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Abstract
We consider a class of stochastic optimal stopping and impulse control problems
where the agent solving the problem anticipates that a regime switch will happen at
a random time in the future. We assume that there are only two regimes, the regime
switching time is exponentially distributed, the underlying stochastic process is a
linear, regular, time-homogeneous diffusion in both regimes and the payoff may be
regime-dependent. This is in contrast with most existing literature on the topic, where
regime switching is modulated by a continuous-timeMarkov chain and the underlying
process and payoff belong to the same parametric family in all regimes. We state a set
of easily verifiable sufficient conditions under which the solutions to these problems
are given by one-sided threshold strategies. We prove uniqueness of the thresholds
and characterize them as solutions to certain algebraic equations. We also study how
anticipation affects optimal policies i.e. we present various comparison results for
problems with and without regime switching. It may happen that the anticipative
value functions and optimal policies coincide with the usual ones even if the regime
switching structure is non-trivial. We illustrate our results with practical examples.
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1 Introduction

In the past two decades there has been increasing interest in incorporating regime
switching into various stochastic control problems arising in economics, finance
and operations research. Most of this literature is based on extending well-known
archetypal stochastic control problems such as the investment/consumption problem
(e.g. Sotomayor and Cadenillas 2009; Xu et al. 2020), dividend optimization (e.g.
Sotomayor and Cadenillas 2011, 2013; Jiang and Pistorius 2012; Zhu and Chen 2013)
and option valuation (e.g. Buffington and Elliott 2002; Zhang and Guo 2004; Guo et
al. 2005; Boyarchenko and Levendorskii 2006, 2009) into a regime switching context.
Such extensions are useful for problems with a horizon which is long compared to
the expected duration of the present macroeconomic regime. In particular, they can
provide better andmoreflexible approximations than standard (i.e. non-switching) infi-
nite horizon problems because it is not always realistic to assume that the problem’s
exogenous conditions will remain unchanged in the future.

Due to their added complexity, there are as of yet only a handful of cases where
stochastic control problems with regime switching (RS problems for short) are known
to be explicitly or semi-explicitly solvable.Most of these special cases are solved in the
papers ofGuo et al. (e.g. Guo 2001; Zhang andGuo 2004;Guo andZhang 2005;Guo et
al. 2005), Boyarchenko and Levendorskiy (e.g. Boyarchenko and Levendorskii 2006,
2009) and Sotomayor and Cadenillas (e.g. Sotomayor and Cadenillas 2009, 2011,
2013). The problems are usually formulated in a two-regime world for tractability
reasons and deal with switches in the model’s parameters e.g. the drift and volatility of
a Brownian motion (BM) or geometric Brownian motion (GBM). There are also a few
papers providing existence and uniqueness results as well as detailed characterizations
for the value function and the optimal control policy for more general RS problems,
such as Jiang and Pistorius (2012), Zhu and Chen (2013) and Xu et al. (2020).

In the present paper we solve semi-explicitly an optimal stopping and an impulse
control problem with two regimes and a single regime switch. Our analysis is comple-
mentary to previous literature on explicitly solvable RS problems in that in ourmodels,
the regime switching structure is more restricted but our results hold simultaneously
for a much wider class of regimes. In particular, we do not require the payoffs and
the diffusions to be related in almost any way in different regimes and hence allow
substantial changes in the problem’s underlying dynamics. The motivation for this
class of problems is that we can study in detail the effects anticipating an individual
regime switch has on a standard optimal stopping or an impulse control problem. An
interesting special case is an RS problem where the regime switch is non-trivial but
anticipation has no effect on the optimal control policy. Therefore our results can also
be seen as a benchmark for the qualitative behaviour of solutions to more complicated
RS problems.

Following previous work of Alvarez (2003, 2004a) and Alvarez and Lempa (2008),
our analysis relies only on the classical theory of diffusions. The novelty of this
approach is that we are able to provide fairly general sufficient conditions under
which the optimal control policies are of a threshold form and characterize the optimal
thresholds in a computationally tractable manner.
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The paper is organized as follows. In Sect. 2we introduce ourmodel and recall some
basic results of diffusion theory that we are going to use later on. In Sect. 3 we present
and discuss the problems which we then solve in Sects. 4 and 5. In Sect. 6 we present
various comparison results for the optimal control policies and the corresponding value
functions. In Sect. 7 we illustrate our analysis with examples. Section8 concludes the
paper.

2 Notation and preliminaries

Let (�,F ,F = {Ft }t≥0,P) be the usual augmentation of a filtered probability space
(�,G,G = {Gt }t≥0,P) where G is a filtration generated by two regular, linear diffu-
sions X1, X2 with a common state space (I ,B(I )) and a right-continuous indicator
process H defined as Ht = 1{T≤t} where T ∼ Exp(λ) and λ > 0. We assume that
I = (a, b) ⊆ R, H is independent of Xi , Xi are either independent or stochastically
equivalent (in which case we write X1 = X2) and the boundaries a, b are natural for
Xi . We assume that the continuous functions μi : I → R and σi : I → R+ are such
that the stochastic differential equations

dXi,t = μi (Xi,t )dt + σi (Xi,t )dWi,t i = 1, 2

(where Wi are Brownian motions) admit unique strong solutions [see e.g. the various
conditions in Borodin and Salminen (2012, pp. 46–49)]. We denote the generator of
Xi with

Ai = μi (x)
d

dx
+ σ 2

i (x)

2

d2

dx2

We denote by ψi,α (ϕi,α) the increasing (decreasing) fundamental solution to Ai u =
αu (the minimal α-excessive functions). For any f ∈ L1

i (I , α) where

L1
i (I , α) =

{
f : I → R, f is measurable , Ex

[∫ ∞

0
e−αs | f (Xi,s)|ds

]
< ∞

}

we write the resolvent of the f as

(Ri,α f )(x) = Ex

[∫ ∞

0
e−αs f (Xi,s)ds

]

= B−1
i,α

(
ϕi,α(x)

∫ x

a
ψi,α(y) f (y)m′

i (y)dy + ψi,α(x)
∫ b

x
ϕi,α(y) f (y)m′

i (y)dy

)

where the last particularly useful identity follows from the classical theory of diffusions
[see e. g. Mandl (1968), Section 2.3]. As usual, mi is the speed measure and Si is the
scale function with

m′
i (x) = 2

σi (x)2
e
∫ x
a 2μi (y)σ

−2
i (y)dy,
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S′
i (x) = e− ∫ x

a 2μi (y)σ
−2
i (y)dy

and Bi,α is the (constant) Wronskian

Bi,α = ϕi,α(x)
dψi,α(x)

dSi (x)
− ψi,α(x)

dϕi,α(x)

dSi (x)

In general, we denote any quantity related to the diffusion Xi with the index i and
if there are multiple indices, i will be the first one. For specific index combinations
we suppress the notation even further to make certain calculations less repetitive and
verbose. That is, we write R1,r+λ = R1 and

ψ1,r = ψ0, ψ1,r+λ = ψ1, ψ2,r = ψ2,

ϕ1,r = φ0, ϕ1,r+λ = ϕ1, φ2,r = φ2,

B1,r = B0, B1,r+λ = B1, B2,r = B2

The random variable T is interpreted as the regime switching time. Without loss
of generality we assume that the diffusion X1 is started at the initial time t = 0 and
stopped at t = T after which the second diffusion X2 is immediately started from the
state X1,T . In other words the underlying is of the form

Xt = X1,t∧T + Ht (X2,t−T − X1,T ), X2,0 = X1,T (1)

which is seen to be an r.c.l.l. strong Markov process whenever X1 and X2 are r.c.l.l.
Moreover, we allow the payoff function to change during the regime switch, that is
we are working with a payoff g of the the form

g(t, Xt ) = g1(Xt )(1 − Ht ) + g2(Xt )Ht (2)

where gi ∈ C2(I \ Di ), Di are finite or countably infinite, gi are non-decreasing and

− ∞ < lim
x↓a gi (x) ≤ 0 < lim

x↑b gi (x) (3)

The following result will be useful later on. It is essentially Corollary 3.2 in Alvarez
(2004a) formulated in the present context. The proof will be omitted as it is completely
analogous to the original.

Lemma 1 Assume that f ∈ C2(I ), Fi = (Ai − α) f ∈ L1
i (I , α) and

limx↓a f (x)/ϕi,α(x) = limx↑b f (x)/ψi,α(x) = 0. Then

f ′(x)
S′
i (x)

ψi,α(x) − ψ ′
i,α(x)

S′
i (x)

f (x) =
∫ x

a
ψi,α(z)Fi (z)m

′
i (z)dz,

f ′′(x)
S′
i (x)

ψ ′
i,α(x) − ψ ′′

i,α(x)

S′
i (x)

f ′(x) = 2α

σ 2
i (x)

∫ x

a
ψi,α(z)(Fi (x) − Fi (z))m

′
i (z)dz
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and

f ′(x)
S′
i (x)

ϕi,α(x) − φ′
i,α(x)

S′
i (x)

f (x) = −
∫ b

x
ϕi,α(z)Fi (z)m

′
i (z)dz,

f ′′(x)
S′
i (x)

ϕ′
i,α(x) − ϕ′′

i,α(x)

S′
i (x)

f ′(x) = 2α

σ 2
i (x)

∫ b

x
ϕi,α(z)(Fi (z) − Fi (x))m

′
i (z)dz

3 Outline of the problems

The two-regime-single-switch structure considered in the present paper gives rise
to three different classes of optimal stopping problems (OSPs) and impulse control
problems (ICPs). We call these classes the pre-switch, anticipative and post-switch
problems respective of their temporal relation to the regime switch. Since we are
working with six problems in total, we will use the words “problem” and “value func-
tion” interchangeably to streamline certain arguments and avoid general confusion.
For x ∈ I , the pre-switch OSP and ICP are defined as

Ṽ0(x) = sup
τ∈S1

Ex
[
e−rτ g1(X1,τ )

]
(4)

and

V0(x) = sup
ν∈V1

Ex

[
N∑
i=1

e−rτi g1(X
ν
1,τi )

]
(5)

respectively. The anticipative problems are defined as

Ṽ1(x) = sup
τ∈S

Ex
[
e−rτ g(τ, Xτ )

]
(6)

and

V1(x) = sup
ν∈V

Ex

[
N∑
i=1

e−rτi g(τi , X
ν
τi
)

]
(7)

and the post-switch problems are

Ṽ2(x) = sup
τ∈S2

Ex
[
e−rτ g2(X2,τ )

]
(8)

and

V2(x) = sup
ν∈V2

Ex

[
N∑
i=1

e−rτi g2(X
ν
2,τi )

]
(9)
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210 L. H. R. Alvarez E., W. Sillanpää

The terminology and notation used in the above definitions require some elaboration.
The pre-switch (post-switch) problems are standard OSPs and ICPs depending only
on the initial (final) regime. The anticipative problems are the only ones which depend
on both regimes and hence on the regime switching structure. Single regime problems
were analyzed in detail in Alvarez (2004a) in the present framework. Thus the main
focus of our analysis is on solving the anticipative problems (6) and (7). We do not
need to assume any specific conditions from Alvarez (2004a) unless explicitly stated
otherwise. We simply assume that the single regime problems admit unique threshold
solutions, in which case the single regime value functions are necessarily of the form
described inAlvarez (2004a). By threshold solutions wemean those policies for which
every associated stopping time is the hitting time (from below) of the underlying to a
given unique state.

The pre-switch problems correspond to a situationwhere an agent is solving anOSP
or an ICP, not anticipating any changes in the problems’ exogenous features. When
the agent becomes aware that a given regime switch will happen at an exponentially
distributed random time, they immediately ditch the pre-switch problem and move on
to solve the anticipative problem.When the regime switch finally happens, the agent is
left with a post-switch problem where future switches are not possible. Note that if the
supremumof an pre-switch problem is attained for some admissible policy and the pre-
and post-switch problems are identical, then the anticipative and pre-switch problems
are identical too. In this case there is effectively only one regime as the regime switch
has no effect on any of the problems. We call such regime switches trivial.

Themotivation behind using the three problem classes comes from the fact that they
allow us to examine the effects anticipating future changes in a problem’s exogenous
features has on current optimal policies and that it is necessary to solve the post-switch
problem if one wishes to solve the anticipative problem in a computationally tractable
manner.

Time-homogeneity of the problems (4–9) follows from the memoryless property of
the exponential distribution and the strong Markov property of X1 and X2. The set S
of admissible stopping times for the anticipative OSP consists of all the stopping times
of X1. V is the set of anticipative admissible impulse control policies i.e. sequences
ν = (τ j , ξ j )

N
j=1 such that N ∈ N ∪ {∞} and for all j = 1, ..., N

(i) τ j ∈ S
(i i) τ j1{τ j<∞} < τ j+11{τ j+1<∞} P − a.s.

(i i i) ξ j = Xτ j −
j−1∑
k=1

ξk − x1(1 − Ht ) − x2Ht

Above τ j are interpreted as the control times, ξ j as the impulse controls and x1(1 −
Ht ) + x2Ht > 0 is an exogenously determined state (xi ∈ I ) to which the controlled
process

Xν
s = Xs −

N∑
k=1

ξk1{τk≤s}, s ≥ t
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is instantaneously driven at each intervention time. We allow S and V to contain
stopping times that are infinite with a positive probability, since choosing not to stop
the anticipative problem is equivalent to waiting for the regime switch to happen as
long as the transversality conditions

{
limt↑∞ Ex

[
e−(r+λ)t (g1(X1,t ) − λ(R1Ṽ2)(X1,t ))

]
= 0

limt↑∞ Ex
[
e−(r+λ)t (g1(X1,t ) − λ(R1V2)(X1,t ))

] = 0
(10)

hold. We assume that (10) holds throughout the paper. We further assume that the
payoffs satisfy g1(x1) ≤ 0, g2(x2) ≤ 0 because otherwise we might encounter patho-
logical ICPs where the supremum cannot be attained with an impulse control policy.
Si and Vi are defined analogously to S and V , such that the corresponding stopping
times are P-a.s. finite stopping times of Xi and ξ j satisfy

ξ j = Xi,τ j −
j−1∑
k=1

ξk − xi

instead of (i i i).
A few words can be said about the problems (4 - 9) and their relations in this level

of generality. Supremum is a subadditive mapping and the post-switch value functions
Ṽ2, V2 are both non-negative, so we have the following upper and lower bounds for
the anticipative value functions Ṽ1 and V1:

max{λ(R1Ṽ2)(x), Ṽ
λ
1 (x)} ≤ Ṽ1(x) ≤ Ṽ λ

1 (x) + λ(R1Ṽ2)(x), (11)

max{λ (R1V2) (x), V λ
1 (x)} ≤ V1(x) ≤ V λ

1 (x) + λ (R1V2) (x) (12)

where

Ṽ λ
1 (x) = sup

τ∈S1

Ex

[
e−(r+λ)τ g1(X1,τ )

]
,

V λ
1 (x) = sup

ν∈V1

Ex

[
N∑
i=1

e−(r+λ)τi g1(X
ν

1,τ−
i
)

]

We can derive additional meaning for the bounds (11–12). The lower bounds Ṽ λ
1

and V λ
1 correspond to anticipative problems where the regime switch kills the entire

process X . This can be seen as an example of optimal stopping and impulse control
under default risk. The lower bounds λ(R1Ṽ2) and λ(R1V2) correspond to anticipative
problems where an agent has to wait for a random amount of time T before solving the
post-switch problems Ṽ2 and V2. In this problem the agent is “late for the party” in the
first regime and has to wait for the regime switch before doing anything. The problem
could also be seen as an example of stochastic control with random entry. The upper
bounds in (11–12) describe pairs of independent problems which are switched at time
T . That is, a decision maker solves an anticipative default risk problem Ṽ λ

1 (V λ
1 ) and

after the default moves on to solve a post-switch problem Ṽ2 (V2).
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212 L. H. R. Alvarez E., W. Sillanpää

We also have an ordering for the continuation (and hence for stopping) regions of
the anticipative and default risk problems whenever they are well-posed. If

C̃1,λ = {x ∈ I : Ṽ λ
1 (x) > g(x)}, C̃1 = {x ∈ I : Ṽ1(x) > g(x)},

C1,λ = {x ∈ I : V λ
1 (x) > g(x)}, C1 = {x ∈ I : V1(x) > g(x)}

then C̃1,λ ⊆ C̃1 and C1,λ ⊆ C1
It should be noted that the OSPs Ṽ0, Ṽ2 can be seen as special cases of the ICPs

V0, V2. Indeed, for N = 1 the ICPs reduce to OSPs. Ṽ0, Ṽ2 are also known as the
associated OSPs of V0, V2 and V0, V2 can be approximated as sequences of OSPs of
the form Ṽ0, Ṽ2. These relations and the inequalities Ṽ0 ≤ V0, Ṽ2 ≤ V2 were proved
for a large class of problems admitting unique threshold solutions in Alvarez (2004a)
and we expand these properties for the anticipative problems Ṽ1, V1 in Sect. 6.

4 Anticipative optimal stopping

Using (6) and the strong Markov property of diffusions the anticipative OSP can be
written as

Ṽ1(x) = sup
τ∈S

Ex

[∫ ∞

τ

e−rτ g1(X1,τ )λe
−λsds +

∫ τ

0
λe−(r+λ)s Ṽ2(X1,s)ds

]

= λ(R1Ṽ2)(x) + sup
τ∈S

Ex

[
e−(r+λ)τ (g1(X1,τ ) − λ(R1Ṽ2)(X1,τ ))

]

(10) implies that if there does not exist a P-a.s. finite τ ∈ S such that

Ex

[
e−(r+λ)τ (g1(X1,τ ) − λ(R1Ṽ2)(X1,τ ))

]
≥ 0 (13)

then τ = ∞ is an optimal stopping time for the anticipative OSP and hence the optimal
policy is to wait for the regime switch and then solve the post-switch OSP. For the
rest of this section we assume that the converse holds, i.e. there exists τ ∈ S such
that (13) holds. Since the process X1 has P-a.s. continuous paths and g1 − λ(R1Ṽ2)
is continuous and finite in I , (10) also implies the condition

Ex

[
sup
t≥0

e−(r+λ)t |g1(X1,t ) − λ(R1Ṽ2)(X1,t )|
]

< ∞

It is now a trivial extension of Theorem 3.1 in Shiryaev (2007) to show that Ṽ1 is the
smallest majorant of g1 such that Ṽ1(x) − λ(R1Ṽ2)(x) is r + λ-excessive w.r.t. X1.

We will now employ the same techniques as in Alvarez (2004a) for finding the
optimal stopping policy and calculating the value function Ṽ1. That is, we treat the
anticipative OSP as a problem of finding a state maximizing a certain function such
that the corresponding hitting time coincides with the optimal stopping policy. The
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Optimal stopping and impulse control in the presence… 213

theoretical justification for this method is discussed e.g. in Christensen and Irle (2011).
However we use a verification approach so we do not have to know a priori that the
method leads to a correct solution.

Assume y ∈ I and define the function Ṽ1,y by removing the supremum in Ṽ1 and
choosing τ = τy , where τy = inf{t ≥ 0 : X1,t ≥ y}, the first hitting time (from
below) of X1 to the state y. Then

Ṽ1,y(x) =
{
g1(x) , x ≥ y

λ(R1Ṽ2)(x) + ψ1(x)C(y) , x < y
(14)

where

C(y) = g1(y) − λ(R1Ṽ2)(y)

ψ1(y)
(15)

In the following analysis we will also make use of the operators Li, f defined by

Li, f g = g′ f − f ′g
S′
i

, i = 1, 2 (16)

for all functions f , g for which the above expression is a well-defined function.
Theorems 1 and 2 give fairly general sufficient conditions for the existence and

uniqueness of threshold solutions for the anticipative OSP aswell as a computationally
tractable representation for the value function, which may even be obtained explicitly
in some cases. The proof relies on constructing a specific integral representation for
the chosen value function candidate and proving that this representation has certain
properties that imply r + λ-excessivity. In fact, this allows us to express the value
function as a resolvent of another function. The method is described in more detail
and generality in e.g. Christensen and Lempa (2015) and Mordecki and Salminen
(2007).

Theorem 1 Let C be as in (15) and let ỹ1 be its unique global maximum in I . Let

Aψ(x) = −L1,ψ1(g1 − λ(R1Ṽ2))(x) (17)

Aφ(x) = L1,ϕ1(g1 − λ(R1Ṽ2))(x) (18)

on (ỹ1, b1) \ D1 and suppose that Aψ is non-decreasing and limx↑b Aϕ ≥ 0. Assume
that g1/ψ1 is non-increasing on a neighbourhood of ỹ1. Then τỹ1 is the optimal
stopping time for the problem Ṽ1 and

Ṽ1(x) =
⎧⎨
⎩
g1(x) x ≥ ỹ1

λ(R1Ṽ2)(x) + g1(ỹ1) − λ(R1Ṽ2)(ỹ1)

ψ1(ỹ1)
ψ1(x) x < ỹ1

(19)
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214 L. H. R. Alvarez E., W. Sillanpää

Proof Let V̂1 be the value function candidate given by the r.h.s. of (19). τỹ1 ∈ S
so Ṽ1 ≥ V̂1. The definition of ỹ1 implies V̂1 ≥ g1. On I\(D1 ∩ [ỹ1, b)) define the
mappings

Lϕ = L1,ϕ1(V̂1 − λ(R1Ṽ2)) (20)

Lψ = −L1,ψ1(V̂1 − λ(R1Ṽ2)) (21)

Lψ(x) = 0 for x ∈ (a, ỹ1) and Lψ(x) = Aψ(x) for x ∈ [ỹ1, b)\D1. limx↓ỹ1 Aψ(x) ≥
0 and Aψ was assumed to be non-decreasing, so Lψ is non-negative on its domain.
For x ∈ [ỹ1, b) \ D1 we have

−ψ1(x)

ϕ1(x)
L ′

ϕ(x) = L ′
ψ(x) = A′

ψ(x) ≥ 0

implying that Lψ is non-decreasing. Since

Lϕ(x) = B1
g1(ỹ1) − λ(R1Ṽ2)(ỹ1)

ψ1(ỹ1)

for x ∈ (a, ỹ1) and 0 ≤ limx↑b Aϕ(x) ≤ limx↓ỹ1 Aϕ(x) ≤ limx↑ỹ1 Lϕ(x), Lϕ is non-
negative and non-increasing. These properties of Lψ and Lϕ guarantee the existence
of a representing measure for V̂1 [Salminen (1985), Section 3], proving that it is
r + λ-excessive. ��
Theorem 2 Let g1 ∈ C2(I ) and C be as in (15). Suppose that g1 − λ(R1Ṽ2) satisfies
the limit conditions of Lemma 1, F̃1 = (A1 − r − λ)g1 + λṼ2 ∈ L1

1(I , r + λ) and
F̃1 has a unique root x̂ > a so that F̃1(x) > 0 when x < x̂ and F̃1(x) < 0 when
x > x̂ . Then τỹ1 is the optimal stopping time for the anticipative OSP. Here ỹ1 > x̂ is
the unique state ỹ1 = argmaxx∈I {C(x)}.

Proof Let L(x) = L1,ψ1(g1 − λ(R1Ṽ2)(x). Lemma 1 implies

L(x) =
∫ x

a
ψ1(z)F̃1(z)m

′
1(z)dz

By assumption F̃1(x) > 0 on (a, x̂) so L(x) > 0 on (a, x̂]. If x̂ < ξ < x , then the
intermediate value theorem implies

L(x) = L(ξ) + ψ1(c)F̃1(c)m
′
1(c)(x − ξ)

for some c ∈ (ξ, x). However, F̃1(x) < 0 when x > x̂ so limx↑b L(x) = −∞.
Additionally L(x) is continuous on the state space I and monotonically decreasing on
(x̂, b), so there exists a unique ỹ1 > x̂ , so that L(ỹ1) = 0 i.e. ỹ1 = argmaxx∈I {C(x)}.
Thus Ṽ1,ỹ1 ≥ g1.
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Optimal stopping and impulse control in the presence… 215

Since τỹ1 is admissible for the problem Ṽ1, we have Ṽ1 ≥ Ṽ1,ỹ1 . We still need to
prove that Ṽ1,ỹ1(x) − λ(R1Ṽ2)(x) is r + λ-excessive w.r.t. X1. Let Lϕ, Lψ be as in
the proof of Theorem 1 with V̂1 replaced by Ṽ1,ỹ1 .

Lϕ is non-negative since Ṽ1,ỹ1(x) − λ(R1Ṽ2)(x) is non-negative and strictly
increasing on (a, ỹ1) and Lemma 1 and the negativity of F̃1(x) on (x̂, b) imply

Lϕ(x) = −
∫ b

x
ϕ1(z)F̃1(z)m

′
1(z)dz ≥ 0

when x > ỹ1. Lψ is non-negative as well. To see this, note that Lψ = 0 on (a, ỹ1)
and on (ỹ1, b) we have

L ′
ψ(x) = −ψ1(x)F̃1(x)m

′
1(x)

Thus L ′
ψ(x) = 0 for x < ỹ1 and L ′

ψ(x) > 0 for x > ỹ1, since F̃1(ỹ1) < 0. In
particular, limx↓ỹ1∨ỹ2 L

′
ψ(x) > 0 proving that Lψ is non-negative and non-decreasing.

Lϕ is non-increasing, since

L ′
ϕ(x) = − ϕ1(x)

ψ1(x)
L ′

ψ(x) ≤ 0

The statement follows since Lϕ, Lψ satisfy the same properties as in the proof of
Theorem 1. ��

5 Anticipative impulse control

Using the same arguments as in Sect. 4 and noting that the switch may occur between
any two consecutive control times or after the last control has been exercised, the
anticipative ICP value function V1 may be written as

V1(x) = sup
ν∈V

Ex

[
N∑
i=1

e−(r+λ)τi g1(X
ν

1,τ−
i

) +
∫ τN

0
λe−(r+λ)sV2(X

ν
1,s)ds

]

= λ(R1V2)(x) + sup
ν∈V

Ex

[
N∑
i=1

e−(r+λ)τi g1(X
ν

1,τ−
i

) − λe−(r+λ)τN (R1V2)(X1,τN )

]

It turns out that the verification theorem for a candidate solution developed in
Alvarez (2004a) can be extended for anticipative ICPs.

Theorem 3 Let f : I → R+ be a function satisfying f (x) ≥ g1(x)+ f (x1) for every
x ∈ I and suppose that f −λ(R1V2) is r +λ-excessive w.r.t. X1. Then f (x) ≥ V1(x)
and f (x) ≥ Ṽ1(x) for every x ∈ I .
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Proof Letν be an admissible impulse controlwith control times {τi }Ni=1 anddefine τ0 =
0. The controlled diffusion Xν

1,t behaves like the diffusion X1,t between consecutive
control times so we have

EXν
1,τi

[
e−(r+λ)τi+1

(
f (Xν

1,τ−
i+1

) − λ(R1V2)(X
ν

1,τ−
i+1

)

)]

≤e−(r+λ)τi
(
f (Xν

1,τi ) − λ(R1V2)(X
ν
1,τi )

)

P-almost surely. Thus

0 ≤Ex

[
e−(r+λ)τi f (Xν

1,τi ) − e−(r+λ)τi+1 f (Xν
1,τi+1−)

]

− λEx

[
e−(r+λ)τi (R1V2)(X

ν
1,τi ) − e−(r+λ)τi+1(R1V2)(X

ν
1,τi+1−)

]

=Ex

[
e−(r+λ)τi f (Xν

1,τi ) − e−(r+λ)τi+1 f (Xν
1,τi+1−)

]

+ Ex

[∫ τi+1−

τi

λe−(r+λ)sV2(X1,s)ds

]

for every i and x ∈ I . Summing over i yields

Ex

[∫ τk+1

0
λe−(r+λ)sV2(X1,s)ds

+
k∑

i=0

(
e−(r+λ)τi f (Xν

1,τi ) − e−(r+λ)τi+1 f (Xν
1,τi+1−)

)]
≥ 0

⇔ f (x) ≥ Ex

[∫ τk+1

0
λe−(r+λ)sV2(X1,s)ds

]

+
k∑

i=1

Ex

[
e−(r+λ)τi

(
f (Xν

1,τi−) − f (Xν
1,τi )

)] + Ex

[
e−(r+λ)τk+1 f (Xν

1,τk+1−)
]

where k ≤ N . As k → N , the assumptions f (x) ≥ g1(x) + f (x1) and X1,τi = x1
imply

f (x) ≥ Ex

[∫ τN

0
λe−(r+λ)sV2(X

ν
1,s)ds +

N∑
i=1

e−(r+λ)τi g1(X
ν
1,τ j−)

]

The admissible impulse control ν was arbitrary so the above inequality is valid for any
ν ∈ V and it follows that f (x) ≥ V1(x) for every x ∈ I .

The excessivity of f (x) − λ(R1V2)(x) implies that for any τ ∈ S

Ex

[
e−(r+λ)τ ( f (X1,τ ) − λ(R1,r+λṼ2)(X1,τ ))

]
= f (x) − λ(R1V2)(x)
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+ Ex

[
e−rτ

EX1,τ

[
λ

∫ ∞

0
e−(r+λ)s(R1(V2 − Ṽ2))(X1,s)ds

]]

≤ f (x) − λ(R1Ṽ2)(x)

Since excessive functions are non-negative, we have

f (x) ≥ f (x) − λ(R1Ṽ2)(x1) ≥ g(x) + f (x1) − λ(R1Ṽ2)(x1) ≥ g(x)

for all x ∈ I . f ≥ Ṽ1 follows by the minimality of Ṽ1. ��
We will now proceed as in Sect. 4 and determine the conditions under which the

anticipative ICP admits a unique threshold solution with a state y > x1. Assume
x1 < y and define

F1,y(x) = Ex

[
e−(r+λ)τy (g1(y) + F1,y(x1)) +

∫ τy

0
V2(X

ν
1,s)ds

]

in I . x1 < y implies

F1,y(x1) =ψ1(x1)

ψ1(y)
(g1(y) + F1,y(x1) − λ(R1V2)(y)) + λ(R1V2)(x1)

⇔ F1,y(x1) = ψ1(x1)(g1(y) − λ(R1V2)(y)) + λ(R1V2)(x1)

ψ1(y) − ψ1(x1)

Setting

u1(y) = g1(y) − λ(R1V2)(y) + λ(R1V2)(x1)

ψ1(y) − ψ1(x1)

yields

F1,y(x) =
{

λ(R1V2)(x1) + ψ1(x1)u1(y) + g1(x) , x ≥ y

λ(R1V2)(x) + ψ1(x)u1(y) , x < y

Lemma 2 Let ŷ1 be the unique local maximum of u1 in (x1, b). Define

Aψ(x) = − L1,ψ1(F1,ŷ1 − λ(R1V2)(x)

Aϕ(x) =L1,ϕ1(F1,ŷ1 − λ(R1V2)(x)

on (ŷ1, b) \ D1 and suppose that Aψ is non-decreasing and limx↑b Aϕ ≥ 0. Then
F1,ŷ1 − λ(R1V2) is r + λ-excessive w.r.t. X1.

Proof The proof is analogous with that of Theorem 1. ��
Lemma 3 Let ŷ1 be a unique local maximum of u1 in (x1, b) and (g′

1(x) −
λ(R1V2)′(x))/ψ ′

1(x) be non-increasing on (a, x1). Then F1,ŷ1(x) ≥ F1,ŷ1(x1)+g1(x)
for every x ∈ I .
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Proof Define�(x) = u1(ŷ1)(ψ1(x)−ψ1(x1))−g1(x)−λ(R1V2)(x1)+λ(R1V2)(x).
By the monotonicity of (g′

1(x) − λ(R1V2)′(x))/ψ ′
1(x) we have for all x ∈ (a, x1)

�′(x) = u1(ŷ1)ψ
′
1(x) − g′

1(x) + λ(R1V2)
′(x)

= ψ ′
1(x)

(
g′
1(ŷ1) − λ(R1V2)′(ŷ1)

ψ ′
1(ŷ1)

− g′
1(x) − λ(R1V2)′(x)

ψ ′
1(x)

)

≤ 0

But g1(x1) ≤ 0, so �(x) ≥ 0 for every x ∈ (a, x1). It follows that F1,ŷ1(x) ≥
F1,ŷ1(x1) + g1(x) for every x ∈ I . ��

The next result follows immediately from Theorem 3.

Corollary 1 Let the assumptions of Lemma 2 and 3 hold. Then V1 = F1,ŷ1 and ŷ1 is
the unique state ŷ1 = argmaxx>x1{u1(x)}.

The following theorem is an ICP analogue of Theorem 2

Theorem 4 Let g1 ∈ C2(I ). Suppose that g1 − λ(R1V2) satisfies the limit conditions
of Lemma 1 and F1 = (A1 − r − λ)g1 + λV2 ∈ L1

1(I , r + λ). Assume that F1 is
non-increasing and limx↓a F1(x) > 0 > limx↑b F1(x). Then V1 = F1,ŷ1 and ŷ1 is the
unique state ŷ1 = argmaxx∈(x1,b){u1(x)}.
Proof By Theorem 2 there exists a unique ỹ > x1 > a so that

(g′
1(x) − λ(R1V2)

′(x))ψ1(x) ≤ (g1(x) − λ(R1V2)(x))ψ
′
1(x)

for every x ≥ ỹ. The assumptions imply

(g′′
1 (x) − λ(R1V2)′′(x))ψ ′

1(x) − (g′
1(x) − λ(R1V2)′(x))ψ ′′

1 (x)

S′
1(x)

= 2(r + λ)

σ 2
1 (x)

∫ x

a
ψ1(z)(F1(x) − F1(z))m

′
1(z)dz

≤ 0

so (g′
1(x) − λ(R1,r+λV2)′(x))/ψ ′

1(x) is non-increasing.
For all x ∈ I define

v(x) =(g′
1(x) − λ(R1V2)

′(x))(ψ1(x) − ψ1(x1))

− (g1(x) − λ(R1V2)(x) + λ(R1V2)(x1))ψ
′
1(x)

v(x1) = −g1(x1)ψ ′
1(x1) ≥ 0 and for any x ≥ ỹ ∨ x1 we have

v(x) ≤ −(g′
1(x) − λ(R1V2)

′(x))ψ1(x1) − λ(R1V2)(x1)ψ
′
1(x)

≤ ψ ′
1(x)ψ1(x1)

(
λ(R1V2)′(x)

ψ ′
1(x)

− λ(R1V2)(x1)

ψ1(x1)

)
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< 0

where the last inequality follows from

ψ1(x)2

S′
1(x)

d

dx

(
λ(R1V2)(x)

ψ1(x)

)
= −λ

∫ x

a
ψ1(z)V2(z)m

′
1(z)dz < 0

v(x) is continuous, so there is at least one ŷ1 > x1 > a for which v(ŷ1) = 0.
(g′

1(x) − λ(R1V2)′(x))/ψ ′
1(x) is non-increasing, sgn(v(x)) = sgn(v(x)/ψ ′

1(x)) and

d

dx

(
v(x)

ψ ′
1(x)

)
= (ψ1(x) − ψ1(x1))

d

dx

(
g′
1(x) − λ(R1V2)′(x)

ψ ′
1(x)

)
< 0

when x > x1 so ŷ1 = argmaxx∈[x1,b){u1(x)} is unique. In accordance with Lemma 3,
the monotonicity of (g′

1(x) − λ(R1V2)′(x))/ψ ′
1(x) implies F1,ŷ1(x) ≥ F1,ŷ1(x1) +

g1(x) for every x ∈ I .
Clearly F1,ŷ1(x) − λ(R1V2)(x) ∈ C2(I\{ŷ1}) and

A1(F1,ŷ1(x) − λ(R1V2)(x)) = (r + λ)(F1,ŷ1(x) − λ(R1V2)(x))

on (a, ŷ1). The function

H(x) = (A1 − r − λ)(F1,ŷ1(x) − λ(R1V2)(x))

defined on (ŷ1, b) is non-increasing by the monotonicity of F1 and

lim
x↓ŷ1

H(x) =σ 2
1 (ŷ1)

2
(g′′

1 (ŷ1) − λ(R1V2)
′′(ŷ1)) + μ1(ŷ1)(g

′
1(ŷ1) − λ(R1V2)

′(ŷ1))

− (r + λ)(g1(ŷ1) − λ(R1V2)(ŷ1))

− (r + λ)(λ(R1V2)(x1) + ψ1(x1)u1(ŷ1))

≤σ 2
1 (ŷ1)

2
ψ ′′
1 (ŷ1)u1(ŷ1) + μ1(ŷ1)ψ

′
1(ŷ1)u(ŷ1)

− (r + λ)ψ1(ŷ1)u1(ŷ1)

=(A1ψ1(ŷ1) − (r + λ)ψ1(ŷ1))u1(ŷ1)

=0

so H(x) ≤ 0 for every x ≥ ŷ1.Thus F1,ŷ1(x) − λ(R1V2)(x) is r + λ-excessive w.r.t.
X1. The statement follows from Theorem 3. ��

6 Comparison results

Having solved the anticipative OSP and ICP in Sects. 4 and 5, we are now ready
to formulate various comparison results mapping the order relations between pre-
switch and anticipative problems, anticipative and post-switch problems and their
respective threshold solutions.We also study sufficient conditions for situations where
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the anticipative and post-switch threshold solutions are equal, even if the switch is non-
trivial. In other words, once an agent receives information about a future switch, they
will immediately choose a policy that corresponds to the post-switch threshold solution
in the first regime. We call these regime changes neutral, as the anticipative optimal
policy is independent of the time at which the switch occurs.

6.1 Order relations

The form and monotonicity assumptions on the functions F̃1 and F1 in Theorems 2
and 4 seem to suggest that the order of the pre- and post-switch value functions share a
fundamental connection with the order of the corresponding threshold solutions. The
intuition turns out to be true as it will be shown below. Theorems 5 and 6 state that
the order of pre- and post-switch value functions determines the order of pre-switch
and anticipative threshold solutions. That is, if a regime switch increases value (post-
switch value dominates pre-switch value) then this switch should be anticipated by
raising the control threshold in advance. The converse holds for switches that decrease
value.

Theorem 5 Let Ṽ0 � Ṽ2. Then ỹ0 � ỹ1.

Proof An OSP with a trivial regime switch is equivalent to and has the same value
function as a corresponding problem without a switch. Thus by Theorem 2

g1(ỹ1) − λ(R1Ṽ2)(ỹ1)

ψ1(ỹ1)
≥ g1(ỹ0) − λ(R1Ṽ2)(ỹ0)

ψ1(ỹ0)

≥ g1(ỹ1) − λ(R1Ṽ2)(ỹ1)

ψ1(ỹ1)
− λ(R1(Ṽ2 − Ṽ0))(ỹ0)

ψ1(ỹ0)

implying that

λ(R1(Ṽ2 − Ṽ0))(ỹ0)

ψ1(ỹ0)
≥ λ(R1(Ṽ2 − Ṽ0))(ỹ1)

ψ1(ỹ1)

The statement follows from the above inequality since λ(R1 f )/ψ1 is strictly
decreasing for f ≥ 0. ��
Theorem 6 Let V0 � V2 and suppose that λ(R1(V2 ∨ V0 − V2 ∧ V0))′/ψ ′

1 is non-

increasing on (x1, b). Then ŷ0 � ŷ1.

Proof The proof is analogous with that of Theorem 5. It follows from Theorem 4 that

g1(ŷ1) − λ(R1V2)(ŷ1) + λ(R1V2)(x1)

ψ1(ŷ1) − ψ1(x1)

≥g1(ŷ0) − λ(R1V2)(ŷ0) + λ(R1V2)(x1)

ψ1(ŷ0) − ψ1(x1)
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≥g1(ŷ1) − λ(R1V0)(ŷ1) + λ(R1V0)(x1)

ψ1(ŷ1) − ψ1(x1)

+ λ(R1V0)(ŷ0) − λ(R1V0)(x1)

ψ1(ŷ0) − ψ1(x1)
− λ(R1V2)(ŷ0) − λ(R1V2)(x1)

ψ1(ŷ0) − ψ1(x1)

and consequently

λ(R1(V2 − V0))(ŷ0) − λ(R1(V2 − V0))(x1)

ψ1(ŷ0) − ψ1(x1)

≥λ(R1(V2 − V0))(ŷ1) − λ(R1(V2 − V0))(x1)

ψ1(ŷ1) − ψ1(x1)

The statement follows from the above inequality. To see this, let f = V2∨V0−V2∧V0
and

h(x) = λ(R1 f )(x) − λ(R1 f )(x1)

ψ1(x) − ψ1(x1)

limx↓x1 h(x) = λ(R1 f )′/ψ ′
1, h

′(x) < 0 when h(x) > λ(R1 f )′(x)/ψ ′
1(x) and

λ(R1 f )′/ψ ′
1 was assumed to be non-increasing on (x1, b), so h is strictly decreasing

on (x1, b). ��
Theorem 6 yields the following corollary, which is an analogue of Theorem 5.8 in

Alvarez (2004a).

Corollary 2 (Risk sensitivity of the anticipative ICP threshold solutions) Suppose that
the volatility of the underlying is the only changing parameter, σ2(x) ≥ σ0(x) for all
x > 0 and there is a state z̃ ∈ [a, b], such that μ1(x) ≤ 0 for x ≥ z̃ and μ1(x)− r x is
non-increasing on (a, z̃). Then ŷ1 > ŷ0. That is, if a regime switch increases volatility,
the switch should be anticipated by raising the control threshold.

Proof By Theorem 5.8 in Alvarez (2004a), we have V0 ≤ V2,ι. The statement follows
from Theorem 6. ��

Lastly, Theorems 7 and 8 describe the order of the thresholds ỹ1, ŷ1 and the value
functions Ṽ1, V1 respectively. They are extensions of the corresponding results in
Alvarez (2004a) for anticipative problems.

Theorem 7 Suppose that λ(R1V2)/ψ1 is convex. Then ŷ1 ≤ ỹ1.

Proof combining the inequalities

g1(ŷ1) − λ(R1V2,ι)(ŷ1) + λ(R1V2,ι)(x1)

ψ1(ŷ1) − ψ1(x1)

≥g1(ỹ1) − λ(R1V2,ι)(ỹ1) + λ(R1V2,ι)(x1)

ψ1(ỹ1) − ψ1(x1)
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and

g1(ỹ1) − λ(R1Ṽ2,ι)(ỹ1)

ψ1(ỹ1)
≥ g1(ŷ1) − λ(R1Ṽ2,ι)(ŷ1)

ψ1(ŷ1)

yields

g1(ŷ1)

(
1

ψ1(ŷ1) − ψ1(x1)
− ψ1(ỹ1)

(ψ1(ỹ1) − ψ1(x1))ψ1(ŷ1)

)

≥λ(R1V2,ι)(ŷ1) − λ(R1V2,ι)(x1)

ψ1(ŷ1) − ψ1(x1)
− λ(R1V2,ι)(ỹ1) − λ(R1V2,ι)(x1)

ψ1(ỹ1) − ψ1(x1)

+
λ(R1Ṽ2,ι)(ỹ1) − λ(R1Ṽ2,ι)(ŷ1)

ψ1(ỹ1)

ψ1(ŷ1)
ψ1(ỹ1) − ψ1(x1)

The left hand side of the above inequality can be written as

g1(ŷ1)

(
(ψ1(ỹ1) − ψ1(ŷ1))ψ1(x1)

(ψ1(ŷ1) − ψ1(x1))(ψ1(ỹ1) − ψ1(x1))ψ1(ŷ1)

)

which is negative when ỹ1 < ŷ1. To prove ŷ1 ≤ ỹ1, it is now sufficient to show that
the right hand side is positive if ỹ1 < ŷ1. This is true since x1 < ỹ1, λ(R1Ṽ2)/ψ1 is
strictly decreasing and

λ(R1V2,ι)(ŷ1) − λ(R1V2,ι)(x1)

ψ1(ŷ1) − ψ1(x1)
>

λ(R1V2,ι)(ỹ1) − λ(R1V2,ι)(x1)

ψ1(ỹ1) − ψ1(x1)

which holds because λ(R1V2)/ψ1 is strictly decreasing andwas assumed to be convex.
��

Theorem 8 Assume that the conditions of Theorem 1 and Corollary 1 or Theorems
2 and 4 hold, limx↓a λ(R1V2)(x) = 0 and limx2↓a Ṽ2 = V2. Then V1 ≥ Ṽ1,
limx1↓a,x2↓a ŷ1 = ỹ1 and limx1↓a,x2↓a V1 = Ṽ1.

Proof The inequality V1 ≥ Ṽ1 follows from Theorem 3. The limit assumptions imply
limx1↓a,x2↓a u1(x) = C(x), which in turn implies limx1,x2↓a ŷ1 = ỹ1. limx1,x2↓a V1 =
Ṽ1 follows now from the explicit forms of the value functions Ṽ1 and V1. ��

6.2 Neutral regime changes

As stated in the beginning of this section, it may happen that the anticipative and post-
switch threshold solutions coincide. In this case it is optimal for an agent to anticipate
an upcoming regime switch by immediately choosing the optimal post-switch pol-
icy, regardless of the moment when the switch actually occurs. The study of neutral
anticipation for general regime switching problems seems to be quite complicated.
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However, if either the payoff or the underlying remains fixed during the switch, the
analysis becomes somewhat more tractable. Theorem 9 gives a necessary condition
for neutral anticipation for an OSP with a switching payoff and Theorem 10 gives a
sufficient condition for a problem with a switching diffusion.

Theorem 9 Suppose that g1, g2 ∈ C2(I ) and the underlying does not change during
the switch. If ỹ1 = ỹ2, then

{
(Lψ2g2)(ỹ1) = 0

(Lψ1g1)(ỹ1) = (Lψ1g2)(ỹ1)
(22)

where Lψ are as in (16).

Proof Combining Lemma 1 with the optimality condition of Theorem 2 yields

(Lψ2g2)(ỹ2) = 0

and

S′(ỹ1)(Lψ1g1)(ỹ1) = g2(ỹ2)

ψ2(ỹ2)
(ψ ′

2(ỹ1)ψ1(ỹ1) − ψ ′
1(ỹ1)ψ2(ỹ1))

for ỹ1 ≤ ỹ2 ��
Theorem 10 Suppose that the payoff g does not change during the switch and x1 = x2.
If ψ2 = ψ0, then ỹ0 = ỹ1 = ỹ2, ŷ0 = ŷ1 = ŷ2, Ṽ0 = Ṽ1 = Ṽ2 and V0 = V1 = V2.

Proof The assumptions imply Ṽ0 = Ṽ2 and V0 = V2 and hence ỹ0 = ỹ2 and ŷ0 = ŷ2.
Theorems 5 and 6 imply ỹ0 = ỹ1 and ŷ0 = ŷ1. Since the solutions exist and are of a
threshold form, we have

Ṽ1(x) = Ex

[
e−rτỹ1 g(X1,τỹ1

)1{τỹ1<T } + e−rT V0(X1,T )1{τỹ1≥T }
]

= Ex

[
e−rτỹ1 g(X1,τỹ1

)
]

= Ṽ0(x)

and

V1(x) = sup
ν∈V

Ex

[
N∑
i=1

e−(r+λ)τi g1(X
ν

1,τ−
i
) +

∫ τN

0
λe−(r+λ)sV0(X

ν
1,s)ds

]

= sup
ν∈V1

Ex

[
N∑
i=1

e−(r+λ)τi g1(X
ν

1,τ−
i
)

]

= V0(x)

for all x ∈ I . ��
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The conditions of Theorem 10might seem extremely restrictive, but it turns out that
there are non-trivial regime switches for which ψ2 = ψ0 holds. For these problems,
the regime switching structure has absolutely no effect on the value functions or the
optimal control policies. We elaborate this phenomenon in Sect. 7.3.

7 Examples

Having solved the anticipative OSP and ICP in Sects. 4 and 5 and studied their rela-
tionships further in Sect. 6, we will now illustrate the preceding analysis with three
examples. The first two are general examples dealing with anticipated switches in a
cash flow tax and the interest rate regimes, respectively. We apply various comparison
results of Sect. 6 to qualitatively describe the anticipative value functions and threshold
solutions and the relations between them and their pre- and post-switch counterparts.
In the third example we examine conditions leading to total neutrality (as described
in Theorem 10) for a problem with a switching GBM. Throughout this section we
assume the conditions of the Theorems in Sects. 4, 5 and 6.1.

7.1 Switching cash flow tax

As noted in the Introduction, it is not always realistic to assume that the macroe-
conomic conditions affecting the OSP or ICP at hand will remain unchanged in the
foreseeable future. Switches may arise e.g. due to the long run infeasibility of the
current government policies (Drazen and Helpman 1990). In this example we study
problems with an anticipated switch in the cash flow tax rate. We chose cash flow tax
over other forms of income taxation for simplicity, since it directly scales the payoff
by a constant factor between 0 and 1.

Suppose that the underlying does not change, x2 = x1 and the payoffs are of the
form gi = (1 − ti )g where ti ∈ (0, 1), i = 1, 2 and t1 �= t2. Then

argmaxx∈I
{

g(x)

ψ0(x)

}
= argmaxx∈I

{
(1 − t)g(x)

ψ0(x)

}
,

argmaxx∈(x1,b)

{
g(x)

ψ0(x) − ψ0(x1)

}
= argmaxx∈(x1,b)

{
(1 − t)g(x)

ψ0(x) − ψ0(x1)

}

for any t ∈ (0, 1) implying that the optimal pre- and post-switch control thresholds are
equal forOSP and ICP. Still the anticipative thresholdswill differ from them in general.
Indeed, for OSP Theorem 5 implies that if t1 ≶ t2, then Ṽ0 ≷ Ṽ2 and consequently
ỹ0 ≷ ỹ1. For ICP, the analogous result follows from Theorem 6. These conditions
imply that there are no neutral changes, provided that the switch is non-trivial. Thus
in the present framework all non-trivial changes in the cash flow tax rate create an
incentive to either delay or accelerate irreversible investment. The results are in line
with similar literature on the effects of uncertain tax policies on irreversible investment
( Nickell 1977; Sandmo 1979).
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A brief discussion of the practical implications of the aforementioned results is in
place. Consider an agent who is solving a pre-switch problem (either OSP or ICP) and
receives information about an upcoming tax regime switch. If the switch increases the
tax rate, the post-switch valuewill be lower than the pre-switch value and consequently
the conditions are more favourable before the switch than after it. Thus even though
the pre- and post-switch threshold solutions are equal, rising taxes are best anticipated
by momentarily lowering the control threshold so that there is a higher chance of
larger after-tax nominal payoffs before the switch. Likewise, switches decreasing the
tax rate are best anticipated by momentarily raising the control threshold. This kind of
anticipation results in a higher chance of the switch occurring before the next control
time, resulting again in larger after-tax nominal payoffs. The results emphasize that
in general, the neutrality of a tax system does not guarantee neutral anticipation of a
changing tax policy.

7.2 Switching interest rate

The previous example can be seen as a brief study of how anticipated switches in a
fiscal policy affect irreversible investment. We now turn our attention to anticipated
switches in a monetary policy. The simplest such models that can be analysed in the
present framework are problems where the only regime dependent parameter is the
interest rate. Interest rates are often studied together with macroeconomic variables
such as the inflation and unemployment rate (see e.g. Alvarez et al. 2001; Sargent et
al. 1973). Here we isolate the interest rate switches in order to apply the preceding
analysis. This example is also related to the seminal paper of Ingersoll Jr and Ross
(1992) since the two values of the interest rate are deterministic but the switching time
is random.

We begin by assuming that the interest rate is the only regime dependent parameter
and the payoff and underlying satisfy the conditions of Theorems 2 and 4. In particular
x1 = x2 for the impulse control problems. We denote the regime interest rates as r1
and r2 and assume that r1 �= r2 since otherwise the switch would be trivial. Thus the
anticipative rate is r1 + λ. Defining Fi = (A− ri )g for i = 1, 2 we see that F1 ≶ F2
if and only if r1 ≷ r2. Choosing λ = 0 in Theorems 2 and 4 yields that r1 ≷ r2
is equivalent to ỹ0 ≶ ỹ2 and ŷ0 ≶ ŷ2 respectively. Thus in the present example, the
ordering of the pre- and post-switch thresholds is opposite to the ordering of the regime
interest rates. Next we show that the order conditions of Theorems 5 and 6 are satisfied
so that we have a similar ordering for the pre-switch and anticipative thresholds as
well.

We write α = r1 ∧ r2, β = r1 ∨ r2, y∗ = ỹ0 ∧ ỹ2 and y∗ = ỹ0 ∨ ỹ2 in order to
simplify the notation. For x ≥ y∗ we clearly have Ṽ0(x) = g(x) = Ṽ2(x). Using
the uniqueness of the optimal stopping thresholds it is also easy to see that ỹ0 ≶ ỹ2
implies Ṽ0(x) ≶ Ṽ2(x) for x ∈ [y∗, y∗). The case x < y∗ requires some analysis. For
any x, y ∈ I such that x < y, we have

ψβ(x)

ψβ(y)
= Ex [e−βτy ] ≤ Ex [e−ατy ] = ψα(x)

ψα(y)
(23)
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The equalities in (23) are well known results in the classical theory of diffusions (see
e.g. Borodin and Salminen 2012, p. 18). Now

g(y∗)
ψβ(y∗)

ψβ(x) <
g(y∗)

ψα(y∗)
ψα(x) <

g(y∗)
ψα(y∗)

ψα(x)

for x < y∗. Thus r1 ≷ r2 implies Ṽ0 ≶ Ṽ2 and it follows fromTheorem 5 that ỹ0 ≶ ỹ1.
For impulse control thresholds the calculations are somewhat more complicated.

Let α, β be as in the previous paragraph and let y∗ = y0 ∧ y2, y∗ = y0 ∨ y2. Using
(23) we get

g(y∗)
ψβ(x)
ψβ(y∗)

1 − ψβ(x1)
ψβ(y∗)

<
g(y∗) ψα(x)

ψα(y∗)

1 − ψα(x1)
ψα(y∗)

<
g(y∗) ψα(x)

ψα(y∗)

1 − ψα(x1)
ψα(y∗)

(24)

for x < y∗. Thus r1 ≷ r2 implies V0(x) ≶ V2(x) for x < y∗ and x ≥ y∗. For
x ∈ [y∗, y∗) the condition V0(x) ≶ V2(x) follows by (24) and the monotonicity of
ψβ . Moreover, if the monotonicity condition of Theorem 6 is satisfied, then ŷ0 ≶ ŷ1.

r1 ≷ r2 implies both ỹ0 ≶ ỹ1 and ŷ0 ≶ ŷ1. This means that there are no non-trivial
interest rate switches leading to neutral anticipation. In light of the above calcula-
tions we may also conclude that in our framework higher interest rates discourage
irreversible investment and lower interest rates have the opposite effect. Furthermore,
rising interest rates are best anticipated by delaying irreversible investment decisions
and falling are anticipated by accelerating them. The results are in line with the usual
textbook view on the relationship between interest rates and investment. In particular
it seems that here the interest rate structure is in some sense too deterministic to allow
for the counter-intuitive positive relationship between interest rates and investment
described in Ingersoll Jr and Ross (1992).

7.3 Total neutrality for a switching GBM

As stated in Theorem 10, there are non-trivial regime-switches that guarantee not only
neutral anticipation, but also the identity of pre-, anticipative and post-switch optimal
control policies and value functions. We call this type of neutrality total neutrality,
since the regime switching structure has no effect on the solution of the problem. In
this example we determine the regime switches that satisfy the conditions of Theorem
10 when the underlying is a GBM in both regimes.

Let g1 = g2 = g. Contrary to the preceding analysis, we label quantities associated
to regime 1 with the index 1 instead of 0 for the rest of this section. This is a notational
convenience because in the present example we are only comparing quantities related
to the individual regimes. Thus for i = 1, 2 the diffusion generators are

Ai = μi x
d

dx
+ σ 2

i

2
x2

d2

dx2
, i = 1, 2

and the minimal r -excessive functions are ψi (x) = xαi,+ and φi (x) = xαi,− , where
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αi,± = 1

2
− μi

σ 2
i

±
√√√√

(
1

2
− μi

σ 2
i

)2

+ 2r

σ 2
i

(25)

It is now evident that ψ2 = ψ1 if and only if α2,+ = α1,+, which is equivalent to

σ 2
1

2
α2,+(α2,+ − 1) + μ1α2,+ − r = 0 (26)

Note that (26) implies total neutrality for OSP and ICP both. Economically interesting
applications arise when the payoff is e.g. of the form g(x) = x − c, c > 0. The pre-
and post-switch optimal stopping policies satisfy the relation

αi,+ = g′(ỹi )ỹi
g(ỹi )

= ỹi
ỹi − c

(27)

The right hand side of (27) describes the elasticity of the payoff with respect to the
state variable. If the underlying is taken to be the value of an irreversible investment
and c is the fixed cost of exercising the investment opportunity, the problem turns
into a regime switching extension of the investment problem studied by Dixit et al.
(1999). Following their markup interpretation of optimal stopping rules, we can say
that total neutrality holds if the optimal markups are identical in both regimes. Thus if
both regimes induce the exact same trade-off between larger versus later net benefits,
there is no incentive to ever deviate from the pre-switch policy, even if the switch is
non-trivial.

In the context of impulse control problems, the chosen payoff is used e.g. in the
stochastic Faustmann timber harvesting problem as discussed in Alvarez (2004b). In
this case, total neutrality means that even if the environmental factors affecting the
forest growth dynamics undergo a regime switch, the optimal harvesting policy and
the forest stand value remain unchanged.

8 Discussion

In this paper we studied semi-explicit solutions to OSPs and ICPs with one expo-
nentially distributed regime switch. We provided general forms of their solutions and
sufficient conditions for existence and uniqueness of threshold solutions which are a
class of particularly simple and attractive control policies. Various intuitive compari-
son results for different problems and their threshold solutions were formulated. We
also considered three economically relevant examples as demonstrations of the general
theory, namely anticipated changes in the cash flow tax and the interest rate and neutral
anticipation for a switching GBM. In the first example, it was found that neutral antic-
ipation is impossible for non-trivial switches in the cash flow tax rate. The result is in
line with previous literature. In the second example we obtained a similar neutrality
result for interest rates and recovered the mainstream result that higher interest rates
discourage irreversible investment while lower rates encourage it. The third example
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demonstrated that there are non-trivial regime switches for which the problem exhibits
a condition much stronger than neutral anticipation, which we labelled total neutrality.
Total neutrality means that the pre-, anticipative and post-switch value functions (and
the control thresholds) coincide and thus the underlying regime switching structure
has no effect on the solution of the problem.

In the existing literature on stochastic impulse control problemswith regime switch-
ing, the switches are usuallymodelled as finite stateMarkov chains in continuous time.
Hence most of the results and solution techniques rely heavily on theMarkovian struc-
ture of the problems. However, one could in principle consider a problem where the
regime switches follow arbitrary, sufficiently smooth probability distributions. As a
consequence the problems become non-Markovian and time inconsistent in the sense
that initial optimal solutions may not remain optimal as time increases. In particu-
lar the classical notion of an optimal strategy arising from Hamilton-Jacobi-Bellman
equations has to be abandoned and one has to look for equilibrium strategies in a
game theoretic framework (e. g. Bayraktar et al. 2021, 2023; Björk et al. 2017; He
and Jiang 2021; Huang and Nguyen-Huu 2018; Huang et al. 2020; Huang and Zhou
2020; Huang and Wang 2021; Huang and Zhou 2021). Such models go beyond the
scope of the present work and are left for future research.
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