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Abstract
The paper provides an overviewof the theory and applications of risk-sensitiveMarkov
decision processes. The term ’risk-sensitive’ refers here to the use of the Optimized
Certainty Equivalent as a means to measure expectation and risk. This comprises
the well-known entropic risk measure and Conditional Value-at-Risk. We restrict our
considerations to stationary problems with an infinite time horizon. Conditions are
given under which optimal policies exist and solution procedures are explained. We
present both the theorywhen theOptimizedCertainty Equivalent is applied recursively
as well as the case where it is applied to the cumulated reward. Discounted as well as
non-discounted models are reviewed.

Keywords Markov decision process · Risk-sensitive decision · Optimized certainty
equivalent · Optimal policy

1 Introduction

The theory of Markov decision processes (MDPs) deals with stochastic, dynamic
optimization problems. In the classical situation, the aim is to maximize an expected
cumulative or averaged reward of a system. Since the first formulations by Richard
Bellman in the 1950s, the theory has developed tremendously. In particular, one branch
of literature is devoted to extending this theory beyond the simple expectation, since
there is an evidence fromvarious fields that the expectation should be replaced by some

B Nicole Bäuerle
nicole.baeuerle@kit.edu

Anna Jaśkiewicz
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criterion which allows to model risk-sensitivity of the decision maker. This evidence
comes from disciplines like psychology, economics and biology. For instance, Braun
et al. (2011) reviewed evidence for risk-sensitivity in motor control tasks.

From a mathematical point of view, the decision problem gets of course more com-
plicated when risk-sensitivity is taken into account. Loosely speaking, risk-sensitivity
weights the possible fluctuations around the mean. A simple way to deal with this is to
consider a weighted criterion of the expectation and the variance of a random income,
i.e. to include the second moment into the decision. This has for example been propa-
gated in Markowitz (1952). Naturally, one can generalize this idea to higher moments.
One of the ways is to use an exponential function which plays a prominent role in
risk-sensitive MDPs. Then, all moments of a random payoff are taken into account if
we consider the expectation of an exponential function of this random payoff. This
fact can be seen via the Taylor series expansion of the exponential function around 0.
To be more precise let us consider for example the following expression

J (x, π) = − 1

γ
lnEπ

x

[
exp

(
−γ

∞∑
k=0

βkr(Xk, Ak)

)]

where (Xk, Ak)k is a controlled state-action process, r is a one-stage reward function,
β is a discount factor, γ �= 0 is a risk-sensitivity parameter and the transition law
is determined by a policy π . The initial state is X0 = x . A target function like this
has first been studied in Howard and Matheson (1972). Indeed, for small γ this is
approximately equal to

J (x, π) ≈ E
π
x

[ ∞∑
k=0

βkr(Xk, Ak)

]
− γ

2
Varπ

x

( ∞∑
k=0

βkr(Xk, Ak)

)
.

However, from a mathematical point of view it is more tractable than the variance.
From the approximation it is also obvious that γ > 0 models a risk-averse decision
maker (since then the variance is subtracted), whereas γ < 0 corresponds to a risk-
loving decision maker. The preceding target function is a special case of the situation
we consider here in this paper. It can also be interpreted as a Certainty Equivalent of the
exponential utility function. This point of view can then be generalized to Optimized
Certainty Equivalents which we consider in this survey.

The aim of this paper is to provide an overview of the ideas, concepts and liter-
ature in this area. We will also discuss the situation where the Optimized Certainty
Equivalent is applied to the single-stage rewards in a recursive way. However, we will
stay within the setting where optimal policies are stationary in a certain sense and can
be computed from optimality equations, thus naturally avoiding time-inconsistency
issues. Our point of view is mainly from the economics and operations research per-
spective. We do not consider problems with a finite time horizon, nor do we treat
problems in continuous time. These issues were described in the recent survey of
Biswas and Borkar (2023).

The outline of our survey is the following. In the next sectionwe explain and discuss
our main building block for the target function: the Optimized Certainty Equivalent.
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Markov decision processes with risksensitive criteria 143

The Optimized Certainty Equivalents have been introduced by Ben-Tal and Teboulle
(2007) and provide a useful generalization of Certainty Equivalents. They comprise
important cases like the entropic risk measure and the Conditional Value-at-Risk and
are still tractable from a mathematical point of view. In Sect. 3 we introduce the
theory of Markov decision processes. We restrict our attention to stationary problems
(i.e. the model data do not depend on the time point) with an infinite time horizon.
Conditions are given under which optimal policies exist and a solution procedure is
explained. Section 4 presents the theory when the Optimized Certainty Equivalent is
applied recursively. Some generalizations and related problems are discussed at the
end. Section 5, on the other hand, treats the situation when the Optimized Certainty
Equivalent is applied to the cumulative reward. Here the presented solution technique
is via an extension of the state space. Finally in Sect. 6 we provide an overview on
the risk-sensitive average cost case. Section 7 summarizes some typical applications
of the presented theory. The appendix contains two proofs.

Notation. As usual, the symbol N denotes the set of positive integers and N0 =
N ∪ {0}. By R (R+) we denote the set of all (non-negative) real numbers. For x ∈ R

we denote by x+ the positive part of x . The Dirac measure is given by δx (B) and is
equal to one if x ∈ B and zero otherwise. We use the following abbreviations: w.r.t.
means with respect to, r.h.s means right-hand side and l.h.s means left-hand side.

2 Certainty equivalents and optimized certainty equivalents

Decision makers are often risk averse when faced with decisions,1 in particular when
monetary rewards or costs have to be optimized. Consider for example the following
two lotteries:

• Lottery 1: receive a reward of 1000 with probability 0.05 and 0 else.
• Lottery 2: receive a reward of 50 with probability 1.

Both lotteries have an expected value of 50. However when confronted with this
choice in reality, most people prefer lottery 2, since they are risk averse and consider
the probability of 0.05 to be very low. Thus, it is reasonable to model risk aversion in
decision making. This can be done for example by using risk measures.

In what follows let (�,F ,P) be a probability space. All random variables which
appear here are defined on this space. We will consider Certainty Equivalents and
Optimized Certainty Equivalents. Let u : R → [−∞,∞) be a strictly increasing,
strictly concave utility function. The main purpose of the utility function is to provide
a systematic way to rank alternatives that captures the principle of risk aversion, see
Von Neumann and Morgenstern (2007). This is accomplished whenever the utility
function is concave. The degree of risk aversion exhibited by the utility function
corresponds to the magnitude of the bend in the function, i.e. the stronger the bend
the greater the risk aversion. The degree of risk aversion is formally defined by the

1 The St. Petersburg Paradox which is due to Daniel Bernoulli in 1738 is often mentioned as the first
discussion of this topic. For an English translation of the original paper in Latin see Bernoulli (1954).
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144 N. Bäuerle, A. Jaśkiewicz

Arrow-Pratt absolute risk aversion coefficient (Arrow 1971; Pratt 1964):

γ (x) := −u′′(x)
u′(x)

.

Basically, the parameter shows how risk aversion changes with the wealth level.
Although the actual value of the expected utility of a random outcome is meaningless
except with comparison with other alternatives, there is a derived measure with units
that has intuitive meaning. The Certainty Equivalent of a bounded random income
X ∈ L∞(�,F ,P) is defined as

CE(X) = u−1
Eu(X) (1)

where E is the expectation operator with respect to the probability measure P. CE(X)

is the sure amountwhich yields the same utility as the randomoutcome. TheOptimized
Certainty Equivalent is defined as follows (Ben-Tal and Teboulle 2007):

Definition 1 Let u : R → [−∞,∞) be a proper, closed, concave and non-decreasing
utility function with u(0) = 0 and u′+(0) ≤ 1 ≤ u′−(0) where u′+ and u′− are the right
and left derivatives of u.2 Further let X ∈ L∞(�,F ,P) be a bounded randomvariable.
The Optimized Certainty Equivalent (OCE) for X is a map Su : L∞(�,F ,P) → R

with

Su(X) = sup
η∈R

{η + Eu(X − η)}

which is assumed to be a proper function, which means that the domain domSu :=
{X ∈ L∞(�,F ,P) : Su(X) > −∞} is not empty and Su is finite on this domain.

The interpretation here is that the decision maker may consume the amount η today
andobtain the present valueη+Eu(X−η) as a result.Optimizing over the consumption
then yields the present value of X . Among others, Su(X) has the following properties
for X ,Y ∈ L∞(�,F ,P) (see Ben-Tal and Teboulle 2007):

(P1) monotonicity: X ≤ Y ⇒ Su(X) ≤ Su(Y );
(P2) shift additivity : Su(X + c) = Su(X) + c, for any c ∈ R;
(P3) Jensen inequality: Su(X) ≤ EX ;
(P4) consistency: Su(c) = c for any c ∈ R.

Indeed it can be shown that−Su is a convex riskmeasure in the sense of Föllmer and
Schied (2010). A random variable X is now preferred over Y if Su(X) ≥ Su(Y ). Thus
(P3) and (P4) imply that this preference order models risk aversion since Su(X) ≤
EX = Su(EX), i.e. the sure amount EX is preferred over a random amount X with
same expectation. Moreover, it holds that

lim
δ→0

1

δ
Su(δX) = EX

2 Note that u(x) ≥ 0 for all x ≥ 0 and u(x) ≤ x for all x ∈ R.
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Markov decision processes with risksensitive criteria 145

whichmeans that the risk-neutral setting is achieved in the limit. Note that for simplic-
ity we restrict here to bounded random variables. This is sufficient for the applications
given in further sections where we consider bounded reward functions.

A further representation of Su is due to Ben-Tal and Teboulle (2007) given by

Su(X) = inf
Q∈Q

{Iϕ(Q,P) + EQX}

where Q is the set of all probability measures Q absolutely continuous w.r.t. P such
that dQ

dP ∈ L1(�,F ,P) and Iϕ is the usual ϕ-divergence defined by

Iϕ(Q,P) =
{∫

ϕ
(
dQ
dP

)
dP, if Q � P

∞, else.

Here ϕ : R → [0,+∞] is a proper closed convex function with closed interval
(containing 1) as domain and ϕ(1) = 0. This representation can be exploited in the
analysis of risk-sensitive problems and in order to construct a connection to robust
decision making, see Dai Pra et al. (1996), Bäuerle and Glauner (2022a). Indeed this
representation consists of the risk-neutral part EQX where however the infimum over
a setQ of probability measures is taken. The ϕ-divergence term penalizes the distance
of Q to P. Therefore, it resembles a robust approach. The following examples list
important special cases of the Optimized Certainty Equivalent.

Example 1 a) When we choose u(t) = 1
γ
(1 − e−γ t ) for γ > 0 we obtain

Su(X) = − 1

γ
lnEe−γ X . (2)

The quantity −Su(X) is known as the entropic risk measure, see p. 184 in Föllmer
and Schied (2010). However, we shall further also refer to (2) as the entropic risk
measure. It is easy to see that in this case

Su(X) = u−1
Eu(X)

coincides with the Certainty Equivalent of X w.r.t. u. A Taylor series expansion
yields

Su(X) ≈ EX − γ

2
Var(X)

which connects the entropic risk to the mean-variance criterion. The entropic risk
measure is the most widely used functional which is applied in risk-sensitive
dynamic decision making. This is mainly because it is still mathematically
tractable. Indeed, the paper of Howard and Matheson (1972) which is considered
to be the first work in this field, coined the name risk-sensitive Markov decision
process. Since then the adjective ’risk-sensitive’ is often used as a synonym for
applying the entropic risk measure.
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146 N. Bäuerle, A. Jaśkiewicz

b) If for α ∈ (0, 1) we choose

u(t) = − 1

α
(−t)+

then Su(X) = −CVaRα(X) where the risk measure Conditional Value-at-Risk
(CVaR) is defined as

CVaRα(X) = inf
η∈R

{ 1
α
E(η − X)+ − η

}
.

The Conditional Value-at-Risk is sometimes also called Average Value-at-Risk or
Expected Shortfall. It can be represented as

CVaRα(X) = 1

α

∫ α

0
VaRγ (X)dγ

where VaRα(X) = inf{c ∈ R : P(X + c < 0) ≤ α} is the Value-at-Risk. In case
of a continuous random variable X we also have

CVaRα(X) = E[−X | − X ≥ VaRα(X)].

The Conditional Value-at-Risk is not only a convex, but also a coherent risk mea-
sure. It is the smallest convex risk measure which dominates Value-at-Risk, see
Remark 4.56 in Föllmer and Schied (2010).

c) If we choose

u(t) =
{
t − 1

2 t
2, t < 1

1
2 , t ≥ 1

then for random variables with X ≤ 1 + EX we obtain that Su(X) is the mean-
variance criterion

Su(X) = EX − 1

2
Var(X).

The mean-variance criterion is a popular decision criterion in finance since its first
appearance in Markowitz (1952). However the interpretation is here restricted to
random variables with bounded support.

Remark 1 In what follows we consider optimization problems with rewards. Thus, we
maximize Su . In case we want to minimize cost, we have to define the criterion in a
different way. In this case let 
 : R → (−∞,∞] be a proper, closed, convex and non-
decreasing function bounded from below with 
(0) = 0 and 
′+(0) ≥ 1 ≥ 
′−(0). For
X ∈ L∞(�,F ,P) the Optimized Certainty Equivalent is then S
 : L∞(�,F ,P) →
R with

S
(X) = inf
η∈R{η + E
(X − η)}
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Markov decision processes with risksensitive criteria 147

which is assumed to be a proper function. For X being a cost, this criterion has to be
minimized.

3 Markov decision processes

3.1 Themodel

By a Borel space Y we mean a non-empty Borel subset of a Polish space. We assume
that Y is equipped with the Borel σ -algebra B(Y ). For dynamic decision making we
consider the following controlled Markov process in discrete time (a comprehensive
treatment of this theory is e.g. given in Puterman 2014;Hernández-Lerma andLasserre
1996; Bäuerle and Rieder 2011).

(a) The state space E is a Borel space.
(b) The action space A is a Borel space.
(c) D ⊂ E×A is the set of admissible state-action combinations. D contains the graph

of a measurable mapping f : E → A. The sets D(x) = {a ∈ A : (x, a) ∈ D} of
admissible actions in state x are assumed to be compact.

(d) q is a regular conditional distribution from D to E .
(e) The one-stage reward r : D → R+ is a bounded Borel measurable function, i.e.

r(x, a) ≤ d for all (x, a) ∈ D for some constant d > 0.

We define the set of histories of the process. At time k = 0 we have H0 = E . For
k ≥ 1 the set of histories are given by Hk = Dk ×E and H∞ = D×D× . . .. A policy
π = (πk)k∈N0 is a sequence of decision rules (Borel measurable mappings) from Hk

to A such that πk(hk) ∈ D(xk) where hk = (x0, a0, . . . , xk) ∈ Hk . The set of all
policies is denoted by �. Let F be the set of all measurable mappings f : E → A
such that f (x) ∈ D(x) for every x ∈ E . By our assumption F �= ∅. A Markovian
policy is a sequence ( fk)k∈N0 where each fk ∈ F . The class of Markovian policies is
denoted by �M . A Markovian policy ( fk)k∈N0 is stationary if there is some f ∈ F
such that fk = f for every k ∈ N0, i.e. the same decision rule f is used throughout
the time. We identify a stationary policy with the element of the sequence. Therefore,
the set of all stationary policies will be denoted by F . We have

F ⊂ �M ⊂ �.

Let (�,F) be a measurable space consisting of the sample space � = (E × A)∞
with the correspondingproductσ -algebraF on�.The elements of� are the sequences
ω = (x0, a0, x1, a1, . . .) ∈ H∞ with xn ∈ E and an ∈ A for n ∈ N0. The random
variables X0, A0, X1, A1, . . . are defined by

Xk(ω) = xk, Ak(ω) = ak, k ∈ N0

and represent the state and action process, respectively. Let π ∈ � and the initial state
x ∈ E be fixed. Then according to the Ionescu-Tulcea theorem there exists a unique
probability measure P

π
x on (�,F) which is supported on H∞, i.e. Pπ

x (H∞) = 1.
Moreover, for k ∈ N0 :
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148 N. Bäuerle, A. Jaśkiewicz

(a) P
π
x (X0 ∈ B) = δx (B) for all B ∈ B(E),

(b) P
π
x (Ak ∈ C |hk) = δπk(hk )(C) for all hk ∈ Hk and C ∈ B(A),

(c) P
π
x (Xk+1 ∈ B|x, a0, . . . , xk, ak) = q(B|xk, ak) for all B ∈ B(E).

Note that the theory is also established for unbounded reward functions in which case
it is common to work with the concept of so-called ’bounding functions’.

3.2 Risk-Neutral decisionmaker

One of the standard optimization problems for Markov decision processes is to find
the maximal expected discounted reward:

J ∗
β (x) = sup

π∈�

Jβ(x, π) with Jβ(x, π) = E
π
x

[ ∞∑
k=0

βkr(Xk, Ak)

]
(3)

where β ∈ [0, 1) is a discount coefficient and, if possible, an optimal policy π∗ ∈ �

such that J ∗
β (x) = Jβ(x, π∗). Under some continuity and compactness assumptions,

the maximal value J ∗
β and an optimal policy can be characterized via the Bellman

equation. In order to establish this equation we may use one of two different sets of
conditions which are common in the literature, see Schäl (1975), Schäl (1983):

Condition (S):

(a) The sets D(x), x ∈ E, are compact.
(b) For each x ∈ E and every Borel set C ⊂ E the function q(C |x, ·) is continuous

on D(x).
(c) The reward r(x, ·) is upper semicontinuous on D(x) for each x ∈ E .

Condition (W):

(a) The sets D(x), x ∈ E, are compact and the mapping x → D(x) is upper semi-
continuous.

(b) The transition law q is weakly continuous on D, i.e. the function

(x, a) →
∫

h(y)q(dy|x, a)

is continuous for each continuous bounded function h.

(c) The reward r is upper semicontinuous on D.

In what follows letU (E) be the set of all bounded, non-negative upper semicontin-
uous functions on E and B(E) the set of all bounded, non-negative Borel measurable
functions on E . We equip these spaces with the supremum norm ‖ · ‖.
Theorem 1 Assume (W) or (S). Then

a) There exist a unique function Vβ ∈ U (E) in case (W) holds and Vβ ∈ B(E) in
case (S) holds and a decision rule f ∗ ∈ F such that for all x ∈ E :

Vβ(x) = sup
a∈D(x)

{
r(x, a) + β

∫
Vβ(y)q(dy|x, a)

}
(4)
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Markov decision processes with risksensitive criteria 149

= r(x, f ∗(x)) + β

∫
Vβ(y)q(dy|x, f ∗(x)).

b) Moreover, Vβ(x) = J ∗
β (x) = Jβ(x, f ∗) for all x ∈ E, i.e. f ∗ ∈ F is an optimal

stationary policy.

Theorem 1 can be used to establish the link between the expected discounted reward
and the long-run average reward defined as:

J (x, π) = lim inf
n→∞

1

n
E

π
x

[
n−1∑
k=0

r(Xk, Ak)

]

for any initial state x ∈ E and π ∈ �. The aim is to find a policy π∗ ∈ � such
that J (x) := supπ∈� J (x, π) = J (x, π∗) for every x ∈ E . A first relation between
discounted reward and long-run average reward is provided by the Tauberian theorem
of Hardy-Littlewood. Variants of this result and historical comments may be found
in Appendix H in Filar and Koos (1997) or pages 417 and 432 in Puterman (2014)
and references cited therein. Basically, it claims that for bounded sequences of real
numbers (Rk)k∈N0 it holds

lim inf
n→∞

1

n

n−1∑
k=0

Rk ≤ lim inf
β→1

(1 − β)

∞∑
k=0

βk Rk .

When we set Rk := E
π
x r(Xk, Ak) then we immediately obtain

J (x, π) ≤ lim inf
β→1

(1 − β)Jβ(x, π), x ∈ E, π ∈ �,

and consequently

sup
π∈�

J (x, π) ≤ lim inf
β→1

(1 − β)J ∗
β (x), x ∈ E .

A second relation is given via (4). Let z ∈ E be a fixed state and put hβ(x) :=
Vβ(x) − Vβ(z). Then simple rearrangements in (4) yield

(1 − β)Vβ(z) + hβ(x) = sup
a∈D(x)

{
r(x, a) + β

∫
hβ(y)q(dy|x, a)

}
, x ∈ E .

Under certain set of conditions and lettingβ → 1, the pair ((1−β)Vβ(z), hβ(·))would
converge to a pair (ξ, h(·)) that satisfies the average reward optimality equation

ξ + h(x) = sup
a∈D(x)

{
r(x, a) +

∫
h(y)q(dy|x, a)

}
, x ∈ E . (5)
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150 N. Bäuerle, A. Jaśkiewicz

If a set of “reasonablymild” assumptions is imposed on the family of functions {hβ(·)}
then a pair (ξ, h(·)) meets the average reward optimality inequality

ξ + h(x) ≤ sup
a∈D(x)

{
r(x, a) +

∫
h(y)q(dy|x, a)

}
, x ∈ E . (6)

If the maximizer, say f∗ ∈ F, of the r.h.s. in (5) or (6) exists, it constitutes an optimal
stationary policy, i.e. J (x, f∗) = supπ∈� J (x, π) for every x ∈ E and moreover,
the optimal average reward is independent of the initial state and ξ = J (x, f∗). This
approach is well-described in the literature. The reader is referred toHernández-Lerma
and Lasserre (1996), Piunovskiy (2013), Puterman (2014) where also other methods
are presented with comments and illustrative examples.

There are a number of established computational approaches which can, often after
modifications, also be applied to the risk-sensitive cases which we discuss later. For
example if we consider the setting of Theorem 1, the operator

Tβv(x) := sup
a∈D(x)

{
r(x, a) + β

∫
v(y)q(dy|x, a)

}
(7)

is a contraction on a suitable function space into the same function space. Then apply-
ing Banach’s fixed point theorem, the value function and the optimal policy can be
approximated by iterating the Tβ -operator. Alternatively, one can start with an arbi-
trary stationary policy, given by a decision rule f ∈ F , compute the corresponding
value V f (x) = Jβ(x, f ) (see (3)) and improve it by computing the maximum points
on the r.h.s. of (7) with v replaced by V f .Under mild assumptions this procedure con-
verges to the optimal solution. For computational purposes it is often more convenient
to consider the so-called Q-function, which is defined as follows

Q(x, a) := r(x, a) + β

∫
Vβ(y)q(dy|x, a).

Note that we have Vβ(x) = supa∈D(x) Q(x, a) and

Q(x, a) = r(x, a) + β

∫
sup

a′∈D(y)
Q(y, a′)q(dy|x, a).

This representation has the advantage that the maximization can be done before
the integration. The algorithms discussed so far are only applicable when the state
and action spaces are of low dimension and all data of the model are known. Mod-
ern approximate solution techniques are summarized under the name Reinforcement
Learning (RL). The aim of these methods is to find an optimal strategy while simul-
taneously learn the right model. A popular approach is Q-learning, where the learned
action-value function Q(t) directly approximates the Q-function. First we initialize
Q(0) arbitrarily. Then we repeat the following steps:

1. Choose an admissible pair (x, a) at randomandobserve the next state y (or generate
y ∼ q(·|x, a)).
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Markov decision processes with risksensitive criteria 151

2. Update at (x, a) :

Q(t+1)(x, a) := (1 − αt )Q
(t)(x, a) + αt

(
r(x, a) + β sup

a′∈D(y)
Q(t)(y, a′).

)

where the learning rates (αt ) have to be chosen appropriately.

Under mild assumptions this method is known to converge to the Q-function. Other
methods parametrize the class of policies and thus, the value function and estimate the
optimal parameters. Though not being optimal, in this situation it is more convenient
to work with randomized policies. In order to find the best parameters in this setting,
often the gradient is computed and parameters are updated by a gradient ascent rule.
For computational issues consult among others with Sutton and Barto (2018), Powell
(2022), Hambly et al. (2023).

As discussed in the previous section this criterion does not account for deviations
around themean or in other words the risk of the decisionmaker. Thus, in what follows
we consider risk-sensitive optimization criteria.

4 Markov decision processes with recursive risk-sensitive preferences

Measuring risk in a stochastic dynamic process is much more complicated than in a
single-step situation. For instance, if the decision maker is pessimistic, he may assume
that everything that can go wrong will go wrong. Then, he tries to minimize the losses
under this assumption. This leads to minmax optimization and is sometimes useful,
but, most often, the resulting policies are overly cautious. Involving risk in Markov
decision processes is generally difficult. First of all, optimizing many risk sensitive
objectives is often NP-hard and computationally intractable. For instance, Mannor
and Tsitsiklis (2011) illustrate this fact for mean-variance optimization. Moreover,
they also show that the payoff criteria based on expectation and variance can lead
to counter-intuitive policies. Another example is provided in Moldovan and Abbeel
(2012). Therefore, in our approach we work with the Optimized Certainty Equivalents
that enjoys useful properties given in Sect. 2. These properties allow to incorporate
risk into a decision process and the problems can be solved efficiently by the dynamic
programming techniques. General principles for the specification of utility functions
to a potential decision maker are given in Luenberger (2014). Basically, risk might be
taken into account at every stage and then the payoff is aggregated or risk might be
applied to the aggregated discounted reward. Whereas the second approach is easy to
apply also to continuous-time decision problems, the first one is more challenging and
there are only a few approaches like the stochastic differential utility, introduced in
Duffie and Epstein (1992) to aggregate risk in continuous-time. For further discussions
see the end of this section.

In what follows we concentrate on the underlying controlled stochastic dynamic
process to be Markovian (like in the previous section) and that the Optimized Cer-
tainty Equivalents are applied recursively. This setting guarantees that the optimality
principle holds and optimal policies are stationary.
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For k ∈ N0 let

B(Hk) := {v : Hk → R+ : v is measurable, bounded}

be equipped with the supremum norm ‖ · ‖. Let π = (πk)k∈N0 ∈ � be an arbitrary
policy. For vk+1 ∈ B(Hk+1) and hk ∈ Hk we define a conditional Optimized Certainty
Equivalent

S(xk ,πk (hk))
u

(
vk+1(hk, πk(hk), Xk+1)

)
:= sup

η∈R

{
η +

∫
u(vk+1(hk, πk(hk), y) − η)q(dy|xk, πk(hk))

}

where the random variable Xk+1 has the distribution q(·|xk, πk(hk)). Then we define
the operator Lπk as follows:

(Lπkvk+1)(hk) = Lπkvk+1(hk)

:= r(xk, πk(hk)) + βS(xk ,πk (hk))
u

(
vk+1(hk, πk(hk), Xk+1)

)
where β ∈ [0, 1) is a discount factor. The operator Lπk is monotone by (P1), i.e.

vk+1 ≤ wk+1 ⇒ Lπkvk+1 ≤ Lπkwk+1

for vk+1, wk+1 ∈ B(Hk+1). By (P1) and (P4) it holds

0 ≤ Lπkvk+1(hk) ≤ d + β‖vk+1‖ for any hk ∈ Hk and k ∈ N0. (8)

Let now N ∈ N. For the N -stage decision model we apply these operators recur-
sively. Thus, for an initial state x ∈ E , the total discounted recursive risk-sensitive
reward under policy π is given by

JN (x, π) = (Lπ0 ◦ . . . ◦ LπN−1)0(x)

where 0 is the function 0(hk) ≡ 0 for all hk ∈ Hk, k ∈ N0. For N = 2 this equation
reads

J2(x, π) = (Lπ0 ◦ Lπ1)0(x) = Lπ0(Lπ10)(x)

= r(x, π0(x)) + βS(x,π0(x))
u

(
r(X1, π1(x, π0(x), X1))

)
.

Aggregation over time is still additive in this approach. By our assumptions and (P1),
the sequence (JN (x, π))N∈N is non-decreasing and bounded from below by 0 for all
x ∈ E and π ∈ �. Moreover, by (8) we obtain

JN (x, π) ≤ d

1 − β
, x ∈ E, π ∈ �, N ∈ N.

Hence the limit limN→∞ JN (x, π) exists for every x ∈ E and π ∈ �.
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Problem 1 For an initial wealth x ∈ E and a policy π ∈ � we define the total
discounted recursive risk-sensitive reward by

J (x, π) := lim
N→∞ JN (x, π).

The aim of the decision maker is to find the maximal value, i.e.

J ∗(x) := sup
π∈�

J (x, π), x ∈ E

and a policy π∗ such that J (x, π∗) = J ∗(x), x ∈ E .

In order to solve the problem we use dynamic programming. We need essentially
the same assumptions as in the risk-neutral case.

A proof of the following theorem can be found in the appendix.

Theorem 2 Assume (W) or (S). Then

a) There exist a unique function V ∈ U (E) in case (W) holds and V ∈ B(E) in case
(S) holds and a decision rule f ∗ ∈ F such that for all x ∈ E :

V (x) = sup
a∈D(x)

{
r(x, a) + βS(x,a)

u (V (X1))
}

(9)

= r(x, f ∗(x)) + βS(x, f ∗(x))
u (V (X1))

where S(x,a)
u indicates that X1 has the distribution q(·|x, a).

b) Moreover, V (x) = J ∗(x) = J (x, f ∗) for all x ∈ E, i.e. f ∗ ∈ F is an optimal
stationary policy.

If u is an exponential utility then we obtain in the previous case that Su is the
entropic risk measure (Example 1 a)) and the optimality equation (9) reduces to (see
Asienkiewicz and Jaśkiewicz 2017)

V (x) = sup
a∈D(x)

{
r(x, a) − β

γ
ln
{ ∫

exp(−γ V (y))q(dy|x, a)
}}

(10)

for x ∈ E . The expression in brackets on the r.h.s is also referred to as risk-sensitive
Koopmans operator (see Miao 2020; Sargent and Stachurski 2023). By applying the
exponential function on both sides, the equation for γ < 0 can also be written as

Ṽ (x) = sup
a∈D(x)

{
e−γ r(x,a)

(∫
Ṽ (y)q(dy|x, a)

)β }
(11)

with Ṽ (x) = e−γ V (x) which yields a multiplicative Bellman equation.
A discounted recursive entropic cost linear quadratic Gaussian regulator problem

with the infinite time horizon has been treated in Hansen and Sargent (1995). Condi-
tional consistency of the recursive entropic risk measure is discussed in Dowson et al.
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(2020). An efficient learning algorithm for recursive Optimized Certainty Equivalents
based on the value iteration and upper confidence bounds can be found in Xu et al.
(2023); Fei et al. (2021) where the latter concentrates on the entropic risk measure.

CVaR optimization (which is according to Example 1 b) another special case) for
a finite time horizon applied at the terminal wealth has been considered in Rudloff
et al. (2014); Pflug and Pichler (2016) and for the infinite time horizon in Uğurlu
(2018). The authors also discuss time-consistency issues of optimal policies. Shapiro
et al. (2013) consider risk averse approaches (in terms of a weighted criterion of
expectation and CVaR) to multistage (linear) stochastic programming problems based
on the Stochastic Dual Dynamic Programming method. For further computational
approaches see Kozmík and Morton (2015). The recursive CVaR is very popular for
applications (see Sect. 7).

Some papers have studied the more general class of convex risk measure for a
nested application to stochastic dynamic decision problems. For example Shen et al.
(2013, 2014); Chu and Zhang (2014); Bäuerle and Glauner (2022b) consider the
infinite time horizon, unbounded cost functions and establish optimality equations and
existence of optimal policies. Martyr et al. (2022) consider an iterated G-expectation
for non-Markovian optimal switching problems. In Dowson et al. (2022) the problem
is tackled as a multistage stochastic program. Algorithms based on stochastic dual
dynamic programming and the special role of the entropic riskmeasure in this class are
discussed in Shapiro (2021); Dupačová and Kozmík (2015). Philpott et al. (2013) use
inner, outer approximations based on dynamic programming. Further algorithms can
be found in Le Tallec (2007); Tamar et al. (2016); Guigues (2016); Huang et al. (2021).
Algorithms for a finite time horizon and convex risk measures based on reinforcement
learning are studied in Coache and Jaimungal (2023).

There are further recursive risk-sensitive preferences in the literature which are
not covered by our model. Kreps and Porteus (1978) and Epstein and Zin (1989)
propose an alternative specification of lifetime value that separates and independently
parametrizes temporal elasticity of substitution and risk aversion. To be more precise
Kreps and Porteus (1978) consider finite time horizon recursive preferences with the
conditional Certainty Equivalent3 defined with u(x) = x1−γ , γ > 0 and γ �= 1, see
(1). Here the parameter γ is responsible for the level of relative risk aversion. Epstein
and Zin (1989) generalize their approach to the infinite time horizon and suggest the
following form of aggregation:

vn(x) :=
(

(1 − β)(r(x, fn(x)))
1−ρ + β

(∫
(vn+1(y))

1−γ q(dy|x, fn(x))

) 1−ρ
1−γ

) 1
1−ρ

.

The function vn denotes the future payoff from period n ∈ N0 onwards when the
process is governed by a Markovian policy ( fn) ∈ �M . Moreover, we assume that
ρ > 0 and ρ �= 1. The value 1/ρ represents a Constant Elasticity of Intertemporal
Substitution (CES). Therefore, the Epstein-Zin aggregator (named from their authors)

3 We mean here (like in the case of a conditional OCE) a Certainty Equivalent that maps a random variable
that is measurable with the next period’s information into a random variable that is measurable with respect
to the current period’s information.
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is also called a CES time aggregator. Epstein and Zin (1989) obtain a remarkable
result for the existence of recursive utilities across the broad set of parameters γ and
ρ. Their results have been further strengthened by Ozaki and Streufert (1996) who
provide an extensive analysis of existence and uniqueness of recursive utilities by
introducing the notion of biconvergence. This concept requires that returns can be
sufficiently discounted from above and sufficiently discounted from below. Moreover,
their results are useful for studying dynamic programmingwith non-additive stochastic
objectives in a pretty general setting. The Epstein-Zin time aggregator has also been
examined by Weil (1993) but with the conditional Certainty Equivalent defined by an
exponential utility function. The function vn is there given as follows

vn(x) :=
(

(1 − β)(r(x, fn(x)))
1−ρ + β

(
− 1

γ
ln
∫

exp(−γ vn+1(y))q(dy|x, fn(x))

)1−ρ
) 1

1−ρ

.

The aforementioned recursive preferences are very popular among economists (see
for instance Sargent and Stachurski 2023; Miao 2020 and references cited therein)
who put a lot of criticism on the standard expected discounted utility. To learn more
on this subject the reader is referred to the notes following Chapter 7 in Sargent and
Stachurski (2023). It is worthy to mention that the CES time aggregator and different
conditional Certainty Equivalents have been also exploited within dynamic program-
ming framework by a number of authors, see the references in Ren and Stachurski
(2018), Chapter 8 in Sargent and Stachurski (2023). Finally, Epstein-Zin preferences
in specific parametrizations applied as discrete-time recursive utilities indeed con-
verge to a continuous-time analogue called continuous-time differential utility, see
Kraft et al. (2013).

Marinacci and Montrucchio (2010) propose a new class of Thompson aggregators
and study a class of quasi-arithmetic Certainty Equivalent operators that generalize
those of Kreps and Porteus (1978). Based on specific properties of such operators and
the time aggregator they provide a comprehensive analysis of existence, uniqueness
and global attractivity of a continuation value process. Particularly, they make use of
monotonicity and concavity of the Thompson aggregator and subhomogeneity of the
quasi-arithmetic operator. These facts allow them to define a contraction within the
Thompson metric.

Bloise and Vailakis (2018) develop an approach to convex programs for bounded
recursive utilities. Their technique relies upon the theory of monotone concave opera-
tors. An extension is given in Bloise et al. (2021). Iwamoto (1999), on the other hand,
treats optimization problems with nested recursive utilities given by applying appro-
priate functions. A dynamic programming approach is used to solve the problems.

Further extensions include Feinstein and Rudloff (2017) and Schlosser (2020). In
the latter paper a multi-valued dynamic programming approach is considered that
allows to control the moments of the distributions of future rewards. The former paper
is devoted to the development of set-valued risk measures and the recursive algorithms
for a dynamic setting.
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5 Markov decision processes with risk-sensitive discounted reward

Instead of applying the Optimized Certainty Equivalent recursively one can also apply
it to the discounted sum of the rewards. Within such a framework the optimal policies
need not be time-consistent. We say that a multiperiod stochastic decision problem is
time-consistent, if resolving the problem at later stages (i.e., after observing some ran-
dom outcomes), the original solutions remain optimal for the later stages. For a recent
survey of different approaches to dynamic decision problems with risk measures and
their connection to time-consistency, see Homem-de-Mello and Pagnoncelli (2016).
We only mention here a stream of references Kreps (1977a, b), Iwamoto (2004), Pflug
and Ruszczyński (2005), Pflug (2006), Ruszczyński (2010), Osogami (2011), Shapiro
(2012), Philpott et al. (2013) that contributed to this issue among others. Belowwe pro-
vide a simple example that illustrates the problem of time-consistency in the approach
taken in this section.

We use the same MDP model as in the previous section. For a fixed history ω =
(x0, a0, x1, a1, . . .) ∈ H∞ let us define the sum of the discounted rewards by

R∞
β (ω) :=

∞∑
k=0

βkr(xk, ak)

where we always assume that the initial state x0 = x . We also put

Sπ
u (R∞

β ) = sup
η∈R

{
η +

∫
H∞

u(R∞
β (ω) − η)Pπ

x (dω)
}
, (12)

wherewith a little abuse of notation R∞
β in (12) is now understood as a randomvariable

on (�,F) with the distribution P
π
x supported on H∞. In other words, Sπ

u indicates
that the distribution of R∞

β is Pπ
x . Then we consider the following problem.

Problem 2 For initial wealth x ∈ E and policy π ∈ � we define the total discounted
risk-sensitive reward by

J (x, π) := Sπ
u (R∞

β ).

The aim of the decision maker is to find the maximal value, i.e.

J∞(x) = sup
π∈�

Sπ
u (R∞

β ), x ∈ E

and a policy π∗ ∈ � such that J (x, π∗) = J∞(x), x ∈ E .

A comparison between the obtained values when a coherent risk measure is applied
outside or recursively (without control problem), can be found in Iancu et al. (2015).
Note that in case of no discounting (β = 1) Problem 1 and Problem 2 are equivalent.
This follows from (P2) and (P4). However, discounting ensures that the value of the
problem is finite since we have bounded rewards. Without discounting it depends on
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the distribution of (Xk, Ak)k whether the expectations are finite. The motivation or
interpretation of applying the risk measure outside is somewhat easier than for the
recursive application of the risk measure. It can be deduced in particular from the
different representations of Su in Example 1.

In order to solve Problem 2 note that by definition of Sπ
u

sup
π∈�

Sπ
u (R∞

β ) = sup
π∈�

sup
η∈R

{
η + E

π
x [u(R∞

β − η)]
}

(13)

= sup
η∈R

{
η + sup

π∈�

E
π
x [u(R∞

β − η)]
}
.

Thus, we essentially have to solve supπ∈� E
π [u(R∞

β − η)] first. The challenge here
is that there is no obvious optimality equation for solving the problem. A way to work
around this is to enlarge the state space. This has been done in Bäuerle and Rieder
(2014). More precisely, it is helpful to introduce a new MDP on an extended state
space Ẽ := E × [−η,∞) × [0, 1]. Decision rules f are now measurable mappings
from Ẽ to A respecting f (x, y, z) ∈ D(x) for every (x, y, z) ∈ Ẽ . Denote this set of
decision rules by F̃ . Policies are defined in an obvious way and with a little abuse of
notation denote the set of all policies in this new MDP by �. For any policy π ∈ �

let

V π∞(x, y, z) := E
π
x [u(zR∞

β + y)],
V∞(x, y, z) := sup

π∈�

V π∞(x, y, z) (14)

be the value functions on an extended state space. Thus, we are looking for
V∞(x,−η, 1) which is the value of the inner optimization problem in (13). Let us
denote U (Ẽ) to be the set of all upper semicontinuous functions v with v(x, ·, ·) is
continuous and increasing in both variables for all x, and v(x, y, z) ≥ u(y).Moreover,
denote

b(y, z) := u(zd/(1 − β) + y), b(y, z) := u(zd/(1 − β) + y)

where d is a lower bound for r (possibly zero). The next theorem summarizes the
solution.

Theorem 3 Assume (W). Then

a) There exist a unique function V ∈ U (Ẽ) with b ≤ V ≤ b and a decision rule
f̃ ∗ ∈ F̃ such that for all (x, y, z) ∈ Ẽ :

V (x, y, z) = sup
a∈D(x)

{ ∫
V (x ′, zr(x, a) + y, zβ)q(dx ′|x, a)

}

=
∫

V (x ′, zr(x, f̃ ∗(x, y, z)) + y, zβ)q(dx ′|x, f̃ ∗(x, y, z)).

Moreover, V (x, y, z) = V∞(x, y, z) for every (x, y, z) ∈ Ẽ .
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b) There exist an optimal η∗ in (13) and a policy π∗ = (g∗
0 , g

∗
1 , . . .) with

g∗
n(hn) = f̃ ∗(xn, n−1∑

k=0

βkr(xk, ak) − η∗, βn
)
.

Moreover, π∗ is an optimal policy for Problem 2.

If we denote the operator T : U (Ẽ) → U (Ẽ) by

T v(x, y, z) := sup
a∈D(x)

{ ∫
v(x ′, zr(x, a) + y, zβ)q(dx ′|x, a)

}
,

then it can also be shown that T nb ↑ V∞ and T nb ↓ V∞ for n → ∞. This implies
that value iteration works here and yields numerical bounds on the value function.
In Bäuerle and Rieder (2014) it has also been shown that the policy improvement
converges.

If u is an exponential utility we obtain in the previous case that Sπ
u is related to the

entropic risk measure (Example 1 a)). Here we can drop the component y and obtain
J∞(x) = V∞(x, 1) where V∞(x, z) = supπ∈� Sπ

u (zR∞
β ) satisfies in this case

V∞(x, z) = sup
a∈D(x)

{
zr(x, a) − 1

γ
ln
∫

exp(−γ V∞(x ′, zβ))q(dx ′|x, a)
}
.

Note here the difference to the optimality equation given in (10) where we use the
nested application of the entropic risk measure. In case β = 1 the value function V∞
does not depend on z and both equations coincide.

Next we give a simple example from Jaquette (1976) to show the difference in
optimal policies within the aforementioned frameworks.

Example 2 Let us consider an MDP model with E = {1, 2, 3}, A = {a, b1, b2}. The
decision maker has only a choice in state x = 1, namely D(1) = {b1, b2}. In addition,
D(2) = D(3) = {a}. The transition probabilities are:

q(2|1, b1) = 1 − q(3|1, b1) = 0.5, q(2|1, b2) = 1 − q(3|1, b2) = 0.9.

From state 2 and from state 3 the process always jumps to state 1 with probability 1.
The rewards are as follows:

r(1, b1) = 0, r(1, b2) = 1, r(2, a) = 0, r(3, a) = 8.

Obviously, there are two stationary strategies f and g, i.e. f (1) = b1, g(1) = b2
and f (2) = g(2) = f (3) = g(3) = a. Assume that β = 1/2 and the initial state
is x0 ≡ 1. Then, the decision maker essentially chooses between two independent
gambles every other period. The first gamble, call it X f , gives the payoff 0 or 4 with
equal probabilities whilst the second gamble, call it Xg, yields the reward 1 with
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probability 0.9 or 5 with probability 0.1. Since EX f = 2 > EXg = 1.4, the risk-
neutral decisionmaker prefers a stationary policy f to g. Hence, themaximal expected
discounted reward is equal to

J1/2(1) =
∞∑
n=0

(
1

2

)2n

EX f = 8/3 ≈ 2.6666.

Let us suppose that the decision maker uses the Optimized Certainty Equivalent
defined in (2) with γ = 1. Consider first Problem 1. Then, equation (9) in Theorem 2
takes the following form

V (1) = max

{
−1

2
ln

(
1

2
e−V (2) + 1

2
e−V (3)

)
, 1 − 1

2
ln

(
9

10
e−V (2) + 1

10
e−V (3)

)}

and

V (2) = V (1)

2
, V (3) = 8 + V (1)

2
.

Then, g is an optimal stationary policy and the maximal reward is

V (1) = 4

3

(
1 + ln

(√
10

9 + e−8

))
≈ 1.4035.

Now let us turn to Problem 2. In our case the aim is to maximize over the set of all
policies π ∈ � the functional

J (1, π) = − lnEπ
1 e

−∑∞
k=0(1/2)

kr(Xk ,Ak ).

This is equivalent to minimize the expression J̄ (1, π) = E
π
1 e

−∑∞
k=0(1/2)

kr(Xk ,Ak ) over
the set of all π ∈ �. Since the decision maker chooses in each period between two
independent gambles X f and Xg, then

J̄ (1, π) = E
π
1 exp

{
−

∞∑
n=0

(
1

2

)2n

X2n

}
,

where X0, X2, . . . are independent random variables with the distribution as X f or
Xg, depending whether the policy π = (πk) indicates to use f or g in period k =
0, 2, 4, . . .. Clearly, πk ≡ a for k = 1, 3, 5, . . . . Therefore,

J̄ (1, π) =
∞∏
n=0

Ee−(1/2)2n X2n .
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Observe that

Ee−sX f > Ee−sXg ⇐⇒ 1

2
+ 1

2
e−4s >

9

10
e−s + 1

10
e−5s .

This holds for s > 0.455904.Hence, for the decisionmaker g is better than f in periods
2n for which (1/2)2n > 0.455904. This is equivalent to 2n < 1.1332. Summing up,
the optimal policy is (g, f , f , f . . .). Obviously, the policy is not stationary and it
is not time-consistent 4. However, this policy is ultimately stationary, i.e., there is a
period such that from this period onwards the policy is stationary. In fact, Jaquette
(1976) proves that an MDP with a finite state space and the entropic risk measure
must be ultimately stationary. This need not to be true for MDPs with an infinite state
space. For other examples illustrating the lack of stationarity and time-consistency the
reader is referred to Brau-Rojas et al. (1998).

The first studies of this entropic setting are due to Howard andMatheson (1972) and
Jaquette (1976). Linear-quadratic problems with a finite time horizon and the entropic
risk measure are considered in Jacobson (1973), Whittle (1981). A more general
approach can be found in Chung and Sobel (1987) where fixed point theorems for the
whole distribution of the infinite time horizon discounted reward in a finite MDP are
considered. InCollins andMcNamara (1998) the authors dealwith a finite time horizon
problem where they maximize a strictly concave functional of the distribution of the
terminal state. Coraluppi and Marcus (1999) connect the problem with the entropic
risk measure to a minimax payoff criterion for finite state MDPs. A turnpike theorem
for a risk sensitive MDP model with stopping is shown in Denardo and Rothblum
(2006). Though Di Masi and Stettner (1999) consider the average reward criterion,
they also solve as a by-product the infinite time horizon discounted model with Borel
state and action spaces.

Numerical methods for the MDP with the entropic risk measure and finite and infi-
nite time horizons are given in Hau et al. (2023). A finite time horizon non-discounted
MDP with Borel state and action spaces and with entropic risk measure is considered
in Chapman and Smith (2021). General Certainty Equivalents for MDPs with Borel
state and action spaces and finite and infinite time horizons are treated in Bäuerle and
Rieder (2014). Partially observable MDPs with the entropic risk measures are exam-
ined in James et al. (1994), Fernández-Gaucherand and Marcus (1997), Bäuerle and
Rieder (2015), Bäuerle and Rieder (2017).

The special case of optimizing the CVaR of R∞
β with bounded rewards has been

considered in Bäuerle and Ott (2011). A numerical algorithm and the connection to
robust optimization problems is discussed in Chow et al. (2015), Ding and Feinberg
(2022). Unbounded cost problems with CVaR are treated in Uğurlu (2017). In Chap-
man et al. (2023) the authors minimize the CVaR of a maximum random cost over
a finite time horizon. Kadota et al. (2006) maximize the expected utility of the total
discounted reward subject to multiple expected utility constraints.

4 To be more precise, we have no time-consistency within the class of policies where decisions are only
based on the current wealth. However, when we consult Theorem 3, we see that there is some stationarity
of the optimal policy on the extended state space.
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6 Markov decision processes with other risk-sensitive payoff criteria

In this section we focus on other payoff criteria than those considered in Sects 4 and
5. We start with average risk-sensitive payoff criteria when a controller is equipped
with a constant Arrow-Pratt’s risk coefficient, i.e. she evaluates her future income
using an exponential utility function. However, sometimes instead of a reward r in the
MDP we shall study a cost c : D → R+. This is because the papers published so far
with this criterion mainly deal with a minimization problem and moreover, the cost
minimization is not equivalent to the reward maximization when changing the sign in
the cost function as in the risk-neutral case (see also Remark 1).

Problem 3 For an initial state x ∈ E and a policy π ∈ � we shall consider the
following cost functional:

J (x, π) = lim sup
n→∞

1

γ n
lnEπ

x

[
exp

(
n−1∑
k=0

γ c(Xk, Ak)

)]

for γ > 0.

Here in order to ensure that the average risk-sensitive cost is well-defined, let us
assume as before that c is bounded. The objective is to find the minimal cost

ξ(x) := inf
π∈�

J (x, π).

The policy π∗ is optimal for the ergodic risk-sensitive control problem if

J (x, π∗) = inf
x∈E ξ(x), x ∈ E .

Note that then the optimal cost ξ(x) must be independent of x .
The paper of Howard andMatheson (1972)5 is a pioneeringwork that deals with the

aforementioned problem for MDPs with finite state and action spaces. They assume
that the Markov chain is aperiodic and comprises one communicating class under
any stationary policy. A Perrron-Frobenius theory of positive matrices allows them to
establish a solution to the optimality equation which is of the form

ξo + h(x) = min
a∈D(x)

{
c(x, a) + 1

γ

∫
exp(γ h(y))q(dy|x, a)

}
(15)

for every x ∈ E . Here ξo is a real number and h : E → R is a given function.
If the equation holds, it is possible to prove two points. Firstly, the optimal cost is
ξ(x) = ξo/γ for every x ∈ E . Secondly, the minimizer of the r.h.s. in (15) (if exists),
say f∗, defines an optimal stationary policy f∗ ∈ F which means that ξo

γ
= J (x, f∗)

for every x ∈ E . It should be noted that the optimal cost need not be constant (unlike in

5 In their paper the maximization problem is studied.
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the risk-neutral case) if the Markov chain induced by a stationary policy has transient
states, consult with Brau-Rojas et al. (1998) for counterexamples. The communication
properties of the Markov chains in the analysis of the ergodic risk-sensitive control
problem are underlined in Cavazos-Cadena and Hernández-Hernández (2002). Since
then the finite state space models have been extensively developed and the Perron-
Frobenius theory has been employed, see among others (Sladkỳ 2018, 2008;Rothblum
1984; Cavazos-Cadena and Hernández-Hernández 2009) and references cited therein.
In addition, the Perron-Frobenius theory provides a link between risk-sensitive control
and the Donsker-Varadhan theory of large deviations. It is known that, under suitable
recurrence conditions, the occupation measure of a Markov process satisfies the large
deviation principle with rate function given by the convex conjugate of a long run
expected rate of an exponential growth function. Such a variational formula for the
optimal growth rate of reward in the spirit of the Donsker-Varadhan formula is given in
Anantharam and Borkar (2017) where the existence of a Perron-Frobenius eigenvalue
and an associated eigenfunction is analyzed by the nonlinear Krein-Rutman theorem.
For further results in this direction the reader is referred to Cavazos-Cadena (2018),
Arapostathis et al. (2016).

A nice characterization of an optimal cost via a minimization problem in a finite
dimensional Euclidean space is given in Cavazos-Cadena and Hernández-Hernández
(2005) where the transition law of the Markov chain satisfies a simultaneous Doeblin
condition. This result is generalized to an MDP model on a Borel state space in
Cavazos-Cadena and Salem-Silva (2010).

The second approach for solving ergodic risk-sensitive control problems is based
on an approximation technique. This can be done either by discounted risk-sensitive
costmodels (Cavazos-Cadena and Fernández-Gaucherand 2000; Cavazos-Cadena and
Cruz-Suárez 2017; Huang and Chen 2024) (as in Problem 2) or by certain discounted
risk-sensitive dynamic games, see Cavazos-Cadena and Hernández-Hernández (2002,
2011), Hernández-Hernández and Marcus (1999, 1996) for a countable state space
case and Di Masi and Stettner (2000, 1999), Jaśkiewicz (2007a, b) for a general state
space case. This technique leads via the vanishing discount factor approach to the opti-
mality equation or to the optimality inequality, (when the sign ‘=’ in (15) is replaced
by ‘≥’). For instance, the existence of a solution to the optimality inequality is estab-
lished in Hernández-Hernández and Marcus (1999), Jaśkiewicz (2007a) where the
so-called uniform Tauberian theorem was used, see Jaśkiewicz (2007a) and Proposi-
tion 1 in Jaśkiewicz and Nowak (2014). The essential ingredient in this approach is the
variational formula for the logarithmic moment-generating function (see Fleming and
Hernández-Hernández 1997; Dai Pra et al. 1996; Dembo and Zeitouni 1998). It should
be noted that in contrast to the risk-neutral case to get a solution to the optimality equa-
tion or inequality one needs to assume except ergodicity conditions that the absolute
vale of the risk coefficient is sufficiently small. This condition is either imposed explic-
itly or implicitly, i.e. other conditions in fact enforce this requirement, see Example 1
in Jaśkiewicz (2007a). There is only one exception: the so-called invariant models in
which the transition probabilities are independent of the state space, see Jaśkiewicz
(2007b). A further discussion on the conditions when the optimality equation or the
optimal inequality hold is provided in Cavazos-Cadena (2010).
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The ergodic risk-sensitive control problem is also attacked from different sides.
Borkar andMeyn (2002) apply an ergodic multiplicative theorem and assume a simple
growth condition on the one-stage cost function. They establish the optimality equation
for a countable state Markov decision chain. The very recent results for countable
state space models have been developed in Biswas and Pradhan (2022); Chen andWei
(2023). Finally, an approximation by uniformly ergodic Markov controlled processes
for a general state space model under minorization condition is studied in Di Masi
and Stettner (2007). A mutual relationship between the aforementioned works, an
extensive discussion of other results and a list of further references are given in the
excellent survey of Biswas and Borkar (2023). Finally, we would like to mention that
the nested form of an average risk-sensitive reward is discussed in Shen et al. (2013).

Parallel to the theoretical results much effort was put on developing efficient
algorithms to solve ergodic risk-sensitive control problem. The value iterations are
established in Bielecki et al. (1999b); Cavazos-Cadena and Montes-de Oca (2003)
for stationary models and in Cavazos-Cadena and Montes-De-Oca (2005) for non-
stationary models. A Q-learning algorithm is proposed in Borkar (2002) and a version
of an actor-critic algorithm is considered in Borkar (2001). However, these algorithms
do not incorporate any approximation of the value function in order to defeat the
curse of dimensionality. Such an approximation in terms of linear combination of a
moderate number of basis functions is developed in Basu et al. (2008). The learning
scheme iteratively learns coefficients in the linear combination instead of learning the
whole value function. The other tools are applied in Arapostathis and Borkar (2021)
and Borkar (2017) where equivalent linear and dynamic programs are derived. The
former work deals with minimization of the asymptotic growth rate of the cumulative
cost whereas the latter one uses a variational representation for asymptotic growth
rate of risk-sensitive reward obtained in Anantharam and Borkar (2017). This tech-
nique allows to link the average risk-sensitive rewardwith linear programmingwithout
assuming irreducibility of the Markov chain.

Except for the average cost/reward criteria defined with the help of an exponential
utility function, there are papers that deal with other average risk-sensitive payoff
criteria for which traditional dynamic programming fails. For example in Cavazos-
Cadena andHernández-Hernández (2016) a finite-state irreducible risk-sensitiveMDP
is considered where the usual exponential utility is replaced by an arbitrary utility
function (see also Stettner 2023). The authors prove a connection to the exponential
utility criterion. Xia (2020) studies the optimization of the mean-variance combined
metric assuming that the finite state Markov decision chain is ergodic under any
stationary policy. More precisely, for f ∈ F, and an initial state x ∈ E he defines

J 0(x, f ) = lim
n→∞

1

n
E

f
x

[
n−1∑
k=0

(
r(Xk, Ak) − λ(r(Xk, Ak) − J av(x, f ))2

)]

where λ > 0 is a trade-off parameter and

J av(x, f ) = lim
n→∞

1

n
E

f
x

[
n−1∑
k=0

r(Xk, Ak)

]
.
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Note that J av and J 0 are independent of an initial state, because of the ergodicity
condition. The objective is to find a stationary policy f∗ ∈ F which maximizes the
associated value, i.e. f∗ ∈ argmax f ∈F J 0(x, f ) for all x ∈ E . Since the optimality
equation does not hold, the theory of sensitivity-based optimization is utilized. A
version of value iteration algorithm is proposed to find an optimal policy. The theory
of sensitivity-based optimization is also applied inXia andGlynn (2022) to the ergodic
Markov decision chains when the CVaR measure is used. In this work Xia and Glynn
(2022) consider the cost functions and aim at the cost functional

CVaR f
α = lim

n→∞
1

n

n−1∑
k=0

CVaR f
α (ck)

where

CVaR f
α (ck) = E

f
x

[
c(Xk, Ak)|c(Xk, Ak) ≥ F−1

c(Xk ,Ak )
(α)
]

and F−1
c(Xk ,Ak )

(α) denotes the upper α-quantile of the random variable c(Xk, Ak). The

objective is to find an optimal policy, i.e. f∗ ∈ F such that f∗ ∈ argmin f ∈F CVaR f
α .

In particular, the authors establish the local optimality equation and develop a policy
iteration procedure that turns out to be more efficient than solving the bilevel MDP
problem examined among others for risk-sensitive discounted rewards in Bäuerle and
Ott (2011).

At the end let us mention the undiscountedmodels, i.e models in which the discount
factor β = 1 and the time horizon is infinite. MDPs with non-positive payoffs and an
entropic riskmeasure are studied in Jaśkiewicz (2008). The aim is to show the existence
of an optimal stationary policy and the convergence of the value iteration algorithm.
In Çavuş and Ruszczyński (2014), on the other hand, a recursive undiscounted cost is
definedwith the aid ofMarkov riskmeasures. For the so-called uniformly risk transient
Markov decision process the optimality equation is established and the existence of
an optimal stationary policy.

7 Applications

In this section we summarize some applications of the risk-sensitive criterion in
dynamic, discrete-time optimization problems. This is not a complete list but sim-
ply a biased selection of examples. We start with the entropic risk measure.

7.1 Entropic risk criterion

One area of applications where the entropic risk criterion is used is financial mathe-
matics and economics. In Bielecki et al. (1999a) the authors consider an investment
problem in a financial market with a factor process given by a Markov chain (Xt )t∈N.
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The evolution of the wealth is defined by

xt+1 = xt
[
er + πt · (Zt+1 − er1)

]
where r is a fixed interest rate, (Zt )t are the relative price vectors, conditionally
independent given the states of the Markov chain at time t and t + 1 and (πt )t are the
proportions of wealth invested in the risky assets. The aim is to maximize

lim inf
T→∞ −2

θ

1

T
lnEπ

x exp
(

− θ

2
ln XT

)
(16)

over all investment strategies. Here, θ in (0,1) is a risk-sensitivity parameter. Under
some irreducibility assumptions an optimal investment strategy is stationary and is
characterized by the optimality equation given in (15).

Stettner (1999) considers a similar problemwhich however stems from a discretized
version of a continuous Black-Scholes model with several factors. The optimization
criterion is again (16). Under a uniform ergodicity condition an optimal investment
strategy is characterized via the optimality equation. The cases with (proportional) and
without transaction cost are considered. The model with proportional transaction cost
and consumption is taken up in Stettner (2005). Finally, the assumptions are further
relaxed in Pitera and Stettner (2023) for the same optimization criterion.

Bäuerle and Jaśkiewicz (2018) consider a stochastic optimal growth model with
nested entropic risk measures. The model is as follows: an agent obtains the output xt ,
which is divided between consumption at and investment (saving) yt = xt −at . From
consumption at the agent receives utility u(at ). Investment is used for production with
input yt yielding output

xt+1 = f (yt , ξt )

where (ξt )t is a sequence of i.i.d. shocks and f a production function. The criterion
of Problem 1 is used for the aggregation of the utilities. The value function and an
optimal policy are again characterized via the optimality equation. Properties of the
optimal consumption strategy are also shown. The problem is solved explicitly for
special utility and production functions. The results are extended in Goswami et al.
(2022) to include regime switches.

Other applications in economics touch the problem of precautionary savings, which
is one of the most studied issues in the theory of choice under uncertainty. For exam-
ple, Luo and Young (2010) study the consumption-savings behavior of households
who have risk-sensitive preferences and suffer from limited information-processing
capacity (rational inattention). The value iteration is as for Problem 1 given by

V (x) = sup
c

{
− 1

2
(c − c̄) − β

γ
lnE[exp(−γ V (X1))]

}

where x is the present value of lifetime resources, c is consumption and c̄ denotes a
bliss point. The authors solve the model explicitly and show that rational inattention
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increases precautionary savings by interacting with income uncertainty and risk sen-
sitivity. They show that the model displays a wide range of observational equivalence
properties, implying that consumption and savings data cannot distinguish between
risk sensitivity, robustness, or the discount factor, in any combination. Bommier and
Le Grand (2019), on the other hand, examine non-stationary models of precautionary
savings with recursive risk-sensitive preferences (as in Problem 1) of the infinitely-
lived agents. Agents are endowed with an exogenous income process (Zt )t . The value
function in period t is given by the equation

Vt (xt , z
t ) = max

at∈R

{
ũ(at ) − β

γ
lnEt [exp(−γ Vt+1(xt+1, z

t , Zt+1))]
}

where xt is the wealth at time t , at is the consumption at time t and zt = (z0, . . . , zt )
is the realized exogenous income trajectory. Here, ũ is the one-stage utility of a
household. It is assumed that the function (z0, . . . , zt ) → P(Zt+1 ≥ z̄|z0, . . . , zt )
is non-decreasing. Moreover, at > 0, xt + Zt − yt = at , xt+1 = rt+1yt , where yt is
investment and rt+1 is the deterministic (but time varying) gross interest rate between
periods t and t+1.Additionally, the constraint yt ≥ ȳt (zt ) allows to borrow the agent,
but no more what she can repay in the worst scenario. The main result announces that
the greater risk aversion (the greater absolute values of γ ) implies a higher propensity
to save at any time. This leads to the conclusion that the greater risk aversion implies
greater accumulated wealth or larger precautionary savings. It should be stressed out
that this is not the case when other recursive preferences are considered, for instance,
the Epstein-Zin-Weil preferences, see Epstein and Zin (1989), Weil (1990) or the
preferences developed in Weil (1993). The reader is referred to the numerical results
obtained in Bommier and Le Grand (2019) that confirm the aforementioned conclu-
sions.

It is worth mentioning that Pareto optimal consumption allocations is studied by
Anderson (2005), who also assumes that the agents have recursive risk-sensitive pref-
erences defined by an exponential utility function.

Nested entropic risk measures are used in actuarial theory as well. In this matter the
reader is referred to the works of Bäuerle and Jaśkiewicz (2015, 2017). In the latter
paper, within the recursive preference framework they determine the optimal dividend
strategy for an insurance company and derive a policy improvement algorithm.

The next prominent applications can be found in the operations research area. The
paper of Bouakiz and Sobel (1992) is one of the first paper that uses the exponential
utility function to themultiperiod news vendor inventorymodel. The authorsminimize
the risk-sensitive discounted cost, i.e. as in Problem 2. It is shown that the base-stock
policy is optimal and depends on the length of a time horizon, discount factor and
risk parameter. For the infinite time horizon an optimal policy is ultimately stationary.
Their considerations are extended to models with dependent demands in Choi and
Ruszczyński (2011) where an asymptotic behavior of the solution when the degree of
risk aversion coefficient converges to zero or infinity is analyzed. Another interesting
issue from the area of revenue management can be found in Barz and Waldmann
(2007). The approach is explained in the setting of optimal airline ticket booking
where the airline has to decidewhether or not to accept a request for a certain fare given
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the remaining capacity. The target function is the one from Problem 2. The optimal
strategy is computed and compared to the risk-neutral setting. Further applications
to revenue management with different risk-averse target functions can be found in
Schlosser (2015, 2016). A survey of risk-sensitive and robust revenue management
problems the readermay find inGönsch (2017), where among other issues the capacity
control and dynamic pricing are considered. Finally, Denardo et al. (2007) consider
the multiarmed bandit problem with an exponential utility and criterion as in Problem
2. They show the optimality of some kind of index policy using analytical arguments.

Applications in computer science and engineering are as follows. One of the first
papers is Koenig and Simmons (1994). The authors discuss goal reaching problems
(e.g. for robots) under risk-sensitive criteria. They obtain the following optimality
equation (there is no discounting):

V (x) = inf
a

⎧⎨
⎩
∑

y∈E\G
q(y|x, a)eγ c(x,a,y)V (y) +

∑
y∈G

q(y|x, a)eγ (c(x,a,y)+r(y))

⎫⎬
⎭

where G ⊂ E denotes the set of the goal states, c(x, a, y) is the cost of executing
action a in state x and proceeding state y and r is the terminal reward function.
Solution algorithms, in particular under change of measure are discussed and some
block world problems are considered. In Medina et al. (2012), Befekadu et al. (2015)
the authors consider a finite time horizon linear-quadratic problemwith target function
like in Problem 2 with an exponential utility. In Medina et al. (2012) the setting is
to optimize a human-robot interaction such that the physically coupled human-robot
follows a desired trajectory. Befekadu et al. (2015) study the impact of cyber-attacks
in control systems with partial observation. In Guo et al. (2018) the authors consider
risk-sensitive scheduling problems of data packets where large inter-delivery times
are penalized.

Further, Mazouchi et al. (2022) investigate risk-averse preview-based Q-learning
planner for navigation of autonomous vehicles on a multi-lane road. The criterion is
that of Problem 2 with an exponential utility function.

7.2 CVaR risk criterion

Another popular optimization criterion is the CVaR.
We start with some examples from operations research and engineering. Gönsch

et al. (2018) consider dynamic pricing with a risk-averse seller maximizing the CVaR
over the selling horizon. The aim is to dynamically adjust the price during the sell-
ing horizon in order to sell a fixed capacity of a perishable product where demand
is stochastic such that the total expected/risk averse revenue is maximized. As opti-
mization criterion they use the CVaR of the cumulated revenue. More precisely, they
consider the setting of Sect. 5 with a finite time horizon and CVaR, i.e.

max
π∈�

CVaRα

( N∑
k=1

Ak1[Yk≥Ak ]
)

=: VN (x)
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where Ak is the price offered at time k by the firm. The state x is the remaining good
and (Yk)k are i.i.d. continuous random variables which represent the willingness to
pay of a potential customer arriving in period k. The authors use recursive algorithms
to solve the problem, based on specific properties of the CVaR given by V0(x, α) = 0
for x ≥ 0 and

Vt (x, α) = max
a

CVaRα

{
1[Yt≥a]

(
a + Vt−1(x − 1, αzt−1,x−1)

)+ 1[Yt<a]Vt−1(x, αzt−1,x )
}

where zt−1,x−1 and zt−1,x are certain constants arising from CVaR minimization. A
nested formulation with CVaR is considered in Schur et al. (2019).

Wozabal and Rameseder (2020) consider multi-stage stochastic programming
approaches to optimize the bidding strategy of a virtual power plant operating on
the Spanish spot market for electricity. They consider different setups among others a
nested CVaR approach.

Maceira et al. (2015) deal with hydrothermal generation planning in Brazil. The aim
is to optimize the system operation taking into account the expected value of thermal
generation and possible load curtailment costs over a given set of inflow scenarios to
the reservoirs in the future. Risk aversion is crucial here to avoid unacceptable amounts
of load curtailment in critical inflow scenarios. The authors use nested CVaR and dual
stochastic dynamic programming to solve the problem.

The PhD thesis of Ott (2010) treats several problems of surveillance of critical
infrastructures treated as stochastic dynamic optimization problems. The author uses
CVaR as criterion in the total discounted cost problems and average cost problems.

Jiang and Powell (2016) investigate a dynamic decision problem faced by the man-
ager of an electric vehicle charging station, who aims to satisfy the charging demand
of the customer while minimizing cost. Since the total time needed to charge the elec-
tric vehicle up to capacity is often less than the amount of time that the customer is
away, there are opportunities to exploit electricity spot price variations. The authors
formulate this problem as a combination of nested CVaR and expectation over a finite
time horizon. They identify structural properties of an optimal policy and propose an
approximation algorithm based on regression and polynomial optimization to solve
the problem.

Zhang et al. (2016) consider five decompositions of nested CVaR application in
multistage stochastic linear programming. They apply the proposed formulations to a
water management problem in the area of the southeastern portion of Tucson, AZ to
best use the limited water resources available to that region.

Finally, Ahmed et al. (2007) solve a multiperiod inventory model with nested
approach of coherent risk measures. For a finite time horizon they prove that the
optimal policy has a similar structure as that of the expected value problem. More-
over, an analyis of monotonicity properties of the optimal order quantity with respect
to the degree of risk aversion for certain risk measures like CVaR is conducted.

Applications in financial mathematics and economics are as follows. Staino and
Russo (2020) treat portfolio optimization problems with nested CVaR when asset log
returns are stage-wise dependent by a single-factor. Using a cubic spline interpolation
the authors numerically solve the problem with a finite time horizon by backward

123



Markov decision processes with risksensitive criteria 169

recursion. A dynamic mean-risk problem, where the risk constraint is given by the
CVaR is considered in Bäuerle and Mundt (2009). The financial market is a binomial
model which allows for explicit solutions. Since the problem is solved via a Lagrange
function, the CVaR appears in the optimization criterion. It is applied to the cumulated
gain/loss and the problem is solved by recursion explicitly.

An application in biology is given in Bushaj et al. (2022) where the authors apply
a mean-CVaR multistage, stochastic mixed-integer programming model to optimize
a manager’s decisions about the surveillance and control of a non-native forest insect,
the emerald ash borer.

As mentioned before, this is just a selection of applications. Further examples can
be found in the literature.
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Appendix A Proof of Theorem 2

First we show the statements under assumption (W). Let v ∈ U (E) and define

Lv(x) = sup
a∈D(x)

{
r(x, a) + βS(x,a)

u (v(X1))
}

where X1 has distribution q(·|x, a). We first prove that L : U (E) → U (E). Note that
by (P1) and (P4) we get for every x ∈ E

Lv(x) = sup
a∈D(x)

{
r(x, a) + βS(x,a)

u (v(X1))
}

≥ 0 + sup
a∈D(x)

βS(x,a)
u (0) ≥ 0.

On the other hand, we have again by (P1) and (P4) that

Lv(x) ≤ d + sup
a∈D(x)

βS(x,a)
u (‖v‖) = d + β‖v‖.
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Now we show that Lv is upper semicontinuous. For this purpose we prove for v ∈
U (E) that

(x, a, η) → r(x, a) + βη + β

∫
u(v(y) − η)q(dy|x, a) (A1)

is upper semicontinuous. Clearly, (x, a, η) → r(x, a) + βη is upper semicontinu-
ous. For the second part assume that (xn, an, ηn) is a sequence which converges to
(x0, a0, η0) as n → ∞ where xn ∈ E, an ∈ D(xn), ηn ∈ R for n ∈ N0. Set
φn(y) := u(v(y) − ηn) for n ∈ N. Since u is continuous and non-decreasing, φn

are upper semicontinuous. Making use of the Fatou lemma for weakly convergent
measures (see Lemma 3.6 in Balbus et al. 2015) we get that

lim sup
n→∞

∫
φn(y)q(dy|xn, an) ≤

∫
φ∗(y)q(dy|x0, a0)

with φ∗(x) = sup{lim supn→∞ φn(yn) : yn → x}. The supremum is taken over all
sequences (yn) converging to x . In our case, for any yn → x

lim sup
n→∞

φn(yn) = lim sup
n→∞

u(v(yn) − ηn) ≤ u(v(x) − η0).

Hence, φ∗(x) = u(v(x) − η0). This proves that the function in (A1) is upper semi-
continuous.

Next we conclude by Proposition 2.1 in Ben-Tal and Teboulle (2007) that the
supremum over all η ∈ R in the definition of the Optimized Certainty Equivalent
can be restricted to the compact set, for example [0, ‖v‖]. This is the support of the
random variable v(X1). Hence, by Proposition 2.4.3 in Bäuerle and Rieder (2011) the
function

Lv(x) = sup
a∈D(x)

sup
η∈[0,‖v‖]

{
r(x, a) + βη + β

∫
u(v(y) − η)q(dy|x, a)

}
.

is upper semicontinuous.
Finally we prove that L is contracting. Let v1, v2 ∈ U (E). Then due to (P1) and

(P2) and v1 ≤ v2 + ‖v1 − v2‖, we obtain:

Lv1(x) − Lv2(x) ≤ β sup
a∈D(x)

(
S(x,a)
u (v1(X1)) − S(x,a)

u (v2(X1))
)

≤ β sup
a∈D(x)

(
S(x,a)
u (‖v1 − v2‖ + v2(X1)) − S(x,a)

u (v2(X1))
)

= β‖v1 − v2‖.

Interchanging the roles of v1 and v2 yields ‖Lv1 − Lv2‖ ≤ β‖v1 − v2‖. Finally since
U (E) equipped with the supremum norm is complete, the Banach fixed point theorem
implies that there exists V ∈ U (E) such that V = LV .
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It remains to show that V is the value function. Observe that for all (x, a) ∈ D we
immediately have

V (x) ≥ r(x, a) + βS(x,a)
u (v(X1)).

Let (πk)k∈N0 ∈ � be any policy. Then for all k = 1, . . . , N we obtain V (xk) ≥
Lπk V (hk). Making use of this inequality by iteration we infer that

V (x) ≥ (Lπ0 ◦ . . . ◦ LπN )V (x) ≥ (Lπ0 ◦ . . . ◦ LπN )0(x) = JN+1(x, π).

Letting N → ∞ implies V (x) ≥ J (x, π) for all policies π ∈ � which in turn gives

V (x) ≥ sup
π∈�

J (x, π) for every x ∈ E . (A2)

For the reverse inequality by Proposition 2.4.3 in Bäuerle and Rieder (2011) it follows
that firstly the function

(x, a) → sup
η∈[0,‖V ‖]

{
r(x, a) + βη + β

∫
u(V (y) − η)q(dy|x, a)

}

is upper semicontinuous and secondly, there exists f ∗ ∈ F such that V = L f ∗V .

Thus, again by iteration we have V = L(N )
f ∗ V where L(N )

f ∗ denotes the composition of
L f ∗ with itself N times. Hence, putting r(x, f ∗(x)) = r f ∗(x) we get

V (x) ≤ L(N−1)
f ∗

(
r f ∗ + β‖V ‖

)
(x)

= L(N−2)
f ∗

(
r f ∗ + βS(·, f ∗(·))

u (r f ∗(X1)) + β2‖V ‖
)
(x)

≤ . . . ≤ JN (x, f ∗) + βN‖V ‖.

Letting N → ∞ yields that V (x) ≤ J (x, f ∗) for every x ∈ E . This fact and (A2)
finish the proof.

Assume now that (S) holds. It suffices to show that L : B(E) → B(E). Let
v ∈ B(E). Assume that (an, ηn) → (a0, η0) as n → ∞ for an ∈ D(x) and ηn ∈ R.

Then, by condition (S) and Proposition 18 on p. 270 in Royden (1988) we have that

∫
u(v(y) − ηn)q(dy|x, an) →

∫
u(v(y) − η0)q(dy|x, a0) as n → ∞.

Hence, the function

(a, η) →
{
r(x, a) + βη + β

∫
u(v(y) − η)q(dy|x, a)

}

is upper semicontinuous for each x ∈ E . Again the measurable selection theorem (see
Theorem A.2.4 in Bäuerle and Rieder 2011) and the fact that by Proposition 2.1 in
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Ben-Tal and Teboulle (2007) the supremum over all η ∈ R in S(x,a)
u can be replaced

by the supremum over the set [0, ‖v‖], imply that Lv ∈ B(E). Now the remaining
part proceeds along the same lines with obvious changes, i.e. the fixed point of L is
found in B(E). Note that for the proof to hold, the concavity of S(x,a)

u is not necessary
(only continuity) whereas we use all other properties (P1), (P2) and (P4).

Appendix B Proof of Theorem 3

The proof of part a) is essentially Theorem 3 in Bäuerle and Rieder (2014). The only
difference is that we have a maximization problem here instead of a minimization
problem.

For part b) note again that R∞
β is bounded and thus the maximization over η in the

definition of Su can be restricted to a compact set by Proposition 2.1 in Ben-Tal and
Teboulle (2007). In other words, we have to solve in the second step for large K > 0

sup
η∈[−K ,K ]

{
η + V∞(x,−η, 1)

}
.

But from part a) we know that V∞ is continuous in η which implies the existence of
an η∗ with

sup
η∈[−K ,K ]

{
η + V∞(x,−η, 1)

}
= η∗ + V∞(x,−η∗, 1)

and thus the statement.
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Uğurlu K (2017) Controlled Markov decision processes with AVaR criteria for unbounded costs. J Comput
Appl Math 319:24–37
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