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Abstract

We consider non-concave and non-smooth random utility functions with domain of definition
equal to the non-negative half-line. We use a dynamic programming framework together with
measurable selection arguments to establish both the no-arbitrage condition characterization and
the existence of an optimal portfolio in a (generically incomplete) discrete-time financial market
model with finite time horizon.
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1 Introduction

We consider investors trading in a multi-asset and discrete-time financial market. We revisit two
classical problems: the characterization of no arbitrage and the maximisation of the expected utility
of the terminal wealth of an investor.

We consider a general random, possibly non-concave and non-smooth utility function U, defined
on the non-negative half-line (that can be “S-shaped” but our results apply to a broader class of util-
ity functions e.g. to piecewise concave ones) and we provide sufficient conditions which guarantee
the existence of an optimal strategy. Similar optimization problems constitute an area of intensive
study in recent years, see e.g. Bensoussan et al. (2015) , [He and Zhou (2011)), lJin and Zhou (2008),
Carlier and Dana (2011)).

We are working in the setting of |(Carassus et al. (2015) and remove certain restrictive hypoth-
esis of ICarassus et al. (2015). Furthermore, we use methods that are different from the ones in

Rasonyi and Stettner (2005), Rasonyi and Stettner (2006), Carassus and Rasonyi (2015) and|Carassus et al.

(2015), where similar multistep problems were treated. In contrast to the existing literature, we pro-
pose to consider a probability space which is not necessarily complete.

We extend the paper of (Carassus et al. (2015) in several directions. First, we propose an alterna-
tive integrability condition (see Assumption and Proposition to the rather restrictive one of
Carassus et al! (2015) stipulating that E~U(-,0) < oo. The property U(0) = —oo holds for a number of
important (non-random and concave) utility functions (logarithm, —z® for oo < 0). It is a rather natu-
ral requirement since it expresses the fear of investor for defaulting (i.e reaching 0). We also introduce
a new (weaker) version of the asymptotic elasticity assumption (see Assumption [4.10). In particular,
Assumption holds true for concave functions (see Remark [4.15) and therefore our result extends
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the one obtained in [Rasonyi and Stettner (2006) to random utility function and incomplete probabil-
ity spaces. Next, we do not require that the value function is finite for all initial wealth as it was
postulated in|Carassus et al. (2015); instead we only assumed the less restrictive and more tractable
Assumption Finally, instead of using some Carathéodory utility function U as in |Carassus et al.
(2015) (i.e function measurable in w and continuous in ), we consider function which is measurable in
w and upper semicontinuous (usc in the rest of the paper) in z. As U is also non-decreasing, we point
out that this implies that U is jointly measurable in (w,z). Note that in the case of complete sigma-
algebra -U is then a normal integrand (see Definition 14.27 in Rockafellar and Wets (1998) or Section
3 of Chapter 5 in [Molchanov (2005) as well as Corollary 14.34 in [Rockafellar and Wets (1998)). This
will play an important role in the dynamic programming part to obtain certain measurability prop-
erties. Allowing non-continuous U is unusual in the financial mathematics literature (though it is
common in optimization). We highlight that this generalisation has a potential to model investor’s
behaviour which can change suddenly after reaching a desired wealth level. Such a change can be
expressed by a jump of U at the given level.

To solve our optimisation problem, we use dynamic programming as in [Rasonyi and Stettner
(2005),Rasonyi and Stettner (2006), Carassus and Rasonyi (2015) and|Carassus et all(2015) but here
we propose a different approach which provides simpler proofs. As in Nutz (2014), we consider first
a one period case with strategy in R?. Then we use dynamic programming and measurable selection
arguments, namely the Aumann Theorem (see, for example, Corollary 1 in [Sainte-Beuve (1974)) to
solve the multi-period problem. Our modelisation of ({2, F,§, P) is more general than in Nutz (2014)
as there is only one probability measure and we don’t have to postulate Borel space or analytic sets.
We also use the same methodology to reprove classical results on no-arbitrage characterization (see
Rasonyi and Stettner (2005) and lJacod and Shiryaev (1998)) in our context of possibly incomplete
sigma-algebras.

We do not handle the case where the utility is defined on the whole real line (with a similar set of
assumptions) as this would have overburdened the paper. This is left for further research.

The paper is organized as follows: in section [2l we introduce our setup; section [3] contains the main
results on no-arbitrage; section [4] presents the main theorem on terminal wealth expected utility
maximisation; section [B] establishes the existence of an optimal strategy for the one period case; we
prove our main theorem on utility maximisation in section [6l

Finally, section [7| collects some technical results and proofs as well as elements about random sets
measurability.

2 Set-up

Fix a time horizon 7' € N and let (€;):<;<7 be a sequence of spaces and (G;)1<:<7 be a sequence of
sigma-algebra where G; is a sigma-algebra on ), forallt =1,...,7. Fort = 1,...,T, we denote by Q)
the t-fold Cartesian product

Q=0 x ... x Q.

An element of Q! will be denoted by w! = (w1,...,w;) for (wi,...,w;) € Q1 x ... x ;. We also denote by
F; the product sigma-algebra on (!
Fi=G1®...0G.

For the sake of simplicity we consider that the state t = 0 is deterministic and set Q0 := {wy} and
Fo = Go = {0,9Q°}. To avoid heavy notations we will omit the dependency in w in the rest of the paper.
We denote by § the filtration (F;)o<¢<7.

Let P, be a probability measure on F; and ¢;,1 be a stochastic kernel on G; .1 xQt fort =1,...,7—1.
Namely we assume that for all w® € Qf, B € G117 — ¢41(B|w!) is a probability measure on G;,; and
for all B € G411, w' € O — ¢1(B|w!) is F;-measurable. Here we DO NOT assume that G; contains
the null sets of P, and that G, contains the null sets of ¢, 1(.|w!) for all w! € Q. Then we define for



A € F; the probability P, by Fubini’s Theorem for stochastic kernel (see Lemma [7.7).
:/ / / La(wi, ... we)gs(dwg|w™1) - - - go(dwsa|wh) Pr (dwy). (1)
Q1 J Q

Finally (Q,F,3, P) := (QF, Fr, 3, Pr) will be our basic measurable space. The expectation under P
will be denoted by Ep, ; when t = T', we simply write E.

Remark 2.1 If we choose for 2 some Polish space, then any probability measure P can be decomposed
in the form of (I) (see the measure decomposition theorem in Dellacherie and Meyern (1979) I11.70-7).

From now on the positive (resp. negative) part of some number or random variable X is denoted
by X* (resp. X~). We will also write f*(X) for (f(X ))jE for any random variable X and (possibly
random) function f.

In the rest of the paper we will use generalised integral: for some f; : Q' — RU {400}, F;-measurable,
such that [, f; (w")Py(dw') < oo or [o f; (w')Pi(dw') < oo, we define

Qtft( Pt dw / ft Pt dw / ft Pt dw)

where the equality holds in R U {£o0c0}. We refer to Lemma [7.1] Definition [7.2] and Proposition [7.4]
of the Appendix for more details and properties. In particular, if f; is non-negative or if f; is such
that [, f (W) Py (dw') < oo (this will be the two cases of interest in the paper) we can apply Fubini’s
Theorem ] and we have

ft(wt)Pt(dwt):/ / ft(wl,...,wt)qt(dwt\wt_l)---qg(dwglwl)Pl(dwl),
Ot Q1 JQo Q4

where the equality holds in [0, <] if f; is non-negative and in [—oco, 00) if [, f;" (W) Pi(dw®) < oo.
Finally, we give some notations about completion of the probability space (Qf, F;, P;) for some t €
{1,...,T}. We will denote by Np, the set of P, negligible sets of Q' i.e Np, = {N C Qf, IM € F, N C
M and P,(M) = 0}. Let 7t = {AUN,A € F;, N € Np,} and P;(AUN) = P,(A) for AUN € F,. Then it
is well known that P; is a measure on F; which coincides with P; on F;, that (Q, 7y, P;) is a complete
probability space and that P, restricted to Np, is equal to zero.

Fort=0,...,T7 — 1, let Z; be the set of F;-measurable random variables mapping Q! to R

The following lemma makes the link between conditional expectation and kernel. To do that, we
introduce 7/, the filtration on Q7 associated to F;, defined by

F'=60..0G@{0,Q}...2{0,Qr}.

Let =7 be the set of 7/ -measurable random variables from Q7 to R?. Let X; : Q7 — Qy, X;(w1, ..., wr) =
wt be the coordinate mapping corresponding to t. Then F/ = o(Xi,...,X;). So h € ! if and only if
there exists some g € Z; such that h = g(Xy,...,X;). This implies that h(w’) = g(w'). For ease of
notation we will identify h and g and also %, 7/, =, and =7 .

Lemma 2.2 Let 0 < s <t <T. Let h € Z; such that [, h"dP, < co then
E(h|Fs) = o(Xi1,...,Xs) Ps a.s.

olwy, ... ,wg) = / h(wl,...,ws,ws_H,...wt)qt(wt|wt_l)...qs+1(ws+1|w5).
QS+1>< XQt

1From now, we call Fubini’s theorem the Fubini theorem for stochastic kernel (see eg Lemma [7.1] Proposition[7.4).



Proof. For the sake of completeness, the proof is reported in Section of the Appendix. O

Let {S;, 0 <t < T} be a d-dimensional F;-adapted process representing the price of d risky securi-
ties in the financial market in consideration. There exists also a riskless asset for which we assume
a constant price equal to 1, for the sake of simplicity. Without this assumption, all the developments
below could be carried out using discounted prices. The notation AS; := S; — S;_1 will often be used.
If 2,y € R? then the concatenation xy stands for their scalar product. The symbol | - | denotes the
Euclidean norm on R? (or on R).

Trading strategies are represented by d-dimensional predictable processes (¢;)1<i<7, Where ¢!
denotes the investor’s holdings in asset i at time ¢; predictability means that ¢; € =;,_;. The family of
all predictable trading strategies is denoted by .

We assume that trading is self-financing. As the riskless asset’s price is constant 1, the value at
time ¢ of a portfolio ¢ starting from initial capital z € R is given by

¢
Vi =z 4 Z $iAS;.
i—1

3 No-arbitrage condition

The following absence of arbitrage condition or NA condition is standard, it is equivalent to the ex-
istence of a risk-neutral measure in discrete-time markets with finite horizon, see e.g. [Dalang et al.
(1990).

(NA) If ng"z’ > 0 P-a.s. for some ¢ € © then V79’¢ =0 P-a.s.

Remark 3.1 Tt is proved in Proposition 1.1 of Rasonyi and Stettnen (2006) that (NA) is equivalent to
the no-arbitrage assumption which stipulates that no investor should be allowed to make a profit out
of nothing and without risk, even with a budget constraint: for all zp > 0 if ¢ € ® is such that with
V;f“"z’ > 1z a.s., then V;O"z’ = xp a.s.

We now provide classical tools and results about the (NA) condition and its “concrete” local character-
ization, see Proposition [3.7] that we will use in the rest of the paper. We start with the set D!*! (see
Definition where D'*!(w?) is the smallest affine subspace of R? containing the support of the dis-
tribution of AS;,1(w',.) under g;11(.|w!). If D1 (w!) = R? then, intuitively, there are no redundant as-
sets. Otherwise, for ¢, 1 € Z;, one may always replace ¢;.1(w’, -) by its orthogonal projection qStlH(wt, )
on D'(w') without changing the portfolio value since ¢p1(w')AS1(wh,") = ¢ (WHAS (W),
qr11(-Jw!) a.s., see Remark [5.3] and Lemma below as well as Remark 9.1 of [Follmer and Schied
(2002).

Definition 3.2 Let (2, ) be a measurable space and (7, 7)) a topological space. A random set R is a
set valued function that assigns to each w € Q2 a subset R(w) of . We write R : Q — T. We say that R
is measurable if for any open set O € T {w € Q, R(w) N O # 0} € F.

Definition 3.3 Let 0 < t < T be fixed. We define the random set (see Definition D1 . Qf —» RY
by

D! = ({4 CRY, closed, grs1 (A8t (W', ) € Alw') = 1) | (2)

For w! € Qf, D'*!(w!) c R? is the support of the distribution of AS;,;(w',-) under g1 (-|w’). We also
define the random set D**1 : QY — R? by

DY (wh) = AfF (f)tﬂ(wt)) : (3)

where Aff denotes the affine hull of a set.



The following lemma establishes some important properties of D'*!and D! and in particular Graph(D'*!) €
F; ® B(R?). This result will be central in the proof of most of our results.

Lemma 3.4 Let 0 < t < T be fixed. Let l~)t+1~: Ot — R and D! : Qf — R? be the random sets
defined in (2) and (3) of Definition[3.3. Then D'*' and D'*' are both non-empty, closed-valued and
F;-measurable random sets (see Definition[3.2). In particular, Graph(D'*') € F, ® B(R?).

Proof. The proof is reported in Section [7.3] of the Appendix. O

In Lemma [3.5] which is used in the proof of Lemma [3.6] for projection purposes, we obtain a well-
know result : for w' € Q! fixed and under a local version of (NA), D'*!(w') is a vector subspace of R?
(see for instance Theorem 1.48 of Féllmer and Schied (2002)). Then in Lemmal/(3.6/ we prove that under
the (NA) assumption, for P; almost all w?, D'*!(w?) is a vector subspace of R%. We also provide a local
version of the (NA) condition (see (5)). Note that Lemma[3.6]is a direct consequence of Proposition 3.3
in Risonyi and Stettner (2005) combined with Lemma [2.2] (see Remark [3.10). We propose alternative
proofs of Lemmata[3.5 and 3.6l which are coherent with our framework and our methodology.

Lemma 3.5 Let0 <t < T and w' € Q! be fixed. Assume that for all h € D1 (w!)\{0}
qt+1(hASt+1(wt,-) > 0|wt) < 1.
Then 0 € D1 (w!) and the set D'*!(w') is actually a vector subspace of R%.

Proof. The proof is reported in Section of the Appendix. O

Lemma 3.6 Assume that the (NA) condition holds true. Then for all 0 < t < T — 1, there exists a
full measure set Q% ,, such that for all w' € Q% ,,, 0 € D*(w!), i.e D1(w!) is a vector space of RY.
Moreover, for all w* € QO ,, and all h € R? we get that

Qir1(RAS 1 (W', ) > 0lw') =1 = g1 (hASi 1 (W', ) = 0]wh) = 1. (4)
In particular, ifw' € QY 4, and h € D! (w') we obtain that

qi+1(RAS 1 (W) > 0jw') =1 = h =0. (5)

Proof. Let 0 < t < T be fixed. Recall that F; is the P;-completion of F; and that P, is the (unique)
extension of P, to F;. We introduce the following random set II¢

' = {w' € @, 3h e D" w'),h #0, g1 (hASi1 (W', ) > Olw') = 1} .

Assume for a moment that IT* € F; and that P,(IT*) = 0 (this will be proven below). Let w’ € Q!\II*. The
fact that 0 € D'1(w?) is a direct consequence of the definition of IT* and of Lemma We now prove
). Let h € R? be fixed such that ¢, 1(hAS;;1(w?,-) > 0|w!) = 1. We prove that g, (hAS; 1 (W) =
Olwt) = 1. If h = 0 this is straightforward. If h € D'1(w?) \ {0}, w! € II* which is impossible. Now if
h ¢ D' (w!) and h # 0, let b’ be the orthogonal projection of h on D'*!(w!) (recall that since w! ¢ II*
D' (w!) is a vector subspace). We first show that ¢, 1(h/AS;;1(w!,-) > 0|w!) = 1. Indeed, if it were not
the case the set B := {wi11 € Qur1, WAS 1 (wh, wir1) < 0} would verify g, 1(Blw!) > 0. Set

Lt-‘rl(wt) — (Dt-i-l(wt))l. (6)

As (h — 1) € L' (w?!) (recall that D! (w?!) is a vector subspace), by Lemma [7.18 the set A := {w;;1 €
D1, (h— )AS 1 (wh wir1) = 0} verify g11(Ajw!) = 1. We would therefore obtain that q;y1(A N
Blw') > 0 which implies that q;1(hAS;+1(w',.) > 0lw!) < 1, a contradiction. Thus q;1 (W ASp1(wt, ) >

5



Olwt) = 1. If B’ # 0 as b’ € D1 (w!), w! € II* which is again a contradiction. Thus /' = 0 and as
AN{NAS 1 (@) = 0} C {hAS1(w', ) = 0}, g+ 1(hAS 1 (@', ) = O[w') = 1.
As Q' \ II' € F; there exists QY 4, € F; and N € Np, (the collection of negligible set of (2!, P,)) such
that Qf \ II' = Q4 ,; U N' and P,(Q, 4;) = P(Q\II*) = 1. Since QY ,; € QF\ II, it follows that for all
wt € QO 4;, 0 € DF(w!) and for all h € RY, (@) holds true.
We prove (5). Assume now that w! € QY ,, and h € D'(w!) are such that ¢ 1(hASi 1 (W, -) > 0w?) =
1. Using (@) and Lemma [T.18 we get that h € L'+ (w?). So h € DL (w!) N LI (w!) = {0} and (B holds
true.

It remains to prove that IT" € F; and P;(II*) = 0. To do that we introduce the following random set
H: Ot - R?

HY W) :={h € D' ('), h #0, qr1(hASi (W', -) > 0fw') =1} .
Then
' = {w'eQ H'(W")#0}= projthraph(Ht)

since Graph(H?') = {(w', h) € O x RY, h € HY(w)}.
We prove now that Graph(H') € F; ® B(R?). Indeed, we can rewrite that

Graph(H') = Graph(D'*1) ) {(wt, h) € QO x RY, gt (RAS4 (wh, -) > 0lwt) = 1} N (Qt X Rd\{0}> .

As from Lemma [7.9, {(w’,h) € Q' x R%, 41 (hAS41 (0!, ) > 0w') =1} € F, @ B(R?) and from
Lemma 3.4, Graph(D'*') € F, ® B(RY), we obtain that Graph(H') € F; ® B(R%). The Projection
Theorem (see for example Theorem 3.23 in (Castaing and Valadier (1977)) applies and II! = {H! #
0} = projjg:Graph(H ) € F;. From the Aumann Theorem (see Corollary 1 in [Sainte-Beuve (1974))
there exists a F;-measurable selector h;,1 : II' — R? such that h; ;(w!) € H*(w?) for every w! € II*.
We now extend hyy 1 on 2 by setting hyy1(w!) = 0 for w® € QI\II!. It is clear that h;.; remains F;-
measurable. Applying Lemma [7.10] there exists i1 : 9 — R? which is F;-measurable and satisfies
hiy1 = hiy1 Pi-almost surely. Then if we set

CP(wt) = Qt+1(ht+1(wt)A5t+1(wt7 ) > O\Wt)a
P(w') = g1 (heg1 (WHAS 1 (W) > 0wh),

we get from Proposition that ¢ is F;-measurable and from Proposition iii) that @ is Fy-
measurable. Furthermore as {w’ € O, p(w!) # B(w')} C {w! € O, hy(w') # her1(Wh)}, ¢ = P Pr-almost
surely. This implies that th BdP; = th wdP;. Now we define the predictable process (¢:)i<i<1 by
G111 = hyrp and ¢; =0 for i #t + 1. Then

P(VP?>0) = P(h41ASps1 > 0) = Py (hys1ASp1 > 0)

- / (W) P(dut) = / ()P (d)
Ot Qt

_ / dest (@) ASe1 (@, ) > 0lwt) Pyldw') +
1T

/ der1 (0 % ASpy (o) > 0lut) Po(dw))

QO\IT*

= Py(II") 4+ Py(Q'\ II") =1,

where we have used that if w! € II%, hyy1(w?) € HY(w!) and otherwise h;i1(w') = 0. With the same



arguments we obtain that
P(V2? > 0) = Py(hiy1ASi1 > 0)

= /t qi+1 (Et+1(wt)ASt+1(wt, ) > 0|wt) ﬁt(dwt) —|—/ . qt+1 (0 > 0|wt) Ft(dwt)
11 QE\ITt

_ / et (e (@)A1 (!, ) > 0t) P,
11

Let w' € II* then gy 1 (he41(w') ASe1(wh,+) > 0lw') > 0. Indeed, if it is not the case then

qt+1 (Et+1(wt)ASt+1( t ) < 0|w ) =1. AS wt S Ht, Et“(wt) S Dt+1(wt) and qt+1 (Et+1(wt)ASt+1(wt, ) > 0|wt) =
1, Lemma-applies and hy 1 (w') € L (wh). Thus we get that h; 1 (w!) € L (w!) N DL (W) = {0},

a contradiction. So if P;(II") > 0 we obtain that P(V, ¢ > 0) > 0. This contradicts the (NA) condition

and we obtain P;(II') = 0, the required result. O
Similarly as in[Rasonyi and Stettner (2005) and Jacod and Shiryaev (1998), we prove a “quantitative”
characterization of (NA).

Proposition 3.7 Assume that the (NA) condition holds true and let 0 < ¢ < T. Then there exists
QNA € F; with P,(Q4 4) =1 and QY , C QY 4, (see Lemma|(3.8 for the definition of QY ,,) such that for
all w' € Qb ,, there exists a;(w') € (0, 1] such that for all h € D' (w?)

1 (PAS 1 (W' ) < —ag(Wh)|h]jw') > ay(w’). (7)
Furthermore w! — oy (w!) is F;-measurable.

Proof. Let w' € QY 4, be fixed (2}, is defined in Lemma [3.6).
Step 1 : Proof of (). Introduce the following set for n > 1

Ane) = (e D, = 1 g (St < 1ot ) < 2. ®)

n
Let 7ig(w?) := inf{n > 1, A, (w') = 0} with the convention that inf () = +00. Note that if D'*!(w’) = {0},
then 7ig(w!) = 1 < co. We assume now that D'*!(w!) # {0} and we prove by contradiction that
fio(w!) < co. Assume that mp(w!) = oo i.e for all n > 1, A, (w?) # 0. We thus get h, (w!) € D (w!) with
|hn(w?)| = 1 and such that
1 1
et (i WASe (W4) < 2 ') < o
By passing to a sub-sequence we can assume that h,(w!) tends to some h*(w!) € D1 (w?) (recall that

the set D't (w!) is closed by definition) with |h*(w!)| = 1. Introduce

B(wt) = {wt+1 S Qt+1, h*( t)ASH_l(wt wt+1) < 0}
Bu(w') = w1 € Qup, ho(@)AS (W wer) < —1/n}.
Then B(w') C liminf, B,(w'). Furthermore as 1y, i, 5, (t) = liminf, 15 (), Fatou’s Lemma implies

that
g1 (R (WH)AS 1 (W) < 0lw') < /Q Limint, By (wt) (@e41)@et1 (wWeg1|wh)
t+1

< liminf/ 1Bn(wt)(wt+1)Qt+1(Wt+1|Wt) =0.
Qi1

This implies that g1 (h*(w')ASi1(w',-) > 0lw’) = 1, and thus from () in Lemma [3.6] we get that
h*(w') = 0 which contradicts |h*(w")| = 1. Thus np(w’) < co and we can set for w' € QY




It is clear that @; € (0,1]. Then for all w! € QY ,,, for all h € D'l (w!) with || = 1, by definition of
Az (1) (') we obtain

Gt+1 (hASHl(wt, ) < —@t(wt)’wt) > @ (wh). 9

Step 2 : measurability issue.
We now construct a function o; which is F;-measurable and satisfies (7) as well. To do that we use
the Aumann Theorem again as in the proof of Lemma but this time applied to the random set
A, - QF — RY where A, (w!) is defined in ®) if w! € Q4 4, and A, (w') = () otherwise.

We prove that graph(A,) € F,@B(R?). From Lemmal[7.9] the function (w’, ) — g41 (RAS;11(w', ) <
is F; ® B(R%)-measurable. From Lemma 3.4, Graph(D't') € F; ® B(R?) and the result follows from

Graph(A,) = Graph(D™) (N (Qﬁv X {h eRL || = 1})

1 1
ﬂ {(wt,h) e Of x RY, Qi1 (hAStH(wt,-) < _E|Wt> < —}.

n

Using the Projection Theorem (see for example Theorem 3.23 in (Castaing and Valadier (1977)), we
get that {w' € Qf, A,(w') # 0} € F;. We now extend 7y to Q! by setting np(w') = 1 if w’ ¢ QY ,;. Then
My>1}=Q'c F, c Frand for k > 1

Mo >k} =Qain [ {A#0}eF,

1<n<k—1

this implies that 7y and thus @; is F;-measurable. Using Lemma [7.10, we get some F;-measurable
function oy such that oy = @; P, almost surely, i.e there exists M! € F; such that P,(M?) = 0 and
{ow # @} € M'. We set Qf, = Qb 4, N (Q"\ M;). Then P,(Q%,) = 1 and as «; is F;-measurable it
remains to check that (7) holds true.

For w' € QY 4, au(w') = @ (w') (recall that ' € QF \ M;) and since v’ € Qf ,;, @) holds true and
consequently (7) as well. It is also clear that a;(w') € (0, 1] and the proof is completed. O

Remark 3.8 In Definition 8.3 Lemmata [3.4], [3.5] [3.6] and Proposition [3.7] we have included the case
t = 0. Note however that since Q° = {wy}, the various statements and their respective proofs could be
considerably simplified.

Remark 3.9 The characterization of (NA) given by (@) works only for h € D**!(w!). This is the reason
why we will have to project the strategy ¢;,1 € =; onto D'*!(w!) in our proofs.

Remark 3.10 In order to obtain Proposition [3.7] we could have applied directly Proposition 3.3. of
Rasonyi and Stettner (2005) (note their proof doesn’t use measurable selection arguments and pro-
vides directly the F; measurability of «;) and used Lemma [2.2

4 Utility problem and main result

We now describe the investor’s risk preferences by a possibly non-concave, random utility function.

Definition 4.1 A random utility is any function U : Q x R — R U {£oc} satisfying the following
conditions

e for every = € R, the function U (-,z) : Q@ — RU{+oc} is F-measurable,
e for all w € Q, the function U (w,-) : R — R U {£o00} is non-decreasing and usc on R,

e U(-,z) =—o0, forallz < 0.
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We introduce the following notations.

Definition 4.2 For all z > 0, we denote by ®(x) the set of all strategies ¢ € ® such that Pr(V} 2y >
0) = 1 and by ®(U, x) the set of all strategies ¢ € ®(z) such that EU(-, V:,?’(z’) exists in a generalised
sense, i.c. either EU™ (-, V;7%(-)) < 0o or EU™ (-, Vi?(-)) < oo.

Remark 4.3 Under (NA), if ¢ € ®(z) then we have that P,(V,"(-) > 0) = 1 forall 1 <t < T see Lemma

We now formulate the problem which is our main concern in the sequel.

Definition 4.4 Let > 0. The non-concave portfolio problem on a finite horizon 7" with initial wealth
x is

u(z) =  sup EU(-,V;’qj(-)). (10)
Ped(U,x)

Remark 4.5 Assume that there exists some P-full measure set Q € F such that for all w € Q,  —
U(w,x) is non-decreasing and usc on [0, +0), i.e. © — U(w, z) is usc on (0,00) and for any (z,,),>1 C
[0, +00) converging to 0, U(w,0) > limsup,, U(w, x,). Weset U : @ x R — R U {400}

U(w> 33‘) = U(wv m)lﬁx[o,_;_oo)(wv :L') + (_oo)lﬂx(—oo,O) (w> 33‘)

Then U satisfies Definition see Lemma for the second item. Moreover, the value function
does not change

w@)= sup EU(-,VE?(),
PP (U,x)

and if there exists some ¢* € ®(U,z) such that u(z) = EU(-,V} (), then ¢* is an optimal solution
for (10).

Remark 4.6 Let U be a utility function defined only on (0,00) and verifying for every z € (0,00),
U(,z): Q@ — RU{£oo} is F-measurable and for all w € Q, U (w,-) : (0,00) - RU {£o0} is non-
decreasing and usc on (0, c0). We may extend U on R by setting, for all w € Q, U(w, 0) = lim,_,o U(w, x)
and for z < 0, U(w,z) = —oo. Then, as before, U verifies Definition 4.1 and the value function has not
changed. Note that we could have considered a closed interval F' = [a,0) of R instead of [0, ), we
could have adapted our notion of upper semicontinuity and all the sequel would apply.

We now present conditions on U which allows to assert that if ¢ € ®(z) then EU(-,V, () is well-
defined and that there exists some optimal solution for (10).

Assumption 4.7 For all ¢ € ®(U,1), EU+ ( v;v¢(.)) < .
Assumption 4.8 (U, 1) = ®(1).

Remark 4.9 Assumptions and are connected but play a different role. Assumption guar-
antees that EU ( “ V%qb()) is well-defined for all & € ®(1) and allows us to relax Assumption 2.7 of
Carassus et al! (2015) on the behavior of U around 0, namely that EU~(-,0) < co. Then Assumption
(together with Assumption[4.10) is used to show that u(z) < oo for all z > 0. Note that Assumption

[4.7is much more easy to verify that the classical assumption that u(z) < oo (for all or some z > 0),
which is usually made in the theory of maximisation of the terminal wealth utility.



In Proposition [6.1] we will show that under Assumptions and EUT (-, Vi d’()) < 0
for all z > 0 and ¢ € ®(z). Thus ®(U,z) = ®(z). Note that if there exists some ¢ € ®(U, z) such that
EU* (-, V{f"z’(-)) =ooand EU™ (-, V;’¢(-)) < oo then u(r) = co and the problem is ill-posed.

We propose some examples where Assumptions [4.7] or hold true. Example ii) illustrates the
distinction between Assumptions and and justifies we do not merge both assumptions and

postulate that EU ™ (-, V%’(b(-)) < o0, for all ¢ € ®(1).

i) If U is bounded above then both Assumptions are trivially true. We get directly that ®(U,z) =
O (z) for all =z > 0.

ii) Assume that EU(-,0) < oo holds true. Let z > 0 and ¢ € ®(x) be fixed. Using that U~ is
non-decreasing for all w € 2 we get that

EU~(-,V?(-)) < EU™(-,0) < 400,
Thus EU(-, Vg () is well-defined, ®(U, z) = ®(z) and Assumption @8 holds true.
iii) Assume that there exists some & > 1 such that U(-,# — 1) > 0 P-almost surely and

U(#) = sup EU(-,Vi?()) < oo,
PED(2)

where we set for ¢ € ®(2)\®(U, z), EU(-, V:,gfd)()) = —oo. Let ¢ € ®(1) be fixed. Then using that
U is non-decreasing for all w € €2, we have that P-almost surely

UGV’ +&—1)>U(,&—1) > 0.

Therefore U (-, V}?(-) + & — 1) = UT(-,V;»?(-) + & — 1) P-almost surely. Now using that U is
non-decreasing for all w € Q we get that for all ¢ € ®(1)

EUT (-, V3?()) < BUY (L V() + 2 —1) = BU VAP () + & — 1) <T(E) < +o0

and Assumptions and are satisfied. Instead of stipulating that %(%) < oo it is enough to
assume that EU (-, V;7?(-)) < oo for all ¢ € ®(z).

iv) We will prove in Theorem[4.17that under the (NA) condition and Assumption[4.10, Assumptions
4.7 and [4.8 hold true if FUT(-,1) < 400 and if for all 0 < ¢ < T |AS], alt € W, (see for the
definition of W,).

Assumption 4.10 We assume that there exist some constants 7 > 0, K > 0, as well as a random
variable C satisfying C(w) > 0 for all w € Q2 and E(C) < oo such that for allw € Q, A > 1 and z € R,
we have

Uw, ) < KX (U (w,a: + %) + C’(w)) : (11)

Remark 4.11 First note that the constant % in (11I) has been chosen arbitrarily to simplify the presen-
tation. This can be done without loss of generality. Indeed, assume there exists some constant 7 > 0
such that forallw e Q, A >1andz € R

Uw,\2) < KX (U(w,z+7)+Cw)). (12)

Using the monotonicity of U, we can always assume z > 0. Set for allw € Q and z € R, U(w,z) =
U(w,2zz). Then for all w € Q, A > 1 and = € R, we have that

U(w, ) = U(w,2X\Tz) < K\ (U(w, 2Tz +T) + C(w)) = KXV (U (w,x + %) + C(w)) :

10



and U satisfies (T1). It is clear that if ¢* is an optimal solution for the problem
u(x) := sup oco(T, 2) EU(-, VTﬁ’¢(-)) then 27¢* is an optimal solution for (10). Note as well that, since
K >0and C > 0, it is immediate to see that forallw e Q, A\ >1andz € R

Ut(w, ) < KX <U+ <w,x + %) + C’(w)) . (13)

Remark 4.12 We now provide some insight on Assumption As the inequality (11) is used to
control the behaviour of U™ (-, x) for large values of z, the usual assumption in the non-concave case
(see Assumption 2.10 in/Carassus et al. (2015)) is that there exists some & > 0 such that EU (-, £) < oo
as well as a random variable C; satisfying F(C) < oo and C;(w) > 0 for all w such that for all z > #,
A>landw e Q

Uw, \z) <\ (U(w, ) + C(w)) . (14)

We prove now that if (I4) holds true then is verified with 7 = £, K = 1 and C = C;. Indeed,
assume that is verified. For x > 0, using the monotonicity of U, we have for allw € Q and A > 1
that

Uw, \z) < U(w, Mz +2)) <A (U(w,z +2) + C1(w)).-

And for = < 0 this is true as well since U(w, z) = —o0.
Therefore is a weaker assumption than (I14). Note as well that if we assume that (14) holds true
for all x > 0, then if 0 < x < 1 and w € Q we have

X

Uw,1) < (E)Ww(w,w) +O1W)),

and U(w,0) := limy 0 4> U(w,z) > —Ci(w). This excludes for instance the case where U is the
logarithm. Furthermore, this also implies that EU~(-,0) < ECy < oo and we are back to Assumption
2.7 ofICarassus et al. (2015)

Alternatively, recalling the way the concave case is handled (see Lemma 2 in Rasonyi and Stettner
(2005)), we could have introduced that there exists a random variable C; satisfying F(C3) < oo and
Cy > 0suchthatforallz e R, w e

Ut (w,A\z) <N (U (w,z) + Ca(w)) . (15)

We have not done so as it is difficult to prove that this inequality is preserved through the dynamic
programming procedure when considering non-concave functions unless we assume that EU~(-,0) <
oo as inCarassus et all (2015).

Remark 4.13 1If there exists some set Qap € F with P(Q4r) = 1 such that holds true only for
w € Qap, then setting as in Remark[4.5], U(w, z) := U(w, )1,z xr(w, ), U satisfies (II) and the value
function in does not change. We also assume without loss of generality that C(w) > 0 for all w in
(11). Indeed, if C > 0 P-a.s, we could consider C' := Cl.,. Then Assumption would hold true

with C instead of C.

Remark 4.14 In the case where (14) holds true, we refer to remark 2.5 of|(Carassus and Rasonyi (2015)
and remark 2.10 of |Carassus et al. (2015) for the interpretation of % : for C; = 0, it can be seen as a
generalization of the “asymptotic elasticity” of U at +oc (see Kramkov and Schachermayer (1999)). So
requires that the (generalized) asymptotic elasticity at +oo is finite. In this case and if U is differ-
entiable there is a nice economic interpretation of the “asymptotic elasticity” as the ratio of “marginal

utility”: U’'(z) and the “average utility”: @, see again Section 6 of [Kramkov and Schachermayer

2In the cited paper C; > 0 a.s but this is not an issue, see Remark .13 below
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(1999) for further discussions. The case C; > 0 allows bounded utilities. In|Carassus et al. (2015) it is
proved that unlike in the concave case, the fact that U is bounded from above (and therefore satisfies
(12)) does not implies that the asymptotic elasticity is bounded.

We propose now an example of an unbounded utility function satisfying and such that

limsup,_, o, % = +o0. This shows (as the counterexample of |Carassus et al. (2015)), that Assump-

tion [4.10lis less strong that the usual “asymptotic elasticity”. Let U : R — R be defined by

U(‘T) = _001(—00,0) (.Z') + Zpl[p,p-‘rl—
p=0

2P

1 (@) + fp(‘%’)]‘[p—kl—ﬁ,p—kl)(m)

where f,(z) = 2°*'z + (p+ 1) (1 — 2°™!) for p € N. Then U satisfies Definition .1 and we have

1
Ul(x) =) 2" 1ot pey(@):
p=0

We prove that holds true. Note that for all z > 0 we have x — 1 < U(z) < z + 1. Let x > 0 and
A > 1 be fixed. Then we get that

UNz) < e+ 1<AU@+1)+ D) +1<A(U@+1)+2),
and (12) is true with K = 7 = 1 and C = 2. Nowforkrzo,letxk:kw—l—zk%. We have
U(xk) = fk(xk) =k + % and

U’ (z) k+1 (k7 +1- ﬁ)
ST ATk _ o — 00 +00.

U(wr) k+ 1 "
Remark 4.15 We propose further examples where Assumption [4.10/ holds true.

i) Assume that U is bounded from above by some integrable random constant C; > 0 and that
EU(-,3) < oc. Then for all z > 0, A > 1, w € Q we have

U(w,\z) < Ci(w) < NU <w,x—|— %) +A (C'l(w) U <w’$+ %))

< \U <w,m—|—%> + A (C’l(w)+U_ (wé)) )

and holds true for z > O with K = 1,7 =1and C(:) = C1(-) + U (-, 3). As U(-,z) = —oo for
x < 0, (II) is true for all x € R.

ii) Assume that U satisfies Definition 4.1l and that the restriction of U to [0, c0) is concave and non-
decreasing and that EU (-, 1) < oco. We use similar arguments as in Lemma 2 in Rasonyi and Stettner
(2006). Indeed, let x > 2, A > 1 be fixed we have

U(w, ) <U(w,x) + U'(ij)()\x —1) < n U(w,z) — U(w,1)

U( e e SV
< Uw, ) + 200 — 1) (U(w, z) — U(w, 1))

U, ) + 3~ 3) (U, ) - U(w, 1))
<A (U(w,2) + U™ (w,1))

where we have used the concavity of U for the first two inequalities and the fact that > 2 and
U is non-decreasing for the other ones. Thus from the proof that implies (12), we obtain that
holds true with K =3,y =1,7=2and C(-) = U (-, 1).
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We can now state our main result.

Theorem 4.16 Assume the (NA) condition and that Assumptions [4.7, and hold true. Let
x > 0. Then, u(z) < co and there exists some optimal strategy ¢* € ®(U, x) such that

u(x) = BUC, Vi ().
Moreover ¢;(-) € D'(-) a.s. for all0 <t <T.

We will use dynamic programming in order to prove our main result. We will combine the ap-
proach of Rasonyi and Stettner (2005), Rasonyi and Stettner (2006), |(Carassus and Rasonyi (2015),
Carassus et al. (2015) and Nutz (2014). As in [Nutz (2014), we will consider a one period case where
the initial filtration is trivial (so that strategies are in R%) and thus the proofs are much simpler than
the ones of Rasonyi and Stettner (2005), [Rasonyi and Stettner (2006), (Carassus and Rasonyi (2015)
and |Carassus et all (2015). The price to pay is that in the multi-period case where we use inten-
sively measurable selection arguments (as in Nutz (2014)) in order to obtain Theorem In our
model, there is only one probability measure, so we don’t have to introduce Borel spaces and analytic
sets. Thus our modelisation of (2, F,§, P) is more general than the one of Nutz (2014) restricted
to one probability measure. As we are in a non concave setting we use similar ideas to theses of
Carassus and Rasonyi (2015) and |Carassus et al. (2015).

Finally, as in IRdsonyi and Stettner (2005), [Rasonyi and Stettner (2006), |(Carassus and Rasonyi
(2015) and Carassus et al. (2015), we propose the following result as a simpler but still general setting
where Theorem applies. We introduce for all0 <t < T

W= {X : Q' - RU {+o0}, Fi-measurable, E|X|? < oo forall p >0} (16)

Theorem 4.17 Assume the (NA) condition and that Assumption[4.10 hold true. Assume furthermore
that EUY(-,1) < 400 and that for all 0 <t < T |AS;|, .= € W;. Let = > 0. Then, for all ¢ € ®(x) and

all0 <t <T, Vtz’“b € W;. Moreover, there exists some optimal strategy ¢* € ®(U, x) such that

u(z) = BU(-, VS () < o0

5 One period case

Let (Q,H, Q) be a probability space (we denote by E the expectation under Q) and Y (-) a H-measurable
R¢-valued random variable. Y (-) could represent the change of value of the price process. Let D c R¢
be the smallest affine subspace of R? containing the support of the distribution of Y (-). We assume
that D contains 0, so that D is in fact a non-empty vector subspace of R%. The condition corresponding
to (NA) in the present setting is

Assumption 5.1 There exists some constant 0 < a < 1 such that for all h € D
QY (:) < —alh|) > a. a7
Remark 5.2 If D = {0} then is trivially true.

Remark below is exactly Remark 8 of [Carassus and Rasonyi (2015) (see also Lemma 2.6 of Nutz
(2014)).

Remark 5.3 Let h € R? and let 2’ € R? be the orthogonal projection of h on D. Then h — &' L D hence
{Y(:) e D} c {(h—R)Y(-) = 0}. It follows that

QY () =hY())=Q(h—K)Y()=0)>Q(Y()eD)=1
by the definition of D. Hence Q(hY (-) = K'Y (-)) = 1.
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Assumption 5.4 We consider a random utility V : Q x R — R satisfying the following two conditions
e for every x € R, the function V(-,z) : Q — R is H-measurable,
e for every w € Q, the function V(w,-) : R — R is non-decreasing and usc on R,
o V(,z)=—o0, for all z < 0.

Let z > 0 be fixed. We define

My = {h eRY, Qx+hY () > 0) = 1} , (18)
Dy == H, N D. (19)

It is clear that H, and D, are closed subsets of R?. We now define the function which is our main
concern in the one period case

(&) = (0001 ae) (&) + L o)) smp BV (-4 BY (). 20)
EHa

Remark 5.5 First note that, from Remark[5.3]

v(7) = (—00)1(—o6,0) (%) + 1[0, 400)(T) hsuf;)) EV(.,z+ hY(")). (21)
€D,

Remark 5.6 1t will be shown in Lemma that under Assumptions [5.1] 5.4], 5.7 and [5.9] for all
h € My, E(V(-,z + hY(-)) is well-defined and more precisely that EV*(-,2 + hY (-)) < 400. So, under
this set of assumptions, ®(V, x), the set of h € H, such that EV (-, 2+ hY (-)) is well-defined, equals #,.

We present now the assumptions which allow to assert that there exists some optimal solution for
@0). First we introduce the “asymptotic elasticity” assumption.

Assumption 5.7 There exist some constants 7 > 0, K > 0, as well as some H-measurable C with
C(w) >0 for allw € Q and E(C) < oo, such that for all w € Q, for all A > 1, € R we have

V(w ) < KAT (v (w,m + %) + C’(w)) . (22)

Remark 5.8 The same comments as in Remark apply. Furthermore, note that since X > 0 and
C >0wealsohavethatforallw e Q,allA>1andz € R

VH(w, \z) < KXT <V+ <w,3: + %) + C’(w)) . (23)

We introduce now some integrability assumption on V.

Assumption 5.9 For every h € H;,
EVT(,1+RhY () < . (24)

The following lemma corresponds to Lemma 2.1 of Rasonyi and Stettner (2006) in the deterministic
case.

Lemma 5.10 Assume that Assumption holds true. Let x > 0 be fixed. Then D, C B(0,%) (see
for the definition of D), where B(0,%) = {h € R%, |h| < £} and D, is a convex, compact subspace
of R,
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Note that if z = 0, it follows that D, = {0}.

Proof. Let h € D,. Assume that |h| > £ and let w € {hY(:) < —alh|}. Then z + hY (w) <z —alh| <0
and from Assumption 5.1 Q(z+hY (-) < 0) > Q(RY () < —alh|) > a > 0, a contradiction. The convexity
and the closedness of D, are clear and the compactness follows from the boundness property. O

This lemma corresponds in the deterministic case to Lemma 4.8 of (Carassus et all (2015) (see also
Lemma 2.3 of Rasonyi and Stettner (2006) and Lemma 2.8 of Nutz (2014)).

Lemma 5.11 Assume that Assumptions 5.1, [5.4, [5.7] and hold true. Then there exists a H-
measurable L > 0 satisfying E(L) < oo and such that for allx > 0 and h € H,

VE(,z+hY () < ((22)7K +1) L(-) Q — a.s. (25)

Proof. The proof is reported in Section [7.3] of the Appendix O

Lemma 5.12 Assume that Assumptions [5.1, [5.4, [5.1 and hold true. Let D be the set valued
function that assigns to each x > 0 the set D,. Then Graph(D) := {(z,h) € [0,+0c) x R, h€ D,} isa
closed subset of R x R?. Let ¢ : R x R — RU {40} be defined by

EV (-, +hY (), if (z,h) € Graph(D)

. (26)
—00, otherwise.

Y(x, h) = {

Then ¢ is usc on R x R? and 1) < +o0o on Graph(D).

Proof. Let (w,,hn)n>1 € Graph(D) be a sequence converging to some (z*,h*) € R x R%. We prove
first that (z*, h*) € Graph(D), i.e that Graph(D) is a closed set. It is clear that * > 0. Set for n > 1
E,={weQ, v, +h,Y(w) >0} and E* := {w € Q, z* + h*Y (w) > 0}. It is clear that limsup,, E,, C E*
and applying the Fatou Lemma (the limsup version) we get

Q(z* +Nh'Y(:) >0) = Elg:(-) > Flimsup 1, (-) > limsup Flg, (-) = 1,

and h* € H,~. Since D is closed by definition we have h* € D,- and (z*, h*) € Graph(D).
We prove now that ¢ is usc on Graph(D). The upper semicontinuity on R x R? will follow immediately
from Lemma[7.11l By Assumption5.4lz € R — V(z,w) is usc on R for all w € Q and thus

limsup V(w, z, + h, Y (w)) < V(w,z* + 'Y (w)).

By Lemma 5. ITlfor allw €
V(w, zn +hnY () S V(w20 + 7Y () < (122,7K +1)L(w) < (|227TK + 2)L(w)

for n big enough. We can apply Fatou’s Lemma (the limsup version) and v is usc on Graph(D). From
Lemma [5.17]it is also clear that ¢ < +o0c on Graph(D). 0
We are now able to state our main result.

Theorem 5.13 Assume that Assumptions[5.1, (5.4, [5.7 and[5.9 hold true. Then for all z > 0, v(z) < o0
and there exists some optimal strategy h € D, such that

v(z) = B(V(-,z + hY ().

Moreover, v: R — [—00, o) is non-decreasing and usc on R.
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Proof. Let z > 0 be fixed. We show first that v(z) < co. Indeed, using Lemma [5.11]
E(V(,z+hY () < E(VT(,2+hY () < ((22)K +1) EL(),

for all h € D,. Thus, recalling @21I), v(z) < ((22)7 + 1) EL(-) < o0
From Lemma5.12] h € R? — E(V(-,x + hY (-))) is usc on R? and thus on D, (recall that D, is closed
and see Lemma [7.11). Since by 1)), v(z) = sup,cp, E(-,V(z+ hY(-))) and D, is compact (see Lemma

5.10), applying Theorem 2.43 of Aliprantis and Border (2006) there exists some » € D, such that
v(z) = E(V(-,z +hY (")) (27)

We show that v is usc on [0, +00). As previously, the upper semicontinuity on R will follow immediately
from Lemma [7.11l Let (z,),>0 be a sequence of non-negative numbers converging to some z* €
[0, +00). Let T € D, be the associated optimal strategies to z,, in 27). Let (nx)r>1 be a subsequence
such that limsup, v(z,) = limg v(z,, ). By Lemma [5.10l |ﬁnk| < @y, /B < (z* 4 1)/8 for k big enough.
So we can extract a subsequence (that we still denote by (n;)x>1) such that there exists some h* with
Enk — h*. As the sequence (wnk,ﬁnk)kzl € Graph(D) converges to (z*,h*) and Graph(D) is closed (see
Lemma[5.12), we get that h* € D,+. Using Lemma [5.12]

limsup v(z,,) = lillgnv(mnk) = lillgrnEV(-,aznk +lAtnkY()) < EV(,z"+hY()) <v(z"),

n

where the last inequality holds true because h* € D,- and therefore v is usc on [0, +00). Now as, by
Assumption 5.4} V(w,-) is non-decreasing for all w € Q, v is also non-decreasing on [0, +-00) and since
v(x) = —oo on (—00,0), v is non-decreasing on R. O

6 Multi-period case
We first prove the following proposition.

Proposition 6.1 Let Assumptions [4.7, and hold true. Then EU™ (-, V;f‘z’()) < oo for all
x >0 and ¢ € ®(z). This implies that ®(U, z) = ®(z).

Proof: Fix 0 < z <1 and let ¢ € ®(z). Then fo’qj < V%"z’ and ¢ € (1) = ¢(1,U) (recall Assumption
[4.8). For any w € , the function y — U(w,y) is non-decreasing on R, so that FU™ (,V;f(b()) <

EUT (-, prl(b()) < 00 by Assumption 4.7l Now, if z > 1, let ¢ € ®(z) be fixed. From Assumption [4.10]
we get that for all w € Q

U(w, Vi (w)) = <w 2 ( Z @ ASt ))) < (22K <U(w,v;’5;(w)) + C’(w)) .
By Assumption 4.8, 2 € &(3) € ®(1) = ®(1,U). Thus

EU* ( v;f"i’(-)) < (22)K <EU+ ( le"£‘(-)> + E(C)> <

using Assumption and the fact that C is integrable (see Assumption[4.10). In both cases, we con-
clude that ®(z) = ®(U, z). O
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We introduce now the dynamic programming procedure. First we set for all ¢t € {0,...,7 — 1},
wteQtandx >0

H (W) = {h €RY, qui1(z + hAS (W) > 0lw') = 1} ) (28)
DI (W) i= HF (W) N D (W), (29)

where D! was introduced in Definition 3.3l For z < 0 we set H. M (w!) = 0.
We define for all t € {0,...,T} the following functions U; from Q! x R — R. Starting with ¢t = T, we set
forallz € R, all w” € Q

Ur(wh) == U(w?). (30)

Recall that U(w”,z) = —oc for all (cﬂ; x) € Q X (—00,0).
Using for t > 1 the full-measure set Q! € F; that will be defined by induction in Propositions [6.9 and
[6.10], we set for all z € R and w! € O

Ur(w', ) = (=00)1(—00,0) () + Lt 4 o, 1 00y (W' 7) sup / Up1(w', wigr, @ 4+ hAS 11 (W' wig1))qes (dwpgr |w?).
heHET! (wt) J Qg1
(31)

Finally for ¢t = 0

Uo(z) := (=00)1(—00,0)(2) + 10,400 () hs%) /Q Ur(wy, x + hASy (w1)) P (dwy). (32)
S }r 1

Remark 6.2 We will prove by induction that U; is well-defined (see (34)), i.e the integrals in (31) and
are well-defined in the generalised sense.

Remark 6.3 Before going further we provide some explanations on the choice of U;. The natural
definition of U; should have been

Ut x) = (—00)1(—00,0)(Z)+ 1[0, 400y ()  sup / Us 1 (W wig 1, t+hAS 1 (W wig1)) g1 (dwigr [wh).
heHLT (wt) Y/t

Introducing the P; full measure set Q! in is related to measurability issues that will be tackled in
Proposition This is not a surprise as this is related to the use of conditional expectations which
are defined only almost everywhere.

Lemma 6.4 Let 0 <t <T — 1 and H be a fixed R-valued and F;-measurable random variable. Con-
sider the following random sets

Hig 't rwh € QF = Hig (W),

Dl e QF — Dg'(it)(wt).

Then those random sets are all closed-valued and with graph valued in F; @ B(R?).

Proof. First it is clear that ”Ht;{l is closed-valued. As D! is closed-valued (see Lemma it follows
that D is closed-valued as well. The fact that Graph(Hf') € F, @ B(R?) follows immediately from

Graph(Hift) = {(wt,h) € Q' xRLHW') >0, g1 ({H(W') + hASi41(w',.) >0} = 1]wt)},

and Lemma [7.9] (recall that H is F;-measurable). We know from Lemma that Graph(D'*1) ¢
Fi @ B(RY) and it follows that

Graph(Dif') = Graph(D™™) N Graph(Hi!) € F @ B(RY)
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Finally we introduce

Crwh) = CwWwh), for vl € QT where C is defined in Assumption ZI0
Cy(wh) = Cra1 (W' wip1) @1 (dwis|w) for t € {0,..., T — 1}, € Q. (33)
Qi1

Lemma 6.5 The functions w' € Q! — C;(w') are well-defined, non-negative (for all w'), F;-measurable
and satisfy E(C;) = E(Cr) < co. Furthermore, for allt € {1,...,T}, there exists Qf, € F; and with
P,(Q%) =1 and such that C; < oo on Q.. Fort = 0 we have C; < .

Proof. We proceed by induction. For ¢t = T' by Assumption[4.10/Cr = C is Fr-measurable, C7 > 0 and
E(Cr) < co. Assume now that C,,; is F;;1-measurable, Cy1; > 0 and F(Cy41) = E(Cr) < co. From
Proposition [7.6] i) applied to f = C;,1 we get that w! — Cy(w') = thH Cir (W wir1)qer1 (dwigq|wt) is
Fi-measurable. As C;, 1 (w!t!) > 0 for all w!*!, it is clear that C;(w?) > 0 for all w’. Applying the Fubini
theorem (see Lemma[7.1) we get that

E(C) = /Qt ; Crp1 (W', wig1)qes1 (dwpr [w") Pr(dw')
t+1

= Cra1 (W™ Py (dw'™) = E(Cyir) = E(Cr) < .

Qt+1

and the induction step is complete. For the second part of the lemma, we apply Lemmal[7.7to f = Cy11
and we obtain that Qf, := {w' € Qf, C(w') < 0o} € Fy and P,(QL) = 1. O

Propositions [6.7] to below solve the dynamic programming procedure and hold true under the
following set of conditions. Let 1 < ¢ < T be fixed.

U (w',+) : R — R is well-defined, non-decreasing and usc on R for all v’ € ', (34)
Ui (-,-) : Q' x R = R{#o0} is F; ® B(R)-measurable, (85)
U@ H ) + 6w AS (W) Pu(du’) < oo, (36)

forall{ €eZ; yand H =z + 22;11 sAS; where z >0, 91 € 2, ..., 011 € Z¢_9
and F(H () +£()AS () = 0) =1,

= 1
Up(wh, \r) < NK (Ut (wt,m + 5) + C’t(wt)> ,forallw! e QL A > 1,2 € R. 37

Remark 6.6 Note that from (34) and we have that —U, is a F;-normal integrand (see Definition
14.27 in Rockafellar and Wets (1998) or Section 3 of Chapter 5 in Molchanov (2005) and Corollary
14.34 of [Rockafellar and Wets (1998)). However to prove that this property is preserved in the dy-
namic programming procedure we need to show separately that and (35) are true. Furthermore,
as our sigma-algebras are not assumed to be complete, obtaining some F;-normal integrand from —U;
would introduce yet another layer of difficulty. For these reasons we choose to prove (34) and
instead of some normal integrand property. Nevertheless we will use again the properties of normal
integrands in the proof of Lemma

The next proposition is a first step in the construction of Q.

Proposition 6.7 Let 0 < t < T — 1 be fixed. Assume that (NA) condition holds true and that (34),
35), and (@7 hold true at stage t + 1. Then there exists )} € F; such that P,(Q2}) = 1 and such
that for all W' € ﬁﬁ the function (w;y1,7) — Upr1(w!,wii1,x) satisfies the assumptions of Theorem
with Q = Q11, H = Giy1, Q() = qr1(-|w?), Y () = ASi1(wh,2), V(,y) = Upa (W, -, y) where V is
defined on ;.1 X R.
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Remark 6.8 Note that Lemmata 5.17] 5.12] and Theorem hold true under the same set of as-
sumptions. Therefore we can replace Theorem by either Lemmata or in the above
proposition.

Proof. To prove the proposition we will review one by one the assumptions needed to apply Theorem
513 in the context Q = Q1, H = Gir1, Q) = q1(-|wh), Y () = ASep1(wh,9), V(5 y) = U1 (W, -, y)
where V is defined on Q;,; x R. In the sequel we shortly call this the context ¢ + 1.

From at t + 1 for all w* € Qf and w1 € Qy1, the function z € R — Upyq(w!, w1, ) is non-
decreasing and usc on R. From at t + 1 for all fixed w! € Q! and x € R, the function wy 1 € Q41 —
Upr1(w! wiy1, ) 18 Giy1-measurable and thus Assumption is satisfied in the context ¢ + 1 (recall
that U1 (w!, w1, ) = —oo for all x < 0 by assumption).

We move now to the assumptions that are verified for w' chosen in some specific P;-full measure set.
First from Lemma[3.6/for all w’ € QY ,; we have 0 € D' (w') (recall that in Sectionwe have assume
that D contains 0). From Proposition [3.7, Assumption [5.1 holds true for all w' € QY , in the context
t+ 1.

We handle now Assumption 5.7 on asymptotic elasticity in context ¢ + 1. Let w’ € QL be fixed where
QL is defined in Lemma[6.5] From (37) at ¢ + 1 we have that for all w; 11 € 41, A > 1landz € R

= 1
Ups1(wh, wig1, Az) < XNK <Ut+1 (w Wit1, T + 2) + Ct+1(wt,wt+1)> :
Now from Lemma [6.5]since w! € L., we get that

Ct+1(wt7wt+1)Qt+1(wt+1’dwt) = Ct(wt) < 00
Q11
and thus Assumption [5.7]in context ¢ + 1 is verified for all w* € Q.. want to show that for w’ in some
P, full measure set to be determined and for all 7 € /™ (w!) we have that

/ U:H(wt, Wip1, 1+ hAS 1 (Wh wi1)) @1 (dwpgr |[wh) < 0.
Q11

We introduce the following random set I; : Qf — R¢
I(Wh) = {h € HiT (Wh, / U1 (@' wig1, 1+ hAS 1 (0, wig)) g (dwpg [w') = oo} . (38)
Qig1

Arguing by contradiction and using measurable selection arguments we will prove that I1(w!) =
for P;-almost all w! € Q. We show first that Graph(I;) € F; ® B(RY). It is clear from att + 1
that (w',wiy1,h) = Uy (0h wigr, 14+ AAS 1 (wh wig)) is Fr ® G ® B(R%)-measurable. Using Propo-
sition [7.6]7i) we get that (w',h) — [ | Ul (@', wi1, 1+ RAS 11 (W wig1))qes1 (dwig |wF) is Fy @ B(RY)-
measurable (taking potentially the value +oc). From Lemma[6.4], we obtain Graph(H,™) € F, @ B(R?)
and Graph(I;) € F; ® B(R?) follows.

Applying the Projection Theorem (see for example Theorem 3.23 in|Castaing and Valadier (1977)) we
obtain that {I; # ()} € F; and using the Aumann Theorem (see Corollary 1 in [Sainte-Beuve (1974))
there exists some F;-measurable ; : {I; # ()} — R% such that for all w! € {I; # 0}, hi(w?) € I;(w?). We
extend h; on all Q! by setting h;(w') = 0 on Q' \ {I; # 0}. As {I; # 0} € F; it is clear that iy remains
F.-measurable. Using Lemma [7.10| we get some F;-measurable h; : Qf — R% and Qﬁl € F; such that
P(Q)) =1and Qf C {w'e€ Q' hi(w') = hi(w')}. Arguing as in the proof of Lemma [3.6] and using the
Fubini Theorem (see Lemmal([7.1) we get that

Prpr (1+hi(-)ASpa () = 0) /Qt qei1(1+ h (W) ASpp (W', ) > 0lw’) Py(dw’)

= [ a4 B A (') 2 0! Puld)
Q
g 1‘
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Now assume that P;({I; # (0}) > 0. Since hy € Z; and P11 (1 + h1(-)AS;1(-) > 0) = 1 from att+1
appliedto H =1

/Qt+1 U;jrl(wtﬂ, 1+ hl(wt)AStH(th))PtH(dth) < 0.

We argue as in Lemma [3.6]again. Let
() = /Q Uy (6wt 1+ b (08 ASpa (6 w11 e (depr o),
t+1
Zut) = / Uy (6wt 1+ T (08 ASpan (6 01 e (dopn o).
Qig1

We have already seen that (w!, h) € Qf x R — thH Uy (W wig, 14 RAS 1 (wh wig)) g (dwps [w?)

is F; ® B(R%)-measurable (taking potentially value +occ). By composition it is clear that ¢, is F;-
measurable and that @, is F;-measurable. Furthermore as {w' € Qf, ¢;(w!) # 7 (wh)} C {w! €
Qf, h(w') # hi(w)}, ¢1 = B, P-almost surely. This implies that [, 3,dP; = [ ¢1dP; and using
again the Fubini Theorem (see Lemma we get that

/Qt+1 Util(WHl? 2+ I (W) ASp1 (W) Py (dw'™)
- /Qt /Qtﬂ U1 (@ i1, 14 h (@) ASpin (', i) g (dwprr [w') P (de')
= /Qt/Q Ut (@ wigr, 1+ Ry () AS (w0 wir1)) ge (dwpg |w") Py(dw')
t+1
> [ (roolPudet) = +oo,
{170}

Therefore we must have P;({I; # 0}) = 0i.e P;({I; = 0}) = 1. Now since {I; = 0} € F; there exists
Q! C {I = 0} such that Q! , € F; and P,(Q!,,) = P:({I; = 0}) = 1. For all v’ € Q! ,, Assumption[5.9]
in the context ¢ + 1 is true and we can now define Q! C Q'

QL =04, N, NOL. (39)

int

It is clear that ﬁtl e F, Pt(ﬁﬁ) = 1 and the proof is complete. O

The next proposition enables us to initialize the induction argument that will be carried on in
Proposition

Proposition 6.9 Assume that the (NA) condition and Assumptions[4.7, and[4.10 hold true. Then
Ur satisfies (34), B5), (36) and (B7) fort = T. We set QT = Q.

Proof. We start with fort = T. As Ur = U (see (30)), using Definition[4.1] z € R — Up(w”, ) is
well-defined, non-decreasing and usc on R and (34) for ¢t = T is true. We prove now fort =T i.e
that Ur = U is Fr ® B(R)-measurable. To do that we show that for all w” € QT, z € R — Up(w”, )
is right-continuous and for all x € R, w? € QT — Ur(z,w?) is Fr-measurable (this is just the second
point of Definition [4.1) so that we can use Lemma and establish for t = T. Let wT € QT be
fixed. From at T that we have just proved, z € R — Ur(w”,z) is non-decreasing and usc on R,
thus applying Lemma [7.12] we get that z € R — Ur(w”, z) is right-continuous on R.
We prove now that (B6) is true for t = T. Let £ € Zr_1 and H = z + ZtT:_ll ¢:AS; where x > 0, ¢ € Z,
sb7-1 € Ep_g and Pp(H(-) 4+ £()ASp() > 0) = 1. Let (¢%)1<i<r € ® be defined by ¢5 = ¢ and
qﬁf =¢;for1 <i<T—1thenV} - + ¢ASr and thus ¢¢ € ®(z). Using Proposition [6.1l we get that
EU*(, Vf"z’é(-)) = BU} (H(") + £()AS7(+)) < oo (recall that U = Ur). Therefore (36) is verified for
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t = T. Finally, from Assumption[4.10, (37) for t = T is true. O

The next proposition proves that if (34), (35D, and (B7) hold true at ¢ + 1 then they are also true
at U, for some well chosen Q.

Proposition 6.10 Let 0 < t < T — 1 be fixed. Assume that the (NA) condition holds true and that
(34), 35), (36) and (B7) are true at t+ 1 (where U,; is defined from a given Q'+ see (31)). Then there
exists some Q' € F; with P,(Q') = 1 such that (34), 35), and (37) are true for t.

Moreover for all H = x + 22:1 ¢sASg, withz > 0 and ¢1 € Zg,...,¢; € E;_1, such that P,(H > 0) =1
there exists some Q) € F; such that P(Q%;) = 1, Q;, C Q' and some hl | € =, such that for all ' € O,

hit, (') € Dif L, (w') andB

Ur(w', H(w')) = Upsr (@', wir, H(w") + il (@) A (! wir))ger (dwr|w!). (40)

Qi1

Proof. First we define Q and prove that (34) and are true for U;. Applying Proposition[6.7] we get
that for all wt € Qﬁ, the function (w; 1, 2) — Uppq(w?,wir1, z) satisfies the assumptions of Lemma 5.17]
and Theorem B.I3 with Q = Qy11, H = Gii1, Q = qry1(-w'), Y (1) = ASp1(wh,-), V(- y) = U (o', -, y)
where V is defined on ;1 x R. In particular, for w! € Q! and all h € HL!(w?), recalling we have

/ Ul (' wip1, @ + RAS 11 (w0 wig1))ges1 (dwis|w') < oo, (41)
Qi1

Now, we introduce U, : Q! x R defined by

Ui(w',2) i= (—00)1(Zoo,0) () + Li0,00) (%) 150 (w") sup /Q Uppr (W', weg1, @+ RAS 11 (W' wig1))gerr (dwpgr |wf).
heDLT (wt) t4+1

From (1), U, is well-defined (in the generalised sense). First, we prove that U, is F; ® R-measurable
and then we will show that this implies that U; is F; ® R-measurable for a well chosen Q!. To show
that U, is F; ® B(R)-measurable, we use Lemma (and Remark after having proved that it
is an extended Carathéodory function (see Definition [7.15). Applying Theorem [5.13] we get that for
all w! € Qf, the function z € R — U, (w', z) is non-decreasing and usc on R. Actually, this is true for all
w! € O since outside O, € R — U,(w!, z) is constant equal to zero on [0, 00) and to —occ on (—oo, 0).
Let now w! € Qf be fixed. As x € R — U;(w’, x) is non-decreasing and usc on R we can apply Lemma
[712 and we get that z € R — U, (w!, z) is right-continuous on R. For x > 0 fixed, applying Lemma
.11 with H = z (here %, = Q) we obtain that w' € O — sup,cga (W', h) is F;-measurable. Finally,
from the definitions of U; and u,, we get that

Ut(wta ‘T) = (—00)1(—00,0) + 1[0,00)(*%)1ﬁ§L (wt) hsu]lgi u:c(wt7 h)7
S

and this implies that w! € Q' — U;(w?, z) is F;-measurable for all z € R and thus that U; is an
extended Carathéodory function as claimed

Finally, we prove the F; ® B(R)-measurability of U;. To do that we apply Lemma and we obtain
some Q! . € F; such that P,(Q!,, ) = 1 and some F; ® R-measurable U, : Q' x R — RU{+oc} such that

mes

for all z € R, {w! € O, U, (w',z) # Up(w', )} € QN\QE . We are now in a position to define Q and set

mes*

Q=0 Nt (42)

mes*

3Recall that the integral on the right hand side is defined in the generalised sense.
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It is clear that Q! € F, and that P,(Q!) = 1 Furthermore, recalling (31D, Remark 5.5 (see (21)) and the
definition of U, we have that for all z € R, w! € Q!

Ur(w',2) = (=00)1(—00,0) (%) + Ljo,00) (@) 10, ,, (W) 155 (W) sup /Q Up1 (@' i1, @ + hAS 1 (W' wit1)) e (dwiga [w')
heHET (wt) J Qg1

= (=00)1(~00,0)(¥) + L[o,00) ()10, (W')155: (W) sUD / Up1 (@', i1, @ + hAS 1 (0" wi1))ger (dwiga |w')
! heDIt (wt) Y Qeta
=lg: (WHT (Wt 2) + (—OO)lgt\Q’ines (wt)l(_oo)o)(:c)
= 1Q£nes (wt)ﬁt(wt, .I') + (—OO)lgzt\Qﬁnes (wt)l(,ooyo) ((E),
and the F7; ® B(R)-measurability of U, follows immediately, i.e is true at t. It is clear as well from
the third equality that is true for ¢ since we have proven that for all w' € Qf, x € R — Uy(wf, z) is
well-defined, non-decreasing and usc on R. N
We turn now to the assumption on asymptotic elasticity i.e (87) for ¢. If w' ¢ ', then B is true since
Cy(wt) > 0 for all wt. Let w' € Of be fixed. Let 2 > 0, A > 1, h € R? such that g, 1(A\z + hAS; 1 (W, .) >
0|w!) = 1 be fixed. By (87) for ¢ + 1 for all w; ;1 € Q;.1, we have that

_ 1 h _
U1 (wh, wis1, Az + RAS 11 (w' wig1)) < NV KU (Wt7 W1, T + 3 + XAStH(wt, Wt+1)> +ANCri1 (W' wis1).-

By integrating both sides (recall (41)) we get that

Upr1 (0 w1, Ar + hAS 1 (w0 wig1)) qegr (dwg o) <
Qig1

_ 1 K _
NK U1 (wt,wtﬂ,ﬂ? + =+ —A5t+1(wt,wt+1)> Q41 (dwipr|w’) + ATK Cra1(wh, wig1) gt (dwigr [wh).
Qt+1 2 )\ Qt+1

Since C;(w!) = thH Cri1(wh, wir1)qir1(dwiyq|w?) (see Lemma [6.5) and h € ”Ht;;l(wt) implies that % €
HEF (W) Hifrll (w'), we obtain by definition of U; (see (31)) that
2

_ 1 _
Ut+1 (wt,th, Ax + hASHl(wt,th)) qt+1(dwt+1]wt) < )\A/KUt <wt, T + 5) + )\“’KC't(wt).

Qi41

Taking the supremum over all h € H'"!(w!) we conclude that (37) is true for ¢ for z > 0. If z < 0, then
(37 is true by definition of U;. Note that we might have w' € Q\Q% and Cy(w') = +o0o since (37) does
not require that C;(w') < +oc.

We now prove for U;. First, from Proposition[6.7/and Theorem and since ) C ﬁ’i, we have
for all w! € Q! and = > 0 that there exists some &* € DLt (w!) such that

U(wh,z) = / U1 (wh wip1, @ + E ASp 1 (W, wit1)) gesr (dwpg [wh), (43)
Qig1

where the integral on the right hand side is defined in the generalised sense (recall and Lemma
BI1). Let H = =z + 22;11 sASs, with z > 0 and ¢, € Z; for s € {1,...,t — 1}, be fixed such that
P(H >0) = 1. Let QL := Q' N {w' € Qf, H(w) > 0}. Then Q, € F, and P(Q},) = 1. We introduce the
following random set 1 : Qf — R?

1/)H(wt) = {h S D;;r(i)t)(wt), Ut(wt, H(wt)) = / UtJrl (wt,thrl, H(wt) + hAStJrl(wt,thrl)) qt+1(dwt+1|wt)} )
Qt+1

for w' € ﬁ’}{ and ¢y (w') = 0 otherwise. To prove it is enough to find a F;-measurable selector for
Y. From the definitions of ¢y and uy (see (45)) we obtain that (recall that Qf, c Q' and Q% C O,
see and the definition of Qf; in Lemma [6.17).

Graph(Yy) = {(wt,h) € (ﬁﬁg X ]Rd) N Graph(Di), Uy (W, H(w")) = uH(wt,h)} .
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From Lemma we have that Graph(Di') € F, ® B(R?). We have already proved that (w',y) —
Ui(wt,y) is F; @ B(R)-measurable and, as H is F;-measurable, we obtain that w' — U;(w', H(w?!)) is
Fi-measurable. Now applying Lemma we obtain that uy is 7; ® B(R?)-measurable. The fact that
Graph(vyg) € F; @ B(R?) follows immediately.

So we can apply the Projection Theorem (see for example Theorem 3.23 in (Castaing and Valadier
(1977)) and we get that {¢y # 0} € F; and using the Aumann Theorem (see Corollary 1 in|Sainte-Beuve

(1974)) that there exists some F;-measurable Efil : {¢Yg # 0} — R? such that for all w! € {¢y # 0},
Efil(wt) € Yy (w'). Then we extend Etlil on all Q! by setting Efil = 0on Q'\ {¢y # 0}. Now applying
Lemma [7.10 we get some F;-measurable h | : Q' — R? and some QY € F, such that P(Q};) = 1 and
Qy {Eﬁl — 1|}, We prove now that the set {yy # 0} is of full measure. Indeed, let w' € QO
be fixed. Using for z = H(w') > 0, there exists h*(w") € ¥y (w’). Therefore Q) C {¢Yy # 0} and
Py({tg # 0}) = 1. So for all w! € O} N Q% we have

—H
Up(w', H(W")) = /Q U1 (W', wprr, H(w') + By (W) ASpr1 (W wig)) e (dwpr o)
t+1
2/ U1 (W', wirr, H (@) + B (0D ASp1 (w0 wist)) et (dwpr o).
Qit1

So setting
QL = 0L N0y, c O (44)

is proved for ¢.

We are now left with the proof of (36) for U;. Let £ € Z;_; and H = z + Zi;ll <AS,; where z > 0
and ¢1 € Zp,...,¢;_1 € Z4_o and such that P,(H(-) + £(-)AS;(-) > 0) = 1. We fix some w' € Q'. Let
X(w) = Hw 1) + f(wt_l)Aft(wt) then X is F;-measurable. We agply to X (w) (andNDng(i)t)(wt)),
and we get some w' € Q' — hy4;(w') which is F;-measurable and QY € F; such that P,(Q}) = 1 and

such that for all w' € Q. g141 (X(wt) + g1 (W) ASp 4 (Wl ) > 0|wt> =1and

Up(w', X (") = / Up1 (W, wis1, X (1) + g (01 ASp (8, wig1)) g (dwp o).
Qit1
Using Jensen’s Inequality

U (W', X (w')) S/ Uy (! wipt, X (w08) + Bt (0 ASpr (! wist))gesn (dwpgr [oh).

Qi41

Thus as P,(Q%) =1
[ U X (@) P = / U (!, X (1)) Py ()
Ot Qt

< /t+1 Ut—il(wt—i-l, X(wt) + Tlt+1(wt)ASt+1(wt+1))Pt+1 (dwt—i-l) < 0,
Q

because of (36) for ¢t +1 which applies since X = x—i—Zi;ll DsAS;+EAS; wherex > 0, 01 € Z1,...,¢i-1 €
S0, €1 and hyy1 € for t is proved. O

The following lemma was essential to obtain measurability issues in the proof of Lemma[6.10
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Lemma 6.11 Fixsome0<¢t<T —-1landx >0. Let H :== z + 22;11 sAS,, where ¢1 € =q,...,0;_1 €
=, o and P;,(H > 0) = 1. Assume that the (NA) condition holds true and that (34), (35), (36) and (37)
are true att + 1. Let uy : Q' x R = RU {400} be defined by

th+1 Up1 (W' wigr, H(W") + RAS 1 (W, wip1)) g1 (dwigr |wf),
if (wh, h) € (4 x RY) N Graph(DL),

—oo if (W, h) ¢ Graph(DiH),

0 otherwise.

uH(wt, h) := (45)

where D! is defined in Lemmal[6.4 and O, := Q) N{w' € O, H(w') > 0} (see for the definition
of Q). Then uy is well-defined, F; ® B(R%)-measurable and for all w* € Q, h € R? — uy(w, h) is usc.
Morevover, w' € Q' — supj,cga up (w?, h) is F;-measurable.

Remark 6.12 In the proof below we will show that for (w', ) € (2% x RY) N Graph(Di"') the integral
in is well-defined. Note that this is not the case for all (w', h) € QO x R% Indeed, let (w',h) be
fixed such that g1 (H(w') + hAS;1(w',-) < 0jw') > 0. Then it is clear that [, U, (w' wir1, H(w') +
hASy i1 (wh wis1))qre1(dwir1|w!) = oo and as without further assumption we cannot prove that

thH U1 (wh wigr, H(wW?) + hAS 1 (wh, wi1))ge1 (dwigr [w?) < oo (it is easy to find some counterexam-
ples), the integral in may fail to be well-defined. We could have circumvented this issue by using
the convention co — co = —oco but we prefer to refrain from doing so.

Proof. From B5) at t + 1, Uy, is F; ® Giy1 ® B(RY)-measurable and since H and AS;,| are respec-
tively F; and F;, -measurable, we obtain that (w!,w;1,h) € O x Qi1 x R = Uy (W, wigr, H(wh) +
hAS;41(w!, wig1)) is also F; ® G41 ® B(RY)-measurable. In order to prove that for (w', h) € (Q% x RY) N
Graph(Di!) the integral in is well-defined, we introduce

up : (W' h) € <QtH X Rd) N Graph(Dif') — Up1 (W', wir1, H(w") + hAS 1 (W', wi1)) o1 (dwp 1 [w?).
Qi1

First we show that uy is well-defined in the generalised sense. Indeed, let (w',h) € (Q% x R?) N

Graph(Di") be fixed. As w? is fixed in Qf;, we can show as in Proposition that (41D holds true

(here H(w!) is a fixed number as ! is fixed) and thus

/ Uy (w0 wrin, (W) + hASp (6 1)) e (do 1 | < oo,
Qit1

So uy is well-defined (but may be infinite-valued).

We now prove that uy is F; ® B(R%)-measurable. We can apply Proposition [7.6iv) to S = (QtH X Rd) N
Graph(Dif'), with f(w!, h,wi1) equal to both U | (!, w1, H(w') +hAS 41 (w!, wis1)), since (24 x RY)N
Graph(Di!) € F,@B(R?) (see Lemmal6.4), and both (w!, h,wi 1) € QXRIXQy i1 — Ui (wh, wigr, H(wh)+
hAS 1 (w,wi1)) are F; @ B(R?)®Gy 1 1-measurable. So we obtain that uy is [F; ® B(R?)] ;-measurable,
where [F; ® B(R?)] s denotes the trace sigma algebra of 7; @ B (R%) on S. Now we extend uy to Qf x R?
by setting U (w',h) = —oc if (w!, h) ¢ Graph(Di') and @y (w',h) = 0 if (w', h) € Graph(Di') and
wt ¢ Qf. Since [F ® B(RY)], C F @ B(RY), QY € F; and Graph(Dif') € F; x B(R?), this extension
of uy is again F; ® B(RY)-measurable. As it is clear that this extension of 7y and uy coincide, the
measurability of uy is proved.

We turn now to the usc property. Let w! € QY C ﬁ’i be fixed. We apply Proposition to U;+1 and we
get, as w! € Qf, that the function (wiyq, x) — Upsy(w!, wis1, ) satisfies the assumptions of Lemma[5.12]
(see Remark [6.8) with Q = Q4 1, H = Giy1, Q = qr1(-|wh), Y () = ASi1(wh, ), V(o y) = U (W, -, y)
where V is defined on ;1 x R. Therefore the function ¢, (-,-) defined on R x R? by

thH U1 (W wir1, @ + hAS 1 (W8 wit1))ger1 (dwigr|w?) if 2 > 0 and h € DEFH(W?)

—oo otherwise/.

Gt (357 h) = {
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is usc on R x R? (see (26)). In particular, for z = H(w') > 0 fixed, the function h € R? — uy(w!, h) =
but (H(w'), h) is usc on R, Now for w' ¢ Q% as uy is equal to 0 if h € D?{(ijt)(wt) and to —oo otherwise,
Lemma [Z.11] applies (recall that the random set D! is closed-valued) and i € R? — up(wt, h) is usc
on all R9.

Finally, we apply Corollary 14.34 in Rockafellar and Wets (1998) and find that —uy is a F;- normal
integrand B. Now from Theorem 14.37 of Rockafellar and Wets (1998), we obtain that w* ¢ Qf —
supp,ecpa wi (W', h) is Fr-measurable and this concludes the proof. 0
Proof. of Theorem We proceed in three steps. First, we handle some integrability issues that are
essential to the proof. Then, we build by induction a candidate for the optimal strategy and finally we
establish its optimality.

Integrability Issues

We fix some ¢ € ®(x) = ®(U, x) (recall Proposition [6.1). Since Proposition [6.9holds true, we can apply
Proposition for t = T'— 1, and by backward induction, we can therefore apply Proposition [6.10 for
allt =T —2,...,0. In particular, we get that (86) holds true for all 0 < ¢ < T. So choosing H = V;f‘f

and ¢ = ¢, we get that (recall Remark @3] from ¢ € ®(z) we get that P,(V,"?(-) > 0) = 1)
/ U (VP4 () Puldt) < oo, (46)
Qt

This implies that [, U; (wt, Vf"z’(wt)) P,(dw?) is defined in the generalised sense and that we can apply
the Fubini Theorem for generalised integral (see Proposition

/Qt Uy (wt,‘/;x"z’( Py(dw?) /Qt 1/9 Uy (w wt,Vx’(b(wt_l,wt)) Gr—1(dwy W™ Py (dw'™1).  (47)
t

Construction of ¢*
We fix some z > 0 and build our candidate for the optimal strategy by induction. We start at ¢t = 0
and use in Proposition with H = =z > 0. We set ¢] := h{ and we obtain that (recall that
Fo=1{0,Q%})

Pl((ﬂ + (ﬁTASl() > O) =1.

Us(2) :/Q Uy (i, + 6T ASy (w1) Pi(dwr).

Recall from (46) that the above integral is well-defined in the generalised sense. Assume that until
some t > 1 we have found some ¢} € o, ..., ¢; € ;1 and some [OR= Fiy... ,ﬁt_l € F;_1 such that for

alli=1,...,t—1,Q c @, K@) =1,foralli=0,...,t — 1, ¢}, (w') € DI*'(w') and
Py (v + ¢iAS1(w1) + -+ + o5 (w' T HAS (W wy) > 0) =

and finally, for all w! € Q'
Ui (1 V28 @) = [0 (0 Vo) + 010 DASW ) ) adarlet ™),
o

where again the integral is well-defined in the generalised sense (see (46)). We apply Proposition
with H(-) = V"' ()) = Vi"f () + ¢F ()AS,(-) (recall that P,(V;"* > 0 = 1) and there exists Q=

*

- o~ _ 26
Qi/j”’d’* € F; such that @' c !, P,(Q') = 1 and some some F;-measurable w' — or (W) = ht+1 (wh)

such that for all w! € O, o5 (wh) € DI (Wh)

G (V77 (@) + 6711 (W) ASpa (W) = 0wf) = 1,

- 4Corollary 14.34 of Rockafellar and Wets (1998) holds true only for complete o-algebra. That is the reason why —uy is a
F+- normal integrand and not a F;- normal integrand.
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U (V7 (1)) = / Urin (&, @i, V0 (@1) + 010 (W) ASe1 (@, )) oo (dwraol). (48)
Q

t+1

Now since Pt(ﬁt) = 1, we obtain by the Fubini Theorem that
P (Vi) 2 0) = / L (V7 (1) + ¢ (@) AS 1 (@) > 0w Pi(dw') = 1
Q

and we can continue the recursion. .
Thus, we have found ¢* = (¢})1<i<7 such that for allt =0,...,T, Pt(Vf’d’ >0)=1,i.e¢" € &(x). We

have also found some Q' € F;, such that Q' ¢ O, P, (ﬁt) — 1 and for all ! € ', holds true for all

t=0,...,T — 1. Moreover, from Proposition 6.1, ¢* € ®(U, z) and we have that E(U(V4"")) < cc.
Optimality of ¢*

We prove that ¢* is optimal in two steps.

Step 1: Using with ¢ = ¢* and the fact that Pr_;(Q7-1) = 1, we get that

BUWVE?)) = /Q ) /Q U (@7 wr, Vi @77 + 61T DA (@ wr) ) ar(dwrlw”™ ) Pro (™)
o,

= /_Til/ Ur (wT_l,wT,V;’_‘bl* (W + (b*T(wT_l)AST(wT_l,wT)) qr(dwr|w? ™) Pr_y (dw™ ™).
Q Qr

Using for t = T — 1 and again the fact that PT_l(ﬁT_l

BUVE) = |

QT-1

) = 1, we have that
Ur_4 <wT_1, V:,:f’_d)l* (wT_1)> PT_l(dwT_l).

We iterate the process for 7' — 1: using the Fubini Theorem (see (47)), PT_g(ﬁT_2

obtain that

) = 1 and (48), we

BEUV?)) = /

QT-2

Up_s (wT—27 Vﬁ’_d); (wT—2)> PT_g(dwT_z).
By backward induction, we therefore obtain that (recall Q° := {wg})

B(U(V;)) = Un(w).
As ¢* € ®(U, ), we get that Uy(x) < u(z). So ¢* will be optimal if Uy(z) > u(x).

Step 2: We fix again some ¢ € ®(U,x) (recall Proposition [6.1). We get that Vf"z’ > 0 P-a.s. for all
t=1,...,T (recall Remark [4.3). As ¢; € H! we obtain that

Uo(w)z/g Ul(wl,x+¢1A51(w1))P1(dw1).

As P2(V1x’¢ + ¢p2ASy > 0) = 1, there exists some P;-full measure set Q' ¢ F1 such that for all w; € Ql,
q2 <Vfc’¢(w1) + ¢2(W1)ASQ(W1, )) > 0|w1) = 11.eqo <¢Q(W1) S H%/I@(wl)(wlﬂwl) = 1 (see Lemma m
1

So for w; € O, we have that

Ur (w1, Vi (1)) > /

U (1,00, V(1) + 2(1) A8 (01,02) ) @2 (dnle). (49)

From @#8), [, Uy <w2, V;’d)(wz)) P»(dw?) < oo and we can apply the Fubini Theorem (see (47)) and
/ Uz <w2,V2w’¢(w2)> Py(dw®) = / / Uz (wl,w2, Vi (wr) + ¢2A51(w1,w2)> q2(dws |wy) P1 (dw:)
02 Ql JQo

:/A / Us (w17w2,V1m’¢(w1) —|—¢2A51(w1,wz)> g2 (dwalwr) Py (dwn).
o Ja,
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Using again @6), [, U;" (wl, Vf’¢(w1)> Pi(dw') < oo and integrating (in the generalised sense) both
side of we obtain

Uy (w1, Vi (w1)) Py (duwr ) Z/A U (w1, Vi (w1)) Pr (dw)
Ol 01

Z/ﬁ /Q Us (w17w2,V1x’¢(w1) +¢2A51(w1,w2)> q2(dwa|w1) Py (dw: )
1JQs

_ / Uy (w2,v2x’¢(w2)> Py(dw?).
Therefore

Us() > /Q U (w2, V) Pald?).

We can go forward since for P;-almost all w? we have that g3 <¢3(w2) € Hi’/w( 2)(w2)\w2> =1, ...,
2 w

for Pr_; almost all w”~! we have that ¢ ( ¢7(w? 1) € ”HTI 6 (1 1)(wT_l)|(,uT_1> = 1, we obtain using

again and the Fubini Theorem (see (47)) that
UQ(SC) 2 / / / T Vw d) )) qT(dwT|wT_1) s QQ(dWQ|w1)P1 (dwl). (50)
Q1 JQo Qr

So we have that Uy(z) > E(U(-, Vﬁ’d’(-))) for any ¢ € ®(U,z) and the proof is complete since u(z) =
E(U(VE? () < oo 0

Proof. of Theorem To prove Theorem [4.17, we want to apply Theorem and thus we need to
establish that Assumptions and hold true. To do so we will prove (53) below. First we show
that for all x > 0, ¢ € ®(z) and 0 < t < T, we have for P;-almost all w! € Q!

t

)

To do so we first fix 2 > 0, some ¢ = (¢)i—1,.. 7 € ®(x) and 1 <t < T. For w'~! € Q! fixed, we denote
by ¢; (w'~1) the orthogonal projection of ¢;(w!~!) on D!(w'). Recalling Remark 5.3 we have

ar (0 (WTHASUWT ) = gu(wTHAS W ) =1

and thus ¢ (w'~1) € D Y i 1)( wi=1) (see for the definition of D.). As the NA condition holds
true, Lemma [3.6] applies and 0 € D'(w'*!). We can then apply Lemma[5.10/and we obtain that
Vot
a1 (w'h)’
Furthermore, as it is well-know that w!~' € Q! — ¢i-(w!~!) is F;_;-measurable we obtain, applying
the Fubini Theorem (see Lemma[7.1), that P, (¢;"AS; = ¢;AS;) = 1 and we denote by Q; b the Pi-full

measure set on which this equality is verified. We need to slightly modify the set QY rg to use it for
different periods. We proceed by induction. We start at ¢t = 1 (recall that Q° := {w}) with Q} kg For

|67 (W' h)] < (52)

t = 2 we reset, with an abuse of notation, Q7,, = 0%, N (Q}EQ X Qg) and we reiterate the process until
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T. To prove (1) we proceed by induction. It is clear at ¢t = 0. Fix some ¢ > 0 and assume that (51)
holds true at ¢. Let w*! ¢ thfé, using at t and we get that

V@] = |V ) + b @) ASu ()| = [V70) + 0 (@) AS 1 ()

< ‘V;‘,x’d)(wt)‘ (1 + M) < xﬁ <1 + 125w >

oy (wt) 1 as—l(ws_l)
and (51) is proven for ¢ + 1. It follows since for all 0 < s < ¢, |AS;| € W, and ais € W, that V"% e W,.
We will prove that for all € ®(x) and w” in a full measure set

T s v
Ut (", Vil (W) < 27K max(z, 1) (H (1 + %)) (Ut ) +Crwh).  (53)
s=1 S

Since by assumptions FUT(-,1) < oo, ECy < oo and since for all 0 < ¢t < T, |AS;| € W; and a% eEW,

we get that EUT (-, V;"?())) < oo for all ® € ®(x) and both Assumptions @7 and 4.8 hold true. We
prove now (53). We fix some z > 0 and ¢ € ®(z). Then from the monotonicity of U™, (51), Assumption

@10, the fact that []__, (1 + M) > 1, we have for all w” € Qf,, N Qr that

Qs (wsfl)

o () <o (e [] (1 252 ))
s=1 =

<K (2 max(z, 1) H <1 + %)) (U+(wT, 1)+ CT(wT)) .
s=1 S

7 Appendix

In this appendix we report basic facts about measure theory, measurable selection theorems and ran-
dom sets. We also provide the proof of some technical results.

7.1 Generalised integral and Fubini’s Theorem

For ease of the reader we provide some well know results on measure theory, stochastic kernels and
integrals. The first lemma provides a version of the Fubini Theorem for non-negative functions (see
for instance to Theorem 10.7.2 in [Bogachev (2007)). We then present our definition of generalised
integral and provide another version of the Fubini Theorem for generalised integral (see Proposition
[7.4]), which is essential throughout the paper.

Let (H,H) and (K, K) be two measurable spaces, p be a probabilty measure on (H,#) and ¢ a
stochastic kernel on (K, K) given (H,#) , i.e such that for any h € H, C € K — ¢(C|h) is a probability
measure on (K,K) and for any C € K, h € H — ¢(C|h) is H-measurable. Furthermore, for any
A€ H®K and any h € H, the section of A along h is defined by

(A), ={k €K, (hk)c A}. (54)
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Lemma 7.1 Let A € H ® K be fixed. For any h € H we have (A), € K and we define P by

P(A) iz/H/KlA(h,k)q(dklh)p(dh) :/Hq((A)h|h)p(dh)' (55)

Then P is a probability measure on (H x K, H® H).
Furthermore, if f : H x K — Ry U {+00} is non-negative and H ® K-measurable then h € H —
J5 f(h,k)q(dk|h) is H-measurable with value in R, U {oc} and we have

/ fdpP = F(h, k)P (dh, dk) = / / F(h, k)q(dk|R)p(dh). (56)
HxK HxK HJK

Proof. Let h € H be fixed. Let 7T = {A € H® K| (4), € K}. It is easy to see that 7 is a sigma algebra
on H x K and is included in X ® K. Let A= B x C € H x K then (A), =0if h ¢ B and (A4), = C'if
h e B. Thus (A), e Kand H x K C 7. As T is a sigma-algebra, H ® K C 7 and 7 = H ® K follows.
We show now that

b /K La(h, k)a(dk|h) = /K 1, (R)a(dk|) = g ((A), 1)

is H-measurable for any A € H ® K.

Let E={AcH®K|he H—q((A),|h) is H-measurable}. It is easy to see that £ is a sigma algebra
on H x K and is included in H ® K. Let A = B x C € H x K then ¢ ((A4),)|h) equals to 0 if » ¢ B and to
q(Clh) if h € B. So by definition of ¢(-|-), H x K C £. As £ is a sigma-algebra, H@KX C Eand E =HRK
follows. Thus the last integral in is well-defined. We verify that P defines a probability measure
on (H x K,H® H). It is clear that P(()) = 0 and P(H x K) = 1. The sigma-additivity property follows
from the monotone convergence theorem.

We prove now that for f : H x K — Ry U {400} non-negative and H ® K-measurable, h € H —
[ f(h,k)q(dk|h) is H-measurable and (56) holds true. If f = 14 for A € H ® K the claim is proved. By
taking linear combinations, it is proved for H ® K-measurable step functions. Then if f : H x K —
R U {400} is non-negative and H ® K-measurable, then there exists some increasing sequence (f),)n>1
such that f,, : H x K — R is a # ® K-measurable step function and (f,,),>1 converge to f. Using the
monotone convergence theorem and (56) for steps functions, we conclude that (56) holds true for f. O

Definition 7.2 Let f : H x K — RU {£o0} be a # ® K-measurable function. If [, . fTdP < co or
Jrwx [-dP < 0o, we define the generalised integral of f by

/ fdP::/ ftap — fdP.
HxK HxK HxK

Remark 7.3 Note thatifboth [, . fTdP =ocoand [, , f~dP = oo, the integral above is not defined.
We could have introduced some convention to handle this situation, however, as in most of the cases
we treat we have [, . fTdP < co, we refrain from doing so.

Proposition 7.4 Let f : H x K — RU{£o0} be a H ® K-measurable function such that [, , ftdP <
oo. Then, we have

/H fap- /H /K (. k)q(dk|R)p(dh). 57)

Remark 7.5 Note that we can assume instead that [}, , f~dP < oo and the result holds as well. We
will use this in the proof of Lemma [2.2]later in the Appendix.
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Proof. Using Definition[7.2] and applying Lemma[7.1lto f* and f~ we obtain that

/ fdP = ftap — f~ap
HxK HxK HxK

//f+ (dk|R)p(dh) + //f o(dk|h)p(dh).

To establish (57), assume for a moment that the followng linearity result have been proved: let g; :
H x K — RU{£oc} be some H ® K-measurable functions such that [, , g;i"dP < oo for i = 1,2. Then

/ (91 +g2) dp = / g1dp + / g2dp. (58)
H H H
We apply B8) with g (h) = [ f7(h,k)q(dh|k) and go = — [;- f~(h, k)q(dh|k) since by Lemma [7.1]

[otar = [ ( / f+<h,k>q<dh|fc>> p(dh)

- / £ (b k)g(dhlk)p(dh) = / JHAP < oo
HxK HxK

and clearly [}, g5 S dp = 0 < co. So we obtain that

/H /K FH(h, k)q(dk|h)p(dh) — /H /K f~(h,k)q(dk|h)p(dh)
:/H(/Kﬁ(h,k)q(dk\h)—/Kf‘(hk)q(dk\h)) p(dh)
= | [ snmatarinypan)

where the second equality comes from the definition of the generalised integral of f(h,-) with respect
to q(-|h) and (57D is proven.

We prove now (58). If fH g; dp < oo for i = 1,2 this is trivial. From [}, g/"dp < co we get that g;" < oo
p-almost surely for i = 1,2, so the sum ¢g; + g5 is p-almost surely well-defined, taking its value in
[—00,00). As (g1 +g2)" < gf + g4 , using the linearity of the integral for non-negative functions we get
that

/ (914 g2)" (R)p(dh) < / gfder/ g5 dp < 0.
H H H

Now from
g +o—g —g =ate=>0Gi+a)" —(0n+agp),

using again the linearity of the integral for non-negative functions we get that

/(91+gz)+dp+/gfdp+/gg‘dp=/ (91+gz)_dp+/gfdp+/gg+dp-
H H H H H H

Checking the different cases, i.e [,; g7 dp = oo and [}, g, dp < oo (and the opposite case) as well as
[ 9; dp = oo for i = 1,2 we get that (B8) is true. O
7.2 Further measure theory issues

We present now specific applications or results that are used throughout the paper. We start with
four extensions of the Fubini results presented previously. As noted in Remark[6.12] the introduction
of the trace sigma-algebra is the price to pay in order to avoid using the convention oo — co = —oo.
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Proposition 7.6 Fix somet c {1,...,T}.

i) Let f : Q' — R, U {+co} be a non-negative F;-measurable function. Then w'~! € Q7! —
Jo, FW'™ Y w)gi(dwi|w'™1) is F;—1-measurable with values in R, U {+o0}.

ii) Let f : Q' xR? — R, U{+oc0} be a non-negative F; ® B(R%)-measurable function. Then (w'~' h) €
QLR — [ f(w' ™ wr, )i (dw|w™1) is Fr—1 @ B(R?)-measurable with values in Ry U {+o0}

iii) Let f : Q' — R, U {+oco} be a non-negative F; | ® G;-measurable function. Then w'~! € Q=1 —
Jo, F(W'™Y wi)gi(dwi|w'™1) is Fy1-measurable with values in Ry U {+00}.

iv) Let S € F,_1 ® B(RY). Introduce [F,—1 ® B(Rd)]s ={ANS, Ae F_1 ® B(RY)} the trace sigma-
algebra of F;_1®B(R%) on S. Let f : Q"1 xRx Q; — R, U{+oc} be a non-negative F;_1 @ B(RY) ®
Gi-measurable function. Then (w'™',h) € § = [ f(W'™, h,w)gi(dwilw'™") is [Fi1 @ B(RY)] -
measurable with values in R U {+oc0}.

Proof. Statement i) is a direct application of Lemma[TIlfor H = Q"' H = F, 1, K = O, K = G; and
q(:|) = @(:|-). To prove statement ii), let g; be defined by

G (Gw™ L h) € G x Q7 xR = G (Glw' ™ h) = q(Glw'h). (59)

We first prove that g, is a stochastic kernel on G; given Q! x R¢ where measurability is with respect
to Fi_1 @ B(RY). Let (w'™!,h) € Q! x R? be fixed, B € G; — §(B|w!™', h) = ¢;(B|w'™") is a probability
measure on (£, G;) by definition of ¢;. Let B € G; be fixed, then (w'~!, h) € Q"1 x R — q(B|w!™!, h) =
¢ (B|w!™1) is F;_1 ® B(RY)-measurable since for any B’ € B(R), we have, by definition of ¢,

{0 e @7 xR GBI ) € B'} = {w™! € @71 q(Blw'™) € B'} xR € Fiy @ BRY).

Statement ii) follows by an application of Lemma [7.1for H = Q™! x R, H = F;_; ® B(R?Y), K = €,
K = G, and q(-|-) = @(:|"). To prove statement iii) note that since 7;_1 C F;_; it is clear that ¢
is a stochastic kernel on (€, G;) given (Q'~!, F;_1) (i.e measurability is with respect to 7;_1). And
statement iii) follows immediately from an application of Lemma[ZIlfor H = Q'"', H = F;, 1, K = Qy,
K = G¢ and ¢(-|-) = ¢:(-|). We prove now the last statement. It is well known that (S, [F—; ® B(]R{d)]s)
is a measurable space. Let ¢; be defined by

G : (G,w'™' h) € Gy x 8 — @(Glw'™, h) = qp(Glw' ™). (60)

We prove that ¢, is a stochastic kernel on (;, G;) given (S, [Fi—1 ® B(R?)] ). Indeed, let (w'~',h) € S
be fixed, B € G; — §:(BJw'™!,h) = q(B|w!"!) is a probability measure on (£, G;), by definition of ¢;.
Let B € G, be fixed, then (w'™',h) € S — G(Blw'™',h) = q(Blw'"!) is [F;—1 ® B(R?)] ;-measurable
since for any B’ € B(R), we have, by definition of ¢,

{Wh) €S, @Bl h) e B} = ({wt_l € Q! g (Blw'™) € B'} x Rd) Ns
_ R?
S [.Ft 1® B( )] s
Now let fg be the restriction of f to S x ;. Using similar arguments and the fact that

FioBRY G| =|FaoBRY| o4, (61)

SXQt

we obtain that fs is [F_; ® B(R?)] s ® Gi-measurable. Finally, statement iv) follows from another
application of Lemma [Z1lfor H = S, H = [F;_1 ® BRY)] ., K = Q, K = G; and ¢(-|-) = Gi(-|"). O
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Lemma 7.7 Let f : Q"' — R, U {cc} be F;11-measurable, non-negative and such that
Jope1 FW™)Pigq (dw'™) < co. Then w' € QF — Ja,,, f(@' wir1) @ (dwig [w”) is Fi-measurable. Fur-
thermore, let

Nt = {w' e Q' 0 F(@ W)@ (dwig [w') = 00}
t+1

Then N; € F; and Pt(Nt) =0

Proof. The first assertion of the lemma is a direct application of i) of Proposition So it is clear that
Nt € F;. Furthermore, applying the Fubini Theorem (see Lemma[7.1) we get that

/ (@ i) (dwra |0 Pu(det) = [ f@ 1) Py (dw) < oo,
Qt Sy

Qt+1

Assume that P,(N?) > 0. Then
/ f(th)PtJrl(del) > / f(wt,wt+1)qt+1(dwt+1]wt)Pt(dwt) = 00.
Qt+1 Nt JQu i
We get a contradiction : P;(N?) = 0. O

The next lemma, loosely speaking, allows to obtain “nice” sections (i.e set of full measure for a
certain probability measure). We use it in the proofs of Theorem [4.17] and Lemma [7.9

Lemma 7.8 Fix some t € {1,...,T}. Let Q' € F, such that P,(Q!) = 1 and Q"' € F,_, such that

P,_1(Q"1) = 1 and set
o= {wt_l et ¢ <<§t>wt71 \wt_l) = 1}

see Lemmal7_1 for the definition of <S~2t) .- Then a0 le Fi—1 and P,(Q !

wt—

)= 1.

Proof. From Lemma we know w'™! — ¢ ((§t> . |wt_1> is F,_i-measurable and the fact that

Q' e £, follows immediately.
Furthermore, using the Fubini Theorem (see Lemma[7.1) we have that

1= Pt Qt / / Qt qt(dwtlw )Pt_l(dwt_l)
Qt-1.JQ,
— [ v, aldede ™ P
Qt-1 JQ, wt*

/ / (@) (wy qt(dwt|w )Pt_l(dwt_l)
Qt-1 Jq, wt—1

_ St t—1 t—1

= [ o (@), o) P

N /ﬁtl b Pt_l(dwt_l) + /Qt 1\975 1 a <<§t>wt71 ‘wt_l) Pt—l(dwt_l)a

where we have used for the third line the fact that P(Q!~1) = 1.
But if P(Q"1\Q' ') > 0 then we have that by definition of @' that

/~ e ((2) ™) Poa(dw'™) < A @@,
Qt-1\Q w

and thus

t—1

1< P @ H+P_ (@ N\Q ) =1,
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which is absurd and thus P,_;(Q"1\Q' ") = 0. We conclude using again that P,_;(Q¢"!) = 1. O
The following lemma is used throughout the paper. In particular, the last statement is used in the
proof of the main theorem

Lemma 7.9 Let 0 <t < T —1,B € B(R), H: Q' - R and h; : Q' — R? be F;-measurable be fixed.
Then the functions

(W h) € O x R — g (H(wW') + hAS; 11 (W, ) € Blwh), (62)
wh e Q' = g1 (H(Wh) + hy (W) ASi 1 (W -) € Blwh), (63)

are respectively F; ©® B(R%)-measurable and F;-measurable. Furthermore, assume that
Pii1 (H(v) + he()ASi41(+) € B) = 1, then there exists some P;-full measure set Q' such that for all
wt € Q' qrar(H(wh) + hy(w!)ASp41(wt, ) € Blwt) = 1.

Proof. As h € R? — hAS; 1(wh, wi1) is continuous for all (wh,wi1) € QF x Qi and (wh,wiy1) €
QF x Q1 — hASi 1 (wh wiy1) is Fry1 = Fi ® Giy1-measurable for all h € R? (recall that S; and S;, are
respectively F; and F;,; measurable by assumption), (w!, w;1,h) € QF x Qi1 x RT — hAS, 1 (W, wis1)
is F; ® Giy1 ® B(R%)-measurable as a Carathéodory function. As H is F;-measurable we obtain that
P (Whwir, h) € QF x Qpy x RT = H(w!) + hAS; 1 (wh, wiyr) is also Fi @ Gi1 ® B(RY)-measurable.
Therefore, for any B € B(R), fp : (W', wiy1,h) € Q' x Q1 xR — Ly yeB(Wh wign, h) is Fi®G 1@B(RY).
We conclude using statement i) of Proposition [7.6] applied to fz and is proved. We prove (63)
using similar arguments. Since h; is F;-measurable, it is clear that ¢y, : (W', wii1) € QF x Q1 —
H(w'") + hy(w") AS11 (W', wit1) is Fy @ Gry1-measurable. Therefore, for any B € B(R), fpp, : (W' wiy1) €
Qb x Qi — 11%(,,,)6 g(wh wiy1) is F; ® G 1-measurable. We conclude applying i) of Proposition [7.6] to
IB.hy-

For the last statement, we set

Qi = {th = (W' wit1) € O x Qeg1, Hw') + hy(w') ASpiq (wh, wip1) € B}

It is clear that Q'*! € F,,, and that P, 1(Q"!) = 1. We can then apply Lemma [7.8 and we obtain
some P,-full measure set Q' such that for all w! € O, g1 (H(w!) + hy(w))ASi1 (wh, ") € Blw!) =1. O

Lemmal(7.10lis often used in conjunction with the Aumann Theorem (see Corollary 1 in/Sainte-Beuve
(1974)) to obtain a F;-measurable selector.

Lemma 7.10 Let f : Q' — R be F;-measurable. Then there exists g : ' — R that is F;-measurable
and such that f = g P;-almost surely, i.c there exists Q' € F; with P, (Ql}g> =land Q% C{f =g}

Proof. Let f = 15 with B € F; then B= AU N, with A € F; and N € Np,. Let g = 14. Then g is F;-
measurable. Clearly, {f # g} = N € Np,, thus f = g P, a.s. By taking linear combinations, the lemma
is proven for step functions using the same argument for each indicator function. Then it is always
possible to approximate some F;-measurable function f by a sequence of step function (f,,),>1. From
the preceding step for all n > 1, we get some F;-measurable step functions g, such that f, = g, P;-
almost surely. Let g = limsup g,, g is F;-measurable and we conclude since {f # g} C Up>1{fn # gn}
which is again in Np,. 0

Next we provide some simple but useful results on usc functions.

Lemma 7.11 Let C be a closed subset of R™ for some m > 1. Let g : R™ — R U {400} be such that
g = —o0 on R™\C. Then g is usc on R™ if and only if g is usc on C.
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Proof. We prove that if g is usc on C' then it is usc on R™ as the reverse implication is trivial. Let
a € R be fixed. We prove that S, := {x € R™, g(z) > a} is closed in R™. Let (z,,)n,>1 C S, converge
tox € R™. Then z, € C for all n > 1 and as C is a closed set, z € C. As g is usc on C, (i.c the set
{z € C, g(x) > a} is closed for the induced topology of R™ on C) we get that g(z) > o, i.ex € S, and g
is usc on R™, |

Lemma 7.12 Let S C R be a closed subset of R. Let f : R — R U {+oo} be such that f is usc and
non-decreasing on S. Then f is right-continuous on S.

Proof. Let (x,),>1 C S be a sequence converging to some z* from above. Then z* € S since S is
closed. As z € S — f(z) is non-decreasing, for all n > 1 we have that f(z,) > f(z*) and thus
liminf, f(xz,) > f(z*). Now as f is usc on S, we get that limsup,, f(z,) < f(2*). The right continuity of
f on S follows immediately. O
We now establish a useful extension of Lemma

Lemma 7.13 Let f : Q' xR — RU{4o00} be an F;®B(R)-measurable function such that for all w' € Q,
r € R — f(w!, ) is usc and non-decreasing. Then, there exists some F; @ B(R)-measurable function
g from Q' x R to RU {£oo} and some !, ., € F; such that P,(Q,.,) = 1 and f(w', z) = g(w!,x) for all
(whz) e Qs xR.

mes

t
mes?

Remark 7.14 In particular, for all w! € r € R — g(w!, x) is usc and non-decreasing.

Proof. Let n > 1 and k € Z be fixed. We apply Lemma [T.10to f(-) = f(-, 2-) that is F;-measurable
by assumption and we get some F;-measurable g, : Q' — RU {£oo} and some Qﬁl x € Ft such that

P ) =1and @, C {w' €, f(w',35) = gnr(w')}. We set

Oes = [ Qg (64)
n>1,k€eZ

It is clear that Q! .. € F; and that P,(Q,.,) = 1.

mes mes

Now, we define for alln > 1, g, : Q' x R — RU {£o0} by

gn(wtaw) = Z 1(k71 i] (‘T)gn,k(wt)'

PICRPIO

It is clear that g,, is F; ® B(R)-measurable for all n > 1. Finally, we define g : Q' x R — R U {£cc} by

g(w', ) == lim g, (W', z). (65)

Then g is again F; ® B(R)-measurable and it remains to prove that f(w’,z) = g(w!, x) for all (W', x) €
QL. x R. Let (w',2) € Qf,,, x R be fixed. For all n > 1, there exists &, € Z such that ¥a1 < 2 < &=

and such that g, (w', ) = g, 1, (w') = f(w', £2). Applying Lemmal[T.12to f(-) = f(w!,-) (and S = R), we

get that z € R — f(w!, ) is right-continuous on R. As ( %)n>1 converges to x from above, it follows

that g(w?, z) = lim,, f(w, ’2“—:;) = f(w', z) and this concludes the proof. O

Finally, we introduce the following definition.

Definition 7.15 Let S be a closed interval of R. A function f : Q! xS — Ris an extended Carathéodory
function if

i) for all W' € Qf, 2 € S — f(w', z) is right-continuous,

ii) forallz € S, w! € Q' — f(w', z) is F;-measurable.
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And we prove the following lemma that is an extension of a well-know result on Carathéodory func-
tions (see for example 4.10 in |Aliprantis and Border (2006))

Lemma 7.16 Let S C R be a closed interval of R and f : Q! x S — R be an extended Carathéodory
function. Then f is F; ® B(R)-measurable.

Proof. We define for alln > 1, f,, : O x R — R by

= 31 5 DL W )

—n n n
kEZ

It is clear that f,, is 7; ® B(R)-measurable. From the right continuity of f, we can show as in the proof
of Lemma [7.13] that f(w!, z) = lim,, f,(w’, z) for all (W', z) € Q! x S and the proof is complete (recall
that QO x S € F; ® B(R) as S is a closed subset of R). O

Remark 7.17 Note that we have the same result if we replace F; with F,.

7.3 Proof of technical results

Finally, we provide the missing results and proofs of the paper. We start with the following results
from Section

Proof of Lemma We refer to Section 6.1 of |(Carassus and Rasonyi (2015) for the definition and
various properties of generalized conditional expectations. In particular since E(h*) = [, hTdP, < oo,
E(h|Fs) is well-defined (in the generalised sense) for all 0 < s < t (see Lemma 6.2 of|(Carassus and Rasonyi
(2015) ). Similarly, from Proposition [7.4] we have that ¢ : Q° — R U {+o00} is well-defined (in the gen-
eralised sense) and F,-measurable.

As o(X1,...,X,) is F;-measurable, it remains to prove that E(gh) = E(gp(X1,..., X)) forall g : Q° —
R non-negative, F;-measurable and such that F(gh) is well-defined in the generalised sense, i.e such
that E (gh)T < oo or E (gh)” < co. Recalling the notations of the beginning of Section @l and using the
Fubini Theorem for the third and fourth equality (see Proposition [7.4land Remark [7.5), we get that

B(gh) = B(g(Xi Xh(Xo, oo X0) = [ gleor,oowohlwn, o) P(de)
Q
= [ g @l e P )
Ot
- / (@i, o yw < / wl,...,ws,wsﬂ,...,mqt(wtw1>...qs+l<ws+1|ws>> Py(dw”)
Qs Qagr X x Qe
= [ glon (o, ) P
Qs
= E(g(Xla"" )SO(Xla"'a t),
which concludes the proof. O

We give now the proof of results of Section [3l
Proof of Lemma We first prove that D'*! is a non-empty, closed-valued and F;-measurable

random set. It is clear from its definition (see (2)) that for all w' € O, D'+ (w') is a non-empty and
closed subset of R?. We now show that D!*! is measurable. Let O be a fixed open set in R¢ and
introduce

po :w' € = po(W') = g1 (AS1(W',.) € Olw')

= / IAS 1 ()e0 (W wis1) gy (dwyyr|w!).
Qig1
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We prove that ;o is F;-measurable. As (w!, wii1) € QEx Qi1 — ASpyq(wh, wey1) is F; @Gyt 1-measurable
and O € B(R?), (w',wi11) — lasg, i(eoWhwiyr) is Fy ® Giy1-measurable and the result follows from
Proposition

By definition of D'*!(w!) we get that

{wh e Qf, D' (WHNO £ 0} = {w! € Q) po(wt) >0} € F.

Next we prove that D*! is a non-empty, closed-valued and F;-measurable random set. Using (3),
D1 is a non-empty and closed-valued random set. It remains to prove that D*! is F;-measurable.
As D't! is F,-measurable, applying the Castaing representation (see Theorem 2.3 in Chapter 1 of
Molchanov (2005) or Theorem 14.5 of Rockafellar and Wets (1998)), we obtain a countable family of
Fi-measurable functions (f,,)n>1 : ©2f — R? such that for all w! € Qf, D (w!) = {f,,(w!), n > 1} (where
the closure is taken in R? with respect to the usual topology). Let w! € Qf be fixed. It can be easily
shown that

p

DI*(Wh) = Aff(D (W) = {fl(wt) ) Nfiwh) = Awh), (e, Ap) €QPL p > 2}. (66)

=2

So, using again the Castaing representation (see Theorem 14.5 of[Rockafellar and Wets (1998)), we ob-
tain that D! (w') is F;-measurable. From Theorem 14.8 of Rockafellar and Wets (1998), Graph(D'™!) €
Fi @ B(RY) (recall that D**! is closed-valued). O

Proof of Lemma Introduce C**'(w!) := Conv(D'(w!)) the closed convex hull generated by
D Hwh). As CtH(w!) ¢ D' (w!) we will prove that 0 € C*(w!). Since O™ (w!) C D'(w!) by
assumption, for all h € C*1(w!)\{0}

qir1(hASi 1 (W) > 0jwh) < 1. (67)

Thus if we find some hy € C'*!(w?) such that ¢, 1(hgAS;i1(wt,-) > 0lw’) = 1 then hy = 0. We distin-
guish two cases. First assume that for all h € RY, h # 0, ¢;..1 (hAS;11(w’,.) > 0|w!) < 1. Then the polar
cone of C'+1(w!), i.c the set

(CH (W) = {y eRY, ya <0, Vo € ' (")}

is reduced to {0}. Indeed if this is not the case there exists yo € R¢ such that —yoz > 0 for all = €
Ct+1(wt). As A = {wt+1 € Qt—i—l, AStH(wt,th) S Dt+1(wt)} C {wt+1 S Qt+1, —yOASHl(wt,th) > 0}
and g;41(Alw?) = 1 we obtain that g1 (—y0ASi+1(wh, -) > 0lw?) = 1 a contradiction. As ((C*1(w?))°)” =
cone (C'!(w')) where cone (C*!(w')) denote the cone generated by C**!(w') we get that cone (C**!(w')) =
R%. Let u # 0 € cone (C'"(w')) then —u € cone (C'*!(w')) and there exist A > 0, Ay > 0 and
v1, v2 € CHL(w!) such that u = A\jv; and —u = \yvy. Thus 0 = /\1);:)\2 vy + Al/\+2/\2 vy € O 1(wh) by convex-

ity of CtT1(w?).

Now we assume that there exists some hy € R?, hy # 0 such that g, (hgAS;;1(w?,.) > 0jw?) = 1. Note
that since hy € R? we cannot use (67). Introduce the orthogonal projection on C**!(w!) (recall that
C**1(wt) is a closed convex subset of R?)

p:heR? = p(h) e CFHwh).

Then p is continuous and we have (h — p(h)) (z — p(h)) < 0 for all 2 € C"*(w'). Fix wip1 € {wiy1 €
Qt+1, AStH(wt,th) S Dt+1(wt)} N {wt+1 S Qt+1, hoASHl(wt,th) > 0} and /\~Z 0. Let h = )\h(] and
= ASp1(wh wir1) € CHL(wh) in the previous equation, we obtain (recall that D'(w?) C Ct1(w?))
0 < ApASps1(wh wir1) = (Mg — p(Aho)) ASp1(wh, wir1) + p(ARg) ASi1 (W, wig1)
< (Mg — p(Mho)) p(Aho) + p(Aho) ASiy1 (W', wer1).

36



As this is true for all A > 0 we may take the limit when \ goes to zero and use the continuity of p
P(0)ASi 1 (W', wig1) = [p(0)]* >0

As qi4q ({Wt+1 € Qy1, ASiq(whwiyr) € ﬁt“(wt)} |wt> — 1 by definition of D'*!(w!) and as
qt+1(hoASp1(w,.) > 0lw?) = 1 as well we have obtained that

Qt+1(p(0)ASt+1(wta ) > 0]wt) =1

The fact that p(0) € C**(w?) together with implies that p(0) = 0 and 0 € C*(w?) follows.
O

The following lemma has been used in the proof of Lemma [3.6l It corresponds to Lemma 2.5 of
Nutz (2014)

Lemma 7.18 Let w' € Q! be fixed. Recall that L‘*1(w!) := (D”l(wt))L is the orthogonal space of
D'l (wt) (see @)). Then for h € R? we have that

Gr1(hAS 1 (W) = 0jw’) =1 < h e LIH(Wh).

Proof. Assume that h € L'*!(w!). Then {w € Q;, ASii1(wh,w) € DTHwH} C {w € Qi hAS 1 (W, w) =
0}. As by definition of D" (w?), gr41(AS11 (W, .) € D (wh)|w?) = 1, we conclude that ¢, 1 (RAS, 1 (v, )
OJw’) = 1. Conversely, we assume that h ¢ L™ (') and we show that g+ 1(hAS 1 (w',.) = Ow') < 1.
We first show that there exists v € D' (w") such that hv # 0. If not, for all v € D'*!(w"), hv = 0 and
for any w € D'l(w!) with w = > 1", A\;v; where \; € R, > \; = 1 and v; € D" (w!), we get that
hw = 0, a contradiction. Furthermore there exists an open ball centered in v with radius ¢ > 0, B(v, ¢),
such that hv' # 0 for all v' € B(v,¢). Assume that g;41(AS;41(wf,.) € B(v,e)lw’) = 0 or equivalently
that g+1(ASi1(w',.) € R4\ B(v,e)|w') = 1. By definition of the support, D'*!(w') C R?\ B(v,¢): this
contradicts v € D' (w!). Therefore g1 (AS;+1(wh,.) € B(v,¢)|w!) > 0. Let w € {ASi41(wt,.) € B(v,¢)},
then hAS; 1(wh, w) # 0i.e i1 (RAS; 1 (W) = 0lw)) < 1. O

We prove now the following result of Section 5.
Proof of Proposition[5.11. We start with the proof of when h € D,. Since D is a vectorial subspace

of R? and 0 € H,, the affine hull of D, is also a vector space that we denote by Aff(D,). If z < 1 we
have by Assumption 5.4l that for all w € Q, h € D,,

VH(w,z +hY (w) <V (w,1+hY (w)). (68)

If x > 1 using Assumption 5.7 (see in Remark [5.8) we get that for allw € Q, h € D,

V(w2 + hY () = VT (235 G + %Y@))) < (22)K <v+ <w, 1+ %Y@)) + C(w)) . (69)

First we treat the case of Dim(Aff(D,)) =0, i.e D, = {0}. For allw € Q, h € D, = {0}, using and
(69), we obtain that

Vi w,z+hY (w)) <V (w,1) + (22)'K (VT (w,1) + C(w)) < ((22)TK + 1)(V (w,1) + C(w)).  (70)

We assume now that Dim(Aff(D,)) > 0. If x = 0 then Y = 0 Q-a.s. If this is not the case then we should
have Dy = {0} a contradiction. Indeed if there exists some h € Dy with h # 0, then @ (‘—Z|Y(-) < 0) >0

by Assumption [5.3]lwhich contradicts h € Dgy. So for z = 0, Y = 0 Q-a.s and by Assumption 5.4 we get
that for all w € Q, h € Dy,
VT (w,0+hY (W) <V (w,1).

37



From now we assume that z > 0. Then as for ¢ € R%, ¢ € D, if and only if % € D¢, we have that
Aff(D,) = Aff(D;). We set d' := Dim(Aff(D;)). Let (ei,...,eqs) be an orthonormal basis of Aff(D,)
(which is a sub-vector space of R?) and ¢ : (A1,...,\¢) € RY — Ef’zl)\iei € Aff(Dy). Then ¢ is an
isomorphism (recall that (e;,...,es) is a basis of Aff(D;)). As ¢ is linear and the spaces considered
are of finite dimension, it is also an homeomorphism between R? and Aff(D,). Since D; is compact
by Lemma [5.10, ¢»—'(D;) is a compact subspace of R? . So there exists some ¢ > 0 such that for all
h = Eglzl)\iei € Dy, |\i| <cforalli=1,...,d. We complete the family of vector (ey,...,es) in order to
obtain an orthonormal basis of R?, denoted by (e1,...,eq,eq41,...¢eq). Forallw € Q, let (yi(w))i=1,....d
be the coordinate of Y (w) in this basis.

Now let h € D, be fixed. Then % S D% C Dy and % = Ef’zl)\iei for some (\q,... \y) € R? with |Ni| < ¢
for alli = 1,...,d". Note that as % € D1, \; =0fori > d + 1. Then as (eq,...,e4) is an orthonormal
basis of R?, we obtain for all w €

h i
14+ EY(Q}) =14 Elekz’yi(w)
<1438 |y (w)]
<1+ czg,:1|yi(w)|'

Thus from Assumption 5.4 for all w € 2 we get that
VTlw, 1+ iY(cu) <Vt (w 1+ cnd ]y(w)]) .
Y 21: = 9 =119
We set
L) =V (0,14 eS8 i()]) Laso + V(1) + CO).
As d' = Dim(Aff(D,)) it is clear that L does not depend on z. It is also clear that L is #-measurable.
Then using (68), and (70) we obtain that for all w € Q
VT (w,z +hY (w)) < ((22)7K +1)L(w).

Note that the first term in L is used in the above inequality if * # 0 and Dim(Aff(D,)) > 0. The
second and the third one are there for both the case of Dim(Aff(D,)) = 0 and the case of z = 0 and
Dim(Aff(D,)) > 0. As by Assumptions 5.7 and 5.9, E(V*(-,1) + C(-)) < oo, it remains to prove that

d > 0 implies E <V+ ( 1+ cz:gl’_llyz-(-)l)) < .

Introduce W, the finite set of R? whose coordinates on (ey,...,ez) are 1 or —1 and 0 on (eg 1, ... eq).
Then W C Aff(D;) and the vectors of W will be denoted by 67 for j € {1,...,2%}. Let #* be the vector
whose coordinates on (eq,...,eq) are (sign(y;(w)))i=1..¢ and 0 on (eg11,...€4). Then 8% € W and we
get that
2d’
vt <w, 1+ cEgl,:1|yi(w)|) =V, 1+ Y (@) < Y V(w1 + Y ().
j=1

So to prove that EL < oo it is sufficient to prove thatif ' > 0forall1 < j < 2¢, EV*t (., 14+c67Y (-)) < oc.
Recall that 6/ € Aff(D;). Let ri(D;) = {y € Dy, 3a > 0s.t Aff(D1)N B(y,a) C Dy} Bl denote the relative
interior of D;. As D is convex and non-empty (recall d’ > 0), ri(D;) is also non-empty and convex and
we fix some e* € ri(D;). We prove that % € ri(D;). Let o > 0 be such that Aff(D;) N B(e*,«) C D
and g € Aff(D;)N B(%, $). Then 2g € Aff(D1) N B(e*, a) (recall that Aff(D;) is actually a vector space)
and thus 2¢g € D;. As D is convex and 0 € D, we get that g € D, and Aff(D;) N B(%, $) C Dy which
proves that % € ri(D1). Now let ¢; be such that £;(567 — %) € B(0,5). It is easy to see that one can

*Here B(y, @) is the ball of R? centered at y and with radius a.
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chose ¢; € (0,1). Thenas & := & + J(c#7 — e*) € Aff(D1) N B(S, %) (recall that 07 € W C Aff(D,)), we
deduce that & € D;. Using we obtain that for Q-almost all w

VT (w, 14 Y (W) = VT (w, 1+ 'Y (w) + (e — )Y (w))

< <3>7K [V+ <w, %(1 +e*Y (w)) + %(a@j — MY (w) + 5) + C(w)}

€j

< <%>7K [V+ <w, % + e—;Y(w) + %(cm — MY (w) + %) + C’(w)}

< (3) K [VHw 1+ @Y (W) + Cw)].,

€j

where the second inequality follows from the fact that 1 +e*Y(-) > 0 Q-a.s (recall that e* € ri(D;)) and
the monotonicity property of V in Assumption 4.1l Note that the above inequalities are true even if
1+ cfY (w) < 0 since (see remark [5.8) and the monotonicity property of V hold true for all = € R.
From Assumption [5.9 we get that EV*(-,1 + &Y (-)) < oo (recall that &; € D;) and Assumption 5.7
implies EC < oo, therefore EVT (-, 1+ ¢§7Y (-)) < co and is proven for h € D,. Now let h € H, and
h' its orthogonal projection on D, then hY (-) = F'Y (-) Q-a.s (see Remark [5.3). It is clear that ' € D,
thus V* (., + hY () =V*T(, 2+ 1Y () Q-a.s and is true also for h € H,. 0

To conclude, the following lemma was used in the proof of Theorem
Lemma 7.19 Assume that (NA) holds true. Let ¢ € ® such that V:ff’(z) > 0 P-a.s, then Vfc’d) > (0 P;-a.s.

Proof. Assume that there is some ¢ such that Pt(Vtx"z’ > 0) < 1 or equivalently Pt(Vtx’(b < 0) > 0and
let n = sup{t|P,(V;"* < 0) > 0}. Then P,(V;%** < 0) > 0 and for all s > n + 1, P,(V&" > 0) = 1. Let
Uy(w) =0if s <nand Vy(w) = 1464(w) if s > n+ 1 with A = {V,? < 0}. Then

vov = i U,AS, = i U ASs =14 (Vf"z’ - Vrf’¢)
k=1 k=n+1

Ifs>n+1P,(V& >0)=1andon A, ~V.2 > 0 thus PT(VJQ’\I' >0) =1 and VJQ’\I’ > 0on A. As by
the (usual) Fubini Theorem Pr(A) = P,(V,, 0 < 0) > 0, we get an arbitrage opportunity. Thus for all
t<T, PV >0) =1. O
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