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Abstract

In continuous location problems we are given a set of existing facilities and
we are looking for the location of one or several new facilities. In the classical
approaches weights are assigned to existing facilities expressing the importance
of the new facilities for the existing ones.

In this paper, we consider a pointwise defined objective function where the
weights are assigned to the existing facilities depending on the location of the
new facility. This approach is shown to be a generalization of the median, center
and centdian objective functions. In addition, this approach allows to formulate
completely new location models. Efficient algorithms as well as structural results
for this algebraic approach for location problems are presented. A complexity
analysis and extensions to the multifacility and restricted case are also considered.

Keywords:Location Theory, Global optimization, Algebraic optimization,
Convexity.

1 Introduction

In the last three decades a lot of research has been done in the field of continuous loca-
tion theory and very much different models have been developed. For a comprehensive
overview the reader is referred to Plastria’s chapter in the book of Drezner [18].

In the following we will introduce a diferent model for location problems. This
model provides a common framework for the classical continuous location problems
and allows an algebraic approach to these problems. Moreover, this flexible apporach
also leads to completely new objective functions for location problems.

We are given a gauge () : IR" — IR to measure distances, a set of demand
points A := {ay,as,... ,ay} C R™ (representing existing facilities or clients) and two
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sets of non negative scalars W = {wy,... ,wp} and A = {A,... ; A\y}. The element
w; € W is the weight of importance given to the existing facility a; and the elements
of A allows to choose between different kinds of objective functions.

Given a permutation o of the set {1,..., M} verifying

wmf)/(x - am) < wrf{)/(x - a’(TQ) <...< wrfo)/(x - aO'M)

we denote y(z — A) ) = wy,y(z — ag,).
The ordered Weber problem is then given by:

zelR™

min F(z) = Z Ay(z — A) . (1)

Note that the problem is well-defined even if ties occur. In that case any order of the
tied positions gives the same value.

Theoretical properties of (1) have been studied in a different setting in [19]. In the
following we will refer to this problem as 1/IR"/ e /v5/ >, , according to the classi-
fication scheme introduced by [16] and [12]. To describe the different types of location
problems we use a 5-position classification scheme Pos1/Pos2/Pos3/Pos4/Posh, which
allows us to indicate the number of new facilities (Posl), the type of the problem as
planar, network-based, discrete, etc. (Pos2), any assumption and restriction such as
w, = 1 for all m € M, etc. (Pos3), the type of distance function such as [,, general
distance function d, etc. (Pos4), and the type of objective function (Posb) (see [16] for
further details).

The reader may note that problem 1/IR"/ e /vy5/ " . is somehow similar to the
well-known Weber Problem, but it is more general because it includes as particular
instances the Weber problem (A\; = Ay = ... = X\, = 1), the a-cent-dian problem
(M =...\1=1—aand A\, =1) and the center problem (\; =... =X, ; =0 and
A, = 1) among others.

Example 1.1 Consider three demand points a; = (1,2), ay = (3,5) and a3 = (2,2)
with weights wy = wy = w3 = 1. Now choose A\ = Ay = A3 = 1 then we get F(z) =
S0 e — agl|, i.e. the Weber problem. For the second case choose Ay = Ay = 1/2
and Ay = 1 then we get: F(x) = 1/23°0 ||z — a;|| + 1/2max;<ic3 |2 — ai|, i.e. the
1/2-centdian problem. Finally choose Ay = Ao = 0 and A3 = 1 and we get: F(z) =
maxi<;<s ||x — a;||, i.e. the center problem.

Also note that the objective function of this problem is region-wise defined and in
general non convex if no additional hypotheses are assumed on the set A (see [6] for
further details).

Example 1.2 Consider two demand points a; = (0,0) and ay = (10,5), A\ = 100
and Ny = 1 with li-norm and wy = we = 1. We obtain only two optimal solutions
to Problem (1), lying in each demand point. Therefore the objective function is not
conver since we have a nonconvexr optimal solution set.

F(a,) = 100x0+1x15=15
Fla) = 100x0+1x15=15

1
F(S(a+a2) = 100 x 7.5+1x 7.5 =T57.5



See Figure 1.

Figure 1: Illustration to Example 1.2

These two characteristics allow to model many different problems as we will show
in the following.

The aforementioned paper by Puerto and Ferndndez [19] focuses only on developing
the theoretical properties of this problem. Neither algorithms have been presented nor
complexity aspects have been addressed. Exactly this will be the aim of this paper.

The outline of the paper is as follows: first the geometrical properties of (1) with
polyhedral gauges are exploited. Then an efficient algorithm for the single facility case
is given. The next section is devoted to extensions of Problem (1) to the multifacility
case. After that the cases of restricted problems and general gauges are investigated
and an approximation result is given. The paper ends with some conclusions and an
out-view on future research.

2 Geometrical Properties

We are mainly interested in problems with polyhedral gauges. For this reason we will
assume in the rest of the paper that B C IR" is a bounded polytope whose interior
contains the zero and we denote the set of extreme points of B by Ext(B) = {e, : g =
1,...,G}.

The polar set B? of B is given by

B°={zeR" : (z,p) <1 Vpe B}

In the polyhedral case, B? is also a polytope, whose extreme points are {eg g =
1,2,...,G}, in IR?, see [21] and [8].



The normal cone to B at z is given by
N(B,z):={peR" : {py—x) <0 Vye B} (2)

and the boundary of B is denoted by bd(B) .

In this section we address some geometrical properties of the planar formulation
of Problem (1) (denoted by 1/IR*/ e /v3/3",,,) which give us specific insights in the
considered model. In this case we define fundamental directions dy,...,ds as the
halflines defined by 0 and e, ... ,eq. Further, we define I'; as the cone generated by d,
and d,;1 (fundamental directions of B) where dgy1 1= dy. Let m = (p;)iem be a family
of elements of IR * such that p; € B for each i € M and let C; = (), (a;+N(B°,p;)).
A nonempty convex set C is called an elementary convex set if there exists a family =
such that C, = C.

It should be noted that if the unit balls are polytopes we can obtain the elementary
convex sets as intersection of cones generated by fundamental directions of these balls
pointed at each demand point. Therefore each elementary convex set is a polyhedron
whose vertices are called intersection points (see Figure 2). Finally, in the case of
IR? there exists an upper bound of the number of elementary convex sets which is
O(M?G?) . For further details see Durier and Michelot [8].

First of all, it should be noted that in Problem (1) although the objective function
looks like the one of the Weber problem we do not have a unified linear representation
of such a function in the whole space.

From the definition of the objective function, it is easy to see, that the representation
may change every time y(xz — a;) — y(x — a;) becomes 0 for some ¢,j € {1,..., M}
with 7 # j. We will develop in this section a geometrical description of the sets where
the representation of the objective function as a weighted sum stays unchanged.

Definition 2.1 The set B,(a;,a;) consisting of points {x : wiy(z — a;) = wjy(z —
a;),i # j} is called bisector of a; and a; with respect to .

As an illustration of Definition 2.1 one can see in Figure 2 the bisector line for the
points (1,4) and (5,1) with the rectangular norm.

Once these structures have been introduced, we can characterize their behavior. In
order to do that, we use the concept of elementary convex sets introduced by Durier
and Michelot [8], which in IR? can be seen as the subdivision of the plane made off the
fundamental directions of the unit balls of all the existing facilities.

Proposition 2.1 The bisector of a; and a; is a set of points verifying a linear equation
within each elementary convex set.

Proof:

In an elementary convex set y(x — a;) and y(x — a;) can be written as [;(z — a;)
and l;(z — a;) respectively, where I; and [; are linear functions. Therefore, v(z —a;) =
v(x — a;) is equivalent to l;(z — a;) = l;(x — a;) and the result follows. O

We will now give a more exact description of the complexity of a bisector when we
restrict ourselves to the two dimensional space IR .



Figure 2: Bisector

Proposition 2.2 The bisector of a; and a; with respect to a polyhedral gauge v with G
extreme points has at most O(G) different subsets defined by different linear equations.

Proof:

By Proposition 2.1 bisectors are set of points given by linear equations within e.c.s..
Therefore, the unique possible breakpoints may occur at the fundamental directions.

Let us denote by L7 the fundamental direction starting at a; with direction e;. On
this halfline the function y(x—a;) is linear with constant slope and y(z —a;) is piecewise
linear and convex. Therefore, the maximum number of zeros of y(z — a;) — v(z — a;)
when z € L? is two. Hence, there are at most two breakpoints of the bisector of a;
and a; on L] .

Repeating this argument for any fundamental direction we obtain that an upper
bound for the number of breakpoints is 4G. 0

This result implies that the number of different linear expressions defining any
bisector is also linear in G, the number of fundamental directions. Remark that on some
occasions bisector sets may have non empty interior, see for instance Figure 3, where
we show the bisector set defined by the points (0,0) and (4,0) with the Tchebychev
norm.

When at least two points are considered simultaneously the set of bisectors builds
a subdivision of the plane (very similar to the well-known k—order Voronoi diagrams,
see the book of Okabe et al. [17]). The cells of this subdivision will be called from now
on ordered regions. We formally introduce this concept.

Definition 2.2 Given a permutation o on the set {1,2,..., M} the ordered region O,



Figure 3: An example for a degenerated bisector

consists of the following set of points
Oy ={1€R*: y(x —a,,) < ... <y(x — ayy,)}
Notice that these regions need not be conver sets, see Figure 4.

The importance of these regions is that in their intersection with e.c.s. the problem
1/IR"/ ® [vg/ >, behaves like a Weber problem, i.e the objective function has a
unique linear representation. The intersections between ordered regions and e.c.s. are
called following Puerto and Fernandez [19] generalized elementary convex sets (g.e.c.s.).
The ordered regions play a very important role in the algorithmic approach developed
for solving the problem. In terms of bisectors, these regions are cells defined by at most
M — 1 bisectors of the set A.

However, the main disadvantage of dealing with these regions is their complexity.
A naive analysis could lead to conclude that their number is M! which would make the
problem intractable. Fortunately, we can obtain a polynomial bound which allows us
to develop in the next section an efficient algorithm for solving Problem (1).

Theorem 2.1 An upper bound on the number of ordered regions is O(M*G?).

Proof:
Given two bisectors with O(G) linear pieces the maximum number of intersections
is O(G?). The whole number of bisector of M points is (), then, the maximum

M
number of intersections between them is O(GQ((é))) By Euler formula the number
of intersections has the same complexity that the number of regions. Hence, an upper
bound for the number of ordered regions is O(M*G?). O

A detailed analysis of this theorem shows that this bound is not too bad. Although,
it is of order M*G?, it should be noted that the number of bisectors among the points in
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Figure 4: Ordered Regions

Ais (]\24) which is order M?2. Therefore, even in the most favorable case of straight lines

the number of regions in worst case analysis gives O((A;)2) which is, in fact O(M*).
Since our bisectors are polygonal with G pieces this bound is rather tight.

Example 2.1 Figure 4 shows the ordered regions between the points a; = (0,11),
as = (3,0) and ag3 = (16,8) with the hexagonal norm whose set of extreme points
is Ext(B) = {(2,0),(1,2),(-1,2),(=2,0),(=1,—-2),(1,—2)}. For instance, the region
O(3,2,1) is the set of points

{reR?: v(r—a3) <y(z —ar) <y(z —a)}

Finally, we quote for the sake of completeness a result stated in [19] which geometrically
characterizes the solution set of the ordered Weber location problem: “The whole set
of optimal solutions of Problem (1) always coincides with some generalized elementary
convex sets”. This is to say, the solution set coincides with the intersection of ordered
regions with elementary convex sets [8].

3 Single Facility Model

Once we have introduced the main geometrical properties of this new model, we want to
develop an algorithmic approach for solving the single facility ordered Weber problem.



It should be noted that for the Weber’s problem with polyhedral norms several
algorithms have been proposed, see e.g. [5, 20, 21].

First of all, we state a well-known reformulation for F'(x) the proof of which can be
found for example in Theorem 368 in [13].

Lemma 3.1 If the scalars in the set A satisfy A\ < ... < Ay then

Z)\,’yx— = glljax Z)\*y - a,,)

being P(M) the set of permutations of {1,... ,M}.

Remark. This formulation can be interpreted as a worst-case approach with respect
to all the possible weight arguments. From now on, we will consider that the lambdas
satisfy Ay <... < Ay

Lemma 3.2 F is a convex function.

Proof:
By the previous lemma, F(x) is the maximum of convex functions and is therefore
convex. O

Moreover, Puerto and Fernandez [19] proved that the set of optimal solutions of
Problem (1) always coincides with some generalized elementary convex sets. However,
the large number of generalized elementary convex sets requires some kind of good
enumeration scheme to derive an algorithm.

Since we restrict ourselves to polyhedral gauges a simple approach can be given.
Within an ordered region O,, consider the following linear program:

min  S°M Nz,
s.t <Pg,T a;) <z eg€Bi=1,2,....M (P,)
2o, < Zov, i=1,2,... M—1

where e;’ are the fundamental directions of B°.

Lemma 3.3 If an optimal solution X* of P, is in O, then X* s also an optimal
solution to the ordered Weber problem constrained to O,.

Proof:
At an optimal point X* in O, we have

(e, X" —a;) =2 ,i=1,2,..., M, for some g,

g’

which means that z; = v(X* — @;) and the result follows. O

Lemma 3.4 If an optimal solution X* of P, is in Oy # O, then the optimal solution
of the ordered Weber problem constrained to O, is better than the optimal solution of
the ordered Weber problem constrained to O, .



Proof:
At an optimal point X* of P, in O, we have
(e, X" —a;) <z forallg
for at least one 7. This means that we can decrease the objective function by moving
from O, to O, and the result follows. O

Based on Lemma 3.4 and the fact that the objective function is globally convex
we develop a descent algorithm for this problem. For each ordered region we solve
the problem as a linear program which geometrically means either finding the locally
best solution in this ordered region or finding out that this region does not contain the
global optimum by Lemma 3.4. In the former case two situations may occur. First, if
the solution lies in the interior of the considered region (in IR™) then by convexity this
is the global optimum and secondly, if the solution is on the boundary we have to do
a local search in the neighbourhood regions where this point belongs to.

ALGORITHM 3.1.

Step 1 Choose x° as an appropriate starting point. Initialize £ := (0, y* = x°.

Step 2 Look for the ordered region, O, which y* belong to, where o° determines the

order.
Step 3 Solve the linear program P,o. Let u® = (2%, 29, 22) be an optimal solution. If
2% = (29, 29) & O,o then determine a new ordered region Oy, where z° belongs

to and go to Step 3.
Step 4 Let y° = (a¥,29).
Step 5 If y° belongs to the interior of Oy then set y* = y° and go to Step 8.
Step 6 If F(y°) # F(y*) then L := {o°}

Step 7 If there exist © and j verifying

V(Y —age) = fy(yo—ar,«;) i <j suchthat (of,...,0%,...,00,...,00)¢L
then do

a) y*i=y°, 0% = (07,09,...,0%,...,00,...,0%)

b) L:=LU{c"}

¢) GO TO Step 3
else Go to Step 8 (Optimum found)

Step 8 Output y*



Figure 5: Illustration for Example 3.1

The above algorithm is efficient in the sense that it is polynomially bounded. Once
the dimension of the problem is fixed, its complexity is dominated by the complexity of
solving a linear program for each ordered region. Since the number of ordered regions
is polynomially bounded and Megiddo’s algorithm, [15], solves linear programs in fixed
dimension in linear time, Algorithm 3.1 is linear in the number of cells.

Example 3.1 Consider the problem

min y(z = Ay + 2y(@ = Ay + 3v(z — A
where A = {(3,0),(0,11),(16,8)} and 7g is the hexagonal polyhedral norm with
Ext(B) = {(2,0),(1,2),(-1,2),(=2,0),(=1,-2), (1, =2) }.

We show in Figure 5 the generalized elementary convex sets for this problem. Notice
that the thick lines represent the bisectors for the points in A, while the thin ones are
the fundamental directions of the norm. We solve the problem using Algorithm 3.1.
Starting with z° = (0,11) we get the optimal solution in two iterations. In the first
one, we get the point 2! = (6.5, 8) with objective value 26.25. In the second iteration,
we obtain 22 = (7,8) with objective value 26. This point can not be improved in its
neighbourhood, therefore it is the optimal solution.

The iterations given by the algorithm for this example are depicted in Figure 6.

4 Extension to the Multifacility Case

A natural extension of the single facility model consists of considering the location of
N new facilities rather than only one. In this formulation the new facilities are chosen
to provide service to all the existing facilities minimizing an ordered objective function.
It should be noted that these ordered problems are of course harder to handle than the



classical ones not considering ordered distances. Therefore, as no complexity results are
known for the ordinary multifacility problem nothing can be said about the complexity
of the ordered Weber problem. Needless to say that its resolution is even much more
difficult than for single facility models.

Before formalizing the above problem, we should distinguish two different ap-
proaches that come from two different interpretations of the new facilities to be located.
The first one assumes that the new facilities are not interchangeable, which means that
they are of different importance for the existing facilities. The second one assigns the
same importance to all new facilities. Here, we are only interested in the size of the
distances, which means that we do not consider order among the new facilities and
look for equity in the service, minimizing the largest distances.

A NN/
WX

X*

Figure 6: Optimal Solution

4.1 The Non-Interchangeable Multifacility Model

Let us consider a set of demand points A = {aq,as,...,ay}. We want to locate N
new facilities X = {x1, 29, ..., 2y} which minimize the following expression:

N N
Fr(zy, @, ,an) = Z Z Aijy(@i — A) gy + Z Z prry (T — 1) (3)
i=1 j=1 k=1 1=1
where

Al S A < S Ay <A <A< <o < s KA S A < S A



pg > 0 for any k =1,... N, I =1,... N and y(z; — A)(;) is the expression, which
appears at the 7 — th position in the ordered list

M, ={w,y(z; —a,),p=1,2,... , M} fori=1,2,... N. (4)

Remark that in this formulation we assign importance in increasing order of the index
of the new facilities, i.e., ; is considered to be more important than x; whenever ¢ < j.
For this reason we say that this model has no-interchangeable facilities. With the same
classification scheme [16] used for the single facility model, we will refer to this problem
as N/IR" [Nora/VB] D ora-

In order to illustrate this approach we show an example which will serve as motiv-
ation for the following:

We consider a set of little towns and we want to locate one hospital and two emer-
gency services (orthopedic surgery and cardiology). Our objective is to place the hos-
pital and the emergency services such that the largest distance from the hospital to
any town, the distances from any town to the emergency services and the distances
from emergency services to the hospital are small. With these hypotheses we have to
use a 3-facility model, where the hospital has the greatest weight because it is the most
important service and the two emergency services may have equal weights.

As in the single facility model we can prove that the objective function (3) is convex,
which eases the analysis of the problem and the development of an efficient algorithm.

Proposition 4.1 The objective function F; is convex

Proof:
We know that

N M N N
DX gl — Ay = max Y Ay (s = agi)
i=1 j=1

i=1 j=1

where o' is a permutation of the set {1,2,..., M}. Therefore, the first part of the
objective function is a sum of maxima of convex functions analogous to Lemma 3.1.
Hence, it is a convex function. On the other hand, the second term of the objective
function F7 is convex. Thus, F} is a convex function as a sum of convex functions. O

The problem N/IR"/Aova/VB/ > _,.q4 can be transformed within the new ordered
regions in the same way that we did for 1/IR"/Aora/v8/ D ,q- 1t should be noted
that in IR" the subdivisions induced by the ordered regions of this problem are given
as intersection of N subdivisions. Each one of these N subdivisions determines the
ordered regions of each new facility.

Let o = (o¥,...,0%) k =1,..., N be the permutations which give the order of
the lists My, introduced in (4). Consider the following linear program (P!):

N M N N
min Z Z )\kZZkU;c + Z Z HijYij

k=1 1=1 i=1 j=1



S.t.

wileg, xr, —a;)) <z eg €B° k=1,2....N, I=12,... M
<€Z,.Z‘i—.’17j>§yij 7::1,2,...,N, 7:Z—|—1,,M
Zkﬁ;cgzkﬁllc+1 k:1,2,...,N, l:1,2,,M*1

Then, Algorithm 3.1 can easily be adapted to accommodate the multifacility case. Note
than in contrary to that algorithm where we look for one point in IR" we now look
for N points in IR™ or equivalently for one point in IR™™. To do that, we only have
to modify Step 1 by choosing N starting points instead of one. In addition, we also
have to consider that now the ordered regions are defined by different permutations,
one from each list M;. Therefore, we have to replace the linear program P, by P! and
to adapt its set of optimal solutions.

Since this algorithm is essentially the same that the one proposed for the single
facility model, we can conclude that it is also polynomial bounded, hence applicable.

Example 4.1 Consider the two-facility problem.

min 2.5vp(x1 — A) @y + 2vp(x1 — A)) + L.5ys(r1 — A)) + v(T1 — A)) +

$1,$2€R2
+0.75vp(z2 — A)ay + 0.1y (22 — A)g) + 0.1vp(22 — A)9) + 0.1vp(x2 — A)q) +
+0.5vp(71 — 79)

where A = {(3,0),(0,11), (16, 8), (—4, —7)}, and 75 is the hexagonal polyhedral norm,
which we used in Example 3.1.

We obtain in the second iteration the optimal solution, with starting points x{ =
(0,11) and z§ = (16,8). The optimal solution is (2.75, 5.5) and (3.125,5.875). The
elementary convex set and the optimal solution can be seen in Figure 7.

4.2 The Indistinguishable Multifacility Model

The multifacility model that we are considering now differs from the previous one in
the sense that the new facilities are similar from the users point of view. Therefore,
the new facilities have no different importance with respect to the existing ones. On
the contrary, the weight given to each one of these new facilities depends only on the
size of the distances.

Using the same notation as in Section 4.1, the objective function of this model is:

NM N N
FH($17$2; . ;IN) = Z)\ﬂ(l" - A)(j) + ZZMM’Y(% - l"j)
j=1

i=1 j=1

where
M << < Avu

and y(z — A)(; is the expression which appears at the j — th position in the following
ordered list

M =A{wyy(zx —a,), k=1,2,...,N, p=1,2,... M}
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Figure 7: Tllustration for Example 4.1.

According to the classification scheme this problem is written as N/IR" /e /vg/ >
Also this model is motivated by a hypothetical real situation:
Consider a University, with 10 departments and 3 assistant services to be located (com-
puter center, library and lecture hall). Any department need to have access to all 3
services. In addition, it is also assumed that the computer center, the library and the
lecture hall have to communicate.
Our objective is to minimize the sum of all distances. Besides, we want to prevent ser-
vices from being too far away from each others. With these hypotheses this situation
can be formulated as a 3-facility indistinguishable model where we want to locate three
facilities depending only on the size of the distances.

ord"

Proposition 4.2 The objective function Frr is convex
The proof is analogous to the one given for Proposition 4.1. O

Using again the same strategy that we have already used for the non-interchangeable
multifacility model, the problem N/IR" /e /vg/ " . can be solved using an adaptation
of Algorithm 3.1.

Let 0 be a permutation of {1,... , MN} where oy_1)y4; gives the position of
wiy(x, — aj) in M.

Consider the following linear programming problem (P!7):

N M N N
min Z Z )\(,Hzf,(kil)MH + Z Z HpqYpq

k=1 =1 p=1 g=1



S.t.

wi€g, Tp — a1) < Z(k-1)M+1 e, € B k=1,2,...,N 1=1,2,... .M
(eg:Xp — %) <Ypy p=12,....N g=1,... N
Zog st < Zoge_1ysie k=1,2,...,N [=1,2,...  M—-1
Once we replace P! by P!’ we can easily adapt the algorithmic approach showed for
the previous model in Section 4.1. Hence, the same conclusions that we obtained for

N/IR" [ Aora/VB/ Y ,mq are applicable to N/IR"/ & [vg/ > 4

5 Extensions

5.1 Restricted Case

In the last years an area within location theory which has attained considerable atten-
tion is the restricted facility location problems, see for instance, Brady and Rosenthal
[3], Drezner [7], Karkazis [14], Aneja and Palar [1]. Also the work of Francis et al. [9]
in which a contour line approach is given is related to this topic and Hamacher and
Nickel [10] and Nickel [16], describe a concept for solving restricted location problem,
besides they gave a combinatorial algorithm to restricted Weber problem.

In this section we study the problems considered in the previous sections when
forbidden regions are allowed to exist.

It should be noted that the unrestricted single and multifacility case that we have
studied before can be extended easily to the restricted case. We will assume that there is
a forbidden region R containing all the optimal solutions of the unrestricted problem.
This hypothesis is necessary because otherwise we can get the optimal solution by
solving the unrestricted problem. Besides, if the number of forbidden regions is greater
than one, to obtain the optimal solution of the restricted problem, we have only to
consider the region which contains the optimal solution of the unrestricted problem.

First, we extend these results to the case where the forbidden region is a general
convex set. In order to locate the new facilities, we use the following result

Theorem 5.1 For 1/IR*/R/v5/ ., with polyhedral gauges there is always an op-
timal solution on the O-dimensional intersections between the boundary of R, the fun-
damental directions and the bisector lines.

Proof:

Using the same arguments as in Theorem 2.4.5 in [16], it follows that the optimal
solutions of the restricted ordered facility location problem is on the boundary of the
forbidden region. Moreover, the objective function is linear in each generalized ele-
mentary convex set, see Lemma 3.4, and the proof follows analogous to [16]. O

As an immediate consequence of the Theorem 5.1 we state the following algorithm
for solving the single facility problems with a forbidden region, R.

ALGORITHM 5.1.



Step 1

Step 2

Step 3

Step 4

Compute the fundamental directions and bisector lines for all existing facilities.

Determine {y1, ya, ... , yr} the intersection points between fundamental directions
or bisector lines and the boundary of the forbidden region, R.

restricted location problem).

The set of optimal solutions is {x : f(x) = f(2%)} intersected with the boundary
of R.

For the particular case of polyhedral forbidden regions we can get better results.
Let R be a polyhedral forbidden region, {si,ss,..., S} the set of facets of R and
A ={ay,...,ay} the set of existing facilities.

ALGORITHM 5.2.

Step 1

Step 2

Step 3

Step 5

Step 6

Let p:=1, L := 0 and let y* be an arbitrary feasible solution.

Consider the hyperplane T, defined by the facet s, of R and choose x° belonging
to the relative interior of s,. Let T=, be the halfplane which does not contain R
and let x* = x°.

Determine the ordered region Oz where x° belongs to, and the permutation o°
which determines this region. region on Solve the following linear program

min Zi]\i])\izg?
st (bg,x—a;) <z e €B%i=12,...,N
Y l — L ; Y Y Y Y P
Zao < Zoo,, i=1,2,...,N—1 (Pre)
reTs,

Let u® = (2°,27) be an optimal solution of Pr< . If x° ¢ Ogo then go to Step 3.

If 2° belongs to the interior of Oy then let x* = 2° and go to Step 9

Step 7 If F(2°) # F(x*) then £ := ()

Step 8

Step 9

If there exist © and j verifying
0 o o R . . 0 0 0 0
v(z —ar,;;)—’y(x age) i <j suchthat (of,...,07,...,00,...,00)¢L

Then do

o . o o
= (0?,08,...,0

R o
a) ¥ =1° 0 2 -

b) L:=LU{c°}
¢) GO TO Step /.

Do



a) If F(z*) < F(y*) then y* := x*
b) p:=p+1.
d) If p < k GO TO Step 2, otherwise the optimal solution is y*.

Notice that this algorithm can be used to solve problems with convex forbidden regions
not necessarily polyhedral. In order to do so we only have to approximate these regions
by polyhedral ones. Since this approximation can be done with arbitrary precision
using for instance the sandwich approximation of Burkard et al. in [4], we can get
good approximations to the optimal solutions of the original problem:s.

5.2 Non polyhedral case

In the previous sections we only have considered polyhedral norms. We will use these
results to develop a general scheme for solving the considered problems under general
gauges (non necessarily polyhedral).

We show that the optimal solutions of these problems can be arbitrarily approxim-
ated by sequence of optimal solutions of problems with polyhedral gauges converging
under the Haussdorf metric to the considered non-polyhedral one.

Although in this section, we only consider the objective function of the single facility
case, F(x), all the results can be extended in an easy way to the multifacility cases.

Let B be a unit ball of the gauge v5(-), {B,}sew an increasing sequence of poly-
hedra included in B and {B"},cw a decreasing sequence of polyhedra including B,
that is,

B,CB,; s CBCB"'cB" foralln=1,2,...

Let vg, () and g () be the gauges whose unit balls are B,, and B™ respectively.

Proposition 5.1 If B,, C B C B" we have that
VB, (2) > vp(2) = yBe(2) V2,€ R"

The proof follows directly from the definition of gauges.
Recall that given two compact sets A, B the Haussdorf distance between A and B
is
dp (A, B) = max(max dy(z, B), max dy(A,y))
ye

TEA

where dy(z, B) = mingep dy(z, y) being dy the Euclidean distance.

Proposition 5.2 Let K be a compact set. If B, converges to B and B"™ converges to
B under the Haussdorf metric then for all € > 0 there exists ng such that for all n > ny

max Fo(x)— F(x)] < €

I;lea[?dF () — F(z)| < ¢

being F,(x) := Zf\il Aive, (2 — A)uy and F"(z) := Zf\il Aiyen (= A) .



Proof:

We only prove the first inequality. The second one follows analogously.

Since B,, converges to B under the Haussdorf metric verifying B,, C B, for all
n, and K is a compact set then given £ > 0 there exists n, for all « € A such that if

£
Zi]\il Wi sz\il Ai Vo e K.
By continuity we have that for any 4, j and any « € K verifying that w;vg(z—a;) <
wivp(r — a;) there exists ng such that for all n > ny

n > na = maxXeean, then |yg(x —a) —vp, (x —a)| <

wiys, (r — a;) < w;yp, (x — a;)

On the other hand, if there exists k,l and z € K such that wyyg(z — ax) =
wyyp(x — a;) then there also exists ny and a permutation 0™ such that for all n > ny it
holds: 1) w,novp, (x — ayme) = 75, (1 — A)p), and 2) wnvp(z — agno) = (2 — A) ).
Hence, we have for any x € K and n > max{na, no} that

VB(T — A)k) = WeraYB(T — Agro)

VB, (T = A) gy = Wyro Vg, (T = ayro).

Therefore for any x € K and n > max{na,ng} we obtain that

M M
|Fa(@)=F ()] =Y Mlvs(e—A)m—vm, (2= A)i | = D Mw,ze[ys(2—a,m0) =75, (2—a,m)| < £
i1 i-1

O

Corollary 5.1 i) If B, converges to B under the Haussdorf metric, then F,(x)
converges to F(x), besides the sequence {F,(x)}nen is decreasing.

ii) If B™ converges to B under the Haussdorf metric, then F"(x) converges to F(z),
besides the sequence {F"(x)}new 1S increasing.

In the following, we use another kind of convergence, called epi-convergence see
Definition 1.9 in the book of Attouch [2]. Let {g;¢”,» = 1,...} be a collection of
extended-values functions. We say that ¢ epi-converges to g if for all z,

()

()

inf liminf ¢”(z")
¥ —r Vv—0o0

29
inf limsupg”(z”) < g
V2T y 00
where the infima are with respect to all subsequences converging to xz. The epi-
convergence is very important because it establishes a relationship between the con-
vergence of functionals and the convergence of the sequence of their minima. Further
details can be found in the book of Attouch [2].

Our next result states the theoretical convergence of the proposed scheme.

Theorem 5.2 i) Let {z,}new be a sequence such that x,, € argmin F,,(x) then any
accumulation point of {x,}nen belongs to argmin F.



ii) Let {x"},emw be a sequence such that x™ € argmin F"(x) then any accumulation
point of {x,}nen belongs to argmin F'.

Proof:

We only prove the first part, because the proof of the second one is built on the
same pattern using Proposition 2.41. in [2] instead of Proposition 2.48.

First of all, since the sequence {F}, },cn is a decreasing sequence applying Theorem
2.46 in [2] we obtain that the sequence {F, (z)},emw is epi-convergent.

In addition, we get from Proposition 2.48 in [2] that

lim inf F,(z) = inf lim F,(z) = inf F(z) (5)

n—00 zcjRr ? z€IR? n—00 z€R?

Since IR" is a first countable space and {F}, } ,c v is epi-convergent,we get from Theorem
2.121in [2] that any accumulation point of the sequence {z,},_pv is an optimal solution
of the problem with objective function F'.

O

5.3 Conclusions

In this paper we have developed efficient algorithm for the ordered Weber problems
introduced by [19] for the case of polyhedral gauges. Also extensions to the multifacility
case have been developed. In addition a discussion of the non polyhedral case and the
case with forbidden regions has been presented. For the planar case discussion of
the geometrical properties of the generalized elementary convex sets has been given.
Therefore, we have provided a new flexible tool for modelling and solving a broad range
of location problems.

Further research includes the analysis of multicriteria formulation of these problems
as well as a detailed study about ordered Weber problems with some negative weights.
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