
Mathematical Methods of Operations Research (2021) 94:145–168
https://doi.org/10.1007/s00186-021-00751-z

ORIG INAL ART ICLE

Optimal pairs trading with dynamic mean-variance
objective

Dong-Mei Zhu1 · Jia-Wen Gu2 · Feng-Hui Yu3 · Tak-Kuen Siu4 ·
Wai-Ki Ching5

Received: 20 June 2019 / Revised: 3 June 2021 / Accepted: 1 August 2021 /
Published online: 25 August 2021
© The Author(s) 2021

Abstract
Pairs trading is a typical example of a convergence trading strategy. Investors buy
relatively under-priced assets simultaneously, and sell relatively over-priced assets
to exploit temporary mispricing. This study examines optimal pairs trading strate-
gies under symmetric and non-symmetric trading constraints. Under the assumption
that the price spread of a pair of correlated securities follows a mean-reverting
Ornstein-Uhlenbeck(OU) process, analytical trading strategies are obtained under a
mean-variance(MV) framework. Model estimation and empirical studies on trading
strategies have been conducted using data on pairs of stocks and futures traded on
China’s securities market. These results indicate that pairs trading strategies have
fairly good performance.

Keywords Dynamic mean-variance (MV) · Ornstein-Uhlenbeck (OU) process ·
Pairs trading · Time inconsistency

1 Introduction

Statistical arbitrage trading strategies have been widely used in financial markets. The
implementation of statistical arbitrage trading strategies may restrain excessive spec-
ulation, and enhance market liquidity. A convergence trade is a statistical arbitrage
trade that exploits mispricing of two assets with similar trends in payoffs in the future.
As reported by Liu and Timmermann (2013), convergence trades include merger arbi-
trage (risk arbitrage), pairs trading (relative value trades), on-the-run/off-the-run bond
trades, tranched structured securities, and arbitrage between the same stocks trading
in different markets. Pairs trading was pioneered by Gerry Bamberger, and further
developed by Nunzio Tartaglia’s quantitative group at Morgan Stanley in the 1980s
(Gatev et al. 2006). The core idea of pairs trading is to sell overpriced security, and
buy underpriced securities when the price spread widens. It also involves clearing the
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trading position when the price spread converges. Huck (2010) proposed a general
and flexible framework for selection of pairs and a multi-step-ahead forecast method.
We refer the reader toWhistler (2004) and Reverre (2001) for more details about pairs
trading.

Studies on pairs trading primarily focus on three major approaches, namely, the dis-
tance approach, stochastic spread approach and cointegration approach. The distance
approach is a trading strategy that attempts to make a profit when the sum of squared
differences between two stock prices triggers a prescribed threshold ( Nath 2003). The
distancemethod lacks forecasting ability despite its straightforward structure, owing to
the convergence time and the expected holding period (Do et al. 2006). The stochastic
spread approach (Elliott et al. 2005) describes the temporary divergence in the prices
of two correlated securities. The divergence in prices may be attributed to liquidity
shortages, and is expected to converge to an equilibrium level in the future. Song and
Zhang (2013) explored optimal stopping problems by maximizing the overall return
under the mean-reverting assumption. Sperling and Siu (2018) further considered
regime-switching by extending the model reported by Göncü and Akyildirim (2016).
The cointegration approach is based on the premise that a pair of asset price series is
cointegrated. Vidyamurthy (2004) and Gatev et al. (2006) pioneered the cointegration
approach in pairs trading research. This approach was further developed by Lin et al.
(2006) using optimal loss protection. Explicit optimal portfolio trading strategies were
derived under the MV and expected utility objective functions (Liu and Timmermann
2013,Chiu andWong 2013,Chiu andWong 2015). Due to its tractability and flexibility,
we consider the conintegration approach in this study.

Markowitz (1952) pioneered the MV paradigm for portfolio selection in a single-
period modelling framework. The MV criterion has been further investigated in the
discrete-time multiperiod setting (Li and Ng 2000), continuous-time with bankruptcy
prohibition (Bielecki et al. 2005), and mean-risk formulation (Cui et al. 2017). The
expected utility framework has also been studied widely in the context of the portfolio
selection problem since the pioneering works of (Merton 1969, 1971). These two
frameworks represent different investment preferences of various market participants,
and have attracted considerable attention in the finance literature. Mudchanatongsuk
et al. (2008) and Tourin and Yan (2013) explored optimal pairs trading strategies
with the expected utility on the terminal wealth. Inspired by these two works, we
study the optimal pairs trading strategies of MV-preference investors. Wang and Zhou
(2020) identified two main reasons for the popularity of the MV criterion. First, the
MV criterion is intuitively appealing from a practical perspective. In addition, it is
transparent in terms of capturing the tradeoff between risk and return, which is one
of the main concerns of traders and investors. Second, the MV criterion leads to a
theoretically intriguing issue of the Bellman’s inconsistency inherent to the underlying
stochastic control problems, which is interesting from a theoretical perspective. It
may be noted that in some cases, the MV criterion may lead to a simple solution to
the portfolio selection problem, which entails practically meaningful interpretation,
though the challenging issue of Bellman’s inconsistency needs to be revolved before
achieving the simple solution. As noted in, for example, Bielecki et al. (2005) indicated
that the basic concept of theMVmodel is a foundation of neo-classical finance theory,
including the mutual fund theorem, the elegant capital asset pricing model etc.
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In the MV framework, the inadequacy of the iterated-expectations property leads
to the inability of applying the traditional dynamic programming approach. This ren-
ders optimality conceptually unclear (Björk and Murgoci 2010). A pre-commitment
strategy was reported that aims to find a strategy or a control that maximises the initial
value function at a fixed starting time point, while disregarding the fact that a deci-
sion maker or investor may have an incentive to deviate from the initial policy at a
later time (Dang and Forsyth 2016; Kryger and Steffensen 2010). However, this strat-
egy is not time-consistent. Specifically, when the same problem is solved at a later
time, the resulting optimal control will be different from that obtained at the start-
ing time. To address this time-inconsistency, Basak and Chabakauri (2010) adopted a
game theoretic approach to solve a continuous-time MV problem for an investor who
updates her nonlinear MV objective by taking future updates into account in a time-
consistent manner, and derived an equilibrium control policy. For more details about
time-consistent equilibrium controls, we refer the reader to Strotz (1955), Krusell and
Smith (2003), Björk et al. (2014) and Huang and Nguyenhuu (2018). In this study, we
consider time-consistent trading strategies for the pairs trading problems.

Building on existing works such as Mudchanatongsuk et al. (2008), Basak and
Chabakauri (2010), Tourin and Yan (2013), and Gu et al. (2020), an optimal trading
strategy is formulated as a dynamic MV portfolio selection problem. The price spread
of two correlated securities is modelled by an OU process, which captures the mean-
reverting property of the price spread. In Mudchanatongsuk et al. (2008) and Tourin
and Yan (2013), the expected utility maximisation objective was considered using the
Bellman principle. The objective of this study is to investigate time-consistent pairs
trading strategies with anMV objective. By employing the approach based on the total
variance formula in Basak and Chabakauri (2010), the original optimization problem
is transformed into a quadratic form, and an analytical solution is obtained. To explore
the potential implementation of the proposed approach, the empirical studies on the
optimal trading strategies are conducted using data on pairs of stocks and futures
traded on China securities market.

In summary, the key contributions of our paper are as follows. Firstly, a closed-form
optimal trading strategy is obtained under the assumption that the spread of the asset
prices follows an OU process, and the portfolio weights allocated to the two assets are
symmetric. Secondly, we extend the model setup to allow for non-symmetric portfolio
weights. This leads to a more general trading strategy. Third, we calibrate the model
parameters for different pairs of assets from the Chinese securities market, including
stocks and futures, to validate the analytical optimal solutions.

The paper is structured as follows. The next section presents the model setup for
pairs trading adopted from Mudchanatongsuk et al. (2008). Section 3 discusses the
formulation of optimal pairs trading problems with a dynamicMV problem under two
different settings. The time-consistent solutions to the problems in both situations are
presented. Section 4 presents empirical illustrations, and finally, Sect. 5 concludes the
paper. The proofs and derivations of some results are provided in the “Appendix”.
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2 Themodel dynamics in pairs trading

In this section, the dynamics for the price spread and the pairs trading strategies are
described in a continuous-time modeling framework, as in Mudchanatongsuk et al.
(2008). A continuous-time financial market is considered, where the time parameter
set is [0, T ], (i.e., t ∈ [0, T ]). Hereafter, we simply use the (continuous) time index
t without referring to the time parameter set for convenience. The uncertainties are
described by a complete probability space (�,F ,P), where P is a real-world prob-
ability measure. Now we consider three tradeable securities in the market, namely, a
risk-free asset and two risky assets, where the price dynamics of two risky assets are
assumed to be cointegrated. We also impose some standard assumptions for a perfect
market as follows. There are no transaction costs or taxes in trading these securities
and short sellingwas allowed. Themain purpose of this study is to obtain optimal time-
consistent pairs trading strategies, and the method may be applicable when transaction
costs or taxes are considered.

Let r be the continuously compounded rate of interest, which is assumed to be a
positive constant for simplicity. The price of the risk-free asset at time t is denoted by
M(t) and it satisfies the following differential equation:

dM(t) = rM(t)dt . (1)

Let A(t) and B(t) denote the prices of the pair of assets A and B at time t , respec-
tively. We assume that the price of stock B follows the geometric Brownian motion:

dB(t)

B(t)
= μdt + σdZ(t), (2)

where μ and σ are the constant drift and volatility, respectively; {Z(t)} is a standard
Brownian motion.

Let X(t) denote the price spread of stocks A and B at time t , which is defined as
follows:

X(t) = ln(A(t)) − ln(B(t)). (3)

To capture the mean-reverting property, we assume that the above price spread follows
an OU process:

dX(t) = k(θ − X(t))dt + ηdW (t), (4)

where {W (t)} is another standard Brownian motion; k > 0 is the rate of mean rever-
sion; θ is the long-termmean of the process;η > 0 is the volatility of the price spread;ρ
is the instantaneous correlation coefficient between the two Brownian motions {Z(t)}
and {W (t)}. Therefore, by a straightforward calculation, we obtain

d A(t) = A(t)

{(
k(θ − X(t)) + μ + 1

2
η2 + ρση

)
dt + σdZ(t) + ηdW (t)

}
. (5)

The information structure of the model is specified by a filtration {Ft }, which
is the natural filtration generated by the two correlated Brownian motions {W (t)}
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Optimal pairs trading… 149

and {Z(t)} augmented by the P-null sets. For notational convenience, we denote the
conditional expectation and the conditional variance given Ft as Et (·) and Vart (·)
respectively under the probability measure P. We calibrate the proposed model by
following an approach based on the maximum likelihood estimation method proposed
by Mudchanatongsuk et al. (2008).

3 The dynamic MV problem

In what follows, the optimal pairs trading problems are formulated as MV portfolio
selection problems under two cases: following Basak and Chabakauri (2010) and Gu
and Steffensen (2015). The MV problems for optimal pairs trading are solved by
employing the dynamic programming principle, and two cases with different trading
constraints are discussed. In thefirst case, the portfolioweights invested in the two risky
assets are assumed to have a sum of zero. However, this constraint was relaxed in the
second case. In the two cases, the problems were formulated as quadratic optimization
problems. Then, the problems were solved by combining the Feymann-Kac formula
and the obtained Hamilton-Jacobi-Bellman (HJB) equation. The main results of the
time-consistent optimal solutions for the dynamic MV problems in the two situations
are provided in Propositions 1 and 2.

3.1 Case I

Let V (t) be the value of a self-financing pairs trading portfolio. We denote h(t) and
ĥ(t) as the portfolio weights invested in stocks A and B at time t , respectively. In this
model, we assume that the stocks A and B can only be traded as pairs. Specifically,
we are only allowed to short one of them and long the other one in equal units. Thus,
we require h(t) = −ĥ(t). The wealth process V (t) becomes:

dV (t) = V (t)

{
h(t)

d A(t)

A(t)
− h(t)

dB(t)

B(t)
+ dM(t)

M(t)

}
. (6)

Substituting Eq. (2) and Eq. (5) into Eq. (6) gives:

dV (t) = V (t)

{
h(t)

(
[k(θ − X(t)) + 1

2
η2 + ρση]dt + ηdW (t)

)
+ rdt

}
. (7)

We define π(t) := V (t)h(t)er(T−t), where V (t)h(t) denotes the present amount
invested in the stocks. Eq. (7) can then be rewritten as follows:

d(er(T−t)V (t)) = π(t)

{(
k(θ − X(t)) + 1

2
η2 + ρση

)
dt + ηdW (t)

}
, (8)
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or equivalently,

V (T ) − er(T−t)V (t) =
∫ T

t
π(s)

{(
k(θ − X(s)) + 1

2
η2 + ρση

)
ds + ηdW (s)

}
.

(9)
The objective of the dynamic MV problem is given by:

sup
π(s):t≤s≤T

Et (V (T )) + λVart (V (T )), (10)

where λ < 0. Note that by the joint Markov property of (X(t), V (t)) with respect to
the filtration {Ft }, the conditional expectation Et and conditional variance Vart are
indeed of the form E(·|X(t); V (t)) and Var(·|X(t); V (t)), respectively.

Suppose thatπ∗(·)denotes the time-consistent control andV ∗(·)denotes the respec-
tive wealth process. Then, we define the value function as follows:

J (t, X(t), V (t)) := Et (V
∗(T )) + λVart (V

∗(T )). (11)

In short, we also write J (t, X(t), V (t)) as Jt in the following content.We consider the
situationwhere decisions aremade in the timehorizon [t, t+τ ], for τ > 0.Thedecision
maker must decide a strategy {π(s)}s∈[t,t+τ ] with the objective function Et [Jt+τ ] +
λVart [Et+τ (V (T ))]. It is known that the decision-makers follow the equilibrium law
π∗(s) after time t +τ . The objective function is different from the traditional dynamic
one in the sense that there is a time-consistent adjustment term λVart [Et+τ (V (T ))].
The presence of this time-consistent adjustment term implies that {π∗(s)}s≥t+τ may
not be optimal at time t , in addition to the failure of Bellman’s optimality principle.
The time-consistent adjustment term λVart [Et+τ (V (T ))] arises due to the “Total
Variance Formula”(Basak and Chabakauri 2010). Applying the techniques in HJB
dynamic programming by considering time consistency, the dynamic MV problem
with the objective function in Eq. (10) and the dynamic budget constraint in Eq. (6)
can be solved. The solution is presented in the following proposition.

Proposition 1 A time-consistent solution to the dynamic MV problem in Eq. (10) with
the dynamic budget constraint in Eq. (6) is given by:

π∗(t) = − k

λη2

[
k(T − t) + 1

2

]
(θ − x) − [k(T − t) + 1]2

2λ
(
ρσ

η
+ 1

2
). (12)

The respective optimal weight in pairs trading is given by:

h∗(t) = π∗(t)
V (t)er(T−t)

.

Proof The proof is given in the “Appendix”.

Remark 1 – Proposition 1 implies that with an increase in volatility σ or an increase
in the correlation coefficient ρ, the investor allocates more funds to risky assets.
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This makes intuitive sense, because when σ increases, the amount of uncertainty
also increases. Thismay lead tomoreopportunities for arbitrage. Furthermore,with
an increase in the correlation of price pairs, the price spread tends to converge.
This may lead to higher profits upon investing in risky securities.

– From the expression π∗(t) in Eq. (12), we can see that π∗(t) = O((T − t)2). We
also obtain that

h∗(t) = π∗(t)
V (t)er(T−t)

→ 0,

when T → ∞. This means that when T is sufficiently large, the optimal weight
in pairs trading is considerably small. This highlights the insight that to prevent
volatility risk, traders may tend to hold small positions when the trading period is
long.

Proposition 2 (Verification Theorem) Assume that J̃ is a solution of Eq. (18) with
terminal condition J̃ (T , X(T ), V (T )) = V (T ), and controlπ∗ realizes the supremum
in the Eq. (18). Thenπ∗ is an equilibrium control and the corresponding value function
is J̃ .

Proof For any perturbation πε,u(s) := u1s∈[t,t+ε) +π∗(s)1s∈[t+ε,T ], we aim to prove
that

lim inf
ε→0

J̃ (t, X(t), V (t);π∗) − J̃ (t, X(t), V (t);πε,u)

ε
≥ 0.

We skip the details of the proof, as it is similar to the proof of Theorem 7.1 in Björk
and Murgoci (2010).

3.2 Case II

In the above analysis, we require that h(t) = −ĥ(t). The general situation where this
trading constraint is relaxed is considered in this subsection. In this case, the wealth
equation for {V (t)} is given by:

dV (t) = V (t)

{
h(t)

d A(t)

A(t)
+ ĥ(t)

dB(t)

B(t)
+ (1 − h(t) − ĥ(t))

dM(t)

M(t)

}
. (13)

This implies that

dV (t) = V (t){h(t)[k(θ − X(t)) + μ + 1
2η

2 + ρση]dt + μĥ(t)dt
+(1 − h(t) − ĥ(t))rdt + σ(h(t) + ĥ(t))dZ(t) + ηh(t)dW (t)}.

Let

H(t) = (h(t), ĥ(t))T and π̂(t) = er(T−t)V (t)H(t) = (π̂1(t), π̂2(t))
T .

Then

d(er(T−t)V (t)) = π̂(t)T
{[(

k(θ − X(t)) + μ + 1
2η2 + ρση

μ

)
−

(
r
r

)]
dt +

(
η σ

0 σ

) (
dW (t)
dZ(t)

)}
.

(14)
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The control problem becomes:

sup
π̂(s):t≤s≤T

Et (V (T )) + λVart (V (T )). (15)

Same as in Case I, the conditional expectation Et and conditional variance Vart are
of the form E(·|X(t); V (t)) and Var(·|X(t); V (t)), respectively. Given the optimal
policy π̂

∗
(·) and the respective wealth process V̂ ∗(·), the value function Ĵ is defined

as follows:
Ĵ (t, X(t), V (t)) := Et (V̂

∗(T )) + λVart (V̂
∗(T )), (16)

and we sometimes write Ĵt for short.
The main result of this case is presented in the following proposition.

Proposition 3 A time-consistent solution to the dynamic MV problem in Eq. (15) with
the dynamic budget constraint in Eq. (13) is given by:

π̂
∗
(t) = − 1

2λ(1 − ρ2)η2

(
1 −σ+ρη

σ

−σ+ρη
σ

η2+σ 2+2ρησ

σ 2

)

(
k(θ − X(t)) + Ã + (2λη2 + 2λρησ)g(X(t), t)

μ − r + 2λρησ g(X(t), t)

)
,

where g is given by:

g(X(t), t) = k(T−t)

λ(1−ρ2)η2

[
k(θ−X(t))+ ( Ã−μ+r)(k(T −t)+1)

2
− ρη(μ−r)

2σ

]
,

and Ã = μ − r + ρση + η2

2 . The respective optimal weights, therefore, are given by:

H∗(t) = 1

V (t)er(T−t)
π̂

∗
(t).

Proof The proof of this proposition is given in the “Appendix”.

Remark 2 – Similarly to Case I, H∗(t) → 0 when T → ∞. This coincides with the
previous case and verifies again that the investor would be more cautious after a
long period.

– Similarly to Proposition 2, for the corresponding verification theorem, one may
refer to the specific case of Theorem 7.1 in Björk and Murgoci (2010).

– Tourin andYan (2013) analyze the optimal pairs trading strategieswith exponential
utility function U (w) = −e−γw. The optimal strategies under our set up with the
exponential utility function are given as follows:

π̂
∗
TY (t) =

⎛
⎝

1
γ (η2−σ 2)

{
[k(θ − x) + μ + η2

2 + ρση][k(T − t) + 1] + k2(T−t)2(η2−2σ 2)
4

}
μ

γσ 2 − k(T−t)[k(θ−x)+μ+ η2

2 +ρση]
γ (η2−σ 2)

− k2(T−t)2(η2−2σ 2)

4γ (η2−σ 2)

⎞
⎠
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when r = 0. For investors with MV preference when r = 0, the optimal strategies
are given as follows:

π̂
∗
(t) = − 1

2λ(1 − ρ2)η2(
[2k(θ − x) + ρση + η2

2 − ρημ
σ

][k(T − t) + 1] + k2(T − t)2(ρση + η2

2 ) − k(θ − x)

−k(T − t)[2k(θ − x) + ρση + η2

2 − ρημ
σ

] − k2(T − t)2(ρση + η2

2 ) + N

)
,

where

N = (η2 + ρησ)μ

σ 2 − σ 2 + ρη

σ
k(θ − x) − η(σ + ρη)(2ρσ + η)

2σ
.

The optimal strategies for investors with different preferences are quite different
with each other.

Mudchanatongsuk et al. (2008) consider expected power utility investors with “sym-
metric” positions(the same as case I in our setting), the optimal results obtained there
is also quite different from ours which is obtained with MV criterion. Tourin and
Yan (2013) investigate expected exponential utility investors with “asymmetric” posi-
tions(the same as case II in our setting) allocated to each risky asset. The results above
demonstrate the differences between their optimal strategies and ours. In summary,
market participants with different preferences behave heterogeneously. Furthermore,
it is unclear if the properties discussed in Remarks 1 and 2 would still hold for the
optimal solutions obtained by Mudchanatongsuk et al. (2008) and Tourin and Yan
(2013).

4 Empirical experiments

In this section, some examples of stocks and futures are presented to illustrate our
results. From a number of stock sets traded on Chinese securities market, we selected
three correlated pairs with the sample period 31 December 2012-31March 2016 (3.25
years) from different industries: Huatai Securities Co., Ltd and Haitong Securities
Co., Ltd; Qiming Information Technology Co., Ltd and YGSoft Co., Ltd; Shanghai
Pudong Development Bank and China Merchants Bank. The data are obtained from
the Flush software and only the trading day data are given. This results in a total of
787 sample observations. The futures pairs considered in the sample period 1 February
2016-31 August 2016 are au1612 and au1702. In both cases, daily closing prices are
employed. By applying the calibration method illustrated in Mudchanatongsuk et al.
(2008), the related parameters are estimated with the selected training datasets. For
the details about the analytical formulas for the parameters estimates, please refer to
the “Appendix” of Mudchanatongsuk et al. (2008).

Now we focus on the three pairs of stocks. Figures 1, 3 and 5 present the dynamics
of pairs of stock prices, which show that the three price pairs converge at some time
points. For illustration, we assume the interest rate r and the risk coefficient λ to be
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Fig. 1 Stock prices (A: Huatai and B: Haitong)
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Fig. 2 The wealth dynamics (Huatai and Haitong)

5% and −1.5 respectively. By using the moving-window method, we conduct out-
of-sample testing for all stock datasets. We investigate the log-returns of our pairs
trading strategies from 02 January 2014 to 31 March 2016 (2.25 year) and update the
parameters on each trading during this period. Specifically, we estimate the related
parameters for each trading day by using the data of the previous year, and update
them accordingly. One sample path of investors’ wealth obtained from time-consistent
pairs trading strategies in cases I and II (V ∗(·) and V̂ ∗(·) respectively) with an initial
endowment of 100 units are presented in Figs. 2, 4 and 6, where the blue lines represent
the wealth dynamics by applying the purely-buy-and-sell-securities strategy (with
strict constraints), i.e. case I. The red lines represent the wealth dynamics by applying
the trading strategy with relaxed constraints, i.e. case II. Figures 2, 4 and 6 indicate the
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Fig. 3 Stock prices (A: Qiming Information and B: YGSoft)
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Fig. 4 The wealth dynamics (Qiming Information and YGSoft)

effectiveness of our strategies by comparing them with the wealth dynamics(yellow
lines) obtained using conservative investment strategies, which place all endowments
in banking accounts. All three figures show that the asymmetrical strategies always
dominate the symmetric ones. This phenomenon is reasonable, because the strategies
in case II are more flexible. Specifically, since our model is asymmetric with two
assets, different choices of risky assets assigned to A and B in Eq. (3) yield distinct
optimal results. The optimal wealths obtained with alternative choices of A and B are
presented in the “Appendix”. Investors may use the maximum likelihood estimation
method to determine the configuration of the risky assets pairs.
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Fig. 5 Stock prices (A: Shanghai Pudong Development Bank and B: China Merchants Bank)
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Fig. 6 The wealth dynamics (Shanghai Pudong Development Bank and China Merchants Bank)

For a deeper investigation of these experiments, we simulated the scenarios 1000
times, and the statistical results of the investors’ annual log-returns are shown in
Table 1. In this table, S.D. stands for standard deviation. Table 1 indicates that for
each pair of selected stocks, the mean of the annual yield (log-returns) under relaxed
constraints dominates the respective results under strict constraints. This phenomenon
is consistent with the results shown in Figs. 2, 4 and 6.

Now, we examine the corresponding results for the selected pair of futures. By
setting r = 5% and λ = −1.5, we provide the parameter estimates using the datasets
in the period from 1 February 2016 to 31 May 2016. The price dynamics of the two
futures are depicted in Fig. 7. Subsequently, we investigate the wealth dynamics using
time-consistent pairs trading strategies in cases I and II ((V ∗(·) and V̂ ∗(·) respectively))

123



Optimal pairs trading… 157

Table 1 1000 repeated experiments on log-returns

Stocks

Huatai and Haitong Qiming and YGSoft Pudong and Merchants

Strict Relaxed Strict Relaxed Strict Relaxed

Mean 0.8570 0.8826 0.8508 0.9282 0.8936 0.9341

S.D. 0.0131 0.0133 0.0157 0.0155 0.0131 0.0127

Skewness −0.0307 −0.1135 0.0399 −0.0427 0.0310 0.0126

Kutosis 2.9664 3.1411 3.0011 3.0098 2.9587 2.9916

Years: t

2016.2 2016.3 2016.4 2016.5 2016.6 2016.7 2016.8 2016.9

P
ric

e 
of

 fu
tu

re

240

250

260

270

280

290

300
Future A
Future B

Fig. 7 Future prices (A: au1612 and B: au1702)

and the conservative strategy with initial 100 units from 1 June 2016 to 31 August
2016 (Fig. 8). Due to the short testing period (1 June-31 August 2016), we dismissed
the parameter updating. The wealth dynamics of three strategies in Fig. 8 show that the
results of this example are in agreement with those for stock pairs. Table 2 reports the
log-returns of investors with different risk parameters λ during the testing period (with
1000 simulations). We notice that the mean of log-returns decreases as λ decreases.
This is reasonable, because when the risk parameter λ decreases, the investor becomes
more risk averse. This may result in less expected profits.

Thus, the obtained results show exceptional performance of the strategies. The
following implicit assumptions may explain this phenomenon. First, the liquidity of
the strategies, especially for shorting assets, is assumed to be quite high. Second, we
ignore the related transaction costs. Third, the pairs that we have chosen exhibit great
convergence trends, while the short-run arbitrage opportunities do not always exist in
reality.
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Fig. 8 Wealth dynamics(au1612 and au1702)

Table 2 Statistics of log-returns by varying λ

λ With strict constraints With relaxed constraints

Mean S.D. Skewness Kutosis Mean S.D. Skewness Kutosis

−0.9 3.2894 0.0552 −0.1638 3.1589 3.2901 0.0524 0.0729 3.0046

−1.1 3.0956 0.0537 −0.1457 3.0215 3.0984 0.0551 −0.2496 3.0003

−1.3 2.9399 0.0525 −0.1304 2.8890 2.9422 0.0529 −0.0717 2.9517

−1.5 2.8017 0.0535 −0.1902 2.9621 2.8081 0.0544 −0.2244 2.9900

−1.7 2.6847 0.0533 −0.1594 3.1175 2.6884 0.0515 −0.1675 2.8185

−1.9 2.5811 0.0528 −0.0145 2.8305 2.5848 0.0524 −0.1033 3.0133

5 Conclusion

This study provides analytical equilibrium control strategies for the optimal MV
problem of pairs trading. Specifically, we assume that the price spread of a pair of cor-
related risky securities follows a mean-reverting OU process. Explicit time-consistent
results are derived by solving optimization problems using the dynamic programming
approach, and we examine explicit solutions using selected stocks and futures traded
onChina’s securitiesmarket. The numerical experiments indicate that our pairs trading
strategies yield an annual profit with a modest standard deviation.

In this work, we mainly focus on exploring optimal strategies and considering an
ideal market. However, funds trades have many constraints in reality. For instance,
limitations in short-selling, regulatory constraints, and other market regulations. Fur-
thermore, funds are always confronted by liquidity and funding risks. Adapting our
proposed strategies to these issues is a potential scope for future research.
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Appendix

Proof of Proposition 1

Proof By the law of total variance (e.g., (Weiss 2005)),

Vart (V
∗(T )) = Et (Vart+τ (V

∗(T ))) + Vart (Et+τ (V
∗(T ))), τ > 0.

Substituting the above equation into the value function J gives:

J (t, X(t), V (t)) = Et (V
∗(T )) + λEt (Vart+τ (V

∗(T ))) + λVart (Et+τ (V
∗(T ))).

Since Et (V ∗(T )) = Et (Et+τ (V ∗(T ))), we have:

J (t, X(t), V (t)) = Et (Et+τ (V ∗(T )) + λVart+τ (V ∗(T ))) + λVart (Et+τ (V ∗(T )))

= sup
π(s):t≤s≤t+τ

Et (Jt+τ ) + λVart (Et+τ (V
∗(T ))).

(17)
This implies that as τ becomes small,

0 = sup
π(s):t≤s≤t+τ

Et (Jt+τ − Jt ) + λVart (Et+τ (V
∗(T )) − Et (V

∗(T )))

= sup
π(t)

Et (d Jt ) + λVart (dEt (V
∗(T ))).

(18)

By substituting Eq. (9) into Eq. (11),

J (t, X(t), V (t)) = er(T−t)V (t) + Et

[∫ T

t
π∗(s)

{
[k(θ − X(s)) + 1

2
η2 + ρση]ds + ηdW (s)

}]

+λVart

[∫ T

t
π∗(s)

{
[k(θ − X(s)) + 1

2
η2 + ρση]ds + ηdW (s)

}]

= er(T−t)V (t) + c(x, t),
(19)
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where c(x, t) represents the sum of the second and third terms in the above equation
for convenience.

By Eq. (9),

Et (V
∗(T )) = er(T−t)V (t) + Et

[∫ T

t
π∗(s)

(
k(θ − X(s)) + 1

2
η2 + ρση

)
ds

]
.

Define f (X(t), t) := Et (V ∗(T ))−er(T−t)V (t), which is the expected gains or losses
of the investor over the horizon T − t under the time-consistent control. Then

f (X(t), t) = Et

[∫ T

t
π∗(s)

(
k(θ − X(s)) + 1

2
η2 + ρση

)
ds

]
,

which is the same as Et (V ∗(T )) − er(T−t)V (t).
Eq. (18) becomes:

sup
π(t)

Et (d Jt ) + λVart (d(er(T−t)V (t)) + d f (t, X(t))) = 0, (20)

subject to JT = V (T ) and the constraint Eq. (7).
By Basak and Chabakauri (2010), f is a function of x and t only. By applying Itô’s

lemma and the Feynman-Kac Theorem (Theorem 7.6, Karatzas and Shreve (2012)),
Eq. (20) gives:

0 = sup
π(t)

{
π(t)[k(θ − x) + 1

2
η2 + ρση] + Dc + λ[η(π + fx )]2

}
, (21)

where Dc denotes the Dynkin operator on the function c(x, t), and it is defined as
follows:

Dc = ct + k(θ − x)cx + 1

2
η2cxx .

We obtain that

π∗(t) = − 1

2λη2

(
k(θ − x) + 1

2
η2 + ρση

)
− fx . (22)

Applying the Feynman-Kac theorem to f gives:

0 = π∗(t)
(
k(θ − x) + 1

2
η2 + ρση

)
+ ft + fx k(θ − X(t)) + 1

2
η2 fxx . (23)

Substituting π∗(t) into Eq. (23) gives:

0 = − 1

2λη2

(
k(θ − x) + 1

2
η2 + ρση

)2

− fx (
1

2
η2 + ρση) + ft + 1

2
η2 fxx . (24)
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We have an ansatz for f :

f (x, t) = L(t)(θ − x)2 + M(t)(θ − x) + N (t).

With Eq. (24), we obtain a system of ODEs:

⎧⎪⎪⎨
⎪⎪⎩

− k2

2λη2
+ L ′ = 0, L(T ) = 0,

− k
λη2

( 12η
2 + ρση) + L(η2 + 2ρση) + M ′ = 0, M(T ) = 0,

− 1
2λη2

( 12η
2 + ρση)2 + M( 12η

2 + ρση) + η2L + N ′ = 0, N (T ) = 0.

(25)

Solving the system of ODEs in Eq. (25), we obtain that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(t) = k2

2λη2
t + C1,

M(t) = − k2

2λη2
( 12η

2 + ρση)t2 + ( k
λη2

− 2C1)(
1
2η

2 + ρση)t + C2,

N (t) = k2

6λη2
( 12η

2 + ρση)2t3 − [( k
2λη2

− C1)(
1
2η

2 + ρση)2 + k2
4λ ]t2

+[ 1
2λη2

( 12η
2 + ρση)2 − ( 12η

2 + ρση)C2 − η2C1]t + C3.

(26)

Since f (X(T ), T ) = 0, we can also solve the unknown constants as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C1 = − k2

2λη2
T ,

C2 = − k2

2λη2
( 12η

2 + ρση)T 2 − k
λη2

( 12η
2 + ρση)T ,

C3 = − k2

6λη2
( 12η

2 + ρση)2T 3 + [− k
2λη2

( 12η
2 + ρση)2 − k2

4λ ]T 2

− 1
2λη2

( 12η
2 + ρση)2T .

Substituting f into Eq. (22) yields the reported result.

Proof of Proposition 3

Proof Similar to the proof of Proposition 1, we have:

sup
π̂(t)

{
Et [d Ĵt ] + λVart [dEt (V̂

∗(T ))]
}

= 0. (27)

Define f̂ (X(t), t) := Et (V̂ ∗(T )) − er(T−t)V (t) and by Eq. (14):

f̂ (X(t), t) = Et

[∫ T

t
π̂∗(s)T

[(
k(θ − X(s)) + μ + 1

2η2 + ρση

μ

)
−

(
r
r

)]
ds

]
. (28)

By combining Eq. (14) and Eq. (16), the value function Ĵ can be separable as
Ĵ (t, X(t), V (t)) = er(T−t)V (t) + ĉ(X(t), t), (see (Basak and Chabakauri 2010)).
Applying the above equations and the Feynman-Kac Theorem (Theorem 7.6, Karatzas
and Shreve (2012)), the recursive equation (27) becomes:
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0 = sup
π̂(t)

{Et [d Ĵt ] + λVart [d f̂ (t, X(t)) + d(V (t)er(T−t))]}

= sup
π̂(t)

{
Dĉ + π̂(t)

[(
k(θ − x) + μ + 1

2η
2 + ρση

μ

)
−

(
r
r

)]

+ λ

[
η2

(
f̂x + π̂1(t)

)2 + σ 2 (
π̂1(t) + π̂2(t)

)2

+2ρησ
(
f̂x + π̂1(t)

) (
π̂1(t) + π̂2(t)

)]}
.

Notice that the objective function can be written as the following quadratic form:

sup
π̂(t)

{
1

2
π̂(t)T

(
2λ(η2 + σ 2 + 2ρησ) 2λ(σ 2 + ρησ)

2λ(σ 2 + ρησ) 2λσ 2

)
π̂(t) + bT π̂(t)

}
, (29)

where

b =
(
k(θ − x) + μ + 1

2η
2 + ρση − r + 2λη2 f̂x + 2λρησ f̂x

μ − r + 2λρησ f̂x

)
. (30)

Define:

Q = 2

(
λ(η2 + σ 2 + 2ρησ) λ(σ 2 + ρησ)

λ(σ 2 + ρησ) λσ 2

)
.

The objective function (29) is equivalent to:

min
π̂(t)

{
−1

2
π̂
T
(t)Qπ̂(t) − bT π̂(t)

}
. (31)

Since Q is a symmetric positive definite matrix, this is a convex optimization problem
and the optimal solution is given by π̂

∗
(t) = −Q−1b. By applying Feynman-Kac

theorem to f̂ , we have:

f̂t + k(θ − x) f̂x + 1

2
η2 f̂x x + π̂

∗
(t)T

[(
k(θ − x) + μ + 1

2η
2 + ρση

μ

)
−

(
r
r

)]

= 0.

Similar as before, we have an ansatz for f̂ :

f̂ (x, t) = L(t)(θ − x)2 + M(t)(θ − x) + N (t). (32)

123



Optimal pairs trading… 163

For notational convenience, in what follows, we denote Ã = μ + 1
2η

2 + ρση − r .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lt + 2k(2λη2 Q̃11 + 2ληρσ Q̃11 + 2Q̃12λρησ − 1)L(t) − Q̃11k
2 = 0,

Mt + [2ληQ̃11(η + ρσ)k + 2λQ̃12ρησk − k]M(t) + [4ληQ̃11(η + ρσ) Ã + 4Q̃12λρησ Ã

+4(μ−r)Q̃21λη(η+ρσ)+4(μ−r)Q̃22λρησ ]L(t)−[2Q̃11k Ã+ Q̃12(μ−r)k+(μ−r)Q̃21k] = 0,

Nt + η2L(t) + 2λη[Q̃11(η + ρσ) Ã + Q̃12ρσ Ã + (μ − r)Q̃21(η + ρσ) + (μ − r)Q̃22ρσ ]M(t)

−[Q̃11 Ã
2 + Q̃12(μ − r) Ã + (μ − r)Q̃21 Ã + (μ − r)2 Q̃22] = 0,

(33)

where

Q−1 =
(
Q̃11 Q̃12

Q̃21 Q̃22

)
and

⎧⎪⎪⎨
⎪⎪⎩

Q̃11 = 1
2λ

1
(1−ρ2)η2

,

Q̃12 = Q̃21 = − 1
2λ

σ+ρη

(1−ρ2)η2σ
,

Q̃22 = 1
2λ

η2+σ 2+2ρησ

(1−ρ2)η2σ 2 .

(34)

Let

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D1 := −k(2λη2 Q̃11 + 2ληρσ Q̃11 + 2Q̃12λρησ − 1),
D2 := −2[ληQ̃11(η + ρσ) Ã + Q̃12λρησ Ã + (μ − r)Q̃21λη(η + ρσ)

+(μ − r)Q̃22λρησ ],
D3 := 2Q̃11k Ã + Q̃12(μ − r)k + (μ − r)Q̃21k,
D4 := Q̃11 Ã2 + Q̃12(μ − r) Ã + (μ − r)Q̃21 Ã + (μ − r)2 Q̃22.

Substituting Q−1 into the above equations gives:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D1 := 0,
D2 := − Ã + μ − r ,

D3 := k Ãσ−k(σ+ρη)(μ−r)
λ(1−ρ2)η2σ

,

D4 := [ Ãσ−(σ+ρη)(μ−r)]2+(μ−r)2(1−ρ2)η2

2λ(1−ρ2)η2σ 2 .

Then Eq. (33) can be written as follows:

⎧⎨
⎩
L ′ − Q̃11k2 = 0, L(T ) = 0,
M ′ − 2D2L − D3 = 0, M(T ) = 0,
N ′ + η2L − D2M − D4 = 0, N (T ) = 0.

(35)

By solving the above system of differential equations, we have:

⎧⎪⎨
⎪⎩
L(t) = Q̃11k2(t − T ),

M(t) = D2 Q̃11k2(t − T )2 + D3(t − T ),

N (t) = D2
2 Q̃11k2

(t−T )3

3 + (D2D3 − η2 Q̃11k2)
(t−T )2

2 − D4(t − T ).

(36)
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Consequently,

π̂
∗
(t) = −1

2

( 1
λ(1−ρ2)η2

− σ+ρη

λ(1−ρ2)η2σ

− σ+ρη

λ(1−ρ2)η2σ

η2+σ 2+2ρησ

λ(1−ρ2)η2σ 2

)

×
(
k(θ − X(t)) + μ + 1

2η
2 + ρση − r + (2λη2 + 2λρησ)g(X(t), t)

μ − r + 2λρησ g(X(t), t)

)
,

where g is given by:

g(X(t), t) = k(T−t)

λ(1−ρ2)η2

[
k(θ−X(t))+ ( Ã−μ+r)(k(T −t)+1)

2
− ρη(μ − r)

2σ

]
,

and Ã = μ − r + ρση + η2

2 . The solution obtains accordingly.

Alternative choices of A and B
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Fig. 9 The wealth dynamics (B: Huatai and A: Haitong)
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Fig. 10 The wealth dynamics (B: Qiming Information and A:YGSoft)
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Fig. 11 The wealth dynamics (B: Shanghai Pudong Development and A: China Merchants Bank)
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Fig. 12 The wealth dynamics (B: au1612 and A: au1702)
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