∐
j=1

p̄j

)
−
( n∏
j=1

pj

)
log(pi)−p̄i log

( n∐
j=1

p̄j

)
, (17)

where
∐
j pj = 1−

∏
j(1− pj). From Proposition 8 we see that the information

importance of component i of a parallel system is obtained by replacing pj by p̄j
for j = 1, . . . , n in (17).

Next we look for a result analogous to Theorem 6. However, as it turns out
we could only obtain weaker results. We write H(p) = −p log(p) − p̄ log(p̄) for
the entropy of a binary random variable U with P{U = 1} = p. Recall that
the binary entropy function p 7→ H(p) is monotonically increasing on [0, 12 ], and
decreasing on [ 12 , 1].

Theorem 10 For an arbitrary structure function φ the following three asser-
tions hold true:

(i) For i, j ∈ {1, . . . , n} we have I infφ (i) ≥ I infφ (j) if and only if

pjH(hφ(p, 1j))+ p̄jH(hφ(p, 0j)) ≥ piH(hφ(p, 1i))+ p̄iH(hφ(p, 0i)). (18)

(ii) Suppose that component i is in series with the rest of the system, that
pi ≤ pj for some j 6= i, and that 1

2 ≥ hφ(p, 1j) ≥ hφ(p, 1i) or 1
2 ≤

hφ(p, 1j) ≤ hφ(p, 1i). Then I infφ (i) ≥ I infφ (j).

(iii) Suppose that component i is parallel to the rest of the system, that pi ≥ pj
for some j 6= i, and that 1

2 ≥ hφ(p, 0j) ≥ hφ(p, 0i) or 1
2 ≤ hφ(p, 0j) ≤

hφ(p, 0i). Then I infφ (i) ≥ I infφ (j).

Proof. (i) According to (15), I infφ (i) ≥ I infφ (j) is equivalent to H(X | Xj) ≥
H(X | Xi), which in turn may be expressed as (18), using (13), (14) and (2).
(ii) If i is in series to the rest of the system, hφ(p, 0i) = 0, hence H(hφ(p, 0i)) =
0. Moreover, the assumptions and the monotonicity properties of p 7→ H(p)
imply H(hφ(p, 1j)) ≥ H(hφ(p, 1i)), thus pjH(hφ(p, 1j)) ≥ piH(hφ(p, 1i)), and
we see that (18) is satisfied. (iii) If i is parallel to the rest of the system,
hφ(p, 1i) = 1, hence H(hφ(p, 1i)) = 0. The rest follows as in (ii) from the
monotonicity properties of the binary entropy function and from (18). �

For purely parallel or series systems assertions (ii) and (iii) of Theorem 10 can
be considerably sharpened. To this end we need the following result.

Lemma 11 For any α ∈ [0, 1] the function p 7→ H(αp)/p is decreasing on ]0, 1].

Proof. Recall the definition of the logit function logit(p) = log
( p

1− p

)
, and

that for the derivative of the binary entropy function H ′(p) = − logit(p). Now
the inequality

d

dp

H(αp)

p
= −α logit(αp)

p
− H(αp)

p2
≤ 0

holds for any α, p ∈ ]0, 1[ if and only if − logit(p) ≤ H(p)/p for all p ∈ ]0, 1[.
This latter inequality is easily rearranged to log(p̄) ≤ 0. Thus we conclude that
the function in the statement of the lemma is decreasing. �

11



Corollary 12 Let i, j = 1, . . . , n be two components, i 6= j. Then the following
assertions hold:

(i) For a series system and if pi ≤ pj it follows that I infφ (i) ≥ I infφ (j).

(ii) For a parallel system and if pi ≥ pj it follows that I infφ (i) ≥ I infφ (j).

Proof. (i) For the series system we have hφ(p) = p1 · · · pn. Let us define the

product α =
∏
k 6=i,j

pk ∈ [0, 1]. Then hφ(p, 1j) = αpi and hφ(p, 1i) = αpj , and

the assumption and Lemma 11 yield

H(hφ(p, 1j))

pi
=
H(αpi)

pi
≥ H(αpj)

pj
=
H(hφ(p, 1i))

pj
.

Now since hφ(p, 0k) = 0 for all k = 1, . . . , n it follows that inequality (18)
is satisfied and we conclude by Theorem 10. (ii) For the parallel system we

have hφ(p) = 1 − p̄1 · · · p̄n, and we define again a product α =
∏
k 6=i,j

p̄k. Then

h̄φ(p, 0j) = αp̄i and h̄φ(p, 0i) = αp̄j , and Lemma 11 yields

H(h̄φ(p, 0j))

p̄i
=
H(αp̄i)

p̄i
≥ H(αp̄j)

p̄j
=
H(h̄φ(p, 1i))

p̄j
,

where we used H(p) = H(p̄). Since hφ(p, 1k) = 0 for all k = 1, . . . , n it again
follows that inequality (18) is satisfied. �

It is worth noting that the results of Corollary 12 are included in [11], how-
ever, the proof there contains some gaps. In fact, in the series case instead of
pjH(hφ(p, 1j)) ≥ piH(hφ(p, 1i)) as required by assertion (i) of Theorem 10, the
method used in [11] only shows pjH(hφ(p, 1j)) ≥ piH(hφ(p, 1j)); a similar gap
exists for the parallel case.

Some numerical experiments with various reliability functions indicated that
the conclusions of Theorem 6 also hold for information importance, i. e., the
additional assumptions in Theorem 10 are unnecessary. A proof appears to be
difficult, so for now we can only formulate the following.

Conjecture 13 Let φ be an arbitrary reliability function. Then the conclusions
of Theorem 6 hold for I infφ .

3 Continuous Time

3.1 Preliminaries

In addition to the notation introduced in Section 2.1 we will need the following
concepts. Again we consider a system of n components, but this time with
random lifetimes T1, . . . , Tn, where the Ti are nonnegative random variables. In
the sequel we assume that they are independent and of finite variance. The
system is defined by a structure function φ as in Section 2.1, and the system life
time is denoted by T . If K1, . . . ,Kk and P1, . . . , Pp are the minimal cut sets and
minimal path sets of a coherent φ, then φ(x) = max

j=1,...,p
min
i∈Pj

xi = min
j=1,...,k

max
i∈Kj

xi.

12



A subset S ⊆ {1, . . . , n} is called a formation if it is a union of minimal path sets,
and a collection Pi1 , . . . , Pi` of minimal path sets such that S = Pi1 ∪· · ·∪Pi` is
called a representation of F . A representation is called odd if ` is odd, and even
if ` is even. If a formation S has no odd and ne even representations, then its
signed domination is defined as bφ(F ) = no − ne. Recall that φ can be written
as

φ(x) =
∑

S⊆{1,...,n}

bφ(S)
∏
i∈S

xi, (19)

cf. [4]. If τφ(t) is the system life time as a function of the component life times
t = (t1, . . . , tn), we have

τφ(t) = max
j=1,...,p

min
i∈Pj

ti = min
j=1,...,k

max
i∈Kj

ti, (20)

and hence
T = τφ(T1, . . . , Tn). (21)

We write Xi(t) = 1{Ti>t}, i = 1, . . . , n, and X(t) = 1{T>t} for the now time-
dependent binary component and system state variables. Moreover, for any
binary variable X we define X̄ = 1 − X. If the random variable S is less
than T in the usual stochastic order, i. e. if P{S > t} ≤ P{T > t} for all t ∈ R,
we write S � T . Finally, for s, t ∈ R we write s ∧ t for min{s, t}, and s ∨ t
for max{s, t}.

For any component i = 1, . . . , n we denote the joint distribution of Ti and T
by

Hi(s, t) = P{Ti ≤ s, T ≤ t}, s, t ∈ R,

and we write Fi and F for the cumulative distribution functions of Ti and T ,
respectively. Clearly, the joint distribution Hi contains all information about
the dependence between Ti and T , so an importance measure based on the
dependence between these two random variables should be constructed from Hi

alone.

3.2 Covariance

In this section we will parallel the developments of Section 2.2 and define an
importance measure based on covariance. In fact, in the continuous time set-
ting there are several possible ways to introduce importance measures based on
covariance. We start by defining the L1-covariance importance of component i
in the continuous time case by

Ic1φ (i) = cov(Ti, T ) = cov(Ti, τφ(T1, . . . , Tn)), i = 1, . . . , n. (22)

Whereas the covariance importance (5) may be regarded as an importance at
a fixed time in the present setting, i. e. Icφ(i, t) = cov(Xi(t), X(t)) for some
fixed t ≥ 0, the importance measure (22) depends on the distributions of the
component life times T1, . . . , Tn, or more precisely, on Hi.

We start by establishing a representation of (22) in terms of binary variables,
which also shows some connection to the binary case expounded in Section 2.2.
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We have

Hi(s, t)− Fi(s)F (t)

= P{X̄i(s) = 1, X̄(t) = 1} − P{X̄i(s) = 1}P{X̄(t) = 1}
= E(X̄i(s)X̄(t))− E(X̄i(s))E(X̄(t))

= cov(X̄i(s), X̄(t))

= cov(Xi(s), X(t))

(23)

for any s, t ≥ 0. Now by Hoeffding’s covariance lemma (see [19] for a proof) we
can write

cov(Ti, T ) =

∫ ∞
0

∫ ∞
0

(
Hi(s, t)− Fi(s)F (t)

)
dsdt

=

∫ ∞
0

∫ ∞
0

cov(Xi(s), X(t)) dsdt

= ‖Hi − FiF‖1.

(24)

This shows that Ic1φ (i) is actually the L1-distance between Hi and FiF . Notice
that cov(Xi(s), X(t)) ≥ 0 for all s, t ≥ 0 since Xi(s) and X(t) are nondecreasing
functions of T1, . . . , Tn in view of (20). The integrand cov(Xi(s), X(t)) in the
last integral is, for s = t, equal to the correlation importance of component i
for the system defined by φ and the binary variables X1(t), . . . , Xn(t) for the
component states.

In analogy to item (i) of Proposition 1 we have a corresponding but slightly
weaker result for Ic1φ .

Proposition 14 If φ is coherent, 0 ≤ Ic1φ (i) ≤
√

var(Ti) var(T ) for all i =

1, . . . , n. Moreover, if Ic1φ (i) = 0 then Ti and T are independent, and if Ic1φ (i)

is maximal, i. e. Ic1φ (i) =
√

var(Tt) var(T ), then Ti and T are a. s linearly de-
pendent.

Proof. Since T1, . . . , Tn are independent, they are associated, and moreover the
projection pri as well as τφ is a nondecreasing function. Hence the variables T =
τφ(T1, . . . , Tn) and Ti = pri(T1, . . . , Tn) are associated as well, thus cov(Ti, T ) ≥
0. The second inequality is the Cauchy–Schwarz inequality. Moreover, Ic1φ (i) =
cov(Ti, T ) = 0 implies independence of Ti and T since they are associated.
Finally, if Ic1φ (i) is maximal, there is equality in the Cauchy–Schwarz inequality
and thus Ti and T are a. s. linearly dependent. �

Instead of using the L1-distance between Hi and FiF , we can replace it by the
L∞-distance to define another importance measure based on covariance, which
we call the L∞-covariance importance:

Ic∞φ (i) = ‖Hi − FiF‖∞ = sup
s,t≥0
|Hi(s, t)− Fi(s)F (t)|

= sup
s,t≥0
|cov(Xi(s), X(t))|.

(25)

We remark that a dependence measure based on the L∞-distance has been
discussed in [28]. It is easy to see that we have the following version of Propo-
sition 14.
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Proposition 15 If φ is coherent, 0 ≤ Ic∞φ (i) ≤ 1
4 for all i = 1, . . . , n. More-

over, if Ic∞φ (i) = 0 then Ti and T are independent.

Proof. The proof follows trivially by using Proposition 1 and (25). �

We proceed by establishing a lemma which helps calculating the L∞-covariance
importance explicitly.

Lemma 16 Suppose that φ is coherent. Then the L∞-covariance importance
can be written as

Ic∞φ (i) = sup
t≥0

{
cov(Xi(t), X(t))

}
(26)

for any i = 1, . . . , n.

Proof. Fix t ≥ 0 and i = 1, . . . , n. From (27) below we have

cov(Xi(s), X(t)) = K(t)
(
F̄i(s ∨ t)− F̄i(s)F̄i(t)

)
, s ≥ 0,

with K(t) ≥ 0 since cov(Xi(s), X(t)) ≥ 0 and F̄i(s ∨ t) ≥ F̄i(s)F̄i(t). Now

[0,∞[ 3 s 7→ F̄i(s ∨ t)− F̄i(s)F̄i(t) =

{
Fi(s)F̄i(t) : s ≤ t
F̄i(s)Fi(t) : s ≥ t

is maximal for s = t. Thus we have established that sup
s,t≥0

(
cov(Xi(s), X(t))

)
≤

sup
t≥0

(
cov(Xi(t), X(t))

)
. Since the converse inequality holds trivially we have

proved (26). �

Using the representation (19) of the structure function we can write for any
i = 1, . . . , n and s, t ≥ 0

cov(Xi(s), X(t))

=
∑

S⊆{1,...,n}

bφ(S) cov
(
Xi(s),

∏
j∈S

Xj(t)
)

=
∑

S⊆{1,...,n}\{i}

bφ(S ∪ {i})E
(∏
j∈S

Xj(t)
)

cov(Xi(s), Xi(t))

=
∑

S⊆{1,...,n}\{i}

bφ(S ∪ {i})
∏
j∈S

F̄j(t)
(
F̄i(s ∨ t)− F̄i(s)F̄i(t)

)
,

(27)

so that by Lemma 16

Ic∞φ (i) = sup
t≥0

Fi(t) ∑
S⊆{1,...,n}\{i}

bφ(S ∪ {i})
∏

j∈S∪{i}

F̄j(t)

 . (28)

This result lends itself to an explicit calculation of Ic∞φ . A similar representation
of Ic∞φ can be derived by using the cut set or path set representation (20) of the
reliability function instead of the signed domination form (19).

We now consider dual structures. Let φ′ be the dual structure function of φ.
As in Proposition 1 we have

cov(Xi(s), φ
′(X1(t), . . . , Xn(t))) = cov(X̄i(s), φ(X̄1(t), . . . , X̄n(t))),
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so by repeating the calculations in (27) we see that

cov(X̄i(s), X̄(t)) =
∑

S⊆{1,...,n}\{i}

bφ(S∪{i})
∏

j∈S∪{i}

Fj(t)
(
Fi(s∧ t)−Fi(s)Fi(t)

)
,

(29)
thus Ic∞φ′ can be obtained from (28) by replacing Fi by F̄i, F̄j by Fj , and
retaining bφ, i. e.

Ic∞φ′ (i) = sup
t≥0

F̄i(t) ∑
S⊆{1,...,n}\{i}

bφ(S ∪ {i})
∏

j∈S∪{i}

Fj(t)

 . (30)

Similarly, if we use (27) together with (24) to calculate Ic1φ (i), then again a

replacement of Fi by F̄i, and F̄j by Fj yields Ic1φ′ (i).
For the L∞-covariance importance we can prove a result corresponding to

Theorem 6. As before this corroborates that Ic∞φ is a sensible importance mea-
sure in that it assigns large importances to unreliable series and reliable parallel
components, and that it has some compatibility with a modular structure of the
system.

Theorem 17 For a coherent structure function φ the following two assertions
hold true:

(i) Suppose that component i is in series with a coherent module of the system,
and that this module contains a component j such that that Ti � Tj, where
j 6= i. Then Ic∞φ (i) ≥ Ic∞φ (j).

(ii) Suppose that component i is parallel to a coherent module of the system,
and that this module contains a component j such that Ti � Tj, where
j 6= i. Then Ic∞φ (i) ≥ Ic∞φ (j).

Proof. To verify (i), we assume as in the proof of Theorem 6 and without
loss of generality that the structure function of the system can be written as
φ(x) = ψ(x1, . . . , xi−1, xiχ(xi+1, . . . , xn)), i. e. j > i, and with ψ and χ coherent
structure functions. In view of Lemma 16 it suffices to prove cov(Xi(t), X(t)) ≥
cov(Xj(t), X(t)) for all t ≥ 0. By using the assumption Ti � Tj , which means
E(Xi(t)) ≤ E(Xj(t)) for all t ≥ 0, this can be shown in exactly the same way as
in the proof of Theorem 6 when Xi is replaced by Xi(t) and X by X(t), and pi,
pj become E(Xi(t)), E(Xi(t)), respectively. Similarly, by using Lemma 16, it
is seen that (ii) can be checked in exactly the same way as in the proof of
Theorem 6. �

Remark 18 It has been shown in [25] that Natvig’s importance measure [20,
21, 22] can be written as INφ (i) = cov(Ai(Ti), T ), where {Ai(t)}t≥0 is the com-

pensator of the counting process Ni(t) = 1{Ti≤t}. Thus INφ it is closely related

to Ic1φ . Moreover, a result similar to Theorem 17 for Natvig’s measure has
been demonstrated in [23] ; this reference together with [24] also consider the
Natvig and Barlow–Proschan measures for repairable and for strongly coherent
multistate systems.

The following example demonstrates that we cannot expect a result similar
to Theorem 17 for Ic1φ .
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Example 19 Consider for the sake of simplicity two components in series.
Then φ(x1, x2) = x1x2 and for the signed domination we have b(S) = 1 if
S = {1, 2} and b(S) = 0 for all other S ⊆ {0, 1}. Thus from (27)

cov(X1(s), X(t)) = (F̄1(s ∨ t)− F̄1(s)F̄1(t))F̄2(t),

cov(X2(s), X(t)) = (F̄2(s ∨ t)− F̄2(s)F̄2(t))F̄1(t),

and we suppose that the component life times are exponentially distributed, i. e.
F̄i(t) = e−λit, i = 1, 2, and that T1 � T2, i. e. λ1 ≥ λ2. To calculate Ic1φ we use
the above identities together with (24) and split the area of integration in the
double integral in two parts {(s, t) : 0 ≤ s ≤ t} and {(s, t) : 0 ≤ t ≤ s}. This
yields

Ic1φ (1) =

∫ ∞
0

∫ t

0

cov(X1(s), X(t)) dsdt+

∫ ∞
0

∫ s

0

cov(X1(s), X(t)) dtds

=

∫ ∞
0

∫ t

0

(1− e−λ1s)e−(λ1+λ2)t dsdt+

+

∫ ∞
0

∫ s

0

e−λ1s(e−λ2t − e−(λ1+λ2)t) dtds

=
1

(λ1 + λ2)2
− 2

λ1(λ1 + λ2)
− 1

λ2(λ1 + λ2)
+

+
1

λ1(2λ1 + λ2)
+

1

(λ1 + λ2)(2λ1 + λ2)
+

1

λ1λ2
. (31)

To obtain Ic1φ (2), λ1 and λ2 have to be interchanged in the last equation. Now

it can be seen after some algebra that we have Ic1φ (1) = Ic1φ (2), that is, for two

components in series with exponential life times the L1-covariance importance
cannot distinguish between them. Moreover, this result can be generalized as
can be seen from the structure of (27): Consider a series system of n exponen-
tially distributed components with failure rates λ1, . . . , λn. Then Ic1φ (1) is given

by (31) when λ2 is replaced with λ2 + µ, where µ = λ3 + · · · + λn, and Ic1φ (2)
when λ1 is replaced by λ2 and λ2 by λ1 + µ. Again some algebra shows that
Ic1φ (1) = Ic1φ (2), hence by symmetry for a series system with exponentially

distributed component life times all components have the same L1-covariance
importance. This clearly casts doubts on the utility of the L1-covariance impor-
tance as a good importance measure.

It is interesting to compare Ic1φ with Natvig’s importance measure INφ that was
mentioned in Remark 18 in the context of this example. For the compensator
of the counting process Ni(t) = 1{Ti≤t} we obtain Ai(t) = λi(t ∧ Ti), thus
INφ (i) = cov(λiTi, T ) = λiI

c1
φ (i), thus Natvig’s measure, in contrast to Ic1φ ,

distinguishes between the two components.

Example 20 Consider again the system of two components in series with ex-
ponential life times from Example 19. To calculate Ic∞φ (1) we use (28), i. e.

we need to find the maximum of t 7→ F1(t)F̄1(t)F̄2(t) from the zero of its first
derivative, which is at

t0 = − 1

λ1
ln
(2λ1 + λ2
λ1 + λ2

)
,
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Figure 1: L∞-covariance importance for a two component series system with expo-
nential component lifetimes, where λ1 = αλ2.

hence we obtain

Ic∞φ (1) =
(2λ1 + λ2
λ1 + λ2

)−λ1+λ2
λ1 −

(2λ1 + λ2
λ1 + λ2

)− 2λ1+λ2
λ1

,

and for the other component by interchanging λ1 and λ2. If we put λ1 = αλ2
with α ≥ 1 we get

Ic∞φ (1) =
(2α+ 1

α+ 1

)−(α+1)/α

−
(2α+ 1

α+ 1

)−(2α+1)/α

,

Ic∞φ (2) =
(α+ 2

α+ 1

)−(α+1)

−
(α+ 2

α+ 1

)−(α+2)

.

In Figure 1 the L∞-covariance importances Ic∞φ (1) and Ic∞φ (2) of the two com-

ponents are plotted as a function of α. Unlike the L1-covariance importance,
the L∞-covariance importance distinguishes between the two components and
assigns a larger importance to the component whose lifetime distribution is
smaller in the usual stochastic order, i. e. which has a larger failure rate.

4 Concluding Remarks

We have studied component importance from the point of view of stochastic
dependence, both in the binary (time-dependent) and continuous time case. In
both cases we have used covariance as a dependence measure to construct im-
portance measures, and we have been able to prove that the resulting measures
order components in a natural way, i. e. assign large importance to unreliable
series components and reliable parallel components. Moreover, in the binary
case, similar to the developments in [11], we have employed mutual informa-
tion to obtain an importance measure, but we have only been able to obtain
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a weaker result on importance ordering for purely parallel and series systems;
a generalization of this result remains a topic for further study. We have not
addressed the use of mutual information to define a dependence measure in the
continuous time case since this is associated with a number of additional tech-
nical complications. They are related to the joint distribution Hi of system life
time T and component life time Ti, i = 1, . . . , n, not being absolutely contin-
uous for coherent systems (and not even absolutely continuous with respect to
the product of the distributions of Ti and T ), hence mutual information is not
defined in this case. A generalization of mutual information that covers this
case has been introduced in [12], and some results concerning a correspond-
ing importance measure are obtained in [11]. However, to prove an analog of
Theorem 17 for that importance measure remains an issue for further study.

The present paper has shown that importance measures can be constructed
from dependence measures. From a more fundamental perspective it seems to
be worthwhile to further explore the connection between the notions of stochas-
tic dependence and component importance, and establish links between them.
This might prepare the ground for carrying over certain aspects from one frame-
work to the other, such as ideas for axiomatization and classification of impor-
tance, and thereby facilitate a better understanding of this concept from a more
abstract perspective. This, in turn, might lead to a better understanding of
importance in reliability contexts.
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