
Some Applications of Impulse Control in Mathematical Finance 

Ralf Korn 

L 
Fachbereich Mathematik, Universitiit Kaiserslautern, 67663 Kaiserslautern, Germany 
Fachbereich Mathematik, Johannes Gutenberg-Universitiit Mainz, 55099 Mainz, Germany 

* Abbreviated title: Impulse control in mathematical finance 

Abstract: We consider three applications of impulse control in financial mathematics, a cash 
management problem, optimal control of an exchange rate, and portfolio optimisation un- 
der transaction costs. We sketch the different ways of solving these problems with the 
help of quasi-variational inequalities. Further, some viscosity solution results are presented. 

Keywords andphrases: Impulse control, portfolio optimisation, exchange rate, cash man- 
agement, viscosity solutions. 

ClassiJication : 93 E20 

1. Introduction 

The use of continuous-time stochastic processes for modelling problems of finance has at- 
tracted the interest of many mathematicians over the last decades. There is a vast amount of 
literature on applications of stochastic calculus and stochastic control techniques to various 
problems of financial mathematics such as the problem of derivative pricing or that of opti- 
mal portfolio selection. However, most parts of the literature lack some reality as the opti- 
mal strategies consist of trading or intervention actions at every time instant. The main rea- 
son for that lies in the application of stochastic control methods that assume costless 
trading. In contrast to that, transaction costs cannot be neglected in reality and therefore tra- 
ding strategies in reality are typically piecewise constant ones where the action times are 
not predetermined but dependent on the development of the economy. 
The appropriate mathematical framework to cover these aspects lies in the theory of impulse 
control (see Bensoussan and Lions (1984)). The main difference between impulse control 
and instantaneous stochastic control of diffusions is given by the structure of the optimal 
control strategies. While in problems of instantaneous stochastic control it is often optimal 
to control the underlying stochastic process at every time instant, it is an essential part of 
the definition of an admissible impulse control strategy that the intervention times do not 
accumulate (see Definition 2.1). This is mostly due to the fact that in an impulse control 
problem every action of the controller results in costs that are bounded from below by a po- 
sitive constant (i.e. there exists a fixed cost component). Therefore, an impulse control 
problem has the additional feature of the choice of a sequence of intervention times and not 
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only that of the choice of optimal actions in every time instant. Due to that additional 
difficulty, applications of impulse control methods in mathematical finance are still rare 
examples. On the other hand this means that there is still a wide field of unsolved 
mathematical problems from both the theoretical and applicational point of view. 
The aim of the present paper is to give a (not necessarily complete) survey over some popu- 
lar examples of impulse control methods in finance. The examples consist of impulse 
control models for optimal cash management and index tracking under transactions (see e.g. 
Constantinides and Richard (1978), Buckley and Korn (1998)), models for the optimal 
control of exchange rates between different currencies (see e.g. Jeanblanc-Pique (1993), 
Kom (1997b)), Mundaca and Oksendal (1997), Cadenillas and Zapatero (1999)) and 
portfolio optimisation problems in the presence of transaction costs (see e.g. Eastham and 
Hastings (1988), Kom (1998), Bielecki and Pliska (1998) or Morton and Pliska (1995)). 
The foregoing examples are ordered in increasing degree of difficulty. While the cash 
management problem is a direct application of usual impulse control methods, the exchange 
rate model requires some refinements and the portfolio problem exhibits some very special 
and new features. It is thus not surprising that the expliciteness of the solution of these 
models decreases with increasing degree of difficulty. , 
Section 2 of the paper contains a brief review of some basic facts of impulse control models 
and methods. The above mentioned examples form Section 3 while in Section 4 we present 
some new technical remarks on viscosity solutions of quasi-variational inequalities and nu- 
merical methods for solving impulse control problems. As the main purpose of this paper is 
to give a survey of applications of impulse control methods in mathematical finance we 
often leave aside technical details and refer the interested reader to the original sources. 

2. Some basic facts of impulse control models and methods 

For simplicity and to gain some insight, let us start by looking at a one-dimensional model. 
We assume that between intervention times our fundamental process is given as the 
solution of the following stochastic differential equation 

(24 dX(t) = b(X(t))dt + o(X(t))dW(t). 

The functions b:R+R and o:R+R are assumed to satisfy Lipschitz conditions 
guaranteeing the existence of a unique, non-exploding solution of (2.1) (see e.g. Karatzas 
and Shreve (1988) Section 5.2) for every initial condition X(0) = 5 on some probability 
space (Q F, P) equipped with a filtration (F&o satisfying the usual conditions. W(t) is a 
one-dimensional Ft-Brownian motion, 5 a real valued random variable independent of W(t), 
t20, with existing second moment. The controller is now allowed to choose intervention 

: 

times 8i where he can shift the process X(t) to another value 

(2.2) X(8i ) = X(0,-) - AXi . 

2 
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Here, AXl is a real number chosen by the controller. Note the striking difference to the usual 
stochastic control setting (see e.g. Fleming and Soner (1993)) where the controller can in- 
fluence the drift and/or diffusion term of the fundamental process, but the resulting con- 
trolled diffusion remains a continuous process. In the above impulse control situation, the 
controlled process has a jump of -6X1 at the control instant but the local characteristics of 
the process (i.e. the drift and diffusion terms of Equation (2.1)) remain unchanged. In Sec- 
tion 3, we will also deal with a situation where the controller can change the local parame- 
ters of the fundamental at an intervention time, too. 
For the moment, we concentrate on the control problem where the controller faces both in- 
tervention and running costs on an infinite time interval1 which is given by , 

(2.3) min E:(Tesatf(X(t))dt + $eBaei(K+ k@il)l{ei<,}) 
{(@,Axi),iEN}EZ 0 i=l 

where K, k are positive constants, f:R + [O,m) is a continuous function. Ez(.) denotes the 
expectation when the process X(t) starts with initial value x and the strategy S ={(0i&), i 
EN} is chosen by the controller. For notational convenience, we will omit the dependence 
of the process X(t) on the strategy S. Let Z be the set of admissible impulse control 
strategies which will be defined in 

Definition 2.1’ 
An impulse control strategy S = {(ei,Axl), iEN) is a sequence of intervention times 6i and 
control actions Axi with 

9 0 10i 5 Bi+l a.s. V i EN 
ii) 01 is a stopping time with respect to the filtration fr := o{X(s-), s9), t >O 

(2.4) iii) Axi is measurable with respect to fei 

iv) X(0,) = X(0,-) - AXl , 

An impulse control strategy will be called admissible if we also have 

V) P(lim Bi <T)=O VT20 . 
i-300 

Remark 2.2 
We will look at problems different from (2.3) such as problems with a finite horizon or with 
an implicit cost structure in the examples in Section 3 but will demonstrate the main prin- 
ciples of impulse control by considering problem (2.3). 

To formulate an analogue to the Bellman principle of stochastic control we define the value 
function v(x) corresponding to (2.3) by 

(2.5) V(X) := 4:fi E:(Teda’f(X(t))dt + $eeaei(K+ k(Axi))liei<03]) 
0 i=l 

and the minimum operator M via 

(2.6) Mv(x) := ni$R [ v(x-Ax) + k (Ax( + K 1. 
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Note, that the minimum operator Mv(x) represents the value of the strategy that consists of 
doing the best immediate action and behaving optimally afterwards (for simplicity, we as- 
sume that the minimum in this minimisation will be attained). But considering that there 
could be states x where an immediate action is not at all optimal yields the inequality 

(2.7) v(x) I Mv(x). 

On the other hand, at the first time (after the start in x) when it is optimal to intervene, v and 
Mv must coincide (the optimal action is then equal to the optimal immediate action). There- 
fore, we conjecture the following variant of the Bellman principle to hold : 

(2.8) v(x) = inf E, (eSar 
TEC 

Mv(X(r-)) + jematf(X(t))dt) =: G v(x) 
-0 

where C is the set of finite stopping times and E, is the expectation if the non-intervention 
strategy is used. Observe that equation (2.8) reduces an impulse control problem to an opti- 
mal stopping problem. But this is only a formal success because the reward function of the 
optimal stopping problem is unknown (more precisely, Mv(X(z-)) is unknown). An 
iterative algorithm to solve this formal optimal stopping problem is given in Kom (1997b). 
The above Bellman principle, will serve us to derive the analogue to the HJB-Equation of 
stochastic control, the quasi-variatonal inequalities, heuristically. For this reason, let us 
assume that there exists an optimal stopping time r* for which the infimum in the Bellman 
principle (2.8) will be attained and further assume that v(x) is sufficiently smooth and 
regular to perform all the following manipulations. Under these assumptions, combination 
of (2.8) and (2.7) together with Ito’s formula imply 

(2.9) v(x)=‘;Iii E, (e-*‘v(X(z-)) + jeeatf(X(t))dt) 
0 

= E,(v(x) +~*e-a’(f(X(t))-av(X(t)))dt+~*e-atv’(X(t))o(X(t))dW(t) 
0 0 

+ ]*eFat( v’(X(t))b(X(t)) + xv”(X(t))02(X(t)))dt) 
0 

5 E,(v(x) +j eMat (f(X(t))-av(X(t)))dt+le-“v’(X(t))a(X(t))dW(t)+ 
0 0 

+ Se-“(v’(X(t))b(X(t)) + xv”(X(t))02(X(t)))dt) 
0 

for a fixed but otherwise arbitrary positive constant s. Now assume that the expectation of 
the stochastic integral vanishes, subtract v(x) from both sides of (2.9), divide them by s, and 
apply the mean value theorem to the integrals. Then, let s converge to zero and assume that 
this limit can be interchanged with the expectation. Thus, we arrive at the inequality 

(2.10) L v(x) + f(x)-:= ‘/z o*(x) v&x) + b(x)v,(x) - a v(x) + f(x) < 0 . 

4 
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If the optimal stopping time z* would be identical to zero then we would have equality in 
(2.7). However, if T* would be positive (at least with positive probability) then by the se- 
cond equality in (2.9) and the Feynrnan-Kac representation theorem (see e.g. Karatzas and 
Shreve (1988), Section 5.7) we would have equality in (2.10). Hence, both inequalities can- 
not be strict ones simultaneously, i.e. we must have 

L 

. 
: 

(2.11) (v(x) - Mv(x))(L v(x) + f(x)) = 0 . 

This gives rise to the following 

Definition 2.3 
The three relations (2.7), (2. lo), and (2.11) are called the quasi-variational inequaliks (for 
short: qvi) for problem (2.3). 

In Definition 2.3 the derivatives occurring in inequality (2.10) are only assumed to exist as 
left hand derivatives. v(x) need not necessarily be an element of C*.‘It will become clear in 
a moment that the qvi will play a role similar role to that of the HJB-Equation in stochastic 
control. To formulate the corresponding result, we introduce a special impulse control stra- 
tegy which will be constructed with the help of a solution of the qvi. 

Definition 2.4 
Let v be a continuous solution of the qvi. Then the following impulse control strategy is 
called a qvi-control (if it exists): 

i> @o,&I > := VW), 
(2.12) ii) 8i := inf {t 2 8i-1 : v(X(t-)) = M v(X(t-))}, 

iii) A Xi := arg r$; [ V(X(0,-) - Ax) + k IAxJ + K 1. 

Hence, at every time instant where v and Mv coincide a controller using a qvi-control inter- 
venes. He then chooses the action that is the minimiser of the optimisation problem corres- 
ponding to Mv(x) (compare the formal argument leading to the Bellman principle (2.8)). 
The justification for considering qvi and qvi-controls is given by Theorem 2.5 below (see 
Korn (1997a) for a proof). 

Theorem 2.5 

, 

If there exists a solution v* EC* (or better: a “sufficiently regular solution”, see the remarks 
below) of the qvi to problem (2.3) that satisfies the growth conditions 

(2.13) E: T(e-%(X(t))v*, (X(t)))*dt < 00, 
0 

(2.14) E: ( emaT, * (X(T)) ) a 0 

for every X(t) corresponding to an admissible impulse control strategy S then we have 

(2.15) v(x)>v*(x) 'd XER. 

5 
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Further, if the qvi-control corresponding to v* is admissible then it is an optimal impulse 
control and v* is identical to the value function v. 

Remark 2.6: “Regularity and the smooth pasting principle” 
The above result can be seen as a verification result for a regular solution of the qvi (and is 
thus only a sufficient but not necessary result). However, it is the required degree of regula- 
rity thtit causes problems. One can in general not expect to get a C2-solution of the qvi (a 
typical example for a C2-solution of the qvi would be the case where the non-intervention 
strategy would be optimal). Inspection of the proof of the theorem shpws that the C*-as- 
sumption can be substantially weakened. It is in fact only needed to apply It& formula. 
Therefore, by using some generalised versions of It& formula that require weaker 
regularity assumptions we could also weaken the regularity requirements on the solution v* 
of the qvi in Theorem 2.5. The simplest but often relevant case in the one-dimensional 
situation is v* being a Cl-function which is C2 up to a finite number of points. The most 
prominent example has the following structure: 
The real line can be divided into a “continuation set” (i.e. a region where it is optimal not to 
intervene if the controlled process stays inside this region) and an “action set” (a set where 
it is optimal to do an immediate control action if the process is inside this set). See also 
Figure 1 for an illustration. 

Insert Figure 1 here. 

If this is the case then the controller has to determine: 

l the endpoints a, b of the continuation set 
l the optimal restarting points a, j3 inside the continuation set (i.e. the points to where the 

process should be shifted by the controller when the process ,has reached an endpoint of 
the continuation set) or equivalently the optimal actions 

Thus, the controller is left with four unknown parameters. Now, his main tool is to use the 
principle of smooth pasting. We will demonstrate what is meant by this. On the continu- 
ation set the differential inequality (2.10) must be satisfied as an equality (as there, the 
controlled process behaves as a diffusion) while on the action set inequality (2.7) has to be 
an equality (due to the definition of the action set an immediate action is optimal). We first 
solve the differential equation (2.10) on the continuation set which yields the general form 
of the solution of this equation. However, as it is a second order equation, the general form 
will contain two further unknown constants. Hence, we have to determine six unknown 
constants in total. On the other hand, we have a set of conditions that must be’ satisfied by 
the value function. Continuity of the value function requires 

(2.16) v(a) = v(a) + K + k (a-a), v(b) = v(p) + K + k (b-9). 

Necessary conditions for optimality of the actions in {a, b} are (note the form of the mini- 
misation problem in the definition of the operator M) 

6 
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v’(a) = -k , v’(p) = k . 

Finally, continuity of the derivative of the value function requires (note equations (2.16)) 

? 

s 
I 

(2.18) v’(a) = -k , v’(b) = k . 

All in all, we have six equations for six unknowns, a fact that gives rise to the hope to be 
able to determine all these unknowns in a unique way. We will see the smooth pasting prin- 
ciple in action ‘in first two examples of the next section. In Figure 1, we have also implicitly 
assumed that the optimal shifts from each point of the action set are to shift the process im- 
mediately to either a or p (depending- if we are in the left or the right part of the action set). 

Remark 2.7: “Generalisations and uniqueness” 
a) Uniqueness of a “sufficiently regular” solution to the qvi is an immediate consequence of 
Theorem 2.5 as the value function of an optimisation problem must be unique. Thus, the 
most regular solution of the qvi automatically coincides with the value function given it is 
regular enough to meet the above requirements. This fact is also a justification for the above 
mentioned smooth pasting principle. 
b) The above results and in particular Theorem 2.5 can be generalised in various ways: 

l Finite time horizon 
The main differences are the time dependence of the value function and the occurrence of a 
terminal condition in the qvi. See Example 3 iii) for more details. 

l M.&i-dimensional case 
If the scalar process X(t) will be substitued by a vector process with dynamics given by 

(2.19), dXi(t) = bi(X(t))dt + koij(X(t))dWj(t)) , i = l,...,n 
j=l 

then the foregoing results and methods are valid if the operator L occurring in the quasi- 
variational inequalities is now defined as 

(2.20) Lv(x) = x 2 f: sOim(X)‘Jjm(X)Vxi+k (X> + 5 bi(x)vxi (x) -av(X)* 
i=lj=lm=l i-1 

The main problem of the multi-dimensional case is not the proof of verification theorems, it 
is the explicit solution of the qvi. 

l Constraints 
We will only consider the case where the controlled process is required to stay in a given 
closed interval I. First, we have to modify the definition of an admissible impulse control. 
Whenever the process reaches the boundary of I a control action has to be taken to prevent 
it from leaving I. Also, only control actions that keep the process inside the interval I are 
admissible. Therefore, in Definition 2.1 we make the following modifications: 

(2.4) ii*) 0i is a stopping time with respect to ft := o{ X(s-), sit }, t 2 0, with 
8i 5 inf {t 2 8i-1 1 X(t)EdI}, where d1 denotes the boundary of I 

7 
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(2.4) iv*) X(0i) = X(0,-) - AXi , such that X(8i)EI 

Further modifications concern the definitions of the operator M (where it is only minmised 
over such values of Ax such that (2.4) iv*) is satisfied) and that of the qvi (where we have 
to add the requirement “v(x) = Mv(x) for x ~81” in (2.7). Note further that the qvi now only 
have to hold on I. With the obvious modification of the definition of a qvi-control for the 
constrained situation Theorem 2.5 remains valid. However, in our constraint situation we 
only have to require ” v* E C.2( I”), v* E C(I)“. The growth conditions (2.13/14) are now auto- 
matically satisfied and can be dropped. 

l Maximising utility 
If instead of minimising costs we look at the problem of maximising utility then some obvi- 
ous changes in the directions of inequality signs and substitutions of minimisations by 
maximisations have to be made. See the Examples i) and iii) in the next section. 

3. Applications of impulse control in mathematical finance 

i) An impulse control model for cash management and index tracking 

In this, first example of an application of impulse control to finance we consider a portfolio 
manager who is trying to passively track a stock index (such as the DAX). He can do so by 
setting up a portfolio consisting of all the securities that enter the index (of course hold in 
the same proportion as they enter the index). If there would be no cash inflow to or outflow 
from his fund then his portfolio would perfectly track the index. However, there are 
irregular cash inflows/outflows over time which originate’from dividends of the shares, new 
subscriptions to the fund or fund redemptions. If all these inflows/outflows must be 
immediately dealt with by security transactions this would result in large amounts of trans- 
action costs. It could therefore be advantageous to the portfolio manager to hold a certain a- 
mount of cash. If this cash account has reached a sufficiently high level then he will add 
parts of it to his portfolio by purchasing additional shares (in the appropriate proportions to 
track the index). If in contrast it has fallen below a critical level he will increase it by selling 
some of his shares. However, a positive cash position will reduce the (expected) excess 
return of the portfolio over the riskless rate (as long as the expected rate of return of the 
portfolio lies above the riskless rate). Moreover, it will surely lead to a tracking error, i.e. of 
a deviation of the performance of the total holdings (portfolio and the cash account) from 
the performance of the index, because there is no positive cash weight in an index. Thus, 
the advantages and disadvantages of holding a cash position have to be judged 
appropriately. Below we will give a rigorous formulation of and a solution to this problem. 
All our processes considered there will be relative processes with respect to the wealth of 
the portfolio managers total holdings. 

8 
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Let the process C, be the cash weight in a portfolio (i.e. the fraction of the total wealth hold 
in cash at time t). We assume that it behaves like a Brownian motion with volatility cr and 
drift rate TV between readjustment times 8i and 8i+l, i.e. 

(3.1) c,=co+q t+oW(t)+ ~(C(‘)-Cei-).l{&$) 
i=l 

where C(‘)is the value of the process that the portfolio manager has chosen at the readjust- 
ment time 8i, CO the initial cash weight and W(t) a one-dimensional Brownian motion. We 
assume that every readjustment causes costs that consist of a component which is propor- 
tional to the wealth X(0,-) of the portfolio (immediately before the readjustment) and of a 
component that is proportional to the absolute value of the “transacted” amount of cash, 

(3.2) Cc’) - Cfji _ 1 X(ei-). 

We will thus look at the costs (relative to X(t)) of the form 

(3.3) K+k @)-Co _. 
i 

Further, we assume that the index portfolio we would like to track has a (relative rate of) 
excess return 71 over the riskless rate (which is assumed to be zero) and a volatility of 2. By 
holding a cash weight of C, in our tracking portfolio we will get an excess return rate of (1 
- C, ) 7t and a variance of the tracking error of (C, z )2, Our goal will be to have a good 
excess return and a low trucking error variance with not too much readjustment costs. 
Also, the portfolio manager’s cash position should be non-negative. All this leads to the 
constrained optimisation problem given by the value function 

(3.4) y(c) = su ( g E,{~e-P’[(l-Ct)n-);r2Ct2]dt- 
Bi,Cti EZ 0 

. - f(K+ klC(i)-Cei_/)e-eiPIIei<m)). 
i=l 

Here, p is a positive discount factor, h a positive coefficient of risk aversion, c the positive 
initial cash weight, and Z is the set of admissible strategies with the additional requirement 
to use only such strategies leading to a non-negative cash weight process Ct. This problem 
is treated in Constantinides and Richard (1978) and in Buckley and Korn (1998). 
The following proposition gives a sufficient condition characterising the value function and 
it also describes the corresponding optimal control strategy. It is a direct application of the 
smooth pasting principle (see Remark 2.6). 

Proposition 3.1 
If there exists a continuous function V:[O,oo) + R and a triple (Z,u,U), 0 c I< u < U with . vi (O,a) d v (OJJ] E C2 (where V”(U):= lim U”(c)) satisfying 

ctu 

i) % o2 V”(c) + q V’(c) + [(l-c)7r - h (zc)2] - p V(c) = 0 Y cE[O,U] 

9 
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ii) V’(u) = V’(U) = - k , V’(r> = k 
(3.5) iii) V(U) = V(U) - K - k(U-u), V(0) = V(I) - K - k 1 

iv) V(c) = V(U) - k (c-U) v c E [U, a) 

then V coincides with the value function y of (3.4). Moreover, in this case the strategy “Do 
nothing as long as C, is in (0, U). If C, reaches U then decrease the cash weight to u, ifit 
reaches 0 then increase the cash weight to 1. If Co is bigger than U then decrease the cash 
weight immediately to u” is an optimal strategy. 

For a proof (which consists of showing that a function V(.) satisfying (3.5) satisfies the cor- 
responding qvi, too) see Buckley and Korn (1998). In view of the proposition we now only 
have to show the existence of a function V satisfying the system of equations (3.5). We will 
construct it in several steps. As in Jeanblanc-Pique (1993) we will work with the derivative 
v of V and construct it on [O,U] only. The extension of V on (U, 00) can then be easily ob- 
tained. Due to its affine linear form and the continuity of V and V’ in U it is completely de- 
termined by the values V(U) and V’(U). The derivative v of V has to satisfy 

i) L v(c) := L/ o2 v”(c) + q’?(c) - p v(c) - 2 hr2c - x = 0 v CE WI, 

;(v(x) - k)dx = K, 
u 

(3.6) ii) j(v(x) + k)dx =-K, 
0 

iii) v(u) = v(U) = -k, ;(l) = k. 

The general solution of the differential (3.6) i) is given by 

(3.7) V(C) = pehl cc-*) + veh2(c-A) - y1 C - y.2 , 

with A = u-l , 

(3.8) ,y1 := 25 y2 := 
‘np+2h?TJ 

P2 ’ 

(note especially 11 <O < h2 ) and where the constants p, v depend on 1 and A. Obviously, 
both these constants are positive. The requirements v(l) = k, v(u) = -k lead to the following 
representations for the constants u, v : 

(3.9) 
k(e ‘2*+l)lconl A+l(l-e 

cI= 
[ h2A)]-con2[ l-eh2’] 

eh2A -e”I* 

(3.10) 
-k(e *l’+l)+con, A+l(l-e 

V= [ 
‘1A)]+con2[1-eh1A] 

,x2’ -e”I* 

Still there are three unknowns to determine, U, I, A. To do this we use the three remaining 
equations and show that 

l for every 1> 0 there exists a positive number A = A(I) with 

10 
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(3.11) -K =4&Z,A(I)):= y(v(x)+k)dx, 
U 

l there exists a pair ( 1, A(I)) satisfying (3.11) and also 

(3.12) K = $*( I, A(I)) := i(v(x) - k)dx, 

l there exists a triple (UJu,A(l”)) iith 00 and (lu,A(Z”)) satisfying (3.1 l), (3. li) and 

(3.13) - k = $3( U, I,, A&J) := v(U) . 

The complete existence proof is given in Buckley and Kom (1998). We have thus reduced 
the solution of our impulse control problem to the solution of the following system of non- 
linear equations for (I,A,U) arising from the system (3.5): 

9 E(l-e-‘l’) + $(1-e-Q) -‘/ZY1*12-(~2+k)~-K=0 

(3.14) ii> pe’l(“-‘) + ve’2(“-‘)- ~1 U-y2+k=O 

iii) h~(“-l) -,W) + qeh2(U-0 _ ,hzA) 

12 

- L/z T~(U~-(Z+A)~)- (y2-k)(U-l-d) + K = 0 
where we additionally require 

(3.15) O<I<U, O<A<U-Z 

with p and v functions of (A, Z) given by equations (3.9/10). However, this problem can be 
solved instantaneously by standard numerical methods. See Buckley and Kom (1998) for 
numerical examples and some comparative statics analysis. 

ii) Optimal control models of exchange rates 

Our second example will be the optimal control of the exchange rate between two cur- 
rencies by a government bank. We will especially look at a so called target zone model. 
This means that the goal of the policy followed by the government bank is to keep the ex- 
change rate in a prescribed closed interval I=[L, U]. Such a strategy is a good compromise 
between the two extremes of a free float (i.e. no control action at all) and a fixed exchange 
rate (which requires control actions at every time instant). 
The main idea behind control models for the exchange rate between two currencies is that 
there exists a process G(t) called the, “fwldamental” which is responsible for changes in the 
exchange rates (of one country). It is regarded as a one-dimensional aggregation of certain 
economic measures like productivity, rate of unemployment, industrial output or domestic 
interest rates. Assuming a functional relationship between this fundamental and the 
exchange rate the goal of a government bank is to control the fundamental in a way such 
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that the exchange rate stays in a given interval, the target zone. Of course, control actions of 
the bank are more or less limited to the control of some key interest rates or to selling and 
buying of foreign currencies. For an overview on some methods, models and the economic 
background we refer the reader to Flood and Garber (1991) or Krugman (1,991). 
It must be noticed that the target to keep a process inside an interval does not completely 
determine the correponding control strategy. However, the introduction of a cost criterion to 
be minimised helps to figure out a unique one. A model where the government bank uses an 
impulse control strategy is presented in Jeanblanc-Piqud (1993). This approach is general- 
ised to a model with random control consequences in Korn (1997b). We only give a brief 
description of the situation covered in Jeanblanc-PiquC (1993). There, it is assumed that the 
uncontrolled fundamental process G(t) follows a Brownian motion with drift 

(3.16) G(t) = rl t + CY W(t) 

and that the logarithm of the exchange rate X(t) is given as 

(3.17)’ X(9 = fmt)) 

with a C2-function g(.). On the other hand, in the basic log-linear model of the exchange 
rate (see Jeanblanc-Piqud (1993)) it is assumed that the log of the exchange rate is given as 
the sum of the value of G(t) plus a term proportional to the expected “percentage change” in 
X(t) which has the It8 interpretation as a stochastic differential equation of the form 

(3.18) dX(t) = e-‘(X(t)-G(t)) dt + exp(t&)ti(t)dW(t) 

whel’e 8 is a positive constant, $(t) a progressively measurable process such that exp(t/Q+(t) 
is square integrable. To determine g(.) we apply It& formula to (3.17) (note assumption 
(3.16)) and compare the resulting drift term with that of equation (3.18) delivering the fol- 
lowing differential equation for g(G) 

(3.19) % o 2 g”(G) + IJ g’(G) - Q ( g(G) - G ) = 0 

which has the general solution 
(3.20) g(G) = G + ~$3 + AeCllG + BeC1zG 

with p1/2 = 11 f CY -2p--T- q + (20 / 0) and A,B (yet unknown) real constants. These un- 
known constants are determined by the requirements that the exchange rate has local extre- 
ma (as a function of the fundamental) at the boundaries of the target zone [L, U] (see Krug- 
man (199 1) to justify this requirement), i.e. we have the boundary conditions 
(3.21) g&o)= L 9 g(W=U 

where k. < kl are the roots of g’(G) = 0. As reported in Jeanblanc-Piquk (1993) there exists 
a unique pair (A, B) of constants satisfying (3.19/20/21). Thus, X(t) is completely deter- 
mined as a fLmction of the fundamental. The next task is to find a band [a, b] for the funda- 
mental G(t) such that X(t) remains in the given target zone [L,U]. More precisely, we will 
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. 

t 

try to keep the fundamental in [a,b] whilst minimising the intervention costs, i.e. we solve 
the problem given by the value function 

(3.22) v(x) = min 
(ei ,AXi )EZ(a,b) 

E”, (if!K+ k14/]e-aei l{q+~)> 

where the set Z(a,b) contains all admissible strategies that keep G(t) inside [a, b]. A natural 
choice would be [a, b] = [b, k,]. This problem could now be solved explicitly in the a simi- 
lar way to the cash management problem using the principle of smooth pasting: Even more, 
in the sense of Remark 2.6, we could guarantee sufficient regularity of the value function 
for every choice [a, b]C[lmi”, k,,,,] to apply Theorem 2.5 (see also. Jeanblanc-Pique (1993)). 

Proposition 3.2 
For every given interval [a, b]r[k,i”, k,,,,] there exist constants a$ with a < a I p < b such 
that the value function of problem (3.22) is given as the unique solution of 

(3.23) Lv(x) = L/z CY v”(X) + Tlv’(x) - av(x) = 0, XE k&l, 
(3.24) v(a) = v(a) + K + k ] a - a ] , 

(3.25) v(b) = v(p) + K + k ] b - p ] . 

The optimal actions consist of waiting until the process reaches the boundary of the 
interval. Then it is thrown back from a to a and from b to p, respectively. 

However, there is MO possibility of a choice of the band [a, b]. The reason for this is econa- 
mica1 background of the problem! The choice of an arbitrary band [a, b] would typically 
lead to a jump of the exchange rate after an intervention of the government bank (i.e. a shift 
of the fundamental). But if this intervention would lead to a completely foreseeable jump of 
the exchange rate, there would ,be possibilities of making riskless profits for speculators. 
Hence, the market which is aware of the strategy of the government bank will anticipate the 
government bank’s action and the exchange rate will stay continuous (see Flood and Garber 
(1991)). Only the fundamental will jump. We thus have to find a band [a, b] with corres- 
ponding optimal shifts from a to a and from b to p such that after the shift of the funda- 
mental the value of the exchange rate retains its value. To demonstrate the existence of such 
a quadruple (a,a$,b) we use Figure 2 where we have plotted the (log. of the) exchange rate 
X(t) curve as a function of the fundamental (compare also to Jeanblanc-Pique (1993)). 

Insert Figure 2 here 

: Note that to keep the exchange rate in [L, U] it suffices to keep the fundamental in the inter- 
val [k,in, k,,,]. We look for (a, a, p, b) that solve the corresponding problem (3.22) with 

. (3.26) g&d = g(a), g(P) = g(b). 

The choice of b=k,,,,, implies P=ko via (3.26). Hence, the left end a of the band must be 
smaller then ko which leads to a value of a I b and thus to g(a) > g(a). On the other hand a 
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choice of b slightly bigger than kl implies a value of p slightly smaller than kl. Because the 
distance between b and /3 is small, the length of the band [a,b] must be small, too (see Korn 
(1997a) for a justitication of this argument). In particular, a must be bigger than b leading 
to g(a) < g(a). By continuity there must exist a quadruple (a, a, p, b) satisfying (3.26). 

Remark 3.3: - 
a) In Korn (1997b) the above example is generalised to a situation where the action of the 
government bank has random consequences. More precisesly, the government bank’s action 
results in a random shift of the fundamental where the government bank can only control a 
parameter of the distribution of the shift. 
b) In a very readable paper of Cadenillas and Zapatero (1999) a similar situation is treated. 
The main differences there are that the exchange rate is controlled directly and that there are 
also running costs for the deviation of the exchange rate from a prescribed level. 

iii) Impulse control strategies for portfolio problems with transaction costs 

This problem will contain some new features compared ta the previous two. It will have a 
finite time horizon, a two-dimensional controlled process and the control costs affect the 
controlled process but not the value function. It has its origins in Eastham and Hastings 
(1988). Further generalisations and modifications can be found in Korn (1998). 
We consider a securities market made up of a stock and a bond with price dynamics given by 

(3.27) dPO(t) = 0, 
dP,(t) = P*(t) (bdt + odW(t)), 

PO(O) = 1 “Bond”, 
(3.28) Pi(O) =P “Stock” . 

The trading strategy of an investor is completely described by the process of his bond and 
stock holdings (B(t), S(t)). As long as he does not rebalance these holdings they evolve as 
multiples of the relevant securities,prices, i.e. we have 

(3.29) dB(t) = 0 
(3.30) dS(t) = S(t) ( b dt + o dW(t)) 

“Bond holdings”, 
“Stock holdings”. 

At every intervention time 8i (i.e. a time where the investor rebalances his holdings) the in- 
vestor has to pay a sum of fixed and proportional transaction costs of the form 

(3.31) K+k)ASil 

with 0 < K, 0 I k < 1, A Si := S(ei) - S(Oi-1). These transaction costs have to be paid from 
the bond holdings. Therefore, we have the following balance equation: 

(3.32) B(Qi) = B(ei-1) - ASi - k JASil - K 

Hence, the i th action of an investor can be identified with the change ASi in the stock hol- 
dings. By introducing the wealth process X(t):= B(t)+S(t) our goal will be to maximise the 
expected utility from terminal wealth at a given time horizon T. We restrict ourselves to the 
treatment of the following problem (for more general problems see Kom (1998)) 
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? 

(3.33) (ei ,rg& E (l-e-hX(T9 

where Z is the set of admissible impulse control settings where in addition the action ASi is 
constrained by the requirement of yielding non-negative values for B(0i), S(ei). This 
ensures that the wealth of our holdings after all securities are sold is always bounded from 
below by -K. We could also require to have a non-negative wealth after selling all 
securities, but for simplicity we drop this condition here. 

c Before proceeding with the solution of our problem we have to adapt the results of Section 
!’ 2 to the finite time horizon and the multidimensional setting. First of all the time variable t 
! will appear in the value function which will be defined by 

v(t,B,S) := (e, 
1, 

y& Et,B,S( l-e-‘X(T)). 

The analogue of the operator M of Section 2 is given as 

(3.35) Mv(t,B,S):= 
Ad?&) 

v(t,B-K-AS-k /AS/, S+AS) 

where A(B,S) is the above described feasible set for the actions given the holdings of (B,S). 
Note that the transaction costs enter into the components of v but not as an additional term 
in the maximisation problem as in Section 2! There is no separation between control costs 
and control gains as in the foregoing examples. The tradeoff between gaining a better reba- 
lanced portfolio and paying transaction costs is not seen explicitely. As in the Section 2 we 
have (note the change in the inequality sign due to the maximisation !) 

(3.36) v(t,B,S) 2 Mv(t,B,S). 

At the first optimal intervention time (after starting in (t,B,S)) v and Mv must coincide. But 
due to the finite time horizon T it might be optimal not to intervene on [0, T] at all. This 
leads to the Bellman principle of the form 

(3.37) v(t,B,S) = max{ vu(t,B,S), sup E T EC t,B,s(Mv(?B,S(@))) =: G WW 
t, 
T 

where vu(t,B,S) is the expected utility of the non-intervention strategy starting in (t,B,S), i.e. 

(3.38) vu(t,B,S) = Et,B,S (l- exp(-h(B+Se @-)$a2 )(T-t)+cr(W(T)-W(t)))) 

i * 

Note that for simplicitly we do not require that the securities have to be sold at time T. The 
finiteness of the time horizon also affects the qvi in the form of an additional terminal con- 
straint. Further, the differential operator will now include a partial derivative with respect to 
the time variable t. As the bond price is constant a partial derivative with respect to B will 
not occur in the qvi. Therefore, the fact that the controlled process is two-dimensional enters 

. the qvi only in an indirect way. The qvi for problem (3.34) are explicitly given as 
j 
,. i> L v(t.B.S) := % cr2S2 vss(t,B,S) + bSvs(t,B,S) + v,(t,B,S) IO 

(3.39) ii) v(t.B.S) 2 Mv(t,B,S) 
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iii) (v(t,B,S)-Mv(t,B,S)) Lv(t,B,S) = 0 

iv) v(T,B,S) = I-exp(-h(B+S)) for (t,B,S) E [O,T] x [0,co)2. 

Note the change of the inequality sign in i) due to the change from minimisation to maximi- 
sation compared to Section 2. With these modifications we obtain a similar verification 
theorem as in Section 2, i.e. a result of the form “A sufficiently regular solution of the qvi co- 
incides with the value function and the corresponding qvi-control is an optimal one”. See 
Korn (1998) for details. The main difficulty now is the task of solving the qvi. In particular, 
if we try to imitate the method of solution of the two preceeding examples we do not know , 

l the form of the continuation set NT (“the no-transaction region”), 

l the explicit analytical form of the solution of the boundary and terminal value problem 

Lv(t,B,S) = 0 on NT, v(T,B,S) = l-exp(-h(B+S)) on [O,CO)~ 

where the boundary conditions on &NT) are given by a suitable smooth pasting condition 
(the explicit form of which also has to be determined !). 

1 
Therefore, in Kern (1998) an approximation procedure is described which is based on an a- 
symptotic analysis of a transformed version of the above qvi. The idea of this procedure 
stems from Whalley and Wilmott (1994) where a similar approach.is applied to the problem 
of option pricing under transaction costs. To give an outline of this procedure let us first 
drop the requirement of non-negative bond and stock holdings. In the case without transac- 
tion costs the optimal strategy was derived by Pliska (1986). He showed that the optimal 
stock holdings S*(t) are constant (in wealth !), in particular 

(3.40) s*(t) = A- ho2 ’ 
and that the corresponding wealth process X(t) is a Brownian motion with a positive drift. If 
v*(t) denotes the number of shares of the stock hold at time t and cp*(t) the amount of mo- 
ney invested in the bond at time t (recall the constant bond price !) are given by 

(3.41) 
b 

q”(t) = x(t) - - 
b 

ho2 ’ 
w*(t) = 

ho2P1(t) * 
Note that in spite of the simple form of the stock holdings process the investor has to trade 
at every time instant to follow this strategy ! 
If v(.,.,.) denotes the value function for the problem with transaction costs but without the 
non-negativity constraint then due to the multiplicity of the exponential function we have 

(3.42) v(t,B,S) = ebhBv(t,O,S). 

Hence. one expects an optimal strategy which is independent of the total wealth of the in- 
vestor. More precisely. it should have the form: ” Rebalance your holdings only if the stock 
price PI(t) has rno\-ed in such a way that your current number of stocks owned is far away 
from Iv*(t).” The bond 1 10 Id ings are uniquely determined by the self-financing condition. 
.Thus, the optimal strategy should be given by an interval [v*(t)-y-(Pl(t)),v*(t)+y+(Pl(t))] 

P 
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with boundaries depending on the stock price and the actual number of shares of the stock. 
We have to specify. the optimal restarting points w*(t)-?-(PI(t)) and w*(t)-i+(PI(t)) after 
an intervention, too. To determine v(t,O,S) we separate the stock price and the number of 
shares by introducing the function 

h 
(3.43) N,P,Y) := wJpy)+l * 

Then the qvi for v(t,O,py) implies the following qvi for q(t,p,y): 

* 
0 Lq(t~w) := ‘/ ,* P* qpptt,p,y) + bpq,(t>p,y) + q,(t,p,y) 5 0, 

(3.44) ii) qttm9 2 M q(t,p,y) := yg {e 
-h(up+klulp+K) 

q(t,p,y+u) 1, 

iii) tW>w)-M qOm9) Lqtmy) = 0, 

iv) q(T,p,y) = -e-‘py . 

These qvi will now be solved approximately via an asymptotic analysis. The idea behind 
’ this asymptotic approach is the assumption that both the transformed value function q and 

the transaction costs are functions of a small parameter E > 0 where the transaction cost 
function has to vanish for E = 0. Then the value function will (formally) be expanded in 
powers of E. Substituting this expansion into the equation Lq = 0 (which is assumed to be 
valid on the continuation set) and reordering the terms corresponding to different powers of 
E, ,we obtain an infinite set of equations for the’coefficients of the expansion which have to 
vanish simultaneously. By neglecting coefficients of order higher than ES we will only con- 
sider the first three such equations. We can solve them with the help of appropriate boun- 
dary conditions which arise from the usual smooth pasting requirements. Note that this is a 
heuristical point of view as we cannot prove the required regularity. We will not go into 
further details but refer the reader to Korn (1998) or Whalley and Wilmott (1994). 

Insert Figure 3 here 

Figure 3 shows a typical example of an .asymptotically optimal strategy as a result of an 
asymptotic analysis. The data are b=O.l, 0~0.2, h=O.Ol, k= 0.005, K=O.Ol (which corres- 
ponds to E = 0.000855). The strategy of Figure 3 is as follows: if one starts with a positive 
number of shares of stock not exceeding the upper dotted line as a function of the initial 
stock price then one should only sell an optimal number of shares if the share price 
increases sufficiently, i.e. if the initial number of shares reaches the outer dotted line as a 
function of the stock price. In that event the optimal action is to decrease the holdings such 
that the pair (w(t). P 1 (t)) lies on the next upper dotted line. Note that starting with positive 
stock holdings it is never optimal to purchase additional shares ! The inner line is the 
optimal strategy without transaction costs. If one starts with a negative amount of shares of 
the stock (i.e. if one has sold shares short), it will only be optimal to buy some shares if the 

: . 

1 . 
i 
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stock prices increases sufficiently where the two lower dotted lines take the roles of the 
upper ones in the case of positive initial stock holdings. If the inital stock holdings are 
outside the no transaction region then one has to go immediately to the nearest optimal 
restarting point. 

Remark 3.4: Comments on the asymptotically optimal stratea 
The form of the above strategy has some striking features. First of all, it is time 1 
independent. This is surely a surprise. The reasons for this are twofold. One reason is that 
the bond price is constant, i.e. the time value of money does not change. However, it should q 
still be relevant if we are close to the time horizon or not when we decide about a 
transaction, because immediately before T the expected gain from the better rebalanced 
position should not be worth the (strictly positive !) transaction costs. The explanation for 
‘not taking this into account in the above strategy lies in the assumption that the transaction 
costs are small. Neglecting higher order terms in the expansion lead to both the time 
independence and the symmetry of the strategy around the Pliska-solution. A natural 
question to ‘ask is if the above strategy leads to non-negative pairs (B(t), S(t)) if one starts 
with positive initial holdings. In the case of positive S(0) this will always be the case if the 
gain from selling the shares of stock exceeds K which is obviously satisfied. We cannot 
guarantee a non-negative wealth process when starting with a negative S(0). Even more, for 
every given B(0) the probability for the wealth process X(t) getting negative is positive. 
However. this is also the case in the situation without transaction costs. 

Remark 3.5: 
There is more work on portfolio optimisation and impulse control. Some remarkable exam- 
ples are Pliska and Morton (1995) and Bielecki and Pliska (1998). Both these examples 
have the common feature that the optimality criterion is based on an average over time and 
is thus essentially a problem with an inifnite horizon. In such a case one can hope for a 
stationary optimal strategy. Further, Bielecki and Pliska (1998) include the possibility to 
model prices depending on economic factors which adds more realism to the model. For 
details we refer the reader to the above cited sources. 

iv) Some genral remarks 

The above examples highlight the main problems of impulse control methods applied to 
mathematical finance. As long as the fundamental process is one-dimensional, the time ho- 
rizon is infinite, and control costs and gain can be separated there is a good chance of 
solving the problem. Even in this case we see the need of having an explicit analytical solu- 
tion of the (partial) differential equation associated to the operator L. Only then we have 
hope for the smooth pasting principle to work. However, typical problems of mathematical 
finance (such as the portfolio one) are high dimensional and have a finite horizon. One way 
out of this problem would be to concentrate on stationary strategies, but even this only 
eliminates the time difference. Another way is to give up the hope for an explicit solution 
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and to rely on numerical methods. As such methods typically rely of discretisation of the 
qvi we should be sure that the value fimction satisfies the qvi at least in some weak sense. 
This problem is dealt with in the next section. 

4. Impulse control and viscosity solutions 

. 

The main drawback of the optimal portfolio problem of Example 3 iii) lies in the fact that 
one cannot guarantee sufficient regularity of the solution’ of the qvi to apply the standard ve- 
rification theorem 2.5 (respectively a suitable variant). A celebrated approach to overcome 
such difficulties in stochastic control was the introduction of so called viscosity solutions 
by Crandall and Lions (1984). The attractive properties of viscosity solutions regarding 
uniqueness and stability make them an essential tool to solve stochastic control problems. 
They are especially important for proving convergence of numerical discretisation schemes. 
For a general introduction to viscosity solutions we refer to the book of Fleming and Soner 
(1993) or the “user guide” by Crandall, Ishii and Lions (1992). Since these references do 
,not cover the impulse control case we showsat least that the value function of our impulse 
control problem is a viscosity solution of the qvi. For completeness, let us give a definition 
of a viscosity solution of the qvi (note that the complementarity conditon (2.11) will be 
modelled by the maximisation in (4.1/2) below). For the moment, we concentrate on the qvi 
of Definition 2.3 when we will refer to “the” qvi below. 

Defintion 4.1 
Let v be a continuous function. v is called a 
a) viscosif~~ subsolution of the qvi if for all @EC* with Q(X) = v(X) and v < 4 we have 

(4.1) max {-(% o(X)*+“(K) + b(Z)+‘@) -a@) + f(E)), v(K) - Mv(Z) > IO. 

b) viscosity supersolution of the qvi if for all QEC* with +(sI)=v(X) and v 2 4 we have 

(4.2) max {-(% o(Tz)‘$“(Tz) + b(Z)+‘(Z) - a~(%) + f(X)), v(X) - Mv(X) } 10. 

c) viscosity subsolution of the qvi if v is both a viscosity sub- and supersolution. 

As a converse to the usual verification result 2.5 we have 

Theorem 4.2 “Viscosity property of the value function” 
Let the coefficients b(.), o(.) of (2.1) be Lipschitz-continuous and let the running cost func- 
tion f(.) be polynomially bounded. Assume tirther that the value function v of (2.5) is con- 
tinuous, polynomially bounded and satisfies the following Bellman principle: 

(4.3) W =iei ,&t) z Es\<, -“‘~(X(T)) + je-asf(X(s))ds 
I E 0 

for all finite stopping tiines T. 
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Then v is a viscosity solution of the qvi. 

Proof: 
a) We first verify the viscosity subsolution property. Let @EC’ with $(x) = v(x) and v I 4. 
AS v is polynomially bounded we can assume that Cp is at most polynomially bounded. Let 
S denote the non-intervention strategy. Choosing t = t in (4.3) yields 

(4.4) 0(x> = v(x) 

I Ez (e-“‘v(X(t)) + iewusf(X(s))ds ) 
0 

I Ez (e-“t$(X(t)) + jebasf(X(s))ds ), 
0 

where the expectations are finite due to the above assumption and the polynomiality of the 
functions occurring in (4.4). Moreover, due to the continuity of X(s) on [0, t] we have 

(4.5) emat $(X(t)) = $I(x) + 5 eeaSL$(X(s)) ds + i eSaS$(X(s) 0(X(s)) dW(s) , 
0 0 

(4.6) t)(x) = EE (ewat $(X(t)) - i emaSL4(X(s)) ds). 
0 

Subtracting (4.6) from (4.4), dividing the resulting inequality 

(4.7) 0 5 Ez(‘e-as[f(X(s) - L+(X(s))] ds) 
0 

by t and letting t$ 0 yields 
(4.8) 0 I L+(x) + f(x) = ‘/z o(x>~+“(x) + b(x)+‘(x) - av(x) + f(x) 

via the mean value theorem and the dominated convergence theorem. As v(x) I Mv(x) is al- 
ways satisfied we have thus proved the viscosity subsolution property. 
b) To prove the viscosity supersolution property let 4 eC2 with 4(x) = v(x) and v 2 4. We 
will show this by contradiction. By continuity, the assumption of 

(4.9) max {-(‘A Oar,, + b(x)&(x) - av(x) + f(x)), v(x) - Mv(x) } < 0 

yields the existence of a 6 > 0 and a y > 0 with 

(4.10) V(Y) 2 MY) -Y 
(4.11) % d~)~kd~) + WMY) - MY) + f(y) 2 Y 

for all YEB~(x). Let {(ei,AXi)}iEN be an admissible strategy, 0 be the first exit time of the 
corresponding controlled pocess X(t) from Bg(x). Then we have 

(4.12) e -ae$(X(0)) = c)(x) + $ [ ‘,i” emaSL$(X(s))ds 
k=l 8k-,r\8 
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81; A0 
+ I e-as~(X(s)>o(X(s))dW(s)] + 5 e-aek (~(x(~&-+(x@, >))l{e, gj} 

ok-, A8 k=l 

and hence 

(4.13) w 

=Ez ( eeae $(X@))- 2 “LB eSas LWW)ds- &-aek (~(x(ek)~o((e,-)>)l{ek se}) 
k=lekblAe k=l 

5 Ez (e-aec$(X(e)) - fJ ek~eemas (Y - f(Ws)))ds + ?emaek (K+kb% l)l{e, se>) 
k=lekwlAe k=l 

5 E: (eWae$(X(e)) + g ekLeeFaSf(X(s))ds +ktr-aek (K+klAxk I)l{e, 50)) 
k=lekpl Ae 

/ 
- y Ez ( $ ek~ee-asds ) . 

k=l ekel/\e 
This implies 

(4.14) V(X) 5 Ez (e-“‘v(X(e)) + f ekJ!?ee-asf(X(s))ds 
k=l ekml A8 

a0 ekAe 
+ $emaek(K+klAxk l)l{e, se}) - y E”, ( c j e-osds ) 

k=l k=l f&id 

I E”, ( e-aev(X(e)) + z ekjee-asf(X(s))ds 

+ fe-aek(K+klAxk I)l{ekSe)) - $ Ez ( l-e-o(‘“‘t).) 
k=l 

Ever!, strategy with positive probability for an intervention before X(t) leaves the ball Bg(x) 
cannot yield the infimum in the Bellman principle due to (4.10). Even more, due to (4.10) 
there does not exist a sequence of strategies such that the corresponding costs converge a- 
gainst the infimum. On the other hand, for each strategy without an intervention before 8 
the second expectation in (4.14) is strictly positive and independent of that strategy. Also, 
for such a strategy the corresponding costs are above a lower bound which is bigger than 
the infimum in the Bellman principle (4.3). In total, assumption (4.9) leads to a contra- 
diction to the Bellman principle. Hence, we have proved viscosity supersolution property. 

. Remark 4.3 “Generalisations” 
a) Making obvious modifications, the proof of the theorem remains valid in 
l the general n-dimensional case with XCR”. 
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l the general n-dimensional case with (t,x)E[O, T)xR”, if one additionally considers the 
occurrence of the time variable t in v, the time derivative in the qvi, the terminal 
condition v(T, x) = Y(x), and the requirement that Y(x) is polynomially bounded. 

b) In the presence of the constraint X(t)EO where OCR” is a closed set, the non-interven- 
tion strategy as chosen in part a) above need not be admissible ! However, by choosing z:= 
inf{s > 0 1 X(s)Ed*O} A t the proof remains correct. In part b) of the proof we have to 
choose 6, y such tha’t we have Bh(t, x)cO. Note in particular that due to our assumption we 
have (t, x)ed*O. 

The following uniqueness result states that the value function is the the only (sufficiently 
regular) viscosity solution of the qvi satisfying the Bellman principle (3). A proof of this re- 
sult can be found in Korn (1999). 

Theorem 4.4 “Uniqueness” 
Under the assumptions of Theorem 4.2 and that of a bounded, Lipschitz continuous 
function f(x) the value function is the unique bounded, continuous function of the qvi. 

Remark 4.5: 
a) The main purpose of the uniqueness theorem is a substantial weakening of the 
verification theorem 2.5. If we have a candidate for the value function, and if we are able to 
show that it satisfies the assumptions of Theorem 4.4 and is a continous, bounded solution 
of the qvi then we have found the value function. Further applications of the theory of 
viscosity solutions such as convergence proofs of numerical schemes or stability theorems 
are currently under research. 
b) Conditions for continuity of the value function are given in Chapter 3 of Korn (1997a). 

References 

BENSOUSSAN A., LIONS J.L. (1984) Impulse Control and Quasi-Variational Inequalities, 
Gauthier-Villars, Paris. 

BIELECKI T.R., PLISKA S.R. (1998) Risk sensitive asset management with transaction costs, 
to appear in: Finance and Stochastics. 

BUCICLEY I.R.C., KORN R. (1998) Optimal cash management and transaction costs, 
International Journal of Applied and Theoretical Finance 1,3 15-330. 

CADENILLAS A.: ZAPATERO F. (1998) Optimal central bank intervention in the foreign 
excllnnge market, working paper. 

CONSTANTINIDES G.M., RICHARD S.F. (1978) Existence of optimal simple policies for dis- 
coulued-cost inventory and cash management in continuous time, Operations Research 4, 
620-636. 

22 



Some Applications of Impulse Control in Mathematical Finance 

r 

CRANDALL M;. LIONS P.L. (1984) Viscosity solutions of Hamilton-Jacobi-Bellman equa- 
tionv, Transactions of the’ A.M.S. 277, l-42. 

CRASDALL M., ISHII H., LIONS P.L. (1992) A user’s guide to viscosity solutions, Bulletin of 
the .A.M.S..N.S. 27, l-67 

EASTHAM J.E., HASTINGS K.J. (1988) Optimal impulse control ofportfolios, Mathematics of 
Operations Research 13 (4), 588-605. 

FLEMING W.H., SONER M.H. (1993) Controlled Markov Processes and Viscosity Soluti?ns , 
Springer, Berlin. 

FLOOD R., GARBER P. (1991) The linkage between speculative attack and target zone mo- 
dels qf exchange rates, Quarterly Journal of Economics 106, 1367-1371. 

JEANBLANC-PIQ& M. (1993) Impulse control method and exchange rate, Mathematical 
Finance 3, 161-177. 

KARATZAS I., SHREVE S. (1988) Brownian Motion and Stochastic Calculus, Springer, 
Berlin. 

KORN R. (1997a) Generalised Impulse Control and Value Preserving Control ofcontinuous- 
Time Stochastic Processes with Applications to Finance, Habilitationsschrifi, Johannes 
Gutenberg-Universittit Mainz. 

KORX R. (1997b) Optimal impulse control when control consequences are random, 
Mathematics of Operations Research 22,639-667. 

KORX R. (1998) Portfolio optimisation with s’trictly positive transaction costs, Finance and 
Stochastics 2, 85-l 14. 

KORN R. (1999) Viscosity solutions of quasi-variational inequalities, working paper. 
KRUGMAN P. (1991) Target zones and exchange rate dynamics, Quarterly Journal of 

Economics 106,669-682 
MORTON A.J., PLISKA S.R. (1995) Optimal portfolio management with fixed transaction 

COSIS. Mathematical Finance $337-356. 
MLJNIACA G., OkSENDAL, B. (1997) Optimal stochastic intervention control with applica- 

tior7s to the exchange rate, Journal of Mathematical Economics 29,225-243. 
PLISKA S.R. (1986) A stochastic calculus model of continuous trading: Optimal portfolios, 

Mathematics of Operations Research 11,371-382. 
WHALLEY A.E.. WILMOTT P. (1994) Optimal hedging of options with small but arbitrary 

trallsaction cost structure, preprint, OCIAM Working paper, Mathematical Institute 
Oxford. 

, 

23 



Action set 

\ 

Continuation set 

I 
, I t 

Action set 

/ 

a a p b X 
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Figure 3: Optimal stock holdings 


