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Abstract

One of the crucial problems in mathematical finance is to mitigate the risk of a financial position by
setting up hedging positions of eligible financial securities. This leads to focusing on set-valued maps
associating to any financial position the set of those eligible payoffs that reduce the risk of the position to
a target acceptable level at the lowest possible cost. Among other properties of such maps, the ability to
ensure lower semicontinuity and continuous selections is key from an operational perspective. It is known
that lower semicontinuity generally fails in an infinite-dimensional setting. In this note we show that
neither lower semicontinuity nor, more surprisingly, the existence of continuous selections can be a priori
guaranteed even in a finite-dimensional setting. In particular, this failure is possible under arbitrage-free
markets and convex risk measures.
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Mathematics Subject Classification: 91B30, 91B32

1 Introduction

This note deals with the existence of continuous selections for a class of optimal set mappings that play
an important role in several areas of mathematical finance, including capital adequacy, pricing, hedging,
and capital allocation. In that context, one if often confronted with the problem of mitigating the risk
of a given financial position by setting up a suitable capital buffer whose function is to absorb future
larger-than-expected losses. This capital reserve is usually held in the form of a portfolio of some financial
securities called the eligible assets. The optimal set mappings under consideration associate to each
financial position precisely the set of all payoffs of eligible assets that allow to confine risk within an
acceptable level of security at the lowest possible cost.

A thorough analysis of qualitative robustness for such set-valued maps has been recently provided in [4].
Among the various stability properties, lower semicontinuity proves to be of cardinal importance in that it
ensures that any optimal payoff of eligible assets remains close to being optimal after a slight misestimation
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of misspecification of the underlying financial position. However, one of the key findings of [4] was that
lower semicontinuity is typically not satisfied. The counterexamples to lower semicontinuity provided there
exploited in an essential way the infinite-dimensional structure of the underlying model space. At the
same time, the lower semicontinuity results established there suggest that, under appropriate convexity
assumptions, lower semicontinuity might not be too difficult to ensure in a finite-dimensional setting. It
is therefore natural to ask whether, by restricting the attention to finite-dimensional model spaces and
by working in a suitable convex environment, one may always guarantee lower semicontinuity.

From an operational perspective, the existence of continuous selections constitutes another key property of
the above optimal set mappings that allows to associate to each financial position a unique portfolio of eli-
gible assets in such a way that a slight perturbation of the underlying financial position does not engender
a dramatic change in the structure of the corresponding optimal portfolio. Recall that, for convex-valued
maps, the existence of continuous selections is automatically implied by lower semicontinuity by virtue
of Michael’s Theorem ([1, Theorem 17.66]). Hence, one may hope to always have continuous selections
in a finite-dimensional setting, at least under convexity, even in the case that lower semicontinuity failed.
This question was not addressed in [4].

In this note we provide concrete examples of optimal set mappings of the above type in a finite-dimensional
model space that (1) fail to be lower semicontinuous but admit a continuous selection (2) fail to admit a
continuous selection. Besides their intrinsic mathematical interest, our examples raise a serious warning in
the above-mentioned fields of application: a cost or risk minimization problem under a convex risk measure
in a finite-dimensional space need not allow for a robust way to select optimal portfolios of eligible assets.
Hence, a case-by-case analysis is required to establish whether a special choice of a (convex) risk measure
leads to robust optimal selections or not.

This note is structured as follows. In Section 2 we introduce our mathematical setting and define the
relevant class of optimal set mappings. In Section 3 we show that an optimal set mapping in a finite-
dimensional setting may fail to be lower semicontinuous but still admit continuous selections. Section 4,
which builds on the example discussed in the previous section, establishes that an optimal set mapping
in a finite-dimensional setting may even fail to admit continuous selections.

2 The optimal set mapping

We introduce our optimal set mapping by adopting the same notation of [4], to which we refer for more
details about the non-mathematical aspects of our problem.

Consider a one-period economy with dates t = 0 (the initial date) and t = 1 (the terminal date). Financial
positions at the terminal date are represented by the elements of a (real) Hausdorff topological vector
space X , which we assume to be partially ordered by a convex cone X+. Within the space of position one
identifies a set A of acceptable (from the point of view of financial regulators) or desirable (from the point
of view of risk or portfolio managers) positions. We denote by M a finite-dimensional linear subspace
of X , whose elements represent the payoffs of a finite number of financial assets that are used to push
unacceptable positions into the target set A. The space M is endowed with the relative topology induced
by X . Each payoff in M carries a certain price that is represented by a linear functional π : M → R.

From a capital management perspective it is important to know at which cost a certain financial position
can be made acceptable. This leads to studying the optimal value function ρ : X → R defined by

ρ(x) := inf{π(z) ; z ∈ M, z + x ∈ A}.

In the financial literature the above function is usually referred to as a risk measure. The interested reader
can consult [2], [3], [6], [7], [8] for a variety of results on risk measures and discussions on their financial
relevance in different areas of mathematical finance.

The optimal set mapping associated to the above parametric optimization problem is the set-valued map
E : X ⇒ M given by

E(x) := {z ∈ M ; z + x ∈ A, π(z) = ρ(x)}.
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Any element of E(x) is referred to an an optimal payoff for x. We refer to [4] for a comprehensive study of
qualitative robustness for the above mappings. As mentioned in the introduction, one of the main findings
of that paper was to show that, in many relevant cases, the map E fails to be lower semicontinuous. This
is true even if the acceptance set A is assumed to be convex. Recall that E is lower semicontinuous at
some x ∈ X whenever for any open set U ⊂ M satisfying E(x) ∩ U 6= ∅ there exists a neighborhood
Ux ⊂ X of x such that

y ∈ Ux =⇒ E(y) ∩ U 6= ∅.
Intuitively speaking, this means that any optimal payoff for x remains close to being optimal after a slight
perturbation of x.

However, all the counterexamples to lower semicontinuity exhibited in [4] use in a critical way the infinite
dimensionality of the underlying ambient space. In fact, none of them can be reproduced in a finite-
dimensional setting due to the general results from the same paper. More precisely, the acceptance
sets used in the counterexamples become polyhedral sets once restricted to finite dimension and lower
semicontinuity is always ensured under polyhedrality by virtue of [4, Theorem 5.12]. It remained thus open
whether, especially for convex acceptance sets, one can still find counterexamples to lower semicontinuity
and, more generally, to the existence of continuous selections for E in a finite-dimensional setting.

We aim to enrich the results of [4] by showing that not only might lower semicontinuity fail for a convex
acceptance set in a finite-dimensional model space, but we might even fail to find continuous selections
for the optimal set mapping. This is also true if we impose the following requirements:

(R1) A is closed, convex, contains zero and satisfies the monotonicity property

x ∈ A, y ∈ x+ X+ =⇒ y ∈ A.

(R2) M admits no arbitrage opportunity, i.e.

z ∈ M∩X+ \ {0} =⇒ π(z) > 0.

(R3) ρ is finite and continuous.

In this case, we will say that (A,M, π) is admissible. The assumptions on A are standard in the risk
measure literature. In particular, by stipulating that any aggregation of acceptable positions remains
acceptable, the property of convexity is often viewed to provide the mathematical translation of the
economics principle of diversification, according to which aggregation should always improve security.
The monotonicity property requires that any position dominating some acceptable position should also
be deemed acceptable. The absence of arbitrage opportunities, which corresponds to the strict positivity
of the pricing functional π, is universally encountered in the mathematical finance literature. Finally,
assuming that ρ be finite and continuous makes the question of lower semicontinuity meaningful and our
search for a counterexample more challenging.

3 Convexity does not ensure lower semicontinuity

Throughout this section we assume that X = R
3. Our aim is to construct an admissible triple (A,M, π)

and exhibit a vector x ∈ R
3 such that E fails to be lower semicontinuous at x. We split our construction

in several steps.

The basic set

The acceptance set will be obtained by a suitable extension and rotation applied to the following basic
set. Fix r > 0 and define a subset of R3 by setting

Br =

{

x ∈ R
2 × (0, 1] ;

x2
1

1 + r2x3
+

x2
2

r2x3
≤ 1

}

∪ {x ∈ R
3 ; x1 ∈ [−1, 1], x2 = x3 = 0}.

The lower boundary of this set has the boat-like shape depicted in Figure 1 with the projection of some
level sets. For every h ∈ [0, 1] the slice S(h) = {x ∈ Br ; x3 = h} is an ellipsoid centered in 0 with axes
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Figure 1: The set Br for r = 2.

parallel to the canonical vectors e1 and e2 and of lengths 2
√
1 + r2h and 2r

√
h, respectively. In particular,

the slice S(0) is a degenerated ellipsoid whereas the slice S(1) contains a circle of radius r.
The set Br is clearly closed and is easily seen to be convex. Indeed, since the function g : R× (0,∞) → R

defined by g(s, t) = s2/t is convex, it follows that λx+ (1− λ)y ∈ Br for every x, y ∈ Br with x3 > 0 and
y3 > 0 and λ ∈ [0, 1]. The same conclusion holds for every x, y ∈ Br by closedness.

For every given radius 0 < R ≤ r2

2
√
1+r2

consider the ice-cream cone

KR = {x ∈ R
3 ; x2

1 + x2
2 ≤ R2x2

3}.

We claim that Br satisfies
(Br +KR) ∩ {x ∈ R

3 ; x3 ≤ 1} = Br. (1)

To prove this, consider the convex function fr : R2 → R given by

fr(x1, x2) =
x2
1 + x2

2 − 1 +
√

(x2
1 + x2

2 − 1)2 + 4x2
2

2r2
. (2)

After some elementary manipulations, one can show that Br is nothing but a section of the epigraph of
fr, namely

Br = {x ∈ R
2 × [0, 1] ; fr(x1, x2) ≤ x3}.

For every x ∈ bdBr with x3 ∈ (0, 1) one can easily verify that

∂1fr(x1, x2) =
1

2r2
2x1fr(x1, x2)

fr(x1, x2)− (x2
1 + x2

2 − 1)
and ∂2fr(x1, x2) =

1

2r2
2x2(fr(x1, x2) + 2)

fr(x1, x2)− (x2
1 + x2

2 − 1)
.

Since fr(x1, x2) = x3 and x2
1 + x2

2 − 1 = r2x3 − x2
2/(r

2x3), we infer that

‖∇fr(x1, x2)‖22 =
1

4r4
4(x2

1 + x2
2)f

2
r (x1, x2) + 16x2

2fr(x1, x2) + 16x2
2

(fr(x1, x2)− (x2
1 + x2

2 − 1))2

=
1

4r4
16r4x2

3(1 + r2x3)

r4x2
3 + x2

2

≤ 4(1 + r2)

r4
.
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It follows that (1) is satisfied. To see this, take any x ∈ Br with x3 ∈ (0, 1) and y ∈ KR such that
x3 + y3 ≤ 1. The uniform bound on the norm of the gradient established above allows us to write

fr(x1 + y1, x2 + y2) ≤ fr(x1, x2) +
2
√
1 + r2

r2

√

y21 + y22 ≤ x3 +
2
√
1 + r2

r2
Ry3 ≤ x3 + y3

where we used that R ≤ r2

2
√
1+r2

. By continuity, the inequality fr(x1 + y1, x2 + y2) ≤ x3 + y3 can be

extended to any x ∈ Br with x3 = 0 and y ∈ KR such that y3 ≤ 1. This establishes (1).

The rotation

Consider the isometry Φ : R3 → R
3 defined by

Φ(x) =







1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√
2√
3

1√
3











x1

x2

x3



 . (3)

It can be easily verified that Φ is the composition of a clockwise rotation of an angle ϑ = π/4 around
the unit vector e3 with a clockwise rotation of an angle ϑ such that sin(ϑ) =

√
2/
√
3 and cos(ϑ) = 1/

√
3

around the unit vector (1/
√
2,−1/

√
2, 0).

The acceptance set

Let r = 3 and consider the set A ⊂ R
3 defined by

A = Φ(Br) + R
3
+.

Recall that Br is a compact and convex set containing zero. As a result, we immediately see that A is
closed, convex, and contains zero. Moreover, A satisfies the monotonicity property by definition. Hence,
requirement (R1) is fulfilled.

The payoff space

The space of payoffs is the linear subspace of R3 given by

M = Φ(N )

where N = {w ∈ R
3 ; w2 = 0}. It is immediate to see that M is spanned by (1, 1, 1) = Φ(0, 0,

√
3) and

(1,−1, 0) = Φ(
√
2, 0, 0). In addition, the pricing functional is the linear functional π : M → R given by

π(z) = z3.

In particular, we have π(1, 1, 1) = 1 and π(1,−1, 0) = 0. To show that M admits no arbitrage, take any
nonzero z ∈ M∩R

3
+ and note that

z = Φ(w) =

(

w1√
2
+

w3√
3
,−w1√

2
+

w3√
3
,
w3√
3

)

for a suitable w ∈ N . Since z is positive but nonzero, we must have w3 > 0 and therefore π(z) = z3 > 0.
This shows that (R2) holds.

To show finiteness and continuity of ρ, note first that

ρ(x) = inf{π(z) ; z ∈ M, z + x ∈ Φ(Br) + R
3
+}

= inf{π(Φ(w)) ; w ∈ N , w +Φ−1(x) ∈ Br +Φ−1(R3
+)}

= 1√
3
inf{w3 ; w ∈ N , w +Φ−1(x) ∈ Br +Φ−1(R3

+)}.
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Set R =
√
2 so that Φ−1(R3

+) ⊂ KR. Since R ≤ r2

2
√
1+r2

, it follows from (1) that

(Br +Φ−1(R3
+)) ∩ {x ∈ R

3 ; x3 ≤ 1} = Br .

As a result, we see that ρ(0) = 0. Now, take any x ∈ R
3 and note that

‖x‖∞e ≥ x ≥ −‖x‖∞e,

where e = (1, 1, 1). Then, it is not difficult to verify that

−‖x‖∞ = ρ(0)− π(‖x‖∞e) = ρ(‖x‖∞e) ≤ ρ(x) ≤ ρ(−‖x‖∞e) = ρ(0) + π(‖x‖∞e) = ‖x‖∞.

This shows that ρ is finitely valued and (globally Lipschitz) continuous. Hence, requirement (R3) is also
satisfied and the triple (A,M, π) is admissible.

The failure of lower semicontinuity

First of all, note that for every x ∈ R
3 we can write

E(x) = {z ∈ M ; z + x ∈ A, π(z) = ρ(x)}
= {Φ(w) ; w ∈ N , w +Φ−1(x) ∈ Br +Φ−1(R3

+),
w3√
3
= ρ(x)}

= Φ({w ∈ N ; w +Φ−1(x) ∈ Br +Φ−1(R3
+),

w3√
3
= ρ(x)}).

Consider now the sequence in Br with general term

y(n) =

(

0,
r√
n
,
1

n

)

.

Note that Φ(y(n)) → 0 and for every n ∈ N we have ρ(Φ(y(n))) = 0 and

E(Φ(y(n))) = Φ({0}) = {0}.

At the same time, recalling that ρ(0) = 0, it clearly holds

E(0) = Φ({w ∈ R
3 ; w1 ∈ [−1, 1], w2 = w3 = 0})

= {λΦ(−1, 0, 0) + (1− λ)Φ(1, 0, 0) ; λ ∈ [0, 1]} .

This shows that E fails to be lower semicontinuous at 0. In fact, a slight perturbation of 0 may cause the
corresponding set of optimal payoffs to shrink from an infinite set to just a singleton!

4 Convexity does not ensure continuous selections

Albeit not lower semicontinuous, the optimal set mapping in the preceding example is easily seen to admit
a continuous selection. In this section we show that, by properly modifying the above acceptance set, we
may be unable to ensure the existence of continuous selections as well. This is also possible under the
constraint that (A,M, π) be an admissible triple.

To this effect, we follow the general construction of the preceding example. The only difference is that
we will “twist” the set Br in a suitable way. This modification will require some technical preliminary
work to ensure convexity, which was automatic in the above example. In the sequel, for any r > 0 and
any subset E ⊂ R

2 we will consider sets of the form

Br(E) = {(u
√

1 + r2x3, vr
√
x3, x3) ∈ R

3 ; (u, v) ∈ E, x3 ∈ [0, 1]}.
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The auxiliary set Br(E)

Fix r > 0. In this section we focus on sets Br(E) where

E = {(u, v) ∈ R
2 ; α(u − a)2 + βv2 ≤ 1}

for given a ∈ R and α, β > 0. Note that we can always write

Br(E) = {x ∈ R
3 ; F (x) ≤ 0, x3 ∈ [0, 1]}

where F : R3 → R is specified by setting

F (x) =
r2x3

β
(α(u(x1, x3)− a)2 − 1) + x2

2 (4)

with u(x1, x3) =
x1√

1+r2x3

.

Now, assume that |a| < 1√
α
so that 0 ∈ intE. In this case, F is infinitely differentiable and satisfies

∂3F (x) =
r2

β

(

(α(u(x1, x3)− a)2 − 1)− αr2x3(u(x1, x3)− a)u(x1, x3)

1 + r2x3

)

6= 0 (5)

whenever x ∈ Br(E) with x3 > 0. Indeed, if we found ∂3F (x) = 0 for some x ∈ Br(E) with x3 > 0 we
would produce the contradiction

0 ≥ α(u(x1, x3)− a)2 − 1

= r2x3(1 − αa2) + αr2x3u(x1, x3)a

≥ r2x3(1 − α|a(a− u(x1, x3))|)
≥ r2x3(1 −

√
α|a|)

> 0

where we used that |a−u(x1, x3)| ≤ 1√
α
in the second-to-last inequality and |a| < 1√

α
in the last inequality.

As a result, (5) holds. Then, by the Implicit Function Theorem, there exists an open set U ⊂ R
2 and a

continuously differentiable function f : U → (0,∞) for which

Br(E) ∩ {x ∈ R
3 ; x3 > 0} = {x ∈ R

3 ; f(x1, x2) ≤ x3, x3 ∈ (0, 1]}.

Of course, it is not difficult to see that we can extend this function continuously to obtain

Br(E) = {x ∈ R
3 ; f(x1, x2) ≤ x3, x3 ∈ [0, 1]}. (6)

Convexity of Br(E). We claim that Br(E) is convex whenever |a| < 1√
α
. To show this, we shall use the

following result by [5].

Theorem 4.1. Let f : Rn → R ∪ {+∞} be a lower semicontinuous quasiconvex function. Then, f is

convex if and only if the function σs : R → R ∪ {∞} defined by

σs(t) = sup

{

n
∑

i=1

sixi ; x ∈ R
n, f(x) ≤ t

}

is concave for every s ∈ R
n.

Note first that f is lower semicontinuous and quasiconvex by construction. We use Theorem 4.1 to prove
its convexity. For every t ∈ [0, 1] the sublevel set L(t) = {(x1, x2) ∈ R

2 ; f(x1, x2) ≤ t} is easily seen to
satisfy

L(t) = {(u
√

1 + r2t, vr
√
t) ; (u, v) ∈ R

2, α(u − a)2 + βv2 ≤ 1}.

7



This set is an ellipsoid and its support function can be computed explicitly. For s ∈ R
2 we indeed have

σs(t) = sup
(x1,x2)∈L(t)

s1x1 + s2x2 =

√

s21(1 + r2t)

α
+

s22r
2t

β
+ as1

√

1 + r2t.

As a function of t, we have a sum of two square roots of affine functions. If as1 ≥ 0, these two terms are
concave. Assume, then, that as1 < 0. The second derivative of the first term is

−1

4

(

s21r
2

α
+

s22r
2

β

)2(
s21(1 + r2t)

α
+

s22r
2t

β

)−3/2

,

which can be seen to become more and more negative as s22 increases. So, to establish the concavity of
σs, it suffices to consider s2 = 0. In this case, we get

σs(t) =

√

s21(1 + r2t)

α
−
√

a2s21(1 + r2t) = |s1|
√

1 + r2t

(

1√
α
− a

)

,

which is concave as a < 1√
α
. This proves that f is convex and, hence, that Br(E) is also convex.

The convexity of Br(E) holds even if a
√
α = 1. To see this, define

E(n) = {(u, v) ∈ R
2 ; α (u− an)

2
+ βv2 ≤ 1}

for any n ∈ N, where an ↑ a under the assumption that none of the ellipsoids E(n) is empty. Now, let x ∈
Br(E). Then, there exists a sequence x(n) → x such that x(n) ∈ Br(E(n)) for every n ∈ N. This result is
trivial when x3 = 0. Otherwise, setting v(x2, x3) = x2/(r

√
x3) so that α(u(x1, x3)−a)2+βv(x2, x3)

2 ≤ 1,
we simply take

un(x1, x3) = u(x1, x3)− a+ an, vn(x2, x3) = v(x2, x3), x
(n)
3 = x3

and construct the corresponding point x(n) of E(n). Conversely, if x(n) ∈ Br(E(n)) defines a sequence
converging to x with x3 > 0, then x ∈ Br(E) by continuity of the functions u and v. This property is also
immediately verified when x3 = 0. As a result, if we let an ↑ a, then we see that Br(E) is convex due to
the convexity of each of the sets Br(E(n)).

Curvature of Br(E). Finally, for our later construction, we need to provide some estimates on the norm
of the gradient of f . For any x ∈ R

3 with x3 > 0 it follows from the Implicit Function Theorem that

||∇f(x1, x2)||2 =

√

∂1F (x)2 + ∂2F (x)2

|∂3F (x)| .

Now, assume that a ≥ 0 and α < 5 and take r > max{
√
2, 1√

5−α
}. We claim that

max

{

||∇f(x1, x2)||2 ; x ∈ bdBr(E), 0 ≤ u(x1, x3)− a ≤ 1√
α

}

≤ 2

r
(7)

and, under the assumption 8 > 9αa2,

max

{

||∇f(x1, x2)||2 ; x ∈ bdBr(E), − 1√
α

≤ u(x1, x3)− a ≤ 1√
α

}

≤
16max{ αr2

r2+1 , 1}
r(8 − 9αa2)

. (8)

Note that we can restrict the above optimization domains to those x ∈ bdBr(E) such that f(x1, x2) =
x3 = 1 by convexity. After a few elementary rearrangements, we get

||∇f(x1, x2)||22 = (∂1F (x)2 + ∂2F (x)2)(∂3F (x))−2

=
4(1 + r2)

r2
· α2r2(u(x1, x3)− a)2 + (1− α(u(x1, x3)− a)2)(1 + r2)

((1 − α(u(x1, x3)− a)2)(1 + r2) + 3αr2(u(x1, x3)− a)u(x1, x3))2

=
4(1 + r2)

r2
· α2r2(u(x1, x3)− a)2 + (1 − α(u(x1, x3)− a)2)(1 + r2)

(α(2r2 − 1)(u(x1, x3)− a)2 + 3αar2(u(x1, x3)− a) + (1 + r2))2

=
4(1 + r2)

r2
φ(t)
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where, for notational convenience, we have set

φ(t) =
At2 +B

(Ct2 +Dt+B)2
,

with t = u(x1, x3) − a, A = α(αr2 − 1 − r2), B = 1 + r2, C = α(2r2 − 1), and D = 3αar2. Note that
B,C,D are all nonnegative while the sign of A depends on α. We show that t ≥ 0 implies

φ(t) ≤ φ(0) =
1

B
=

1

1 + r2
. (9)

To show this, assume first that A ≤ 0. In this case, we easily see that ABt2+B2 ≤ B2 ≤ (Ct2+Dt+B)2

so that (9) holds. Then, assume that A > 0 and note that

φ′(t) =
−2ACt3 + 2B(A− 2C)t− 2BD

(Ct2 +Dt+ B)3
.

Since α < 5 and r > 1/
√
5− α, the numerator is strictly decreasing in t and, hence, it is negative due to

−2BD ≤ 0. Similarly, since r > 1/
√
2, the denominator is strictly increasing in t and, hence, it is strictly

positive due to B > 0. This establishes (9) also when A > 0. As a result, we get

||∇f(x1, x2)||22 ≤ 4(1 + r2)

r2
1

1 + r2
=

4

r2

whenever u(x1, x3)− a ≥ 0, thus proving (7).

To prove (8), assume that t belongs to the interval [−1/
√
α, 1/

√
α]. In this case, the numerator of φ(t) is

easily seen to be maximized by B if A ≤ 0 and by A
α +B otherwise. At the same time, the denominator of

φ(t) has its global minimum at t = − D
2C , which is larger or equal than −1/

√
α since a2α ≤ 1 and r >

√
2.

Hence, the denominator is minimized by (B −D2/4C)2. Now, if A ≤ 0 we infer that

||∇f(x1, x2)||22 ≤ 4(1 + r2)

r2
16(1 + r2)(2r2 − 1)2

((8 − 9αa2)r4 + 4r2 − 4)2

=
64(2r4 + r2 − 1)2

r2((8 − 9αa2)r4 + 4r2 − 4)2

≤ 256

r2(8− 9αa2)2
.

The last inequality is due to the fact that, by assumption, 8− 9αa2 > 0 and r ≥ 1. On the other side, if
A > 0, then we have

||∇f(x1, x2)||22 ≤ 4(1 + r2)

r2
16αr2(2r2 − 1)2

((8 − 9αa2)r4 + 4r2 − 4)2

≤ 64α2r2(2r2 − 1)2

((8 − 9αa2)r4 + 4r2 − 4)2

≤ 256α2r2

(1 + r2)2(8− 9αa2)2
.

The second inequality follows from α(1 + r2) ≤ α2r2, which holds since A > 0, and the last inequality is,
as above, due to the fact that, by assumption, 8− 9αa2 > 0 and r ≥ 1. This finally establishes the bound
in (8).

The basic set

Consider the set C ⊂ R
2 defined as the union of the following four quarters of ellipsoids:

E1 =

{

(x1, x2) ∈ R
2 ; 4

(

x1 −
1

2

)2

+ x2
2 ≤ 1, x1 ∈

[

1

2
, 1

]

, x2 ∈ [0, 1]

}

,
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E2 =

{

(x1, x2) ∈ R
2 ;

4

9

(

x1 −
1

2

)2

+ x2
2 ≤ 1, x1 ∈

[

−1,
1

2

]

, x2 ∈ [0, 1]

}

,

E3 =

{

(x1, x2) ∈ R
2 ; 4

(

x1 +
1

2

)2

+ x2
2 ≤ 1, x1 ∈

[

−1,−1

2

]

, x2 ∈ [−1, 0]

}

,

E4 =

{

(x1, x2) ∈ R
2 ;

4

9

(

x1 +
1

2

)2

+ x2
2 ≤ 1, x1 ∈

[

−1

2
, 1

]

, x2 ∈ [−1, 0]

}

.
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Figure 2: The set C as a union of four quarters of ellipsoids.

Let r > 0 be fixed and consider the set Br(C). This set has the same structure as the set Br considered
above once we note that Br = Br(E) for a suitable circle E ⊂ R

2. The set Br(C) is clearly closed but its
convexity is not a priori obvious.

Convexity of Br(C). We prove that Br(E1 ∪E2) is convex. By symmetry, this will imply that Br(C) is
also convex. Note that the half ellipsoid

E′
1 =

{

(u, v) ∈ R
2 ; 4

(

u− 1

2

)2

+ v2 ≤ 1, u ∈ [−1, 1], v ∈ [0, 1]

}

is contained in the half ellipsoid

E′
2 =

{

(u, v) ∈ R
2 ;

4

9

(

u− 1

2

)2

+ v2 ≤ 1, u ∈ [−1, 1], v ∈ [0, 1]

}

so that Br(E
′
1) ⊂ Br(E1 ∪ E2) ⊂ Br(E

′
2). It follows from our previous paragraph that Br(E

′
2) is convex.

Now, take x, y ∈ Br(E1 ∪E2) and note that any convex combination of x and y belongs to Br(E
′
2). Since

the equation

u(λx1 + (1 − λ)y1, λx3 + (1− λ)y3) =
1

2

has at most two solutions λ ∈ [0, 1], the segment with extremes x and y is divided in at most three
subsegments where u(x1, x3)− 1

2 has a constant sign. Positive subsegments are contained in Br(E
′
1) and,

hence, belong to Br(C). Negative subsegments are contained in

Br(E
′
2) ∩

{

x ∈ R
3 ; −1 ≤ u(x1, x3) ≤

1

2
, x2 ≥ 0

}

,
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which is also contained in Br(C). This establishes the convexity of Br(C).

The boundary of Br(C) is smooth. Let F1 and F2 be the functions associated to Br(E1) and Br(E2)
as in (4) and note that they coincide on the set {x ∈ R

3 ; u(x1, x3) =
1
2}. Moreover, for every x ∈ R

3 we
have

∇F1(x) =







4r2x3(2u(x1, x3)− 1)∂u(x1,x3)
∂x1

2x2

4r2(u(x1, x3)− 1)u(x1, x3) + 4r2x3(2u(x1, x3)− 1)∂u(x1,x3)
∂x3







and

∇F2(x) =







4
9r

2x3(2u(x1, x3)− 1)∂u(x1,x3)
∂x1

2x2
4
9r

2(u(x1, x3)− 2)(u(x1, x3) + 1) + 4
9r

2x3(2u(x1, x3)− 1)∂u(x1,x3)
∂x3






.

Observe that ∇F1(x) = ∇F2(x) whenever u(x1, x3) = 1/2. Finally, take an arbitrary (x1, x3) ∈ R
2 with

1
2 ≤ u(x1, x3) ≤ 1 and F1(x1, 0, x3) = 0. In this case, it is easy to see that x1 =

√
1 + r2x3 so that, in

fact, u(x1, x3) = 1. In addition, we have u(−x1, x3) = −1 as well as

∂1u(−x1, x3) = ∂1u(x1, x3) and ∂3u(−x1, x3) = −∂3u(x1, x3).

As a result, we can use the above gradient formula to obtain

∂1F2(−
√

1 + r2x3, 0, x3) = −12

9
r2x3∂1u(x1, x3) = −1

3
∂1F1(

√

1 + r2x3, 0, x3),

∂2F2(−
√

1 + r2x3, 0, x3) = 0 = ∂2F1(
√

1 + r2x3, 0, x3)

∂3F2(−
√

1 + r2x3, 0, x3) =
12

9
r2x3∂3u(x1, x3) =

1

3
∂3F1(

√

1 + r2x3, 0, x3).

This shows that the boundary of Br(C) is smooth when x2 = 0.

“Monotonicity” of Br(C). For any 0 < R ≤ 7
16r consider the ice-cream cone

KR = {x ∈ R
3 ; x2

1 + x2
2 ≤ R2x2

3}.

We claim that
(Br(C) +KR) ∩ {x ∈ R

3 ; x3 ≤ 1} = Br(C). (10)

To show this, let f3 be the function associated to Br(E3) as in (6) and note that R ≤ r
2 . As a result of

the bound established in (7), it follows that

R ≤ 1

‖∇f3(x1, x2)‖2
for every x ∈ bdBr(E3) with x3 > 0. The same bound holds, by symmetry, if we replace E3 by E1.
Similarly, if f4 is the function associated to Br(E4) as in (6), then R ≤ 7

16r implies that

R ≤ 1

‖∇f4(x1, x2)‖2
for every x ∈ bdBr(E4) with x3 > 0 by (8). The same bound holds, by symmetry, if we replace E4 by
E2. Then, one can easily establish (10) following the lines of the proof of (1).

The acceptance set

Let r = 16 and consider the convex acceptance set A ⊂ R
3 defined by

A = Φ(Br(C)) + R
3
+,

where Φ is the rotation defined in (3). Since Br(C) is a compact and convex set containing zero, we
see that A is closed, convex, and contains zero. In addition, A satisfies by definition the monotonicity
property. Hence, requirement (R1) is fulfilled.
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The space of payoffs

As above, the space of payoffs is the linear subspace of R3 given by

M = Φ(N )

where N = {w ∈ R
3 ; w2 = 0}. The pricing functional π : M → R is defined by setting

π(z) = z3.

In line with what established above, (R2) holds.

Set R =
√
2 so that Φ−1(R3

+) ⊂ KR. Since R ≤ 7
16r, it follows from (10) that

(Br(C) + Φ−1(R3
+)) ∩ {x ∈ R

3 ; x3 ≤ 1} = Br(C).

Hence, we can reproduce the above argument to establish that ρ is finite and (Lipschitz) continuous, so
that (R3) holds as well. In other words, (A,M, π) is an admissible triple.

The failure of continuous selections

First of all, note that for every x ∈ R
3 we can write

E(x) = {z ∈ M ; z + x ∈ A, π(z) = ρ(x)}
= {Φ(w) ; w ∈ N , w +Φ−1(x) ∈ Br(C) + Φ−1(R3

+),
w3√
3
= ρ(x)}

= Φ({w ∈ N ; w +Φ−1(x) ∈ Br(C) + Φ−1(R3
+),

w3√
3
= ρ(x)}).

Now, consider the sequence (y(n)) ⊂ R
3 defined by

y(2n−1) =

(

0,− r√
n
, 0

)

and y(2n) =

(

0,
r√
n
, 0

)

.

Then, we easily see that

E(Φ(y(2n−1))) =

{

Φ

(

−1

2

√

1 +
r2

n
,− r√

n
,
1

n

)}

and similarly

E(Φ(y(2n))) =
{

Φ

(

1

2

√

1 +
r2

n
,

r√
n
,
1

n

)}

for every n ∈ N. Since y(n) → 0 but we clearly have

(

−1

2

√

1 +
r2

n
,− r√

n
,
1

n

)

→
(

−1

2
, 0, 0

)

and

(

1

2

√

1 +
r2

n
,

r√
n
,
1

n

)

→
(

1

2
, 0, 0

)

,

it follows that no selection of E can be continuous at 0.
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