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Abstract
We present a stochastic growth-collapse model for the capital process of a peer-to-peer
lending platform. New lenders arrive according to a compound Poisson-type process
with a state-dependent intensity function; the growth of the lending capital is from
time to time interrupted by partial collapses whose arrival intensities and sizes are
also state-dependent. In our model the capital level administered via the platform
is the crucial quantity for the generated profit, because the brokerage fee is a fixed
(small) fraction of it. Therefore we study its steady-state probability distribution as a
key performance measure. In the case of exponentially distributed upward jumps we
derive an explicit expression for its probability density, for quite general arrival rates
of upward and downward jumps and for certain collapse mechanisms. In the case of
generally distributed upward jumps, we derive an explicit expression for the Laplace
transform of the steady-state cash level density in various special cases. An alternative
model featuring up and down periods and a shot noise mechanism for the downward
evolution is also analyzed in steady state.

Keywords P2P lending · Compound Poisson · Growth-collapse · Shot noise

1 Introduction

The goals of this paper are (i) to present a stochastic capital management model for
peer-to-peer (P2P) lending, and (ii) to perform a steady-state analysis of the capital
level in that model.
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P2P lending is the practice of lending money through online services that match
lenders with borrowers. The P2P lending company offers a platform where people,
or businesses, can lend directly to other people or businesses without the need for a
bank as amiddleman. It takes brokerage fees for providing thematch-making platform
(and for doing a credit-check of the borrowers). Compared to investment and savings
products from banks, borrowers can borrow money at lower interest rates, and lenders
can earn higher returns. Although the P2P lending company applies a strict screening
system, it may happen that a borrower is in arrears. If that happens, the company
initiates collection procedures against the debtor.

P2P lending started in 2005 in the UK, shortly thereafter followed by the US,
and became more popular after the 2007/2008 financial crisis when banks refused to
increase their loan portfolios. Nowadays there are numerous P2P platforms all over the
world; P2P lending is rapidly gaining recognition among rule-makers and regulators.

A distinguishing feature is that the money of the lenders is transferred to a trust
account from where the borrowing is carried out. The repayments are also transferred
directly to the trust account whose existence ensures that investor’s deposits do not
mingle with the money of the P2P lending company, so that the lenders are protected
in case of an insolvency of that company. Another distinguishing feature is that there is
no direct relation between lender and borrower; every deposit is typically divided into
much smaller parts among many borrowers. A principal difference between banks and
P2P systems is the economic fact that depositors become lenders whose profits are not
exposed to the usual fluctuations in the capital market, so that the cash level process has
relatively little volatility. But P2P systems are of course also exposed to exceptional
volatility caused by a full-blown crash in which many borrowers go bankrupt, or
more generally to the simultaneous occurrence of several defaulting borrowers, due
to special circumstances. Examples of severe crashes are the dot.com bubble in 2000,
the subprime crisis in 2008 that started with the crash of Lehman Brothers, and the
corona crisis of 2020. In these cases, the stock market crash was accompanied by
bankruptcies in the entire business sector of small and medium businesses and even
large companies. In other words, the crisis hit the entire capital market, since all those
economic entities could not meet their financial obligations.
The P2P cash management model. In our model we investigate the temporal evolution
of the total amount of money transferred to the P2P company by lenders. We assume
that all lenders want long-term investments so that every deposit is virtually forever
available for lending out by the system. The jumps are due to new arrivals of lenders.
There is an infinite demand by borrowers, so that all money is always lent to borrowers.
Their back payments are split in two streams. The pure interest on the residual debt
goes to the lenders (is not reborrowed). The part that gradually repays the loan goes
to the system and is immediately given to new borrowers (sufficient demand is always
available). This way the total amount of borrowed money is always equal to the total
amount invested by the lenders. The lenders are satisfied with the continuous stream
of interest on their investment that they are receiving. The P2P company receives a
small fraction of the incoming pure interest as its brokerage fee, which constitutes its
profit. The upward evolution of the cash level is only interrupted by the effects of a
severe economic crash (examples were mentioned above) which causes a significant
portion of the borrowers to default. Note that the P2P lending company’s cash level is
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virtual in the sense that the money is never in the company’s account but always lent
out in full.
We model the content (cash) level as a stochastic process that fluctuates over time. It
jumps upward and downward at random times, and stays constant in between jumps.
A jump upward occurs whenever a lender deposits a new amount in the account. The
jumps downward represent the effects of crises. In such a case, the market partially
collapses and a random portion of the capital is lost.We shall model this via downward
jumps of the content level by a random fraction that is proportional to that content
level. Generally speaking (a detailed model description is provided in Sect. 2), we
assume that arrivals of deposits and of crises occur according to independent Poisson
processes, whose rates are allowed to depend on the current cash level. In the main
model of the paper, we do not take into account the following two possibilities: (i)
a lender decides to withdraw part of her deposit; (ii) an individual borrower is not
able to repay her loan. In Remark 6 we briefly outline how (i) could be taken into
account in our model analysis; (ii) could be a problem for further research. Usually
partial collapses will occur much less frequently than new lenders. In a future study
we will present a heavy-traffic model variant including reflected Brownian motion
components for the periods between collapses. This approach would also take into
account individual defaulting borrowers.
Main results. Our main focus is on the steady-state probability distribution of the
cash level. This is the key performance measure, because the brokerage fee of the P2P
lending company is a fixed portion of it. In the case of exponentially distributed upward
jumpswe derive an explicit expression for the stationary cash level probability density,
for quite general arrival rates of upward and downward jumps, and for a proportionality
function h(x) = xa , with 0 < x < 1 and a > 0, for the downward jumps. In the
case of generally distributed upward jumps, we derive an explicit expression for the
Laplace transform of the steady-state cash level density in two cases: (i) constant
jump rates and h(x) = xa , and (ii) the ratio of intensities of upward and downward
jumps is inversely proportional to x , and h(x) = x (jumps downward are uniformly
proportional to the just-before-crash cash level).

We also obtain the Laplace transform of the steady-state cash level in a secondmain
model, inwhich there is a background process that alternates between twoperiod types.
During up periods the cash level grows, according to a compound Poisson process, and
stays constant in between jumps; during down periods (recessions) it grows according
to another compound Poisson process, but in between jumps it decreases gradually,
with a speed that is proportional to the cash level.

Finally, we believe that our models are also of considerable relevance for the litera-
ture on storage processes, as they involve quite general mechanisms of upward jumps
and downward jumps with a dependence on the storage level.
Related literature. The economic research has focussed on descriptively studying the
real-life determinants of online P2P lending and borrowing practices (see e.g. the
survey articles by Bachmann et al. (2011) and Chen and Han (2012) as well as Au
et al. (2020)). To the best of our knowledge this paper provides the first attempt toward
a mathematical analysis of P2P systems by means of stochastic models. The models
presented here bear a similarity to models in disciplines like storage theory, insurance
risk and queueing theory. Some key papers on storage processes with a non-constant
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release rate are those of Gaver and Miller (1962), Harrison and Resnick (1976) and
Brockwell et al. (1982). We also refer to Harrison and Resnick (1976) for an insightful
discussion of the stability condition of storage processes with state-dependent release
rate. Bekker et al. (2004) consider a class of queueing models in which both the arrival
rate and the service speed may be workload dependent. We further refer to Boxma
and Mandjes (2021) for the analysis of a large class of storage processes in which
the rate at which storage increases or decreases is an affine function of the current
storage level, while also upward and downward jumps are allowed. That paper also
considers related – in some cases dual – insurance risk models, and contains many
references. The downward jumps in our model also occur in the literature on so-called
growth-collapse models; see, e.g., (Boxma et al. 2011, 2006; Kella 2009).
The paper is organized as follows. The main model under consideration is described in
Sect. 2. The case of exponentially distributed upward jumps and very general arrival
rate functions of deposits and crises is analyzed in Sect. 3, while Sect. 4 is devoted to
the case of generally distributed upward jumps. Sect. 5 studies the second main model
of the paper, considering a process in which up and down periods alternate.

2 Model description

In this section we present the model under consideration, and we discuss the stability
condition. We describe the capital (content level) of the cash management system of
a P2P lending company as a stochastic process {V(t), t ≥ 0} that evolves in the
following way. It jumps upward and downward at random times, and stays constant in
between jumps; cf. Fig. 1. Jumps upward (due to deposits) occur according to a Poisson
process,with state-dependent rate functionλ(w)when the capital equalsw. Successive
jump sizes are independent, identically distributed (i.i.d.) integrable random variables,
generically denoted byG, with distribution function G(·) and Laplace-Stieltjes trans-
form (LST) γ (s) = E[e−sG ]. The upward jump sizes are assumed to have a continuous
density and finite mean.

Jumps downward (due to crises) occur according to a Poisson process, with state-
dependent rate η(w) when the capital equals w. They occur independently of the
process of upward jumps. A special feature of the model is that the sizes of downward
jumps depend on their starting level w, via a function h(·): If the capital level is w just
before a downward jump, then the probability to jump to a level lower than x is given
by h( x

w
), for any 0 < x < w. Mathematically, this can be viewed as a multiplication

of the just-before-crash level by a random variable with distribution function h(·) on
[0, 1]. We shall restrict ourselves in this paper to the choice h(y) = ya with 0 < y < 1
and a > 0. Observe that the case a = 1 corresponds to jumps downward from level w
that are uniformly distributed on (0, w); furthermore observe that for these h(·) level
0 is never reached. The latter property also holds for any other a > 0.

The cash level remains constant between jumps, because the back payments of the
borrowers are split into pure interest for the residual debt and repayments of the loan:
the first stream goes to the lender except for a proportional fee that goes to the P2P
company, while the second stream remains in the P2P system (immediately used for
further lending), so that the deposits of all lenders remain unchanged.
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Fig. 1 The capital process; sizes of downward jumps depend on the level just before the jump

Let us first discuss the question of stability of V = {V(t), t ≥ 0}. The lack-of-memory
property of the twounderlying jumpprocesses togetherwith the proportionality feature
of the downward jumps imply thatV is a Markov process. Under our assumptions it is
readily seen that the transition densities of V are jointly continuous in their variables
and there is an open set on which they are bounded away from zero. Therefore the
theory of Harris recurrence for Markov processes with continuous time and with state
space [0,∞) can be applied (the standard results on Harris recurrence needed here
can e.g. be found in Section VII.3 of Asmussen (2003); see in particular Example 3.1
and Proposition 3.8). V can be reconstructed as a Harris process as follows. We use
Example 3.1 of Asmussen (2003) where without restriction of generality we can take
R = S = [0, 1) and an arbitrary r > 0. Then we can fix an ε > 0 such that the
transition probability measure B �→ P(V(t) ∈ B|V(0) = x) = Pt (x, B) dominates
themeasure B �→ εl(B∩[0, 1)), l being the Lebesguemeasure. Nowwe can construct
a process equivalent to V as follows. It is equal to V until the time τ at which the first
jump from [1,∞) to [0, 1) occurs. Then with probability ε the process starts a new
cycle at time τ + r with the Lebesgue measure on [0, 1) as restarting distribution,
while with probability 1− ε it continues at time τ + r with the restarting distribution

B �→ (1 − ε)−1(Pr (V(τ ), B) − εl(B)).

Finally, the missing intermediate piece (V(t))τ<t<τ+r is constructed by using the
conditional distribution of (V(t))0<t<r given that the boundary values V(0) and V(r)
are equal to the already constructed values of V(τ ) and V(τ + r), respectively.

Continuing with this construction cycle per cycle, this provides V with a regenera-
tive structure. Hence, V is positive recurrent if the cycle lengths and the accumulated
increments during cycles have a finite expectation. For this it is sufficient that the
following condition holds.
Condition SC η(w) > η0 for some η0 > 0 and all w ≥ 1, and λ(w)/η(w) < c < ∞
for some c > 0 and all w ≥ 1.
To see this, note that in this case the expected time between any two successive partial
collapses is smaller than 1/η0 and the corresponding expected accumulated increase
is smaller than m(1 + c), because after any upward jump the probability that the
next jump will be a collapse is greater than 1/(1 + c) so that the number of upward
jumps before a downward jump is geometrically distributed. Now denote by In the
increase between the (n−1)st and the nth collapse and byBn the proportionality factor
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corresponding to the nth collapse. Then the cash level just before the nth collapse is
given by

Cn = In + Bn−1In−1 + . . . + Bn−1 · · ·B1I1, n > 1,

and C1 = I1. Note that Bn−1 · · ·B j is independent of I j for every j and that the Bn

are i.i.d. and have the common distribution function h on (0,1) so that their common
mean is smaller than 1. Since the In have uniformly bounded means, it follows that

K = sup
n

E(Cn) < ∞,

and thus

sup
n

P(Cn ≥ 2K ) ≤ sup
n

E(Cn)/2K = 1/2.

Hence, as long as Cn < 2K , the probability that level 1 is downcrossed at the nth
jump downwards is bounded from below by P(Bn < 1/(2K )) = h(1/(2K )), and
the probability that Cn < 2K is at least 1/2. Thereafter, a randomization takes place
which leads with probability ε to the beginning of a new cycle. Therefore, the cycle
lengths have finite mean.

It follows that the steady-state distribution of V exists when Condition SC holds.
We denote the steady-state capital level by Ve and its density by f (·). In the next two
sections we aim to determine f (·) for a number of choices of λ(·), η(·), G(·) and a.

3 Case I: Exponential jumps upward

In this section we restrict ourselves to the case of exponentially distributed upward
jumps with mean 1/μ: P(G < w) = 1− e−μw, w > 0. That restriction will allow us
to derive the density f (·) of the steady-state capital level Ve, without having to resort
to LSTs and while allowing quite general arrival rate functions of deposits and crises.
We use the level-crossing technique (cf. Brill (2008) and Cohen (1977)), which states
that, in equilibrium, the rate of upcrossing any level x > 0 should equal the rate of
downcrossing that level. This results in the following integral equation, which we first
formulate for generally distributed upward jumps and a non-specified function h(·):

∫ x

w=0
λ(w)(1 − G(x − w)) f (w)dw =

∫ ∞

w=x
h

( x

w

)
η(w) f (w)dw, x > 0. (1)

The lefthand side of (1) represents the rate to upcross level x , and the righthand side
represents the rate to downcross level x . Indeed, when the capital equals w < x , then
the probability to upcross level x in the next dw time units equals λ(w)dw times
the probability 1 − G(x − w) that a jump from level w is larger than x − w (we
ignore o(w) contributions); and when the capital equalsw > x , then the probability to
downcross level x in the next dw time units equals η(w)dw times the probability that a
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downward jump from levelw is larger thanw− x , i.e., that the capital reduction factor
exceeds w/x , i.e., the proportionality factor is less than x/w, and this probability
equals h(x/w). In principle there also should be a term in the lefthand side that
represents jumps from level 0 that upcross x . However, our choice of h(·)will exclude
the possibility that level zero is reached.

The choice G(x) = 1 − e−μx and h(y) = ya reduces (1) to

∫ x

w=0
λ(w)e−μ(x−w) f (w)dw =

∫ ∞

w=x

( x

w

)a
η(w) f (w)dw, x > 0. (2)

Introduce, for w > 0, z(w) := η(w)
wa f (w) and R(w) := λ(w)

η(w)
. Then (2) becomes

∫ x

w=0
wa R(w)eμwz(w)dw = xaeμx

∫ ∞

w=x
z(w)dw, x > 0. (3)

Differentiation with respect to x yields, after division by eμx :

xa R(x)z(x) = (μxa + axa−1)

∫ ∞

w=x
z(w)dw − xaz(x), (4)

and hence

(R(x) + 1)z(x) =
(
μ + a

x

) ∫ ∞

w=x
z(w)dw. (5)

Differentiating once more, and using (5) to eliminate the integral, gives

(R(x) + 1)z′(x) = −
[
R′(x) + μ + a

x
+ a

μx2 + ax
(R(x) + 1)

]
z(x), (6)

so

z′(x)
z(x)

= − a

μx2 + ax
− R′(x) + μ + a/x

R(x) + 1
. (7)

Its solution is easily seen to be

z(x) = C

(
1 + a

μx

)
1

R(x) + 1
exp

(
−

∫ x μy + a

y(R(y) + 1)
dy

)
, (8)

with C a constant. Notice that we do not yet specify the lower integration bound in the
integral in (8).We need to take into account the possibility that y = 0 is a singularity of
its integrand. The integral has no other singularities, because R(y) > 0 for all y > 0.
In conclusion we have the following result.
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Theorem 3.1 The stationary cash level density for the case of exp(μ) distributed
upward jumps, upward jump rate λ(x), downward jump rate η(x) and proportion-
ality function h(x) = xa is given by

f (x) = C

(
xa + a

μ
xa−1

)
1

λ(x) + η(x)
exp

(
−

∫ x μy + a

y(R(y) + 1)
dy

)
, x > 0.

(9)

The constant C is determined by the fact that the integral of the cash level density
equals one:

∫ ∞
0 f (x)dx = 1.

Special cases
(i) If R(x) = λ(x)/η(x) = r , then

f (x) = C

r + 1

(
xa + a

μ
xa−1

)
1

η(x)
exp

(
−

∫ x μy + a

y(r + 1)
dy

)

= C

r + 1

(
xa + a

μ
xa−1

)
1

η(x)
x− a

r+1 e− μ
r+1 x , x > 0. (10)

Observe that, when η(x) is a constant, say η (and hence λ(x) also is a constant), this is a
mixture of the twoGamma densities Gamma(a r

r+1 +1, μ
r+1 ) andGamma(a r

r+1 ,
μ

r+1 ).
A straightforward calculation gives the constant C :

C = μ

aη

(
μ

r+1 )
a r
r+1

�(a r
r+1 )

. (11)

Notice that the resulting expression for f (x) does not contain η or λ anymore; they
only appear in the ratio r = λ/η. Indeed, that could already have been concluded from
(1) with λ/η = r .

In the graph below (Fig. 2) we have plotted the density f (x) for η(x) a constant and
for μ = r = 1, for the cases a = 1

2 , 1 and 2. One observes an Erlang-type behavior
for a = 1

2 and a = 1, and a more exponential behavior for a = 2 (more generally, for
a = r+1

r ).
Knowledge of the nth moment of the Gamma distribution immediately yields that

E[Vn
e ] = n + a

a

(
r + 1

μ

)n �(n + a r
r+1 )

�(a r
r+1 )

, n = 1, 2, . . . . (12)

In particular,

E[Ve] = (1 + a)r

μ
. (13)

Apparently, the mean steady-state cash level grows linearly with the proportionality
parameter a, the jump ratio r = λ/η, and the mean deposit size 1/μ. Furthermore
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Fig. 2 Density plot

observe that, contrary to most queueing and storage models, the mean does not grow
with the offered ‘load’ ρ = λ/μ like 1/(1 − ρ). This is due to the fact that the jump
sizes downward have a certain proportionality to the cash level.
(ii) If R(x) = ∑L

n=−K rnxn , with K , L ≥ 0 (and the rn chosen such that R(x) =
λ(x)
η(x) > 0 for all x), then the exponent in (9) can be evaluated by a partial fraction
expansion. In particular, for R(x) = r−1/x we have:

f (x) = C

(
xa+1 + a

μ
xa

)
1

η(x)

(
r−1

r−1 + x

)a+1−μr−1

e−μx , x > 0. (14)

If K = L = 1, so R(x) = r−1
x + r0 + r1x , the integral in (9) becomes

∫ x 1

r1

μy + a

y2 + r0+1
r1

y + r−1
r1

dy

= 1

r1

∫ x (
A1

y − y1
+ A2

y − y2

)
dy,

with

y1,2 = −r0 + 1

2r−1
± 1

2

√{
(
r0 + 1

r1

)2

− 4
r−1

r1
},

A1 = μy1 + a

y1 − y2
, A2 = μy2 + a

y2 − y1
.

Hence, from (9),

f (x) = C

r1

(
xa+1 + a

μ
xa

)
1

η(x)
(x − y1)

−1−A1/r1(x − y2)
−1−A2/r1 , x > 0. (15)
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Note that for r1 > 0 we do not get an exponential term, unlike the special cases
R(x) = r and R(x) = r−1/x .

4 Case II: general jumps upward

In this section we allow the generic upward jump G (a deposit) to have a general
distributionG(·)with LST γ (s). In Sect. 4.1 we consider the case λ(x) ≡ λ, η(x) ≡ η,
h(x) = xa , and in Sect. 4.2 the case R(x) = λ(x)

η(x) = r−1
x , h(x) = x .

4.1 Case II.a

When λ(x) ≡ λ, η(x) ≡ η, h(x) = xa , the level-crossing Eq. (1) becomes

∫ x

w=0
λP(G > x − w) f (w)dw = η

∫ ∞

w=x

( x

w

)a
f (w)dw. (16)

Taking Laplace transforms, and introducing φ(s) := E[e−sVe ] = ∫ ∞
0 e−sx f (x)dx ,

we obtain

λ

∫ ∞

x=0
e−sx

∫ x

w=0
P(G> x−w) f (w)dwdx=η

∫ ∞

x=0
e−sx

∫ ∞

w=x

( x

w

)a
f (w)dwdx .

(17)

The lefthand side of (17) equals

λ

∫ ∞

x=0
e−sx

∫ x

w=0
P(G > x − w) f (w)dwdx = λ

1 − γ (s)

s
φ(s). (18)

In handling the righthand side of (17), we use partial integration to write

∫ w

x=0
e−sx xadx = −1

s
wae−sw + a

s

∫ w

x=0
e−sx xa−1dx . (19)

The last term of that expression should be integrated with respect to s to, once more,
get a power xa :

∫ w

x=0
e−sx xa−1dx = −

∫ w

x=0
xa−1

∫ s

v=0
xe−vxdvdx +

∫ w

x=0
xa−1dx

= −
∫ w

x=0
xa

∫ s

v=0
e−vxdvdx + 1

a
wa . (20)

The Laplace transform of the righthand side of (17) now becomes (using (17) itself
and (18)):

η

∫ ∞

x=0
e−sx

∫ ∞

w=x

( x

w

)a
f (w)dwdx
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= −η

s
φ(s) − ηa

s

∫ s

v=0

λ

η

1 − γ (v)

v
φ(v)dv + η

s

∫ ∞

w=0
f (w)dw. (21)

We thus end up with the following equation:

(η + λ(1 − γ (s)))φ(s) = η − aλ

∫ s

0

1 − γ (v)

v
φ(v)dv, (22)

so after differentiation we obtain

(η + λ(1 − γ (s)))φ′(s) = −φ(s)
d

ds
(η + λ(1 − γ (s))) − aλ

1 − γ (s)

s
φ(s). (23)

Hence

φ′(s)
φ(s)

= −
d
ds (η + λ(1 − γ (s))

η + λ(1 − γ (s))
− aλ

1−γ (s)
s

η + λ(1 − γ (s))
. (24)

We have thus proven the following theorem.

Theorem 4.1 The steady-state cash level LST for Case II.a is given by

E[e−sVe ] = φ(s) = η

η + λ(1 − γ (s))
exp

(
−aλ

∫ s

0

1 − γ (u)

u[η + λ(1 − γ (u))]du
)

. (25)

Differentiation of (25) and subsequent substitution of s = 0 gives

E[Ve] = (1 + a)
λE[G]

η
, (26)

Var(Ve) =
(
1 + a

2

) λ

η
E[G2] + (1 + a)

(
λE[G]

η

)2

. (27)

We can draw the following conclusions from these results. Just like in the case of
exponentially distributed jumps upward, treated in Sect. 3, the mean steady-state cash
level grows linearly with the proportionality parameter a, the jump ratio λ/η, and the
mean deposit size. Furthermore, contrary to most queueing and storage models, the
mean does not grow with the offered ‘load’ ρ = λE[G] like 1/(1− ρ). This is due to
the fact that the jump sizes downward have a certain proportionality to the cash level.
The variance of the steady-state cash level grows linearly in the variance of G.

We end this subsection with several remarks.

Remark 1 It is interesting to see that a in (25) only appears as a factor in the exponent.
Further observe that (27) generalizes (13) to the case of generally distributed upward
jumps, for the case that λ(x) ≡ λ, η(x) ≡ η.

Remark 2 When G ∼ exp(μ), (25) reduces to

φ(s) = η(μ + s)

ημ + (λ + η)s
exp

(
−a

∫ s

0

λ

ημ + (λ + η)u
du

)
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=
(

η

λ + η
+ λ

λ + η

ημ

ημ + (λ + η)s

) (
ημ

ημ + (λ + η)s

)a λ
λ+η

= η

λ + η

(
ημ

ημ + (λ + η)s

)a λ
λ+η + λ

λ + η

(
ημ

ημ + (λ + η)s

)a λ
λ+η

+1

. (28)

With r = λ/η, this becomes

φ(s) = 1

r + 1

(
μ

μ + (r + 1)s

)a r
r+1 + r

r + 1

(
μ

μ + (r + 1)s

)a r
r+1+1

. (29)

This case of exponential upward jumps was already discussed at the end of Sect. 3,
wherewe already saw thatVe is distributed as aweighted sumof aGamma(a r

r+1 ,
μ

r+1 )
and a Gamma(a r

r+1 + 1, μ
r+1 ) distributed random variable. This is in agreement with

(29).

Remark 3 Wecan interpret both factors of the cash level LSTφ(s) in (25). First observe
that k(s) := η

η+λ(1−γ (s)) is the LST of the total increment K during an exp(η) time
interval of a compound Poisson process with jump rate λ and jump size LST γ (s).
Also observe that the integrand in the exponent of (25) can be rewritten as follows:

a
λ
1−γ (u)

u

η + λ(1 − γ (u))
= aλEG

η

1 − η
η+λ(1−γ (u))

λE[G]
η

u
. (30)

Now recognize this as aλE[G]
η

times the LST of the residual of K.
For a further interpretation of the second factor of (25), consider a so-called shot

noise queueingmodel. This is anM/G/1 queuewith the special feature that the service
speed is proportional to the workload. Let us assume that the arrival rate of customers
in that queue is λ, that their service time LST is β(s) and that the service speed is αx if

the workload equals x . The steady-state workload LST E[e−sV̂e ] in such a shot noise
queueing model is given by (cf. Bekker et al. (2004)):

E[e−sV̂e ] = exp

(
−λ

α

∫ s

0

1 − β(u)

u
du

)
. (31)

In the case of (25) we should apparently take α = η and β(s) = k(s); in
other words, the upward jumps are distributed as K. The decomposition φ(s) =
k(s)e− ∫ s

0 a
λ
1−γ (u)

u
η+λ(1−γ (u))

du in (25) immediately yields that the steady-state cash level Ve

in our model can be written as

Ve
d= K + V̂e, (32)

K and V̂e being independent. This decomposition also quickly allows us to get
moments (this is actually how (27) was found), and to obtain tail asymptotics. In
particular, let us assume that the deposit size G is regularly varying of index −ν, i.e.,
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P(G > x) ∼ x−νL(x), x → ∞, (33)

with L(x) a slowly varying function at infinity, so limx→∞ L(gx)
L(x) = 1 for any g > 0.

The Tauberian Theorem 8.1.6 of Bingham et al. (1987) relates the tail behavior of a
regularly varying random variable to the behavior of its LST near zero. It states that
(33) with 1 < ν < 2 is equivalent with the following relation:

γ (s) − 1 + sE[G] ∼ −�(1 − ν)sνL(
1

s
), s ↓ 0. (34)

Now consider both terms of (25). Using that

η

η + λ(1 − γ (s))
− 1 + λ

η
EGs ∼ −λ

η
�(1 − ν)sνL(

1

s
), s ↓ 0, (35)

and, after some calculations,

exp

(
−aλ

∫ s

0

1 − γ (u)

u[η + λ(1 − γ (u))]du
)

− 1 + aλ

η
EGs

∼ −aλ

η

�(1 − ν)

ν
sνL

(
1

s

)
, s ↓ 0, (36)

it follows that (see also (27))

E[e−sVe ] − 1 + EVes ∼ −λ

η

(
1 + a

ν

)
�(1 − ν)sνL

(
1

s

)
, s ↓ 0. (37)

Another application of Theorem 8.1.6 of Bingham et al. (1987) now implies that

P(Ve > x) ∼ λ

η

(
1 + a

ν

)
x−νL(x), x → ∞. (38)

We conclude that, if G is regularly varying of index −ν ∈ (−2,−1), then the same
holds for the cash level Ve. More generally, a heavy tail of order x−ν of the deposits
results in an equally heavy tail of the cash level.

Remark 4 The proportionality property of the jumps down is indeed closely related to
having a gradual decrease according to shot noise (even with h(x) = xa). Consider
a shot noise process that decreases at rate αx if the level is x , and that has Poisson
arrivals at rate ζ . If, just after the nth arrival, the workloadXn = x , then the probability
that it decreases to a level Yn+1 below w in the arrival interval Tn+1 between arrivals
n and n + 1 equals, for w ≤ x :

P(Yn+1 < w|Xn = x) = P(xe−αTn+1 < w)

= P(Tn+1 > − 1

α
ln

(w

x

)
) = e

ζ
α
ln(w

x )) =
(w

x

) ζ
α

. (39)
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This explains that h(w) = wa indeed is directly linked to shot noise.
To clarify the relation between the M/G/1 shot noise queue and the model of the

present subsection, observe that the LST in (25) can be interpreted as the LST of the
workload in the shot noise queue immediately after an arrival. Indeed, by PASTA

(Poisson Arrivals See Time Averages), E[e−sV̂e ] is the workload LST just before an
arrival. To translate our model to the M/G/1 shot noise queue, we should compress
the upward parts in between two consecutive downward jumps in our model to jumps
upward distributed as K, and we should replace the proportional jumps down by a
shot noise decreasing path, as described in this remark. Finally, by applying PASTA
to our cash management model, we see that Ve is also distributed as the capital just
before a downward jump (crisis). Considering our model at such epochs corresponds
to considering the shot noise queue just after jumps.

Remark 5 It is not hard to verify that the compound Poisson input of this subsection,
with jump rate λ and jump size LST γ (s), can be generalized to the case of a Lévy
input process {X(t), t ≥ 0} that is a subordinator, i.e., a non-decreasing Lévy process.
In such a case, E[e−sX(t)] = e−τ(s)t . In our case of compound Poisson input, τ(s) =
λ(1 − γ (s)); in the formulas in this subsection, we would simply have to replace
λ(1 − γ (s)) by τ(s), and λE[G] by τ ′(0).

Remark 6 One could extend the model of Sect. 4 by allowing not only level-
proportional jumps downward, but also jumps downward whose size does not depend
on the current cash level. Such jumps could represent withdrawals by lenders. Below
we roughly sketch how this case could be analyzed. If we assume that such jumps
downward occur according to a Poisson process with rate ψ and that they are inde-
pendent, exponentially distributed with rate ω, then (17) becomes

λ

∫ ∞

x=0
e−sx

∫ x

w=0
P(G > x − w) f (w)dwdx + F(0)λ

∫ ∞

0
e−sx (1 − G(x))dx

= η

∫ ∞

x=0
e−sx

∫ ∞

w=x

( x

w

)a
f (w)dwdx+ψ

∫ ∞

x=0
e−sx

∫ ∞

w=x
e−ω(w−x) f (w)dwdx .

(40)

Here F(0) is the probability that the process is at level 0. In the case of non-proportional
downward jumps, that probability no longer is zero. Using the same steps as in (19)
and (20), it follows that

λ
1 − γ (s)

s
[φ(s) + F(0)] = η(1 − φ(s) − F(0))

−a

s

∫ s

0

[
λ
1 − γ (v)

v
(φ(v) + F(0)) − ψ

ω − v
[φ(v) − φ(ω)]

]
dv

+ ψ

ω − s
[φ(s) − φ(ω)]. (41)
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Introducing E[e−sVe ] = φ∗(s) = φ(s) + F(0), we can rewrite this into

λ
1 − γ (s)

s
φ∗(s) = η(1 − φ∗(s))

−a

s

∫ s

0

[
λ
1 − γ (v)

v
φ∗(v) − ψ

ω − v
[φ∗(v) − φ∗(ω)]

]
dv

+ ψ

ω − s
[φ∗(s) − φ∗(ω)]. (42)

Via differentiation we obtain a first-order linear differential equation in φ∗(s), which
is similar to (23) but has an inhomogeneous part (involving the unknown φ∗(ω)). Its
solution is reasonably straightforward; see, e.g., Case II.b below for another example
in which a first-order linear nonhomogeneous differential equation with an unknown
constant is treated.

4.2 Case II.b

In this subsection we assume that R(x) = r−1
x , as in special case (ii) at the end of

Sect. 3. We furthermore take h(x) ≡ x , and as before we introduce z(x) = η(x)
x f (x).

The level-crossing Eq. (1) now translates into

∫ x

w=0
wR(w)P(G > x − w)z(w)dw = x

∫ ∞

w=x
z(w)dw. (43)

Denote the Laplace transform of z(·) by ζ(·). Taking transforms on both sides of (43)
and using that

∫ w

0 e−sxdx = (1 − e−sw)/s yields:

r−1
1 − γ (s)

s
ζ(s) = − d

ds

∫ ∞

w=0
z(w)

∫ w

x=0
e−sxdxdw

= − d

ds

∫ ∞
0 z(w)dw − ζ(s)

s

= ζ ′(s)
s

+
∫ ∞
0 z(w)dw − ζ(s)

s2
= ζ ′(s)

s
+ ζ(0) − ζ(s)

s2
. (44)

We end up with the differential equation

ζ ′(s) =
[
1

s
+ r−1(1 − γ (s))

]
ζ(s) − ζ(0)

s
. (45)

The solution of this first-order linear nonhomogeneous differential equation is rou-
tinely found, using the method of variation of constants:

ζ(s) = s exp

(∫ s

0
r−1(1 − γ (v))dv

)[
C∗ − ζ(0)

∫ s exp
(− ∫ y

0 r−1(1 − γ (v))dv
)

y2
dy

]
.

(46)
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It should be noticed that we have not yet specified the lower integration bound of the
integral inside the square brackets. The reason is that the behavior of the expression
on the righthand side of (46) when s ↓ 0 is somewhat delicate. A careful study of this
behavior will now allow us to determine the still unknown constant C∗ – and also the
remaining unknown ζ(0). We first observe that the term in front of the square brackets,
on the righthand side of (46), behaves as s for s ↓ 0. Hence the term in square brackets
should go to infinity when s ↓ 0. We now show that

lims↓0 s exp

(∫ s

0
r−1(1 − γ (v))dv

) ∫ ∞

s

exp
(− ∫ y

0 r−1(1 − γ (v))dv
)

y2
dy

= lims↓0

∫ ∞
s

e− ∫ y
0 r−1(1−γ (v))dv

y2
dy

1
s

= 1. (47)

The last equality follows by using l’Hôpital’s rule. This determines the choice of C∗;
the term in square brackets in (46) should be ζ(0)

∫ ∞
s

e− ∫ y
0 r−1(1−γ (v))dv

y2
dy, and hence

we can rewrite (46) into

ζ(s) = ζ(0) s exp

(∫ s

0
r−1(1 − γ (v))dv

) ∫ ∞

s

exp
(− ∫ y

0 r−1(1 − γ (v))dv
)

y2
dy

= ζ(0) s
∫ ∞

s

exp
(∫ s

y r−1(1 − γ (v))dv
)

y2
dy. (48)

It remains to determine ζ(0). This constant is computed by using the normalizing
condition

∫ ∞
0 f (x)dx = ∫ ∞

0
x

η(x) z(x)dx = 1. To obtain explicit results, we now

assume that η(x) ≡ η (so that λ(x) = r−1η
x ; we could also, e.g., have taken η(x) ≡ ηx ,

which would immediately have given that ζ(0) = η). It follows that
∫ ∞
0 xz(x)dx = η,

and hence ζ ′(0) = −η. Differentiating (48) yields

ζ ′(0) = lims↓0(−ζ(0)

s
+ ζ(0)

∫ ∞

s

e− ∫ y
0 r−1(1−γ (v))dv

y2
dy

×[e
∫ s
0 r−1(1−γ (v))dv

+sr−1(1 − γ (s))e
∫ s
0 r−1(1−γ (v))dv]). (49)

Using that 1
s = ∫ ∞

s
1
y2
dy, we can rewrite the above formula as

ζ ′(0) = ζ(0)lims↓0
∫ ∞

s

e− ∫ y
0 r−1(1−γ (v))dv − 1

y2
dy

+ζ(0)lims↓0
∫ ∞

s

e− ∫ y
0 r−1(1−γ (v))dv

y2
dy

×
[
e
∫ s
0 r−1(1−γ (v))dv − 1 + sr−1(1 − γ (s))e

∫ s
0 r−1(1−γ (v))dv

]
. (50)
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The term between square brackets in (50) is readily seen to be O(s2), while the integral
in front of it behaves like 1/s for s ↓ 0 according to (47). Hence,

ζ ′(0) = ζ(0)lims↓0
∫ ∞

s

e− ∫ y
0 r−1(1−γ (v))dv − 1

y2
dy. (51)

While both parts of the outer integral behave like 1/s, the integral is clearly negative
and finite; notice that the integrand is approximately − 1

2r−1E[G] for very small y.
Using the above-mentioned fact that ζ ′(0) = −η we finally obtain ζ(0):

ζ(0) = η

∫ ∞
0

1−e− ∫ y
0 r−1(1−γ (v))dv

y2
dy

. (52)

Combining (48) and (52) we have determined ζ(s):

ζ(s) =
∫ ∞

0
e−sx z(x)dx =

ηse
∫ s
0 r−1(1−γ (v))dv

∫ ∞
s

e− ∫ y
0 r−1(1−γ (v))dv

y2
dy

∫ ∞
0

1−e− ∫ y
0 r−1(1−γ (v))dv

y2
dy

. (53)

Theorem 4.2 The steady-state cash level LST for Case II.b, with η(x) = η, is given
by

E[e−sVe ] = ζ(0)

ηs
− 1

η

[
1

s
+ r−1(1 − γ (s))

]
ζ(s), (54)

with ζ(s) given by (53) and ζ(0) by (52).

Proof Observe that E[e−sVe ] = ∫ ∞
0 e−sx f (x)dx = ∫ ∞

0 e−sx xz(x)
η

dx = − 1
η
ζ ′(s).

Now use Expression (45) for ζ ′(s). ��

Remark 7 Remembering that z(x) = η
x f (x), it is seen that

E[Ve] =
∫ ∞

0
x f (x)dx = ηζ ′′(0). (55)

Remark 8 In (14) f (x) is given for the case in which h(x) = xa , λ(x)/η(x) = r−1/x
and G(x) = 1− e−μx . Taking a = 1 in (14) and remembering that z(x) = η(x)

x f (x),
we have

z(x) = C

(
x + 1

μ

)
(x + r−1)

μr−1−2e−μx , (56)
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whereC is not the same constant as the normalizing constant in (14). Let us now check
that, indeed, its Laplace transform,

∫ ∞

0
e−sx z(x)dx = C

∫ ∞

0

(
x + 1

μ

)
(x + r−1)

μr−1−2e−(s+μ)xdx, (57)

agrees with ζ(s) as given in (53). When G(x) = 1 − e−μx , so γ (s) = μ
μ+s , we have

e− ∫ y
0 r−1(1−γ (v))dv = (

μ+y
μ

)r−1μe−r−1y . Hence we can rewrite the transform in (57),
taking y = s + u, into

ζ(s) = ζ(0)s
∫ ∞

u=0

(μ + u + s)μr−1

(μ + s)μr−1

1

(u + s)2
e−r−1udu. (58)

Partial integration yields

ζ(s) = ζ(0) − ζ(0)s
∫ ∞

u=0
r−1

(μ + u + s)μr−1−1

(μ + s)μr−1
e−r−1udu. (59)

Taking, on the other hand, (s + μ)x = r−1u in (57) changes that Laplace transform
after some straightforward calculations into

ζ(s) = C∗∗

(μ + s)μr−1

[∫ ∞

0
(μ + s + u)μr−1−2(μ + s)(1 − μr−1)e

−r−1udu

+
∫ ∞

0
(μ + s + u)μr−1−1μr−1e

−r−1udu

]
, (60)

with C∗∗ some constant. Via a partial integration of the second integral and subse-
quently taking s = 0, it can be readily verified that C∗∗ = ζ(0). We want to show
that the expressions for ζ(s) in (59) and (60) coincide. By performing one partial
integration with respect to the integral in (59), viz.,

∫ ∞

u=0
r−1(μ + u + s)μr−1−1e−r−1udu

= (μ + s)μr−1−1 − (1 − μr−1)

∫ ∞

0
(μ + s + u)μr−1−2e−r−1udu, (61)

we conclude that, indeed, (53) and (46) are in agreement.

5 A second P2Pmodel: up and down periods, i.i.d. jumps up, shot
noise down

In this section we shall study a slightly different cash management model. We assume
that there is a background process for the cash level process; that background process
alternates between up and down periods. During up periods, the cash level grows
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Fig. 3 The capital process in the second P2P model. The plot successively shows an up period, a down
period and an up period

according to some compound Poisson process, and stays constant otherwise. During
down periods, the cash level process grows according to another compound Poisson
process, but in between upward jumps it decreases at a rate that is proportional to its
level; cf. Fig. 3. The down periods represent recessions.

The cash level remains constant between jumps, because the back payments of the
borrowers are split into pure interest for the residual debt and repayments of the loan:
the first stream goes to the lender except for a proportional fee that goes to the P2P
company, while the second stream remains in the P2P system (immediately used for
further lending), so that the deposits of all lenders remain unchanged.
We would like to point out that the above-described model bears a strong resemblance
to a polling model that was recently studied in Boxma et al. (2021). A polling model
is a queueing model in which a single server cyclically visits a number of queues,
serving the customers of a visited queue for a certain time period. If one were to focus
on one particular queue Q, then its workload increases during all the periods in which
it is not visited (this corresponds to the up periods in the model of the present section).
During visit periods of Q, the workload also increases because of customer arrivals,
but in addition it decreases because the server is serving the queue. Both in Boxma
et al. (2021) (during visit periods) and in the present section (during down periods),
the process level decreases at a speed that is proportional to that level. Contrary to
Boxma et al. (2021), the input processes during up and down periods may be different
in the present model, and the up periods may have a general distribution.

The model is described in Sect. 5.1, and the steady-state analysis of the cash level
is presented in Sect. 5.2.

5.1 Model description

Weassume that the cash level process {V(t), t ≥ 0} alternately goes through up periods
and downperiods. The up period lengthsU1,U2, . . . are i.i.d.with distribution function
U (·), density υ(·) and LST φU (s), while the down period lengthsD1,D2, . . . are i.i.d.
with distribution function D(·), density δ(·) and LST φD(s). All up periods are also
independent of all down periods. During up periods, V(t) is increasing according to
a compound Poisson process (we could generalize this to a Lévy subordinator) with
jump rate λU and i.i.d. jumps, generically denoted byGU , with jump size LSTG∗

U (s).
During down periods, V(t) is decreasing according to a shot noise process; when

123



252 O. Boxma et al.

V(t) = x , the process decreases at rate Rx , x > 0 (notice that the process never can
reach zero). But in addition, during down periods we allow increments according to
a compound Poisson process with jump rate λD and i.i.d. jumps, generically denoted
by GD , with jump size LST G∗

D(s). The two compound Poisson processes are also
assumed to be independent of everything else.

5.2 Steady-state analysis

In this subsection we study the steady-state distribution of the process {V(t), t ≥ 0}
– which always exists if r > 0 and the mean up periods and upward jumps are finite.
LetV denote a random variable with that steady-state distribution, and letVU andVD

denote the steady-state capital level at the end of an up, respectively down, period.
Our first observation is that

E[e−sVU ] = φU (λU (1 − G∗
U (s)))E[e−sVD ], Re s ≥ 0. (62)

Our second observation (see, e.g., Boxma et al. 2021) is that, during a down period
that starts at time 0, V(t) evolves as follows:

V(t) = V(0)e−Rt +
A(t)∑
i=1

GD,ie
−R(t−ti ), t ≥ 0; (63)

here A(t) denotes the number of Poisson arrivals in [0, t], and the sizes of successive
upward jumps are denoted by GD,1,GD,2, . . . . It readily follows from this relation
(see also Boxma et al. 2021) that

E[e−sV(t)] = exp(−sV(0)e−Rt )exp

(
−λD

R

∫ s

se−Rt

1 − G∗
D(v)

v
dv

)
, Re s ≥ 0.

(64)

Expressing the LST of VD into the preceding VU , it follows from (64) that

E[e−sVD |VU = x] =
∫ ∞

t=0
e−se−Rt xe− λD

R

∫ s
se−Rt

1−G∗
D (v)

v
dvdD(t), (65)

and hence

E[e−sVD ] =
∫ ∞

t=0
E[e−se−RtVU ]e− λD

R

∫ s
se−Rt

1−G∗
D (v)

v
dvdD(t). (66)

Combining (62) and (66) we obtain a functional equation for the LST of VU :

E[e−sVU ] = φU (λU (1 − G∗
U (s)))∫ ∞

t=0
E[e−se−RtVU ]e− λD

R

∫ s
se−Rt

1−G∗
D (v)

v
dvdD(t). (67)
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The transformation se−Rt = y reduces this equation to

E[e−sVU ] = φU (λU (1 − G∗
U (s)))∫ s

y=0
E[e−yVU ]e− λD

R

∫ s
y

1−G∗
D (v)

v
dv 1

Ry
δ

(
− 1

R
ln
y

s

)
dy. (68)

As mentioned in the beginning of this section, the model of this section is closely
related to polling models studied in Boxma et al. (2021). In Section 6 of Boxma et al.
(2021), the case of constant down periods is treated, and in Section 7 of Boxma et al.
(2021) the case of exponentially distributed down periods, with also exponential up
periods, is studied. In both cases, the compound Poisson processes during up and down
periods are the same. Below we briefly indicate how (68) can be solved in these two
cases (but allowing different compound Poisson processes, and generally distributed
up periods).

Remark 9 Differentiating (67) with respect to s we obtain E[VU ]:

E[VU ] = λU E[GU ]E[U] + E[VU ]
∫ ∞

t=0
e−RtdD(t)

+λD

R

∫ ∞

t=0
(1 − e−Rt )E[GD]dD(t),

so

E[VU ] = λU E[GU ]E[U]
1 − E[e−RD] + λDE[GD]

R
. (69)

In combination with (62) this yields

E[VD] = E[e−RD]
1 − E[e−RD]λU E[GU ]E[U] + λDE[GD]

R
. (70)

Remark 10 Once we have the LST of VU , the LST of VD follows from (62); it is
subsequently not hard to obtain the capital level LST’s at arbitrary epochs in down
and up periods via a stochastic mean value theorem; and finally one averages over the
two periods to obtain the LST of V. Below we discuss this for the case of exponential
down periods.

Example 1 The case of exponential down periods.
For exp(ξD) down periods, the density δ(− 1

R ln
y
s ) = ξD(

y
s )

ξD/R , and (68) simplifies
considerably:

E[e−sVU ] = φU (λU (1 − G∗
U (s)))∫ s

y=0
E[e−yVU ]e− λD

R

∫ s
y

1−G∗
D (v)

v
dv ξD

Ry

( y

s

)ξD/R
dy. (71)
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Differentiation w.r.t. s leads, after some calculations, to the following first-order linear
differential equation in FU (s) := E[e−sVU ]:

F ′
U (s) =

d
dsφU (λU (1 − G∗

U (s)))

φU (λU (1 − G∗
U (s)))

FU (s)

+ξD

R

φU (λU (1 − G∗
U (s)))

s
FU (s)

−λD

R

1 − G∗
D(s)

s
FU (s) − ξD

R

1

s
FU (s), (72)

and hence

FU (s) = E[e−sVU ]
= φU (λU (1 − G∗

U (s)))e− ξD
R

∫ s
0

1−φU (λU (1−G∗
U (v)))

v
dve− λD

R

∫ s
0

1−G∗
D (v)

v
dv, (73)

and, using (62),

E[e−sVD ] = e− ξD
R

∫ s
0

1−φU (λU (1−G∗
U (v)))

v
dve− λD

R

∫ s
0

1−G∗
D (v)

v
dv. (74)

Notice that both exponential terms have the form of the LST of the workload in a
shot noise model; see also Remark 3. The last exponential is the workload LST in a
shot noise model that exactly corresponds to the down periods in our model. The first
exponential is the workload LST in a shot noise model with arrival rate ξD of shots,
and with shot (jump) sizes corresponding to the total amount of work/capital arriving
during an up period. Also notice that the first two terms of (73) correspond to the cash
level LST in Theorem 4.1, in case φU (s) = η

η+s .
It is quite straightforward to derive the mean and variance of the steady-state cash

levels VU and VD from the product-form expressions (73) and (74): with ξD =
1/E[D],

E[VD] = λU E[GU ]
R

E[U]
E[D] + λDE[GD]

R
, (75)

E[VU ] = λU E[GU ]
R

E[U]
E[D] + λDE[GD]

R
+ λU E[GU ]E[U]; (76)

Var[VD] = 1

RE[D]
[
E[U2](λU E[GU ])2 + E[U]λU E[G2

U ]
]

+λDE[G2
D]

2R
, (77)

Var[VU ] =
(

1

RE[D] + 1

) [
E[U2](λU E[GU ])2 + E[U]λU E[G2

U ]
]

+λDE[G2
D]

2R
. (78)
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These expressions clearly show the inversely proportional influence of R on the mean
and variance of the cash levels. The mean cash levels are linear in the offered ‘loads’
λU E[GU ] and λDE[GD]. Just like in themodels of Sects. 3 and 4, there is no 1/(1−ρ)

behaviour of the cash level (with ρ the offered ‘load’), as is the case in almost all
classical queueing and storage models. We also observe that the variance of the cash
levels grows linearly in the variances of GU and GD . For generally distributed down
periods, very similar expressions for the variance of the cash levels can be obtained
from (62) and (67), except that (as in (69) and (70)) the LST E[e−rD] appears.

We close this example by determining the LST of the steady-state cash level Ve

at an arbitrary epoch; cf. Remark 10. In steady state, we can restrict ourselves to
considering an arbitrary sequence of one down period followed by one up period.
Denoting the steady-state cash level in an arbitrary down (respectively up) period by
VD
e (respectively VU

e ), we can write:

E[e−sVe ] = ED
EU + ED

E[e−sVD
e ] + EU

EU + ED
E[e−sVU

e ]. (79)

It immediately follows by PASTA that VD
e has the same distribution as VD . During

the subsequent up period, the cash level grows from VD according to a compound
Poisson process. At an arbitrary time epoch during this up period, the cash level VU

e
equals the sum of VD and, independently, the compound Poisson increment during
the past part of the U period. Hence, observing that the length of that past part has
density P(U > t)/EU:

E[e−sVU
e ] = E[e−sVD ]

∫ ∞

t=0
e−λU (1−G∗

U (s))t P(U > t)

EU
dt

= E[e−sVD ]1 − φU (λU (1 − G∗
U (s)))

EUλU (1 − G∗
U (s))

. (80)

Combining (79) and (80) we obtain the LST of the steady-state cash level, for the case
of exponential down periods:

E[e−sVe ] = E[e−sVD

[
ED

EU + ED
+ EU

EU + ED

1 − φU (λU (1 − G∗
U (s)))

EUλU (1 − G∗
U (s))

]
. (81)

Example 2: The case of constant down periods.
For constant down periods of length T , (67) reduces to

FU (s) = φU (λU (1 − G∗
U (s)))FU (se−RT )e− λD

R

∫ s
se−RT

1−G∗
D (v)

v
dv

. (82)

This equation can easily be solved by iteration, resulting in an infinite product. Observ-
ing that FU (0) = 1, we get:

FU (s) = e− λD
R

∫ s
0

1−G∗
D (v)

v
dv

∞∏
j=0

φU (λU (1 − G∗
U (se− j RT ))). (83)
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It is readily verified that the infinite product converges, which is equivalent with con-
vergence of

∑∞
j=0[1−φU (λU (1−G∗

U (se− j RT )))]. The latter sum exhibits geometric
convergence, as is seen by twice using 1 − e−x ≤ x for x > 0:

|1 − φU (λU (1 − G∗
U (se− j RT )))| = |

∫ ∞

0
(1 − e−λU (1−G∗

U (se− j RT ))t )dU (t)|
≤ λU E[U]|1 − G∗

U (se− j RT )|
≤ λU E[U]

∫ ∞

0
|1 − e−se− j RT x |dGU (x)

≤ λU E[U]E[GU ]se− j RT . (84)

Finally, we briefly consider the case in which down periods are equal to the constant T1
with probability p1 and equal to the constant T2 with probability p2, with 0 < p1 < 1
and p2 = 1 − p1. Our approach seems of independent interest, and can be extended
in a rather straightforward way to handle the case of M ≥ 3 different constant down
periods. Equation (67) reduces to

FU (s) = φU (λU (1 − G∗
U (s)))

2∑
i=1

pi FU (se−RTi )e− λD
R

∫ s
se−RTi

1−G∗
D (v)

v
dv

. (85)

This generalizes (82) that considered the cash level at the end of an arbitrary down
period of constant length T . Just like for the latter equation, we attempt an iteration.
This approach bears some similarity to the approach of Adan et al. (2019) of the
following recursion, withψ(s) the unknown LST:ψ(s) = p0+∑2

i=1 Hi (s)ψ(s+θi );
see also Adan et al. (2022) where functional equations with multiple recursive terms
are treated in more generality. To keep the overview in our somewhat complicated
iteration, we introduce the following shorthand notation.

ei := e−RTi , i = 1, 2, (86)

k(s) := φU (λU (1 − G∗
U (s))), l(b, s) := e− λD

R

∫ s
b

1−G∗
D (v)

v
dv. (87)

Equation(85) can now be rewritten as

FU (s) = k(s)
2∑

i=1

pi l(ei s, s)FU (ei s). (88)

After n − 1 iterations, one gets

FU (s) =
n∑

k=0

pk1 p
n−k
2 l(ek1e

n−k
2 s, s)Kk,n−k(s)FU (ek1e

n−k
2 s), (89)
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where Kk,n−k(s) are recursively defined as follows (with K−1,·(s) = K·,−1(s) ≡ 0):

K1,0(s) := k(s), K0,1(s) := k(s),

Kk+1,n−k(s) = Kk,n−k(s)k(e
k
1e

n−k
2 s) + Kk+1,n−1−k(s)k(e

k+1
1 en−1−k

2 s),

Kk,n+1−k(s) = Kk−1,n+1−k(s)k(e
k−1
1 en+1−k

2 s) + Kk,n−k(s)k(e
k
1e

n−k
2 s). (90)

One can verify that Kk,n−k(s) is a sum of
(n
k

)
terms. All these terms correspond to

having k periods of length T1 and n−k periods of length T2 in the last n down periods.
There are

(n
k

)
ways to order those n periods.

We now claim that one can approximate FU (s) quite accurately by the following
expression:

FU (s) ≈ l(0, s)
n∑

k=0

pk1 p
n−k
2 Kk,n−k(s), (91)

for n sufficiently large (but actually quite small). Indeed, comparing (89) and (91), the
error thus made equals

n∑
k=0

pk1 p
n−k
2 l(ek1e

n−k
2 s, s)Kk,n−k(s)(FU (ek1e

n−k
2 s) − 1)

+
n∑

k=0

pk1 p
n−k
2 (l(ek1e

n−k
2 s, s) − l(0, s))Kk,n−k(s). (92)

Introducing

e∗ = max(e1, e2),

and observing that
1−G∗

D(v)

E[GD]v is the LST of the residual of a jump during a down period,
and hence bounded by one, one has the following bounds for terms appearing in the
righthand side of (92):

|FU (ek1e
n−k
2 s) − 1| ≤

∫ ∞

0
|1 − e−en∗st |dP(VU < t) ≤ E[VU ]|s|en∗; (93)

|l(ek1en−k
2 s, s) − l(0, s)| ≤ |1 − l(0, ek1e

n−k
2 s)|

= |1 − e− λD
R

∫ ek1e
n−k
2 s

0
1−G∗

d (v)

v
dv| ≤ λD

R
E[GD]|s|en∗ . (94)

Note that 0 < e∗ < 1 and that

n∑
k=0

pk1 p
n−k
2 Kk,n−k(s) ≤ 1,
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because Kk,n−k(s) contains
(n
k

)
products of k(·) terms while k(·) is the LST of a non-

negative random variable. Hence we have shown that FU (s) converges geometrically
fast to the expression in the righthand side of (91).
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