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Abstract
Given an undirected simple graph G with node set V and edge set E , let fv , for each
node v ∈ V , denote a nonnegative integer value that is lower than or equal to the
degree of v in G. An f -dominating set in G is a node subset D such that for each
node v ∈ V \D at least fv of its neighbors belong to D. In this paper, we study the
polyhedral structure of the polytope defined as the convex hull of all the incidence
vectors of f -dominating sets inG and give a complete description for the case of trees.
We prove that the corresponding separation problem can be solved in polynomial time.
In addition, we present a linear-time algorithm to solve the weighted version of the
problem on trees: Given a cost cv ∈ R for each node v ∈ V , find an f -dominating set
D in G whose cost, given by

∑
v∈D cv , is a minimum.

Keywords Domination · Polyhedral combinatorics · Tree · Linear-time algorithm

Mathematics Subject Classification 05C69 · 51M20 · 68Q25 · 68R10 · 90C10

1 Introduction

Let G = (V , E) denote an undirected simple graph with node set V =
{1, 2, . . . , n} and edge set E . An edge joining the nodes u and v is denoted by
{u, v}. Given a node subset S ⊆ V , its open neighborhood is the set NG(S) =
{v ∈ V \S : ∃u ∈ S such that {u, v} ∈ E}, and its closed neighborhood is the set
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2 M. Dell’Amico, J. Neto

NG [S] = NG(S) ∪ S. In case S consists of a single node v ∈ V we may write
NG(v) (resp. NG[v]) instead of NG({v}) (resp. NG [{v}]). Given some node v ∈ V , let
dGv denote the degree of node v in G, i.e., dGv = |NG(v)|. When G is clear from the
context we shall more simply write dv , and we may also omit G in the subscript of the
notation used for neighborhoods as well. Let c ∈ R

n+ denote a vector of nonnegative
node weights. Let FG stand for the following set of vectors indexed on the nodes of
G: { f ∈ (Z+)n : 0 ≤ fv ≤ dGv , v ∈ V }.

A node subset D ⊆ V is called an f -dominating set if each node v ∈ V \D has
at least fv neighbors in D, i.e., |N (v) ∩ D| ≥ fv . If, in addition, all the nodes in
D (and thus all the nodes in V ) also satisfy this inequality, then D is called a total
f -dominating set. We will call fv the domination requirement for node v.
The f -domination concept seems to appear first in the papers by Hedetniemi et al.

(1985) and Stracke and Volkmann (1993). The concepts of f -domination and f -total
domination generalize those of domination and total domination, respectively. The two
latter correspond to the special case when fv = 1, for all v ∈ V . (For further results
related to the domination or total domination concepts and variants the reader may
consult e.g. Haynes et al. (1998a), Haynes et al. (1998b), Henning and Yeo (2013),
Bermudo et al. (2018) and Zhou (1996), and the references therein.) The authors
previously investigated the polyhedral structures of polytopes related to the set of all
total f -dominating sets in a graph (Dell’Amico et al. 2017). Here, we proceed to such
investigations with respect to the f -dominating sets. Despite the apparent similarity of
the two concepts, the polyhedral structures of the corresponding polytopes radically
differ. And this also holds if we compare the polytopes corresponding, on the one
hand, to the classical domination, and on the other, to the generalized f -domination
concept we consider here.

In addition to a purely theoretical interest of these structures, the obtained results
are relevant w.r.t. the problem which consists in determining a minimum weight f -
dominating set in a graphG, where we define the weight of any node subset set S ⊆ V
as the quantity

∑
v∈S cv . This problem, denoted by [MW f ] is described hereafter

together with an integer linear programming formulation.

[MW f ] Minimum weight f - dominating set problem

Find a minimum weight f -dominating set of G, i.e., find a node subset S ⊆ V such that S is an
f -dominating set and the weight

∑
v∈S cv of S is minimum.

This problem may be formulated as the following integer program.

(I P1)

⎧
⎪⎪⎨

⎪⎪⎩

min
∑

v∈V cvxv

s.t .
fvxv + ∑

u∈N (v) xu ≥ fv, v ∈ V ,

x ∈ {0, 1}n .
With no loss of generality we may assume that all the weights (or costs) (cv)v∈V are
positive. If this is not the case, the nodes in V with a nonpositive weight can be fixed in
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On f -domination: polyhedral and algorithmic results 3

any optimal solution. Let 1 stand for the n-dimensional all ones vector. The particular
case when f = c = 1 corresponds to the classical minimum (cardinality) dominating
set problem.

Given a node subset S ⊆ V , let χ S ∈ {0, 1}n denote its incidence vector: χ S
v = 1 if

v ∈ S, and χ S
v = 0 otherwise. Let D f

G denote the f -dominating set polytope, i.e., the
convex hull in R

n of all the incidence vectors of the f -dominating sets in G. Then,
problem [MW f ] can be reformulated as the linear program: min{ct x : x ∈ D f

G}. Also,
note that for any pair ( f , f ′) ∈ (FG)2 such that fv ≤ f ′

v , for all v ∈ V , we have

D f ′
G ⊆ D f

G .

Motivation

Optimization problems involving dominating sets arise in many classical applications
(see, e.g., Haynes et al. 1998a, b) that received renewed interest in the last twenty
years. We refer, among others, to problems in telecommunication networks, such as
clustering, backbone formation and intrusion detection in wireless ad-hoc and sensor
networks (Wu andLi 1999; Chen andLiestman 2002; Subhadrabandhu et al. 2004), the
gateway placement in wireless mesh networks (Aoun et al. 2006), and the deployment
of wavelength division multiplexing in optical networks (Houmaidi et al. 2003). Data
analysis problems such as information retrieval for multi document summarization
(Shen and Li 2010) and query selection on web databases (Wu et al. 2006), are another
domain of application where dominating sets are largely used.

More recently the minimumweighted dominating set problem, which is the natural
extension of the minimum dominating set problem obtained by adding weights to the
nodes, attracted several researchers and practitioners (see, e.g., Zou et al. 2011; Potluri
and Singh 2013; Bouamama and Blum 2016).

The problemweconsider in this paper corresponds to a further generalization.Given
a wireless sensor network, represented by graph G = (V , E), we wish to determine
a minimum weight subset of nodes S to be upgraded as cluster heads, such that each
node v ∈ V \S has at least fv neighbors in S, where fv is some given nonnegative
integer. This consists in identifying a minimum weight fault-tolerant dominating set,
i.e., a minimum weight node subset S such that if some set F of q nodes fail (for
example, due to some environmental conditions), the set of nodes v ∈ V \F for which
fv ≥ q + 1 or v ∈ S\F are still dominated by S\F (i.e., these nodes either belong
to S\F or have at least one neighbor in S\F). The case when all the nodes have unit
weights and fv = k, v ∈ V , for some given positive integer k is presented, e.g., in
(Couture et al. 2006; Hwang and Chang 1991; Foerster 2013), see also the references
therein.

Related work

The minimum cardinality dominating set problem can be solved in linear time if the
graph G is series-parallel (Kikuno et al. 1983) or a cactus (Hedetniemi et al. 1986). It
is known to be N P-hard in planar graphs with maximum node degree 3, regular planar
graphs with nodes of degree 4 (Garey and Johnson 1979), chordal graphs (Booth 1980)
and undirected path graphs (Booth and Johnson 1982). Also, for this problem, there
exists a polynomial time

(
HΔ+1 − 1

2

)
-approximation algorithm, where Δ stands for
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4 M. Dell’Amico, J. Neto

the maximum degree in G, and, for some given positive integer q, Hq = ∑q
i=1

1
i

denotes the qth harmonic number (Chlebík and Chlebíková 2008; Duh and Fürer
1997). But it is N P-hard to approximate within a factor of ln(n)−c ln lnΔ for general
graphs with Δ ≥ Δ0, where c > 0 and Δ0 ≥ 3 are absolute constants (Chlebík and
Chlebíková 2008)). For the minimum cardinality f -dominating set in block graphs,
Hwang and Chang 1991 presented a linear time algorithm. In this paper we extend
their results to the weighted case for trees. For the case when fv = k, v ∈ V , for some
positive integer k, Foerster (2013) showed that theminimum cardinality f -dominating
set problem is N P-hard to approximatewith a factor better than 0.2267/k ln(n/k), and
he also provided a greedy-type algorithm with an approximation ratio of ln(Δ + k) +
1 <ln(Δ)+1.7. For the case of unit disk graphs and fv = k, v ∈ V , Couture et al. 2006
introduced an incremental algorithmhaving a constant deterministic performance ratio
of six (see also the references therein).

We now report some works dealing with the minimum weight dominating set
problem, i.e., [MW1] with linear programming based approaches. Given the afore
mentioned complexity results, no complete description of the polytopeD1

G is presently
known for general graphs. For the case of strongly chordal graphs, the linear relaxation
of (I P1) provides such a description, i.e., we haveD1

G = {x ∈ [0, 1]n : ∑
u∈N [v] xu ≥

1, v ∈ V }, and this implies the polynomial time solvability of [MW1] for this graph
family (Farber 1984). A complete description ofD1

G for the case of domishold graphs
appears in (Mahjoub 1983). A graph is said to be domishold (Benzaken and Hammer
1978) if there exist real positive weights associated to the nodes so that a node subset
is a dominating set if and only if the sum of the corresponding weights exceeds some
threshold value. A complete formulation for cycles firstly appears in (Bouchakour
et al. 2008). This work was extended in (Bianchi et al. 2010), leading to complete
description for webs of the form Wk

s(2k+1)+r with s = 2, 3 and 0 ≤ r ≤ s − 1. Also
recently, an exact extended formulation for cacti graphs was introduced in (Baïou and
Barahona 2014), together with a polynomial-time algorithm to solve [MW1] for cacti.
Given two graphs Gi = (Vi , Ei ), i = 1, 2, such that the graph (V1 ∩ V2, E1 ∩ E2)

is a clique with cardinality k ≥ 1, the graph G = (V1 ∪ V2, E1 ∪ E2) is called the
k-sum of G1 and G2. For the particular case when k = 1 and assuming complete
formulations of the polytopes D1

Gi
, i = 1, 2, are known, a procedure for determining

a complete formulation of D1
G is presented by Bouchakour and Mahjoub (1997). It

follows from the latter that, in addition to the graph classes we mentioned just before
(i.e., those for which a complete formulation is known), complete formulations are
also known for the graphs which may be obtained as 1-sums of their members. We
conclude our review on polyhedral works related to generalizations of the domination
concept with a very special case: when fv = dGv , for all v ∈ V , a node subset S ⊆ V
is an f -dominating set if and only if its complementary set V \S is a stable set. This
implies that for this case it is equivalent to look for a maximumweight stable set and a
minimum weight f -dominating set. From results on the stable set problem, it follows
that [MW f ] can be solved in polynomial time in perfect graphs for the particular case

when fv = dv , for all v ∈ V , and that also a complete description ofD f
G is known for

that case (Chvátal 1975; Padberg 1974).
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On f -domination: polyhedral and algorithmic results 5

To the best of the authors’ knowledge no polyhedral results appear in the literature
on the polyhedral structure ofD f

G for general f ∈ FG . The only works on the problem
[MW f ] for general f ∈ FG we are aware of essentially focus on the case c = 1 and
establish bounds on the optimal objective value of [MW f ] for this particular case
(Chen and Zhou 1998; Stracke and Volkmann 1993; Zhou 1996).

Our contribution

In this paper we introduce different results related to the polyhedral structure of the
polytope D f

G . They namely include different families of facet-defining inequalities
and a complete description of this polytope for trees. In general, this formulation may
contain an exponential number of constraints (whereas it is linear in the number of
nodes for D1

G), but we show that the corresponding separation problem can be solved
in polynomial time, thus implying the polynomial time solvability of [MW f ] for trees,
by the well-known results on the polynomial equivalence between optimization and
separation established by Grötschel et al. (1981). In addition, we provide a linear time
combinatorial algorithm for that case, thus extending some results in the literature on
the classical domination concept.

Structure of the paper

In Sect. 2, we introduce different polyhedral results onD f
G amongwhich some families

of facet-defining inequalities. In Sect. 3, we provide a complete description of the
polytope D f

G for the case of trees and show that the problem [MW f ] can be solved
in polynomial time in that case. Finally, in Sect. 4, we present a linear time algorithm
for the case that G is a tree.

Additional notation

Before we close this section, let us mention some additional notation that will be
used later. Given a graph G = (V , E) and a node subset S ⊆ V , let G[S] denote
the subgraph of G that is induced by S, i.e., G[S] = (S, E ′), where E ′ stands for
the subset of edges in E having both endpoints in S. Given a positive integer n, In
stands for the identity matrix with order n. We will also use 0 to denote a vector whose
dimension will be clear from the context and having all its entries equal to zero.

2 Polyhedral results on the polytopeDf
G

In this section, we assume that G = (V , E) is a simple connected graph with n ≥ 2.
After some basic polyhedral properties are introduced, we present nontrivial facet-
defining inequalities of D f

G .

2.1 Basic polyhedral properties ofDf
G

In what follows, the inequalities of the form xv ≥ 0 and xv ≤ 1 with v ∈ V , will be
called trivial inequalities.

Proposition 1 Let f ∈ FG. Then the following holds.
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6 M. Dell’Amico, J. Neto

(i) The polytope D f
G has dimension n, i.e., it is full dimensional.

(ii) The inequality xv ≥ 0 is facet-defining for D f
G iff dw > fw, for all w ∈ N [v],

v ∈ V .
(iii) The inequality xv ≤ 1 is facet-defining for D f

G , for all v ∈ V .

(iv) Every facet-defining inequality of D f
G which is not trivial is of the form∑

v∈V avxv ≥ b, with av ≥ 0, for all v ∈ V . Moreover b > 0, |Va = {v ∈
V : av > 0}| ≥ 2.

Proof The statements (i)–(iii) and the first part of statement (iv) follow from the
work by Hammer et al. (1975). So we prove the last part of (iv) (which starts from
“Moreover”). Also, for property (ii), we provide a simple and short alternate proof.

Proof of (ii). Let Fα
u = D f

G ∩ {x ∈ R
n : xu = α}, for any u ∈ V and α ∈ {0, 1}.

[⇒] In case dv = fv , then necessarily F0
v ⊆ ∩w∈N (v)F1

w. Also, if there exists
w ∈ N (v) such that dw = fw, then F0

v ⊆ F1
w. Thus, in both cases, the inequality

xv ≥ 0 cannot define a facet.
[⇐] The incidence vectors of the n f -dominating sets: V \{v} and V \{v,w}, for

all w ∈ V \{v}, are affinely independent and they all belong to F0
v .

Proof of the last part of (iv): b > 0 and |Va | ≥ 2. The property b > 0 is implied
by the fact that the inequality is not trivial (otherwise it would be dominated by the
nonnegativity inequalities). If we had Va = {v}, the inequality would correspond (up
to multiplication by a positive scalar) to an inequality of the form xv ≥ b, with b ≥ 0.
Since D f

G is full dimensional, there exists an f -dominating set D with v /∈ D, thus
implying b = 0, and the inequality would be trivial. �


Let at x ≥ b denote a non trivial facet-defining inequality of D f
G , and let Ga =

G[Va] be the subgraph of G that is induced by the node subset Va . The following
propertywas shown to hold for the dominating set polytope (Bouchakour andMahjoub
1997), and its extension to f -dominating set polytopes is straightforward.

Proposition 2 (Bouchakour and Mahjoub 1997) The graph Ga is connected.

2.2 Non trivial facet-defining inequalities

Westart with a definition thatwill be useful for presenting different families of inequal-
ities that are valid for D f

G .

Definition 1 Given an undirected simple graph G = (V , E) and f ∈ FG , an f-clique
is a node subset Q ⊆ V , such that |Q| ≥ 2 and satisfying the following two conditions:

(i) the nodes in Q are pairwise adjacent (i.e., Q is a clique in G), and
(ii) |{v ∈ Q : fv = dv}| ≥ |Q| − 1.

The next three propositions deal with cases when some nodes of the graph satisfy
fv = dv . Notice that, if for each edge {u, v} ∈ E we have fu = du or (not exclusively)
fv = dv , then the following holds: D ⊆ V is an f -dominating set iff D is a vertex
cover. So in that case, the vertex cover and f -dominating set polytopes coincide (and
are both affinely equivalent to the stable set polytope). The next proposition directly
follows from this correspondence, see, e.g., (Nemhauser and Trotter 1974).
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On f -domination: polyhedral and algorithmic results 7

Proposition 3 Let the graph C = (V (C), E(C)) be an odd cycle such that each edge
{u, w} ∈ E(C) is an f -clique. Then, the inequality

∑

v∈V (C)

xv ≥
⌈ |V (C)|

2

⌉

(1)

is facet-defining for D f
C iff C has no chord. (A chord is an edge joining two noncon-

secutive nodes of the cycle).

The next two propositions illustrate the fact that, even though the property that
“ fu = du or fv = dv for each edge {u, v} ∈ E“ may hold only on some parts of the
graphs, some well-known families of inequalities valid for the vertex cover polytope,
may, under some conditions, define facets of f -dominating set polytopes. We now
formulate a simple sufficient condition for an inequality of type (1) corresponding to
a node-induced subgraph of an arbitrary graph to define a facet of D f

G .

Proposition 4 Let f ∈ FG, and letC = (V (C), E(C))denote a node induced odd cycle
in G = (V , E) with no chord and such that each edge {u, w} ∈ E(C) corresponds to
an f -clique. If |N (w) ∩ V (C)| ≤ 2, for all w ∈ V \V (C), then the inequality (1) is
facet-defining for D f

G .

Proof Let F denote the face of D f
G defined by (1). Let at x ≥ b denote a facet-

defining inequality ofD f
G such that the facet F it defines contains F : F ⊆ F . W.l.o.g,

assume the nodes of the cycle C are 1, 2, . . . , 2q + 1, in this order. For any positive
integer i , let ei denote the k-th unit vector in R

n , with k = i if i ≤ 2q + 1 and
k = 1 + (i mod (2q + 2)) otherwise. Also, let h ∈ {0, 1}n , such that hi = 1 iff
i /∈ V (C).

For i = 1, 2, . . . , 2q + 1, we define the vectors

yi = h + ei + ei+1 + ei+3 + . . . + ei+2q−1.

By assumption, it follows that all the points (yi )2q+1
i=1 correspond to incidence vectors

of f -dominating sets and belong to F . For a fixed arbitrary i ∈ {1, 2, . . . , 2q −1}, we
have yi+2 = yi +ei+2−ei+1. Also, y1 = y2q +e1−e2q+1, and y2 = y2q+1+e2−e1.
We deduce a1 = a2q+1 = a2, and ai+1 = ai+2, for all i ∈ {1, 2, . . . , 2q − 1}.

Consider now some node k ∈ V \V (C). And let S ⊂ V (C) denote a subset of

exactly
⌈ |V (C)|

2

⌉
nodes of the cycle C such that N (k)∩V (C) ⊆ S, and the node subset

U = (V \V (C)) ∪ S is an f -dominating set. The existence of S follows from the
assumption that |N (k)∩ V (S)| ≤ 2. SinceU andU\{k} correspond to f -dominating
sets in G whose incidence vectors satisfy (1) with equality, we deduce ak = 0.

It follows that the inequality at x ≥ b must correspond, up to multiplication by a
positive scalar, to inequality (1). �
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8 M. Dell’Amico, J. Neto

Proposition 5 Let Q ⊆ V denote an f -clique. Then, the following inequality is valid
for D f

G ,

∑

v∈Q
xv ≥ |Q| − 1, (2)

and it is facet-defining if and only if Q is maximal (w.r.t. inclusion).

Proof The validity of (2) easily follows from the domination requirements. We now
establish the necessary and sufficient conditions for it to be facet-defining. [⇒]Assume
that the inequality (2) is facet-defining. If Q is not maximal, there exists some f -clique
Q′ such that Q ⊂ Q′. But then the inequality (2) is the sum of the f -clique inequality∑

v∈Q′ xv ≥ |Q′|−1 and the trivial inequalities (multiplied by−1)−xv ≥ −1, for all
v ∈ Q′\Q, a contradiction. [⇐] Assume Q is a maximal f -clique. Let F denote the
face of D f

G which is defined by (2). Let at x ≥ b with (a, b) ∈ (Rn\{0} × R), denote

a facet-defining inequality of D f
G such that the facet F it defines satisfies: F ⊆ F .

Let w ∈ V \Q. Assume firstly that there exists some node v in Q that is not a
neighbor of w. Then, since V \{v} and V \{v,w} are f -dominating sets in G whose
incidence vectors belong to F , we deduce aw = 0.

Consider now the case of a node w ∈ V \Q such that Q ⊆ N (w). Since Q is a
maximal f -clique, there must exist some node z ∈ Q satisfying fz < dz and we must
have fw < dw. Then, since V \{z} and V \{z, w} are f -dominating sets in G whose
incidence vectors belong to F , we deduce aw = 0.

For any pair (v,w) ∈ Q2, with v �= w, since the sets V \{v} and V \{w} are
f -dominating in G, we deduce av = aw.
It follows that the inequality at x ≥ b corresponds, up tomultiplication by a positive

scalar, to (2). �

We now introduce another family of valid inequalities forD f

G that we will call par-
tial neighborhood inequalities, a denomination that is suggested by their supportwhich
is a subset of a closed neighborhood of a node having a positive domination require-
ment. These inequalities may be seen as a generalization of the classical neighborhood
inequalities (obtained by setting q = fv = 1 in (3) given hereafter) used in linear
formulations of the dominating set problem. Recall that these inequalities, together
with the trivial inequalities, are sufficient to completely describe the dominating set
polytope ( fv = 1, for all v ∈ V ) in the case of strongly chordal graphs (Farber 1984).
Their relevance will be further stressed later, when considering complete formulations
of the f -dominating set polytope for trees.

Proposition 6 Let G = (V , E) denote an undirected simple graph, let f ∈ FG and
u ∈ V such that 1 ≤ fu < du. Then, the following partial neighborhood inequality is
valid for D f

G:

qxu +
∑

v∈N (u)\Zq
xv ≥ q, (3)

with q ∈ {1, 2, . . . , fu}, Zq ⊆ N (u) such that |Zq | = fu − q.
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On f -domination: polyhedral and algorithmic results 9

Proof Any f -dominating set D not containing node u must contain at least fu of its
neighbors: |D ∩ N (u)| ≥ fu . LetU denote a subset of at most fu − 1 neighbors of u:
U ⊂ N (u) and 0 ≤ |U | ≤ fu − 1. Then, we must have |D ∩ (N (u)\U )| ≥ fu − |U |.
With q = fu −|U |, Zq = U , we can check that the incidence vector of D satisfies (3).
Also note that (3) is trivially satisfied by the incidence vector of any f -dominating set
containing u. �

We now formulate a simple sufficient condition for an inequality of type (3) to be
facet-defining for D f

G .

Proposition 7 Let G = (V , E) denote an undirected simple graph and f ∈ FG.
Let u ∈ V such that 1 ≤ fu < du, and assume that |N (v)\N [u]| ≥ fv , for all
v ∈ V \{u}. Then the inequality (3) is facet-defining forD f

G , for all q ∈ {1, 2, . . . , fu}
and Zq ⊆ N (u) such that |Zq | = fu − q.

Proof Assume all the conditions mentioned are satisfied, fix q ∈ {1, 2, . . . , fu} and
Zq ⊆ N (u) such that |Zq | = fu − q. Let F denote the face of D f

G induced by (3),

and assume that F is contained in a facet F of D f
G that is defined by the inequality

at x ≥ b with (a, b) ∈ (Rn\{0} × R).
Let w ∈ (V \N [u]) ∪ Zq . Since the node sets (V \N (u)) ∪ Zq and ((V \N (u)) ∪

Zq)\{w} are f -dominating sets (using the assumption that |N (v)\N [u]| ≥ fv , for all
v ∈ V \{u}), both satisfying (3) with equality we deduce aw = 0.

We now show aw = aw′ , for all (w,w′) ∈ (N (u)\Zq)
2. Let A ⊆ N (u)\Zq such

that |A| = q. Let w ∈ A, w′ ∈ N (v)\(A ∪ Zq). Then, the incidence vectors of
the node subsets (V \N [u]) ∪ A ∪ Zq and (V \N [u]) ∪ (A\{w} ∪ {w′}) ∪ Zq both
correspond to f -dominating sets (using the assumption that |N (v)\N [u]| ≥ fv , for
all v ∈ V \{u}, and because they both contain fu neighbors of node u), and they satisfy
(3) with equality. We deduce: aw = aw′ .

Considering the incidence vectors of the node subsets V \N (u) and (V \N [u]) ∪
A ∪ Zq (with A as defined before), since they correspond to f -dominating sets and
their incidence vectors satisfy (3) with equality, we deduce au = qaw, with w ∈ A.

It follows that the inequality at x ≥ b must correspond, up to multiplication by a
positive scalar, to inequality (3). �


3 Complete descriptions ofDf
G for trees

After we report some preliminary results in Sect. 3.1, we present a complete formula-
tion of the f -dominating set polytope for stars in Sect. 3.2, and for trees in Sect. 3.3.

3.1 On leaves with domination requirement one

We start with an auxiliary result.

Lemma 1 Let G = (V , E) be an undirected simple graph with at least two nodes.
Let f ∈ FG and {u, w} ∈ E be such that w is a leaf node and fw = dw = 1. If the
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10 M. Dell’Amico, J. Neto

constraint at x ≥ b is a facet-defining inequality forD f
G that is not trivial and different

from xu + xw ≥ 1, then, aw = 0.

Proof Let at x ≥ b denote a facet-defining inequality satisfying the assumptions given
in the statement of the lemma. Let D ⊆ V denote an f -dominating setwhose incidence
vector satisfies at x = b, and such that u and w belong to D. Such an f -dominating
set exists due to the fact that the inequality at x ≥ b is assumed to be facet-defining
and different from xu + xw ≥ 1. Since nodew is a leaf and its only neighbor is u ∈ D,
it follows that D\{w} is an f -dominating set. We deduce aw = 0. (This is due to the
fact that, by Proposition 1-(iv), we have aw ≥ 0, and if we had aw > 0, then the
incidence vector of D\{w} would violate at x ≥ b, a contradiction.) �


Lemma 1 may be interesting when looking for a complete formulation ofD f
G when

G contains a nodew satisfying fw = dw = 1. This is illustrated by the next proposition
whose proof relies on it.

Proposition 8 Let G = (V , E) be an undirected simple graph, and let f ∈ FG.
Assume that there exists a node w ∈ V such that fw = dw = 1, and let u ∈ V
be the unique neighbor of w. Let G ′ = G[V \{w}] = (V ′, E ′) and f ′ ∈ FG ′ such
that f ′

v = fv , for all v ∈ V ′\{u} and f ′
u = max{0, fu − 1}. Then, a complete

formulation of D f
G is obtained by adding to that of D f ′

G ′ the variable xw and the
inequalities: 0 ≤ xw ≤ 1 and xu + xw ≥ 1.

Proof Let at x ≥ b be a facet-defining inequality forD f ′
G ′ that is different from xu ≥ 0.

Let â ∈ R
n be defined as follows: âv = av , for all v ∈ V ′, and âw = 0. First, notice

that the inequality ât x ≥ b is valid for D f
G . (This follows from the fact that if D is an

f -dominating set in G, then D\{w} is an f ′-dominating set in G ′.) Let F denote the
face of D f

G defined by ât x ≥ b. (Note that even though the inequality xu ≥ 0 may be

facet-defining for D f ′
G ′ , it cannot be facet-defining for D f

G since the face it defines is
contained in the one defined by xu + xw ≥ 1.) We show that ât x ≥ b is facet-defining
for D f

G .
Let D′

1, D
′
2, . . . , D

′
n−1 denote n − 1 f ′-dominating sets in G ′, whose incidence

vectors inRV ′
are affinely independent and satisfy the equationat x = b. Sinceat x ≥ b

is assumed to be different from xu ≥ 0, there exists some index k ∈ {1, 2, . . . , n − 1}
such that u ∈ D′

k . Then, define Dj = D′
j ∪ {w}, for all j ∈ {1, 2, . . . , n − 1}, and

Dn = D′
k . Since the incidence vectors of the f -dominating sets (Di )

n
i=1 are affinely

independent and all lie in F , the inequality ât x ≥ b defines a facet of D f
G .

Now let gt x ≥ h be a facet-defining inequality of D f
G with gw = 0, g ∈ R

n\{0}.
Let g̃ denote the restriction of the vector g to its entries indexed by V ′. First note that
the inequality g̃t x ≥ h is valid for D f ′

G ′ . (This follows from the fact that if D′ is an
f ′-dominating set in G ′, then D′ ∪ {w} is an f -dominating set in G.) Let F ′ denote
the face of D f ′

G ′ defined by g̃t x ≥ h. We show F ′ is a facet of D f ′
G ′ .

Assume, for a contradiction, that this is not the case. Then, there exists (a, b) ∈
(Rn−1\{0} × R) such that the inequality at x ≥ b defines a facet F of D f ′

G ′ satisfying
F ′ ⊂ F , and the vectors a and g̃ are linearly independent. From the first part of the

123



On f -domination: polyhedral and algorithmic results 11

proof, the inequality ǎ t x ≥ b is facet-defining for D f
G , with ǎ ∈ R

n\{0} defined by
ǎv = av , for all v ∈ V ′, and ǎw = 0. This implies ǎ = λg for some λ ∈ Rwith λ > 0,
and thus g̃ = λa, a contradiction.

Then, by Lemma 1, no other facet-defining inequality with aw �= 0 exists, which
concludes the proof. �


Considering the last proposition, in the rest of this section we will consider graphs
with all degree-one nodes having zero domination requirement, unless otherwise
stated.

3.2 Complete description ofDf
G when G is a star

Let G = (V , E) be a star with n ≥ 3 and having for center the node 1. Let V = V \{1}
and assume that 0 ≤ f1 < n − 1, fv = 1, v ∈ V . From Proposition 8, it follows
that a complete description of D f

G is given by the trivial inequalities, together with

the constraints x1 + xv ≥ 1, v ∈ V . Note that this also holds for D f ′
G with f ′ defined

as follows: f ′
1 = n − 1 and f ′

v ∈ {0, 1}, v ∈ V , since D f
G = D f ′

G . For the case
when fv = 0, v ∈ V , a description is given by the trivial inequalities. Together with
Proposition 8, the next result leads to a complete description for the remaining cases,
i.e., 0 ≤ f1 < n − 1, fv ∈ {0, 1}, v ∈ V , f �= 0, and there exists one leaf node w

with fw = 0.

Proposition 9 Let the graph G = (V , E) be a star, with n ≥ 3, and let 1 denote the
center. Let f ∈ FG with 1 ≤ f1 < n − 1 and fv = 0, v ∈ V . A complete description
ofD f

G is then given by the trivial inequalities, together with the constraints (3) (taking
u = 1 in the expression).

Proof We prove that all the facet-defining inequalities of D f
G correspond to trivial or

type (3) inequalities.
Let at x ≥ b denote a facet-defining inequality of D f

G that is not trivial. (So, by
Proposition 1-(iv), we have: |{v ∈ V : av > 0}| ≥ 2, a ≥ 0, b > 0.) Let Pa =
{v : av > 0 and v ∈ V } and Za = {

v : av = 0 and v ∈ V
}
. Note that, since {1} is

an f -dominating set, necessarily a1 > 0, and any f -dominating set Q containing 1
and satisfying at x = b must satisfy Q ∩ Pa = ∅. Let D denote an f -dominating set
such that 1 /∈ D and whose incidence vector satisfies at x = b. Note that, since the
constraint is assumed to be valid and nontrivial, |Pa | ≥ 1. Also, necessarily, Za ⊂ D.
(Otherwise, let u ∈ D such that au > 0 and w ∈ Za\D. The set (D\{u}) ∪ {w}
would be f -dominating but its incidence vector would violate the inequality at x ≥ b,
a contradiction). This also implies |D ∩ Pa | = f1 − |Za |.

Now, let u denote a node in D that is associated with the largest coefficient value
of the inequality: u ∈ argmax{av : v ∈ D}. Since for any node w ∈ V \D, the node
set (D\{u}) ∪ {w} is an f -dominating set, we deduce aw ≥ au > 0, w ∈ V \D.

Now, let u′ stand for a node that is different from 1, is not in D, and is associated
with the largest coefficient value in the inequality: u′ ∈ argmax{av : v ∈ V \D}. In
particular, we have au′ ≥ au .
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Let D′ denote another f -dominating set satisfying at x = b, and such that u′ ∈ D′.
(Such an f -dominating set does exist, because otherwise, the face defined by at x ≥ b
would be contained in the hyperplane xu′ = 0, a contradiction.) Considering the f -
dominating set (D′\{u′}) ∪ {u} for any u ∈ D\D′, we deduce au′ ≤ au ≤ au , and
thus au = au′ = aw,w ∈ V \D.

Let u′′ ∈ argmin{av : v ∈ D\Za}. Let D′′ be an f -dominating set not containing
u′′ nor {1}, and such that its incidence vector satisfies at x = b. (D′′ exists, because
otherwise all the incidence vectors of the f -dominating sets satisfying at x = b would
belong to the hyperplanewith equation x1+xu′ ′ = 1. But the latter does not correspond
to a supporting hyperplane of D f

G , since there exist f -dominating sets satisfying
x1 + xu′ ′ = 0 and others satisfying x1 + xu′ ′ = 2). Since |D′′ ∩ Pa | = |D ∩ Pa | =
f1−|Za | (see before), D′′ contains some nodew ∈ V \D. Then, (D′′\{w})∪{u′′} is an
f -dominating set, and we deduce au ≤ aw ≤ au′ ′ , thus implying aw = α,w ∈ V \Za ,
for some constant α > 0.

Finally, considering an f -dominating set saturating the constraint and containing
1, we deduce a1 = ( f1 − |Za |)α. Thus, the inequality at x ≥ b corresponds (up to
multiplication by a positive scalar), to an inequality of type (3). �


The former results are summarized in the next Proposition.

Proposition 10 If the graph G is a star and f ∈ FG, then a complete description of
D f

G is given by the trivial inequalities (0 ≤ xv ≤ 1, for all v ∈ V ), by the f -clique
inequalities (2) and the partial neighborhood inequalities (3).

Remark 1 By Proposition 7, for the case of a star G = (V , E) having node 1 as its
center, and f ∈ FG with 1 ≤ f1 < d1, the polytope D f

G is full dimensional and the

number of distinct facets ofD f
G defined by inequalities of type (3) may be exponential

in n.

Next, we shall see how the results from this section may be extended to get a
complete formulation for trees.

3.3 Complete description ofDf
G when G is a tree

Theorem 1 If the graph G = (V , E) is a tree and f ∈ FG, then a complete formula-
tion of D f

G is given by the following set of inequalities.

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ xv ≤ 1, v ∈ V ,

xu + xv ≥ 1, f-clique {u, v},
qxu + ∑

v∈N (u)\Zq xv ≥ q, u ∈ V such that 1 ≤ fu < du, q ∈ {1, 2, . . . , fu},
Zq ⊆ N (u) with |Zq | = fu − q.

Proof Weproceed by contradiction for the proof which relies on the results established
in the former sections (Propositions 8, 10). LetP f

G denote the polytopewhich is defined
by the set of inequalities given in the statement of the theorem. Naturally, we have
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D f
G ⊆ P f

G . Let G denote a graph corresponding to a tree with a minimum number of

nodes such that the result does not hold, i.e., such that the polytopeP f
G has a fractional

extreme point x∗. Note that from Proposition 10, the graph G cannot be a star. This
implies n ≥ 4. Also, given the formulation of P f

G , the choice of G and Proposition 8,
the domination requirement of each leaf in G must be equal to zero.

Let E denote a nonsingular subsystem of n equations defining x∗. Each equation of
the subsystem corresponds to an inequality arising in the description ofP f

G . In general,
this subsystem is not uniquely defined. For our purposes, we will consider such a
subsystem of n equations defining x∗ and having a maximum number of equations
corresponding to trivial inequalities. So, for each integral component x∗

v (if there
exists one), the equation xv = 0 or xv = 1 appears in E . Note that, necessarily, at
least one equation corresponding to an inequality of type (3) must be contained in
E (since otherwise, the matrix whose entries correspond to the left-hand side of the
subsystem E is totally unimodular, and we get a contradiction with the fact that x∗ is
not an integer vector). And at least two variables in the support of this inequality must
have positive fractional values (by the definition of the subsystem E).

We then make use of the following auxiliary claims whose proofs are postponed,
for clarity. The basic idea behind those claims is to identify some properties of the
fractional solution x∗ and of the graph G that would correspond to a minimal (w.r.t.
the number of nodes) counterexample to the statement of the theorem. Their proofs
heavily rely on this minimality assumption.

The first claim provides the information that the subsystem E cannot contain an
equation corresponding to an f -clique inequality involving a leaf node. �

Claim 1 For each leaf nodew ∈ V , we have: x∗

u +x∗
w �= 1, where u denotes the unique

neighbor of w.
The second claim establishes that each entry of x∗ corresponding to a non-leaf

node has value strictly less than 1.

Claim 2 For each node w ∈ V that is not a leaf, we have: x∗
w < 1.

The third claim states a property that is satisfied by any inequality of the type (3)
which belongs to the subsystem E .

Claim 3 Assume the system E contains one equation corresponding to some inequality
of type (3):

qxu +
∑

w∈W=N (u)\Z
xw ≥ q,

for some node u ∈ V , q ∈ {1, 2, . . . , fu}, Z ⊆ N (u) and |Z | = fu − q. Then
W ⊇ {t ∈ N (u) : x∗

t = 0}.
The Claims 4 and 5 establish properties related to the leaves. The fourth claim states

that all the entries of x∗ corresponding to leaves must be fractional. This is used to
establish Claim 5 stating that the neighbor of any leaf node must have a domination
requirement strictly less than its degree.
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Claim 4 For each leaf node w ∈ V , we have: 0 < x∗
w < 1.

Claim 5 G contains no leaf that is a neighbor of a node u satisfying fu = du.
The next two claims (whose proof relies on the former) establish the existence of a
node in G that has degree two and is adjacent to exactly one leaf. This point will then
be used to get a contradiction and prove the theorem.

Claim 6 Each node in G is adjacent to at most one leaf.

Claim 7 The graph G has a node with degree 2 that is adjacent to one leaf.

Let u be a node in G satisfying Claim 7 and let w denote its leaf neighbor. Then
necessarily fu = 1 (due to the definition of the system P f

G , the fact that du = 2 and
Claim 5). Recall that x∗

w is fractional (by Claim 4), and by Claim 1, the subsystem
E must contain an equation which corresponds to a partial neighborhood inequality
with center u, namely xu + xz + xw = 1, where z is the neighbor of u that is different
from w. Also note that the variable xw only occurs in this equation of E , and at least
one of the two quantities among x∗

u and x∗
z must be fractional.

Let E ′ denote the subsystem obtained from E by removing this equation and the
column corresponding to xw. Then E ′ is nonsingular and all the equations that are

present in E ′ correspond to inequalities that are present in the description of P f ′
G ′ , with

G ′ = G[V \{w}], f ′
v = fv , for all v ∈ V \{w, u}, f ′

u = 0.
The restriction x∗ of x∗ to its components corresponding to nodes in V \{w} belongs

toP f ′
G ′ and also satisfies E ′. It follows that x∗ corresponds to a fractional extreme point

of P f ′
G ′ , contradicting the hypothesis that G has the minimum number of nodes. �


We now give the details of the proofs of the seven claims used in the proof of
Theorem 1.

Proof of Claim 1 Assume, for a contradiction that there exists an edge {u, w} ∈ E such
that w is a leaf and x∗

u + x∗
w = 1. Let x∗ denote the restriction of x∗ to its entries

indexed on V \{w}. Let G ′ = G[V \{w}], and define f ′ ∈ FG ′ as follows: f ′
v = fv ,

for all v ∈ V \{u, w} and f ′
u = fu−1. Then, one can easily check that x∗ ∈ P f ′

G ′ . And
from our minimality assumption on G, x∗ can be expressed as a convex combination
of incidence vectors of f ′-dominating sets in G ′:

x∗ =
q∑

i=1

λiχ
Si ,

where q denotes a positive integer, the sets (Si )
q
i=1 are f ′-dominating sets in G ′ and

λ ∈ R
q
+ satisfies

∑q
i=1 λi = 1. Let us now consider the sets (Ŝi )

q
i=1 defined as follows:

Ŝi = Si ∪ {w} if u /∈ Si and Ŝi = Si otherwise, for each i ∈ {1, 2, . . . , q}. It can
be checked that the sets (Ŝi )

q
i=1 correspond to f -dominating sets in G. But this also

implies that x∗ = ∑q
i=1 λiχ

Ŝi , contradicting the fact that x∗ is a fractional extreme

point of P f
G . �
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Proof of Claim 2 Assume, for a contradiction, that there exists a non-leaf node w ∈ V
such that x∗

w = 1. From our assumption on the system E (it contains a maximum
number of equations corresponding to trivial inequalities), it contains xw = 1 and it
cannot contain an equation corresponding to a partial neighborhood inequality with
center w.

Let C denote the node set of a connected component of G ′ = G[V \{w}] such
that C contains a node corresponding to a fractional component of x∗. Recall that
each equation present in the system E only involves variables corresponding to nodes
which belong to a single component of G ′, and possibly xw. Then, let C = C ∪ {w},
G ′′ = G[C], and define f ′ ∈ R

C as follows: f ′
v = fv, v ∈ C and f ′

w = 0. Let x1,∗
(resp. x2,∗) denote the restriction of x∗ to its entries with index inC (resp. V \C). Note

that x1,∗ ∈ P f ′
G ′ ′ (using the definition of P f ′

G ′ ′ and the fact that x1,∗w = 1). And from the

minimality assumption on G, x1,∗ ∈ D f ′
G ′ ′ . If x1,∗ is not an extreme point ofP f ′

G ′ ′ , then

there exist extreme points of P f ′
G ′ ′ : y1, y2, . . . , y p such that x1,∗ = ∑p

i=1 λi yi , with
λ ∈ R

p
+,

∑p
i=1 λi = 1, p a positive integer. This would imply x∗ = ∑p

i=1 λi (yi , x2,∗).
Note that for each i ∈ {1, 2, . . . , p} the point (yi , x2,∗) belongs to P f

G (using the

property that x∗
w = 1). This contradicts the fact that x∗ is an extreme point of P f

G . So,

necessarily, x1,∗ is an extreme point of P f ′
G ′ ′ with a fractional entry (from our choice

of C), a contradiction with our minimality assumption on G. �

Proof of Claim 3 Assume, for a contradiction, that there exists some node z ∈ N (u)

such that x∗
z = 0 and z /∈ W . Note that in this case, necessarily, q < fu . Let

W ′ = W ∪ {z}. Then, since the inequality

(q + 1)xu +
∑

w∈W ′
xw ≥ q + 1

must also be satisfied by x∗, this implies x∗
u = 1 and xw = 0, for all w ∈ W . But this

contradicts our definition of E (which is assumed to contain a maximum number of
trivial inequalities). �

Proof of Claim 4 Let w ∈ V denote a leaf in G, and let u denote its unique neighbor.
Let G ′ = (V ′, E ′) = G[V \{w}] denote the subgraph which is induced by V \{w}. Let
x∗ denote the restriction of x∗ to its components indexed by V ′.

Assume firstly that x∗
w = 1. Then one can easily check that x∗ is a fractional

extreme point of P f ′
G ′ with f ′ ∈ FG ′ such that f ′

v = fv , for all v ∈ V ′\{u}, and
f ′
u = max{0, fu − 1}. This contradicts the minimality of G.
Then assume that x∗

w = 0. Let f ′′ ∈ FG ′ be defined as follows: f ′′
v = fv , for all

v ∈ V ′. For the case when fu < du −1, one can easily check that x∗ ∈ P f ′ ′
G ′ and that it

must correspond to an extreme point (since otherwise we could express x∗ as a convex
combination of the incidence vectors of f -dominating sets in G, a contradiction).

Then, for the case fu = du − 1, note that the formulation of P f ′ ′
G ′ does not contain

any inequality of type (3) with center u. The latter are replaced in the formulation of

P f ′ ′
G ′ by f ′′-clique inequalities involving the variable xu . Note that the system defining
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P f
G contains the inequalities xu + xz + xw ≥ 1, for all z ∈ N (u)\{w}. And since we

have x∗
w = 0, x∗ also satisfies the f ′′-clique inequalities present in the description

of P f ′ ′
G ′ and involving xu . It then follows that x∗ ∈ P f ′ ′

G ′ . And it must correspond

to a fractional extreme point of P f ′ ′
G ′ (since otherwise x∗ could also be expressed as

a convex combination of different feasible solutions in P f
G ), thus contradicting the

minimality of G. �

Proof of Claim 5 Assume, for a contradiction, that there exists in G a leaf w that is
a neighbor of some node u satisfying fu = du . In this situation, there are only 3
inequalities in the description of P f

G involving xw: xw ≥ 0, xw ≤ 1 and xu + xw ≥ 1.
ByClaim1,weknow thatE does not contain any equation corresponding to an f -clique
inequality involving a leaf, which implies x∗

w ∈ {0, 1}, a contradiction to Claim 4. �

Proof of Claim 6 Assume for a contradiction that there exists some node u ∈ V that
is adjacent to (at least) two leaves v1 and v2. By Claim 5, we have fu < du . Non-
singularity of the system E together with the fact that x∗

vi
∈]0, 1[ for i = 1, 2 (due

to Claim 4) imply the existence of at least one equation corresponding to a partial
neighborhood inequality with center u and such that its support contains exactly one
variable among xv1 , xv2 (since otherwise, x

∗ can be expressed as a convex combina-

tion of two other feasible solutions of P f
G , thus contradicting the fact that x∗ is an

extreme point), w.l.o.g. assume that it contains xv1 and not xv2 . Then, there must exist
another partial neighborhood inequality with center u and whose support contains xv2

(at least). W.l.o.g. let I1 denote an equation of E corresponding to a partial neigh-
borhood inequality whose support contains xv1 and not xv2 . Then, let I2 denote an
equation of the system E whose support contains xv2 . So the inequality Ii (i ∈ {1, 2})
has the following form :

qi xu +
∑

w∈Wi=N (u)\Zi
xw ≥ qi ,

withqi ∈ {1, 2, . . . , fu}, Zi ⊆ N (u)with |Zi | = fv−qi ,v1 ∈ W1, v2 /∈ W1, v2 ∈ W2.
Consider the inequality obtained using W ′

1 = W1 ∪ {v2}. Remark that this inequal-

ity belongs to the description of P f
G . And since x∗ ∈ P f

G , we have (q1 + 1)x∗
u +∑

W1∪{v2} x
∗
w ≥ q1 + 1, thus implying x∗

u + x∗
v2

≥ 1.
Consider now the inequality I2. By Claim 1, necessarily q2 ≥ 2. Also, x∗ satisfies

(q2 − 1)xu +
∑

w∈W2\{v2}
xw ≥ q2 − 1.

which implies (with the inequality we established above) x∗
v2

+x∗
u = 1, a contradiction

with Claim 1. �

Proof of Claim 7 At the beginning of the proof, we mentioned that G is a tree that is
not a star and with at least four nodes. Let G ′ denote the graph obtained from G by
removing all the leaves (and their incident edges). Necessarily, G ′ is a tree with at
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least two nodes (using the assumption that G is not a star). Let v denote a leaf in G ′.
Given the definition of G ′ and Claim 6, v satisfies the claim. �


At this point, Theorem 1 is proved, and we now discuss some related properties.
The LP formulation of the problem [MW f ] stemming fromTheorem 1may contain

an exponential number of constraints (see Remark 1 at the end of Sect. 3.2). Despite
this fact, we next show that [MW f ] can be solved in polynomial time if the graph
G is a tree. To do so, we can resort to the fundamental result that is the polynomial
equivalence between optimization and separation in linear programming (Grötschel
et al. 1981).

The separation problem with respect to the f -dominating set polytope D f
G is

denoted by [SE P_DS f ] in what follows. It consists, for some given point x̂ ∈ R
n ,

in determining whether it belongs to D f
G , and, if not, in giving an inequality which is

valid for D f
G but is violated by x̂ .

Proposition 11 Problem [SE P_DS f ] can be solved in polynomial time if the graph
G is a tree.

Proof Let x̂ ∈ R
n be some given point. In order to determine whether x̂ belongs to

D f
G we check if x̂ satisfies all the inequalities mentioned in Theorem 1.
One can check in linear time (inO(n)) if the trivial inequalities are satisfied. Since

the graph is a tree, the number of f -clique inequalities is at most the number of
edges, which is linear in the number of nodes. And since each f -clique is composed
of two nodes, checking their violation can also be done in linear time. In order to
determinewhether x̂ satisfies all the partial neighborhood inequalities,wemayproceed
as follows, for each node v ∈ V satisfying 1 ≤ fv < dv . First, we order the neighbors
of v by increasing value x̂u, u ∈ N (v). (This can be done in time O(dv log(dv)).)
Assume that the neighbors of v are u1, u2, . . . , udv , after reordering. For k = fv −
1, . . . , 1, 0, we evaluate the quantity ( fv −k )̂xv +∑dv−k

i=1 x̂ui . If this quantity is strictly
lower than ( fv − k), a violated inequality has been found. If, instead, no violated
inequality exists after all the nodes have been processed, thenwe can conclude x̂ ∈ D f

G .
The whole complexity of such a procedure for separation is then O(n log n). �


From the equivalence between optimization and separation (Grötschel et al. 1981),
Theorem 1 and Proposition 11, it follows that [MW f ] can be solved in polynomial
time if the graph G is a tree. In the next section, we present a combinatorial algorithm,
showing that this can be done in linear time.

4 A linear-time combinatorial algorithm to solve [MWf ] for trees
We consider the problem [MW f ] for the particular case when the graph G = (V , E)

is a rooted tree, extending results by Natarajan and White (1978) on the classical
dominating set problem [MW1], and Hwang and Chang (1991) on the minimum
cardinality f -dominating set problem. Let r ∈ V denote the root node, and, for
each node v ∈ V , let σ(v) denote the unique ancestor of node v, in the path from r
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to v. For a given v ∈ V , let Tv = (Vv, Ev) denote the subtree of G with root v, i.e.,
the collection of all the paths from v to the leaves, that do not contain the root node r .
Finally, let Hv = {u ∈ V : σ(u) = v} be the set of immediate successors (or children)
of node v.

To compute an optimum f -dominating set we use a recursive dynamic program-
ming method which associates three labels to each node v ∈ V :

– C1(v): minimum weight of an f -dominating set in Tv ,
– C2(v): minimum weight of an f -dominating set in Tv containing node v,
– C3(v): minimum weight of an f v-dominating set in Tv ,

where f v
u = fu , for all u ∈ V \{v}, and f v

v = max{ fv − 1, 0}. The next lemma shows
that we can compute these labels using a bottom-up recursion, from the leaves to the
root r . Label C1(r) gives the optimal solution value for the entire graph G.

Lemma 2 Given a tree G = (V , E), rooted at node r, c ∈ R
n+, and a subtree Tv rooted

at node v, one can compute the labels C1(v),C2(v) and C3(v) as follows. If node v

is a leaf, we have

C1(v) =
{
cv, if fv = 1,

0, otherwise,

while C2(v) = cv and C3(v) = 0. Otherwise,

C1(v) = min

⎧
⎨

⎩
C2(v), min

I⊆Hv|I |= fv

⎧
⎨

⎩

∑

u∈I
C2(u) +

∑

u∈Hv\I
C1(u)

⎫
⎬

⎭

⎫
⎬

⎭
, (4)

C2(v) = cv +
∑

u∈Hv

C3(u), (5)

C3(v) = min

⎧
⎨

⎩
C2(v), min

I⊆Hv|I |=max{ fv−1,0}

⎧
⎨

⎩

∑

u∈I
C2(u) +

∑

u∈Hv\I
C1(u)

⎫
⎬

⎭

⎫
⎬

⎭
. (6)

where the minimization subproblem over I in the expressions of C1(v) andC3(v) takes
value +∞ in case fv > |Hv| or fv − 1 > |Hv|, respectively. Also the sum over an
empty set of indices is assumed to take value 0.

Proof Consider a node v ∈ V . If v is a leaf, the correctness of the labels is straight-
forward, so let us suppose dv > 1. Let D denote a minimum cost f -dominating set
in Tv . Label C1(v) gives the value of an optimal f -dominating set for Tv . If v ∈ D,
then C1(v) = C2(v), by definition, otherwise fv nodes from Hv must belong to D.
The inner minimum in (4), for each possible choice of fv successors of v, considers
the optimal costs of the corresponding subtrees, plus the optimal cost for the sub-
trees rooted at the remaining successors. The outer minimum chooses the best option
between the two above cases: v ∈ D and v /∈ D.

C2(v) gives the optimal solution value for Tv if v ∈ D. Therefore, it accounts for cv ,
plus the sum of the optimal cost of each subtree rooted at a node u ∈ Hv , provided that
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1 [8,2]

2 [2,2]

5 [4,1] 6 [1,0] 7 [5,1]

3 [4,1]

8 [6,0] 9 [2,1]

4 [8,0]

(4,4,0) (0,1,0) (5,5,0) (0,6,0) (2,2,0)

(0,8,0)

(6,12,4)
I1(1)= {2, 3}

(2,2,2) (2,4,2)

Fig. 1 Labels computed by the linear time algorithm

u is already dominated by v ∈ D. Therefore C3(u) is the required value for subtree
Tu .

C3(v) is the optimal solution value for Tv if the domination requirement of v is set
to max{ fv − 1, 0}. The formula is similar to the one used to compute the label C1(v).
The outer minimum chooses between the case v ∈ D (where C3(v) = C2(v) gives
the optimal value), and the case v /∈ D, where max{ fv − 1, 0} successors of v must
be inserted in D. The inner minimum in (6) operates as the equivalent minimum in
(4), but considering subsets of Hv with cardinality max{ fv − 1, 0}. �


From Lemma 2, we deduce a dynamic programming algorithm to compute both
the optimal objective value of [MW f ] and an optimal solution (by storing the sets
generating the minima in the definition of the labels). This is illustrated by the next
example.

Example 1 Figure 1 shows a small example with a tree of nine nodes and root 1.
Near each node v we report: (a) in square brackets, the weight cv and the domination
requirement fv , respectively; (b) in parenthesis, the three labels C1(v),C2(v) and
C3(v). When the value of C1 or C3 is determined by the inner minimum and is used in
the second phase (described later) to determine an optimal solution, we report also the
set which produces the minimum. In a first phase, the algorithm computes the labels
recursively, starting from the leaves and moving toward the root, using formulas (4)–
(6). The value of the minimum f -dominating set is given by C1(1) = 6. Then, in a
second phase, we can identify a set D of nodes corresponding to an optimal solution,
by starting from root 1, with D = ∅. The fact that there is no ancestor for the root,
and that C1(1) < C2(1) indicate that node 1 is not in the solution. Since f1 = 2 we
know that two of its successors have been used when computing the inner minimum
in (4). Set I1(1), stored in the first phase, contains the two nodes giving the minimum,
namely nodes 2 and 3. We set D = {2, 3} and we consider each of these nodes in turn.
The fact that they have been fixed in the solution implies that labels C2(2) and C2(3)
have been chosen by the recursion for these nodes, and using (5) we know that labels
C3( j) have been chosen for j = 5, . . . , 9. All these labels have value zero, so none
of these nodes is in the solution. It remains to consider node 4. Its ancestor, the root,
is not in D and C1(4) < C2(4), so the node is not in solution.
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The next result directly follows and extends the one presented by Farber 1984
showing [MW1] can be solved in linear time for trees.

Theorem 2 If G = (V , E) is a tree rooted at r , then problem [MW f ] can be solved
in linear time.

Proof Lemma 2 shows that label C1(r), computed using (4)–(6), gives the optimal
solution value. The second phase of the dynamic programming algorithm retrieves
the nodes of the set D which produce the value C1(r), i.e., an optimal set. In order
to complete the proof, it is sufficient to show that the labels can be computed in time
O(dv), for each node v ∈ V . This is trivial for the case when v is a leaf or fv = 0. So,
let v denote a node that is not a leaf and such that fv > 0. Observe that the argument
of the inner minimization in (4) and (6) can be rewritten as

∑

u∈I
(C2(u) − C1(u)) +

∑

u∈Hv

C1(u).

Let S1 (resp. S2) denote the node subset of Hv corresponding to the fv (resp. fv − 1)
smallest values in the set C = {C2(u)−C1(u) : u ∈ Hv}. It can be easily checked that
S1 (resp. S2) corresponds to an optimal solution for the minimization problem over I
in the expression of C1(v) (resp. C3(v)).

Using the results by Blum et al. 1973, the fv-th smallest number ŵ in C can be
found in time O(|Hv|). Then, iterating (in an arbitrary order) over Hv , putting into
S1 all the nodes corresponding to a value smaller than ŵ, and then filling up S1 with
nodes associated with the quantity ŵ to have |S1| = fv , we deduce that the inner
minimization problem in (4) can be found in time O(dv). The argument to prove that
C3(v) can be determined within the same time complexity is analogous. �


5 Conclusions

In this paper, we presented descriptions of the f -dominating set polytope when the
graph is a star or a tree. They namely lead to the polynomial time solvability of the
problem [MW f ] for these graphs. In addition, we presented a linear time algorithm
for this problem on trees. Further research work will be directed towards extensions of
these results for other graph families. The development of efficientmethods and further
investigations on the polyhedral structures of polytopes related to generalizations of
other variants of domination are under work.
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