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Abstract. We present an approach to the admission control, resource alloca-
tion and routing problem in connection-oriented networks that o¤er multiple
services to users. Users’ preferences are summarized by means of their utility
functions, and each user is allowed to request more than one type of service.
Each requested service may be delivered over one of many possible routes.
Multiple types of resources are allocated at each link along the path of a con-
nection. We assume that the relation between Quality of Service (QoS) and
resource allocation is given, and we incorporate it as a constraint into a static
optimization problem. The objective is to determine the amount of required
resources and route for each type of service to maximize a welfare function
that is equal to the sum of the users’ utilities. We describe a competitive mar-
ket economy that achieves the objective and satisfies the informational con-
straints imposed by the nature of the decentralized resource allocation and
routing problem.
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1 Introduction

Todays’ physical networks are supposed to support multiple hetero-
geneous applications, that is, applications with di¤erent tra‰c character-
istics and di¤erent Quality of Service (QoS) requirements. Packet-switched,
connection-oriented networks have been proposed to o¤er the QoS guarantees
in integrated-services networks, because in connectionless networks individual
packets may exhibit a significant variation in network service quality.



An interesting problem in integrated services connection oriented networks
is the determination of resource allocation and routing schemes for general
admission, satisfying the following constraints: (i) they e‰ciently allocate
resources at each link, appropriately distributing the QoS among the various
resources at each link, such that the QoS requirements for all accepted services
are satisfied; (ii) they are social-welfare maximizing; (iii) they satisfy the infor-
mational constraints imposed by the network: the network is an information-
ally decentralized system where the number of users is unknown, users’ pref-
erences are private information, users are interested only on their requested
services and are indi¤erent on the particular resource allocation schemes that
satisfies the services.

To solve the aforementioned problem one must have: (a) a formal rela-
tion between resource allocation and QoS requirements; (b) a mechanism that
allocates resources to individual users, satisfies the QoS requirements for each
user, is social welfare maximizing, and satisfies the informational constraints
imposed by the network.

The above considerations, in particular (iii) and (b), led to the use of
microeconomic methods for the analysis of these type of problems. The two
major microeconomic approaches generally used for development of e‰cient
decentralized resource allocation schemes in integrated service networks are
resource-directed and price-directed, [6]. In the resource-directed approach,
each user computes the marginal values for his current resources, and com-
municates them to the rest of the users. The allocation is then changed so that
users with an above average marginal utility receive more of this resource and
users with a below average marginal utility receive less. This approach has
been used in [11] to develop decentralized algorithms for optimally allocat-
ing a single resource to a set of interconnected computing agents. In the price-
directed approach, an initial allocation of resources is made and an arbitrary
set of systemwide initial resource prices is chosen. Prices then are iteratively
changed to accommodate the ‘‘demands’’ for resources until the total demand
for a resource exactly equals the total amount available. Most of the results on
decentralized resource allocation currently available in the literature are based
on the price-directed approach [2–5, 7–10, 12, 14, 15, 17–20, 22, 25].

The work currently available on decentralized resource allocation by
price-directed methods has addressed, either by analysis [3–5, 7, 9, 10, 12, 14,
18, 22, 25], or simulation and analysis [2, 5, 17, 19, 20], a subset of the issues
outlined in the second paragraph of this section. A significant part of this
work has dealt with single link networks [4, 17, 20, 25], or with the allocation
of a single resource per connection [4, 5, 7, 10, 14, 17, 18, 20, 25].

In this paper we have adopted a philosophy, that appears in several
papers [4, 5, 7, 10, 12, 18, 23, 25], to find a solution to resource allocation
and routing by price-directed methods. This philosophy/methodology consists
of the following steps: (1) formulate a centralized constrained optimization
problem where the objective is the maximization of a social welfare function
satisfying the constraints imposed by the QoS requirements and the avail-
ability of network resources; (2) use pricing methods to devise a decentralized
resource allocation and routing scheme that realizes the solution of the cen-
tralized problem and satisfies the informational constraints imposed by the
network. The existence of a solution to the centralized problem is shown, and
market methods are used to structure and develop the solution. The existence
of a set of prices that induce users to request the ‘‘optimal’’ allocation and
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routing is established and, in some cases [4, 5, 12, 23, 25], an iterative scheme
for adjusting the prices based on users’ requests is described. However, none
of the papers specify a mechanism to force the successive prices to converge to
the ‘‘optimal’’ set of prices.

In this paper we find a solution to the admission control, resource
allocation and routing problem for integrated service networks, by following
the price-directed approach and the philosophy discussed in the previous
paragraph. We consider a connection oriented network, on which users are
allowed to request multiple services. Each service may be delivered along one
of many potential routes. Users’ preferences, summarized by their utility func-
tions, are unknown to the network. We assume that, for each particular ser-
vice, there is a known relation between the resource allocation and the QoS
requirement, and we include this as a constraint in a static optimization prob-
lem. The objective of this optimization problem is to determine the route and
the amount of the required resources for each service, in order to maximize
the users’ total welfare. We prove that a solution for this problem exists, and
we describe a competitive market economy that implements the solution while
satisfying the informational constraints imposed by the nature of the network.
The economy considered, consists of four di¤erent types of agents: resource
providers, service providers, users, and an auctioneer. The resource providers
sell resources to the service providers. The service providers form services
using these resources, and deliver these services to the users. The job of the
auctioneer is to regulate the prices of the resources based on the observed
aggregate excess demand. We specify an iterative procedure that is used by the
auctioneer to update the prices, and we prove its convergence. Our philosophy
and approach are similar to [23], but our model is more general than that
of [23]. The specific contributions of this paper and its comparison with [23]
are discussed in Section 2 after the mathematical model is specified and the
resource allocation and routing problem is formulated.

The remainder of the paper is organized as follows: In Section 2 we
formulate a centralized optimal resource allocation and routing problem. In
Section 3 we prove the existence of a solution for this problem. In Section 4
we describe (Section 4.1) and analyze (Section 4.3) a competitive market econ-
omy that leads to a decentralized allocation and routing scheme that achieves
a solution of the centralized optimal resource allocation and routing problem.
In Section 5 we summarize the results, we discuss assumptions made and the
properties of our solution.

2 Problem formulation

We first start by defining some of our notation. We let L¼f1; 2; . . . ;Lg be the
set of links in the network. The network provides one way connections to a set
N ¼ f1; 2; . . . ;Ng of users. Each user can request a set Mi ¼ f1; 2; . . . ;Mig of
types of connections. The connection types are characterized by the origin,
destination and the quality of service (QoS) the network is required to provide

once the connection is accepted. We let T i; j be the set of possible routes that
can be used for user i for the connection of type j. We assume that for all
ði; jÞ, T i; j is finite. We denote by xi ¼ ðxi

1; x
i
2; . . . ; x

i
nÞ A RMi

þ the request vector
of user i. The preferences of i in RMi

þ are defined by the quasi-linear utility
function xi

0 þ uiðxiÞ, where xi
0 > 0 is the numeraire commodity [16].
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We consider the following problem. During the call setup, the users
announce to the network their requests. We denote by V i; j; t the set of links
that belong to the route t A T i; j. The network has to determine the number
of connections that will be accepted, the route each connection of each user
will take, as well as the amount of resources that have to be allocated along
each route in order to guarantee the QoS. The criterion for the allocation of
resources is the maximization of the social welfare function

P
i AN uiðxiÞ,

which is the total utility of all the users.
We denote by the set K ¼ f1; 2; . . . ; kg the set of types of resources

available to the network. We denote r
i; j; t
l;k be the amount of type k resource

that is reserved at link l along the route t A T i; j1. Along link l the maximum
amount of resource k is denoted by Rl;k > 0. For every t A T i; j we denote
F i; j; t ¼ fri; j; t U r

i; j; t
l;k ; l A L; k A Kg the set of resource allocations that guaran-

tee the QoS for connection type j for user i.
The sets F i; j; t, which we assume to be known for every ði; j; tÞ, result in

from relations that describe the interaction between resource allocation and
QoS requirements along routes. Such relations can be found, for example, in
[22] (for wired networks) and in [24] (for single-hop wireless networks).

We make the following assumptions on the utility functions ui and the sets
F i; j; t. We discuss these assumptions later in Section 5.

A1: The functions ui are continuous, di¤erentiable, locally non-satiated2 and
strictly concave in their argument, for all i A N.

A2: The sets F i; j; t, t A T i; j are compact3.

Based on the above discussion and assumptions we formulate the follow-
ing optimization problem:

max
x; r;T i; j

X
i AN

uiðxiÞ Max 1

subject to the constraints:

xi A X i
U fxi A RM i

þ : 0a xi
j aB < y; j A Mig; Ei A N ð2:1Þ

ri; j; t A F i; j; t; t A T i; j ; i A N; j A Mi ð2:2Þ
X
i AN

X
j AM i

x i
j r

i; j; t
l;k aRl;k; l A L; k A K ð2:3Þ

The salient features of the above problem are:

(F1) Each user can request multiple services. Each service is characterized by
its own QoS requirements.

1 We assume that r i; j; tl; k ¼ 0 if link l does not belong to the path V i; j; t, assigned to the connection.
2 That is, Ex A X and e > 0, bx 0 A X such that kx 0 	 xka e and uiðx 0Þ > uiðxÞ.
3 We will see in Section 3, that compactness is the necessary condition for the existence of an
optimal allocation.
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(F2) There are multiple possible routes, each consisting of multiple links, that
can be chosen for each connection type j of each user i.

(F3) The QoS requirements for each service are satisfied by appropriate allo-
cation of resources along each path (route) available for that service.
Such allocations of resources appear as constraints on the optimization
problem.

(F4) Any service for any user can not be split among di¤erent routes.

The model presented and the optimization problem formulated in this
paper are inspired by the work in [23]. The contribution of this paper is two-
fold:

(i) The simultaneous solution of the resource allocation and routing prob-
lems within the context of Problem Max 1. Previously, in [23], only the
resource allocation problem was solved within the context of Problem
Max 1.

(ii) The relaxation of the strict convexity constraint previously imposed (see
[23]) on the sets F i; j. The sets F i; j, resulting from the relationship between
resource allocation and QoS requirements, are usually compact but not
convex (see [22]). Previous work, [23], which required the sets of allowable
allocations to be strictly convex, had to consider only the allocations con-
tained in the largest strictly convex subset of F i; j. This restricted signifi-
cantly the sets of allowable allocations, thus resulting in a significant deg-
radation in network performance. The removal of the requirement on the
convexity of the sets F i; j allows us to consider all possible resource allo-
cations that satisfy the QoS requirements of di¤erent services. Therefore,
the optimal allocations determined under the constraints of this paper are
superior to those of [23] (even when routing alternatives are not consid-
ered in our problem formulation).

3 Existence of a welfare-maximizing solution

The main result of this section is summarized by the following theorem:

Theorem 1. There exists a solution to problem Max 1.

Proof. We let TU fðti; jÞ: Ei A N; j A Mi, then ti; j A T i; jg. So each element of
T is a set of routes, with a unique route corresponding to each ði; jÞ pair.
Choose an element of T, say t, and fix it. In [23] it has been proven that that
for fixed t there exists a solution to Max 1. Since T is finite, the solution to
Max 1 is the maximum of a finite set of solutions. This completes the proof of
Theorem 1.

4 Market interpretation

In this section we describe an algorithm that converges to a solution of Prob-
lem Max 1, and satisfies the informational constraints imposed by the nature
of the network problem. We proceed as follows: First we describe a compet-
itive market economy consisting of resource providers, service providers, users
and an auctioneer. Within the context of this market we specify a procedure,
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used by the auctioneer, which leads to a resource allocation that achieves a
solution of Problem Max 1.

4.1 Description of the market

The economy consists of the following four types of agents: resource pro-
viders, service providers, users and an auctioneer. The resource providers,
service providers and users are price takers. They act as if their behavior has
no e¤ect on the equilibrium prices reached by the market allocation process.
In our market the resources at each link are sold as raw material to the service
providers. The price for resource of type k at link l will be denoted by ll;k. The
service providers buy the resources from the resource providers. Using these
resources, they set up services and the corresponding prices for each unit of
these services. Then, they sell these services to the users.

We make the following observations: Because of the informational con-
straints mentioned above, we have two markets, one between the resource
providers and the service providers, and the other between the service pro-
viders and the users. The price taking assumption and the fact that we try
to maximize the users utilities imply that: (i) the service providers will not
attempt to make a profit; and (ii) the service prices are directly derived from
the resource prices. Therefore, we can look at the two markets as being one
market.

4.1.1 Resource providers: We assume that resource providers own the
resources at each link, and that there is no cost associated with the supply of
the resources to the market. Let

yðlÞ A argmax
y AY

X
l AL

X
k AK

ll;kyl;k ð4:1Þ

be the aggregate supply at price lU fll;kgl AL;k AK, with Y U fy A RKL :
0a yl;k aRl;k; l A L; k A Kg. From the assumption that there is no cost asso-
ciated with the supply of resources to the market, equation (4.1) has the solu-
tion yl;k ¼ Rl;k for all l A L, k A K and lb 0.

4.1.2 Service providers: The users request services from the service pro-
viders. Each of these requests is described by the origin, destination and the
minimal level of quality required. The services are indexed by the ði; jÞ pair,
with i A N representing the user and j A Mi representing the service type. For
each pair ði; jÞ there exists a set T i; j of possible routes that can be used. The
service providers allocate resources ri; j; tðlÞ A V i; j; t, with t A T i; j, so that the
minimum cost for the service and the lowest acceptable quality level are at-
tained. Through the rest of the paper we assume that each service can not be
distributed over multiple routes. We shall show that due to the pricing
method, that we will describe later, this assumption does not change the na-
ture of our solution.

The assumption that the service providers are price takers and that they
are freely entering and exiting the market, implies that the service providers
are not profit makers. So service providers allocate the resources for each type
of connection by solving:
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ri; j; tðlÞ A argmin
r i; j; t AF i; j; t

X
l AV i; j; t

X
k AK

ll;kr
i; j; t
l;k ð4:2Þ

where i A N, j A Mi, t A T i; j. For each ði; jÞ pair, equation (4.2) generates a set
of routes along which the price per unit of service is minimal. If for some ði; jÞ
there are more than one route of minimum price, the service provider picks
one of these routes. A more detailed discussion on how the provider picks this
route is presented in section 5.

Based on the assumptions above, and the resources allocated for the ser-
vices, the following price per unit of service is announced to the users:

pi
j ðlÞU

X
l AV i; j; t

X
k AK

ll;kr
i; j; t
l;k ; i A N; j A Mi ð4:3Þ

where r
j;i;t
l;k are determined by (4.2).

4.1.3 Users: Users request one way connections from the service providers.
Based on the price pi

j ðlÞ, announced by the service providers, the users
demand a number of connections determined by

xiðpÞ A argmax
xi AX i

uiðxiÞ 	
X
j AM i

x i
j p

i
j ðlÞ

" #
; Ei A N ð4:4Þ

4.1.4 Auctioneer: The role of the auctioneer is to regulate the prices of the
resources. He does this based on the aggregate excess demand vector zðl; tÞ:

zl;kðl; tÞU
X
i AN

X
j AM i

ðxi
j ðlÞr

i; j; t
l;k ðlÞÞ 	 yl;kðlÞ ð4:5Þ

where l A L, k A K and t A T is determined by (4.2).

4.2 The market mechanism

In this section we present a market mechanism, described by an algorithm,
called Algorithm (Q), that describes how the market works. The algorithm
proceeds iteratively as follows:

Step 1: The auctioneer announces prices l for the resources at each node of
the network. The users announce their desired services to the service pro-
vider.

Step 2: Based on the auctioneer’s announcement, the service provider com-
putes the minimum price per unit of service according to (4.2) and (4.3).
The service provider announces these prices to the users.

Step 3: Based on the prices p announced by the service provider, the users
request services in the amount xðpÞ satisfying (4.4).

Step 4: Based on the service demand vector xðpÞ, the auctioneer computes,
through (4.5) the excess demand vector zðlÞ.

Step 5: If zðlÞa 0 then the process ends. Otherwise the auctioneer changes
the prices l of resources according to a specific mechanism, announces new
prices, say l 0, and the process is repeated from Step 2 on.

Pricing for resource allocation and routing 157



A detailed description of the price adjustment mechanism used by the auc-
tioneer is presented in Appendix A. In Appendix B, we present a flowchart of
the Algorithm (Q) from the point of view of the auctioneer. In Section 4.3 we
prove this mechanism eventually leads to a resource allocation that achieves
a solution of Problem Max 1. Consequently, the algorithm described in this
section ‘‘approximates’’ in a finite number of steps an optimal solution to the
original resource allocation problem (Problem Max 1) and satisfies the infor-
mational constraints imposed by the decentralization of information at the
network.

4.3 Analysis of the market

The main result proved in the section is summarized by the following theorem:

Theorem 2. There exists a price adjustment mechanism for the auctioneer such
that algorithm Q leads to an allocation that achieves an optimal solution for
Problem Max 1.

The proof of Theorem 2 proceeds in several steps. First, we discuss the
main ideas behind the proof. Then, we present preliminary technical results.
Finally, we use the preliminary technical results to conclude the proof.

4.3.1 Discussion We prove Theorem 2 by presenting a specific price adjust-
ment mechanism for the auctioneer that eventually leads to a resource allo-
cation that solves Problem Max 1. The price adjustment mechanism is based
on an algorithm by Scarf that determines the appropriate shadow prices for
the constraints of Max 1 and therefore the solution to the corresponding
unconstrained optimization problem.

4.3.2 Preliminary results We proceed with the details of the analysis. Scarf ’s
Algorithm works in the price simplex. Therefore, we start by defining the fol-
lowing KLþ 1 dimensional simplex.

SU q A RLKþ1
þ :

XLK

m¼0
qm ¼ 1

( )
ð4:6Þ

where L and K are the cardinality of L and K respectively. For each q A S with
q0 > 0 we define the price vector l 0:

l 0 ¼ fl 0
l;kgl AL;k AK U

q1

q0
;
q2

q0
; . . . ;

qKL

q0

� �
ð4:7Þ

The goal is to find an optimal price for each of the resources in the net-
work, that is, a price vector l 0 which leads to a solution for Max 1. To achieve
this goal we need to introduce the following concepts:

(i) The subsets PD
U q A S : q¼ n0

D
; n1
D
; . . . ; nLK

D

	 

; ni A N

� �
, where D A N rep-

resents ‘‘how close’’ our solution is to the solution of Max 1. (In Sections
5 we discuss what we exactly mean by ‘‘how close’’, and its implication to
the problem.)

(ii) The notions of a side of the simplex and of a primitive set that are defined
as follows:
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Definition 1. A side of S, denoted by sm, is defined by sm U fq A S :
qm ¼ 0;m ¼ 0; 1; . . . ;LKg.

Definition 2. Let SU fs0; . . . ; sLKg be the set of sides of S. Define SD
U

PD WS.

Definition 3. Q ¼ ðsi1 ; . . . ; sin ; q j0 ; . . . ; q jKL	nÞ, in SD is called a primitive
set if q j0 ; . . . ; q jKL	n A PD, si1 ; . . . ; sin A S, and no q A PD is interior to the
simplex generated by the vectors of Q, i.e. fx A S : xi1 ; . . . ; xin b 0; xm b

minfq j0
m ; . . . ; q

jLK	n
m g, Em0 fi1; . . . ; ingg.

Let q ¼ D	ðLKþ1Þ
D

; 1
D
; . . . ; 1

D


 �
and fs2; . . . ; sLKg represent the set of

sides with the first one removed. It is easily seen that QU fq; s2; . . . ; sLKg
is a primitive set in SD and that it is the unique primitive set containing
fs2; . . . ; sLKg.

(iii) The following subsets of S:

C0U fq A S : q0 ¼ 0 or zl;kðl 0; tÞa 0;

El A L; k A K and some t A Tg; ð4:8Þ

Cl;k U fq A S : q0 > 0 and qðl	1ÞKþk ¼ 0

or zl;kðl 0; tÞb 0; l A L; k A K; t A Tg; ð4:9Þ
where,

zl;kðl; tÞ ¼
X
i AN

X
j AM i

xi
j ðlÞr

i; j; t
l;k ðlÞ 	 Rl;k; ð4:10Þ

with l A L; k A K; t A T, and rðlÞ; xðlÞ being solutions of the problems:

min
t AT i; j

min
r i; j; t AF i; j; t

X
l AL

X
k AK

ll;kr
i; j; t
l;k ; Ei A N; j A Mi; ð4:11Þ

max
xi AX i

uiðxiÞ 	
X
j AM i

x i
j

X
l AL

X
k AK

ll;kr
i; j; t
l;k ðlÞ

" #
; Ei A N: ð4:12Þ

(iv) The concept of a labeling function that is defined as follows:

Definition 4. A labeling function is a function with domain S and range
f0; 1; . . . ;LKg.

We define the labeling function Q as follows:

QðqÞ ¼
i if q ¼ si

0 if q A C0

j where j ¼ minfðl 	 1ÞK þ k : q A Cl;kg

8<
: ð4:13Þ

A key result in our analysis is the following:
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Lemma 1. Starting with SD, if we give si A S label i for every i A f0; . . . ;LKg
and every q A PD a label from f0; . . . ;LKg, then exists a primitive set in SD

such that its vectors have distinct labels.

Proof. See Appendix C.

Lemma 1 can be used to prove the following result that is crucial in the
proof of the Theorem 2.

Lemma 2. Let fDigi AN be a sequence such that Ei, Di A N and Di ! y as
i ! y. Let for every i, WDi denote the primitive set with distinct labels of SD

described by Lemma 1. Then there exists a subsequence fD 0
j ; j A Ng such that

for any qD 0
j
A WDj , qD 0

j
converges to l 0, where l 0 solves Problem Max 1.

Proof. First we note that given any D A N, the function Q satisfies the con-
ditions for the labeling of the vectors SD described by Lemma 1. This implies
that given any D A N, there is a primitive set WD with all the vectors that
generate it having a distinct labels.

Define

CUC0X 7
l AL;k AK

Cl;k

 !
:

Proposition 1. The allocation xðpÞ is a continuous function of l, while rðlÞ and
the aggregate excess demand zðl; tÞ are upper hemi-continuous correspondences
of l.

Proof. See Appendix D.

Proposition 2. For every q A C, xðl 0Þ; rðl 0Þ solves Max 1.

Proof. The proof is the same in spirit as that of Proposition 4.3 in [23], there-
fore it is omitted.

We use these propositions to complete the proof of Lemma 2. We denote
the point with label i of the primitive set WD, by qD; i. Since S is compact, for
every i A f0; 1; . . . ;LKg, the sequence fqD; igD has a cluster point. As D ! y
the distance between the vertices of WD goes to 0, so kqD; i 	 qD; jk !D 0
for any i; j A f0; 1; . . . ;LKg. This means that for any i A f0; 1; . . . ;LKg the
sequences fqD; igD have identical cluster points. Pick any such cluster point
and denote it by l. Since zl;kðl; tÞ is an upper hemi-continuous correspon-
dence (Proposition 1), l is in C. This proves that C is non empty. The result of
Lemma 2 follows from Proposition 2.

Proof Theorem 2. The assertion of the theorem is a direct consequence of
Lemma 2.

In Section 5 we discuss cases where the convergence to the optimum value
can be done in finite number of steps.

5 Discussion and conclusions

We presented an approach for optimal admission, resource allocation, and
routing in multi-service connection-oriented networks. We described a con-
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vergent and decentralized iterative procedure that leads to a solution of a
fairly general admission, resource allocation and routing problem.

The main contributions of this paper are:

(i) The generalization of the model of [23] and the solution of the routing
problem within the context of the new model.

(ii) The relaxation of assumptions on the constraint sets F i; j; t that describe the
allocations satisfying the QoS requirements for each type of service. Spe-
cifically, only the compactness of the sets F i; j; t is required for the deriva-

tion of the results of this paper. The convexity of F i; j; t, which was needed
in [23] and which is in general di‰cult to satisfy, is no further required.

The main features of our approach are the following:

(1) The objective of the resource allocation process is to maximize the total
value of the network to its users.

(2) The users’ utility functions ui are quasi-linear, continuous, di¤erentiable,
locally non-satiated and strictly concave.

(3) The agents are price takers in the markets in which they participate.
(4) There is no cost associated with the supply of network resources.

An extensive discussion and critique of features 1, 3 and 4 has been pre-
sented in [23]. Thus, here we critique feature 2.

(2) Since, we assume that the expenditure of the good under study is a
small portion of a consumer’s total expenditure, the small size of the market
under study should lead the prices of the other goods to be approximately
una¤ected by changes in this market. Because of this fixity of other prices, we
are justified in treating the expenditure on these other goods as a single com-
posite commodity, which we call the numeraire. This allows us to express the
utility function as a function of the goods under study and the numeraire.

The choice of representing users’ preferences by quasi-linear objective
functions also imposes the constraint that there are no income e¤ects on net-
work service demand; that is, changes in income or budget available to the
users does not change the amount of network services they wish to purchase.
This is a typical simplifying assumption in the economic literature when the
budget share of the services of interest is small, e.g. when network services are
only a relatively small amount of the users’ total expenditures.

The rest of the assumptions made for the utility functions are normal
assumptions usually made in analysis of economic optimization problems.
The continuous and di¤erentiable assumption comes from the idea that we
may look at a set of users that may have similar utilities as a group, and in this
case the group utility will be a smoothed out version of each user’s utility.
Locally non-satiated and strictly concave assumptions are natural assump-
tions when we are working with goods that are desirable.

Next we comment on issues associated with our approach to the solution
of the admission control, resource allocation and routing problem formulated
in this paper. Specifically, we address the following:

(a) What is the relation between a solution of Max 1 and the choice of a
particular D, defined in Section 4.3?

(b) If during the Tatônnement process, described by Algorithm (Q), the min-
imum price of a particular service is achieved along more than one route,
how is the route for that service chosen?
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We discuss each issue separately.
(a) In this paper we proved the existence of a solution to the optimization

problem Max 1 and presented an algorithm (Algorithm (Q)) that converges to
such a solution.

Algorithm (Q) works by taking a sequence of sets, denoted by fPDgD AN,
of evenly distributed points in S. For each one of these sets the algorithm
generates a primitive set WD, satisfying the properties of Lemma 1. The
theory tells us that as D goes to infinity, a subsequence WD of primitive sets

will contain a solution of Max 1. Since the size (diameter) of WD goes to 0 as
D goes to infinity, we are able to approximate a solution of Max 1 by Algo-
rithm (Q).

The question that remains is: ‘‘For a given D do we know if a solution of
Max 1 is contained inWD, and if not, how far away isWD from a solution of
Max 1’’? We can not answer this question in general. The answer depends on
the behavior of the excess demand correspondence zl;kðl; tÞ, for all l A L and
k A K. Hence, without any further assumptions on the behavior of zl;kðl; tÞ,
l A L, k A K all we can guarantee is that in the limit, as D ! y, Algorithm (Q)

will lead to a solution of Max 1. That is, as D ! y the size of WD decreases,
and under certain regularity conditions (that relate the local maxima and local
minima of zl;kðl;TÞ, l A L; k A K) WD will contain a solution of Max 1.

In the case where the route for each service is fixed, as in [23], i.e. T i; j is
a singleton for all i; j, the excess demand correspondence will be a uniform
continuous function (see [23]). If information on the local maxima and minima
of zl;kðl; tÞ is available, then the minimal D for which WD contains a solution
of Max 1 can be calculated.

(b) If during the Tatônment process, described by Algorithm (Q), the min-
imum price of a particular service is achieved along more then one route, we
have two options:

(i) We can choose one of the aforementioned routes at random and proceed
with the process.

(ii) We can check the excess demand function zl;kðl; tÞ, l A L; k A K, corre-
sponding to the choice of each combination of minimum priced routes.
If for some choice we end up with an excess demand zl;kðl; tÞa 0, El A L,
k A K, then we have, for a very large D (see a), a good approximation to a
solution of Max 1. Otherwise, we select a combination of routes of mini-
mum price for each service and proceed with the Tatônment process.

According to the results of this paper, either option will eventually lead to a
solution of Max 1. If we follow Option (ii) we may have to solve problems
of the form (4.2) more often then we would have to with Option (ii). On the
other hand, with Option (ii) we may have to solve problems of the form (4.4)–
(4.5) more often then we would have to with Option (ii).

We conclude our discusion with two additional comments:
According to Algorithm (Q), after the auctioneer sets the prices for

the resources, the service provider determines the minimal-cost route for each
service and announces the corresponding prices per unit of service to the users.
This feature of Algorithm (Q) is similar to that of the dual algorithm for the
resouce allocation and routing problem (without QoS requirements) presented
in [10].
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The class of networks to which the methodology presented in this paper
applies includes those consisting of wired and wireless components.

A The auctioneer price adjustment mechanism

The price adjustment mechanism begins by fixing D A N, defining the
ðLK þ 1Þ � ðLK þ 1Þ matrix

M0 ¼

D Dþ 1 � � � Dþ 1

0 	1 � � � 0
..
. ..

. ..
.

0 0 � � � 	1

2
6664

3
7775 ðA:1Þ

and letting

l
ð0Þ
l;k ¼ Mððl 	 1ÞK þ k; 0Þ=M0ð0; 0Þ; l A L; k A K;

where M0ði; jÞ denotes the ði; jÞ th entry of M0.
Starting with l

ð0Þ
l;k, l A L; k A K, the mechanism generates a sequence of

prices l
ðmÞ
l;k , l A L; k A K, m ¼ 1; 2; . . . ; based on the construction of a sequence

of ðLK þ 1Þ � ðLK þ 1Þ matricesMm, m ¼ 1; 2; . . . ; where the original matrix
is M0 and each Mm is obtained from the previous one by replacing a single
column. If c is the new column in Mm then

l
ðmÞ
l;k ¼ Mmððl 	 1ÞK þ k; cÞ=Mmð0; cÞ; l A L; k A K:

The replacement for the column c equals the sum of columns cm 1 and cl 1
minus column c itself, where the symbolsm,l denote modulo LK subtraction
and addition, respectively.

The rule determining the column that is replaced at each step consists
of two stages: (1) a labelling procedure; and (2) a replacement process. We
describe each stage separately:

1. Labelling procedure:
Initial Step: For i A f0; 1; . . . ;LKg, we label the i th column of M0 with

the integer nðiÞ A f0; 1; . . . ;LKg. For i ¼ 1; . . . ;LK , we set nðiÞ ¼ i. For
i ¼ 0 we observe the aggregate excess demand zðlÞ that results from the
announcement of the price vector l

ð0Þ
l;k to the market; if zl;kðlÞa 0

for all l A L, k A K then nð0Þ ¼ 0; otherwise, nð0Þ ¼ minfðl 	 1ÞK þ k :
zl;kðlÞ > 0g.

Iteration Step: An integer nðcÞ A f0; 1; . . . ;LKg is assigned to the new col-
umn c, that is brought into the matrix as a replacement, according to
the following rule: If the column has a negative entry, then nðcÞ is the
smallest entry for which this is true. If the column has a zero entry, then
nðcÞ is the smallest entry for which this is true. If none of the above is
true, then the label of column c is determined by the same procedure
used for column 0 in the Initial Step, where the announced price vector

is l
ðmÞ
l;k ¼ Mððl 	 1ÞK þ k; cÞ=Mð0; cÞ, l A L; k A K.
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2. Replacement Process:
The matrix resulting after an integer, (label), nðcÞ is assigned to a new

column c, according to the labeling procedure, has one of the following
two features:

(F1) 1. None of the columns is associated with the label 0;
2. all of the columns have distinct labels, except for a single pair
whose labels are identical;

3. one member of the pair of columns with identical labels has just
been brought into the matrix.

(F2) All columns of the matrix have distinct labels that span the set
f0; 1; . . . ;LKg (in this case the column whose label is 0 has just been
brought into the matrix).

If the matrix constructed has feature (F1), the column to be replaced is
the one from the pair with identical labels that has not just been brought into
the matrix. If the matrix constructed by the algorithm has feature (F2), no
replacement is needed. Algorithm (Q) terminates.

B Algorithm (Q) from auctioneers’ perspective

Fig. 1. Algorithm (Q) from the auctioneer’s point of view
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C Proof of Lemma 1

Proof. This proof is based on the following iterative idea:

(IP1)
1. Define a unique replacement operation for a single side or vector of a
primitive set in S.

2. Show that for every vector in a primitive set the replacement algorithm
uniquely determines the vector to be replaced with, and the new set of
vectors forms a primitive set.

3. Start with the primitive set Q. If all the vectors in Q have distinct labels (i.e.
if the interior vector has label 0) stop; otherwise, using the replacement
operation in Step 1, replace the side that has the same label as the interior
vector q.

4. If the new vector or side has a zero label, terminate the procedure. Other-
wise, replace the element in the primitive set that has the same label with
the element that was just brought in, and repeat Step 4.

We proceed to show that the above iterative process terminates after a
finite number of steps and produces a primitive set in SD such that its vectors
have distinct labels. For any q A PD, q is of the form

q0
D
; . . . ;

qLK

D

	 

, where

q1; . . . ; qLK , D A N. We let T : PD ! fz : z A ZLKþ1
þ ;

PLK
i¼0 zi ¼ Dg, be the

map defined by TðqÞ ¼ ðq0; . . . ; qLKÞ. We let TðsiÞ ¼ fz : zi a 0; z A ZLKþ1
þ ;PLK

i¼0 zi ¼ Dg. Note that by the construction of T, any replacement algorithm
of vectors in TðSDÞ, will induce via T	1 a replacement algorithm of vectors in
SD.

We let the set M be the set of ðKLþ 1Þ � ðKLþ 1Þ matrices with the
column vectors being the T image of vectors that form primitive sets in SD.
The form of these matrices is characterized in Theorem 6.2.1 through Theo-
rem 6.2.9 [21].

The replacement algorithm is defined as follows. Start with M A M, and
arrange all the columns vectors in increasing lexicographic order [21]. After
reordering of the columns is done, the replacement algorithm replaces column
i with the vector whose coe‰cients equal to the sum of column im 1 and il 1
minus the column i, wherem,l are the ðmodLKÞ subtraction and addition
respectively.

Theorem 6.3.1 [21] proves that this replacement algorithm is unique, it
is well defined (as long as we do not start with a primitive set of the form
ðsi1 ; . . . ; siLK ; qÞ, with si A S and q A PD, and we are trying to replace vector q),
and that the set resulting after the replacement in a primitive set.

We now have defined the method of the replacement algorithm, and we
proceed with the Steps 3–4 or the (IP1). This procedure can only terminate if
and only if we arrive at a desired primitive set (i.e. one with all distinct labels),
or the replacement procedure can not be performed. In [21, pages 47–48] it
is shown that we will never have the case that the replacement procedure is
impossible, and also that the algorithm will never return to a primitive set
that was previously visited. Since there are a finite number of possible primi-
tive sets the algorithm will have to stop, so it will converge in finite number of
steps to a primitive set with distinct labels.
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D Proof of Proposition 1

Proof. We first proceed by proving that rðlÞ is an upper-hemicontinuous cor-
respondence. Define the correspondence j i; j : RLK

þ !!
Qm

i¼1 RLK
þ where:

j i; jðlÞ ¼ fri; j : ri; j; t A F i; j; t; 1a ta jT i; jjg

¼
Ym
t¼1

F i; j; t ðD:1Þ

Note that j i; j is a constant relation, so it is continuous. Also j i; j is com-
pact valued since F i; j; t is compact by assumption.

Given l we define fl :
Qm

i¼1 RLK
þ ! R such that:

flðri; jÞ ¼ 	min
t AT i; j

X
l AL

X
k AK

ll;kr
i; j; t
l;k

( )
:

Define r : RLK
þ !

Qm
i¼1 RLK

þ such that rðlÞ ¼ fy A j i; jðlÞ : y maximizes f

on j i; jðlÞg. In other words rðlÞ is the set of sets of allocations that result in,
for every service, a minimum price per unit of service.

The following theorem [1], known as Berge’s Maximum Theorem, shows
that rðlÞ is upper hemicontinuous.

Theorem 3. Let j : RLK
þ !!

Qm
i¼1 RLK

þ be a compact-valued correspondence.

Let f :
Qm

i¼1 RLK
þ ! R be continuous. Define r : RLK

þ !!
Qm

i¼1 RLK
þ by rðlÞ ¼

fy A jðlÞ : y maximizes f on jðlÞg, and p : RLK
þ ! R by pðlÞ ¼ f ðyÞ for

y A rðlÞ. If j is continuous at l, then r is closed and upper hemi-continuous at
l and p is continuous at l. Furthermore, r is compact-valued.

Next we show that xðlÞ is a continuous function of l. Let i A N, and con-
sider the following problem,

max
xi AX i

uiðxiÞ 	
X
j AM i

p i
j x

i; j

" #
; ðD:2Þ

where, pi; j
U
P

l AL

P
k AK ll;kr

i; j
l;kðlÞ.

The function uið�Þ is continuous and strictly convex on RM
þ . There-

fore, according to [16, Proposition 3.D.2(iii)] and [16, Proposition 3AA.1], the
solution xiðpiÞ to (D.2) is continuous at all vectors pi

U fpi
jgj AM i

that satisfy

pi
j > 0, for all j A Mi. This result, along with the continuity of p

i with respect
to l, implies that xðlÞ is a continuous function of l. The continuity of xðlÞ
and the upper hemi-continuity of rðlÞ, establish the fact that the aggregate
excess demand function given by (4.10) is an upper hemi-continuous corre-
spondence of l. This completes the proof of Proposition 1.
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