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Abstract. We study a replacement system with discrete-time Markovian dete-
rioration and finite state space {0,..., N}. State 0 stands for a new system,
and the larger the state the worse the condition of the system with N as the
failure state. We impose the condition that the long-term fraction of replace-
ments in state NV should not be larger than some fixed number. We prove that a
generalized control-limit policy maximizes the expected time between two suc-
cessive replacements and we explain explicitly how to derive this (randomized)
optimal policy. Some numerical examples are given.
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1 Introduction

We consider a model for a system which deteriorates stochastically over time
but may be replaced by a new system. The state of the system is an element
of the set I = {0,1,..., N}, 0 being the best and N being the worst state. We
assume that the state of the system is detected by inspection at times n =
0,1,... and that a decision to replace the system can be taken immediately
after inspection.

The most famous replacement models of this type are those of Derman [4]
and Ross [11]. They assume operating cost/rewards which are higher/lower as
the system gets worse, constant replacement cost and Markovian deteriora-
tion. Optimal replacement strategies for these models are control-limit policies,
which are policies prescribing replacement if the system state exceeds a par-
ticular level. Also in many related models optimal policies are of the control-
limit type, e.g. Stadje and Zuckerman [12], Parlar and Perry [9], Perry and
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Posner [10] and Bruns [2]. A comprehensive review of replacement models is
given in Valdes-Florez [13], Jensen [6] and in the book of Aven and Jensen [1].

The model we are interested in has Markovian deterioration (also known
as Derman’s condition) but there are no cost involved. Rather we want the
fraction of replacements when the state of the system is N (the failure state)
to be not larger than a fixed & € [0, 1]. A system which is in this bad state has
to be replaced. We will show that there is an optimal bang-bang strategy (a
control-limit policy with a randomized threshold). Since this is a control-limit
replacement policy with a randomized threshold, it may be interpreted as a
generalized control-limit policy.

An example of a system whose status is an element of {0, ..., N} is a par-
allel N-component system: the status reveals the number of failed compo-
nents; the machine functions if at least one component is working. Therefore
only status NV identifies a failed system. Such a system with parallel compo-
nents has been dealt with by Nakagawa [8], for example. With his model,
which will be mentioned again later, the deterioration is caused by shocks.
Since the components are identical and independent, every component fails
with a constant probability p. Nakagawa used constant cost ¢, for a replace-
ment and constant cost ¢; (>¢;) for a replacement of a failed system and dis-
covered that a control-limit policy minimizes the long-term average cost.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce some basic notation and terminology. In Section 3 we change the model
to a cost model by introducing a cost ¢ for every replacement. In this new
model we do not consider the restriction regarding the fraction of replace-
ments taking place in state N. The structure of some strategies minimizing the
average cost of this new system will be obtained. Using this result we find two
different kinds of strategies optimizing our original model in Section 4. In Sec-
tion 5 we present formulas to compute the optimal strategies and in Section 6
we present some numerical examples.

2 Preliminaries

Our model deals with a system starting at time 0. X stands for the initial state
of the system. For all n € N we call the time period [z — 1,n) the nth interval.
We let p;; be the probability of deterioration from state i to state j > i in

one interval. We assume Markovian Deterioration (MD), that is, Z}ik pij is
non-decreasing in i for all k € 1.

We suppose that p; < 1 (to exclude trivialities) and poy > 0, which by MD
implies that p;y > 0 so that the failure state N is reached from anywhere in
one step with positive probability.

At the end of each interval an inspection takes place after which the man-
ager of the system can choose between two actions: to replace or not to
replace. If the state of the system is N it has to be replaced. An admissible
(randomized) strategy ¢ can be represented as a family of random varia-
bles {0")(i),i e I,n e N} with P(6"(i)e{0,1}) =1 for all ieI,ne N and
"™ (N) =1 for every n € N. Decision 8" (i) = 1 stands for replacing a system
in time 7 being in state / and 6" (i) = 0 stands for not replacing it. If 5 = 5!
holds for every n € N, we use 6(i) instead of 6 (i). The space of all admissible
strategies is denoted by I7.

We let X, be the state before and X, be the state after the n-th action.
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Obviously, under any strategy J the processes (X, ),.n and (X,),.z- are

Markov chains. We let (‘13‘):‘,_/6 ; and (c}g) i,jes be the transition probabilities,
and (7s(i)),.,; and (7s(i)),., be the stationary distributions of the stochastic
processes (X,),.n and (X, ), n under strategy J, respectively. There exists
exactly one distribution (7s(i)),., since p; <1, p; =0 for j<i and
d"(N) =N for every ne N leads to the fact that 0 is positive recurrent in
(X»),cn and 7 is irreducible. Because of the identity

7Z(5 g 77:(3 Pij l,] el

there exists exactly one distribution (7s(7))
tionary setting

;c1» t00. We observe that in a sta-

75(0) = Ps(X, = 0) = Ps(X, =0, X, =0) + P5(X, =0, X, #0)
=Ps(X;, =0,X, 1 =0)+ Ps(X, =0, X, #0)
= 715(0) = 75(0) poo + Ps(X, = 0, X, #0),
so that
Ps(X, =0,X_ #0)=m50)(1 — poo)- (1)

We will show later that both processes are ergodic. Hence, the expected cycle
length, that is the time between two replacements, under 0 is m, since
75(0)(1 — poo) is the expected relative frequency of state zero occurring under
strategy J, excluding direct visits from state zero (in this case there was no
replacement).

From {X, =N} c {X, =0,X, # 0} and (1) we get

PO(Xi_N) ﬁ(S(N)
Ps(X,=0,X,; #0) ”(0)(1—Poo)'

Ps(X, =NI|X,=0,X, #0)=

As a consequence, we can phrase our problem in the following way. We look
for a strategy 6 € IT which minimizes 75(0)(1 — poo) subject to the condition

7i5(N)
75(0)(1 = poo)

since from (2) we know that the latter fraction equals the probability that a
replacement at time » (that is, the event {X,, = 0, X, # 0}) was caused by a
failure (that is, the event {X,” = N}).

We let

< &, (3)

&) == 80(1 —Poo)-

In the next Theorem we give a condition for a strategy satisfying (3) to exist.

if and only if poy < é1.
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Proof: We note that

N N
s(N) =Y ms(i) piv = 75(0) pow + > _ 75(i) pi- (4)
i=0 i=1

The last summand is non-negative and vanishes if the strategy chosen isN the
control-limit policy with threshold one, defined as J;. Thus poy = V) _

: s(N) 3, (
minge 7 n;(o) . i

Next we define the strategies used in this paper:

Definition 1.

(i) A4 control-limit policy with threshold i*, denoted by o;+, is a policy which
prescribes replacement in state i if and only if i > i*.

(i) A pre-randomized bang-bang strategy with parameter (i*,p) eI x [0,1],
denoted by (i*, p)p,,e, is equal to the control-limit policy 6;« with proba-
bility 1 — p and t0 6;-,1 with probability p. Hence, P(0V (i*) = i*) = p,
8" = 6W for every n e N.

(ili) A post-randomized bang-bang strategy with parameter (i*,p) eI x [0, 1],
denoted by (i, p)pm, is the strategy which prescribes for every machine
seperately to choose the control-limit policy with threshold i* or that
with threshold i* + 1 with probabilities 1 — p and p, respectively. Hence,
P(0"(i*) = i*) = 1 — p for every €N (independent on 6V, ... 6"V).

Using a pre-randomized strategy means making one decision before starting
the process; using a post-randomized strategy means making a new decision
for every machine. Obviously with the use of any bang-bang strategy o (pre-,
post-randomized) for the process (X,),.n only one stationary distribution
exists because of the Markovian deterioration and the condition p; < 1 for
every state i: if 0 € I meaning the threshold i* is less than or equal to N state 0
is reachable from every other state. In the opposite case (i* > N) this is valid
for state N. Of course for the process (X, ), . there is only one stationary
distribution, too. In the next Lemma some properties of the stationary prob-
abilities are given. We write 7;+ (i) instead of 7,. (7).

Lemma 1.

(i) m;+(0) is non-increasing in i*.

(i) 7 (N) is non-decreasing in i*.

(i) If T« (N) = @r 1 (N) then mi- (i) = mey1 (i) oF pin =Ppivi,N ="+ =Pi*.N
holds for all i € {0,...,i* — 1}.

(iv) 7+ ), (0) and mg. p) (0) are non-increasing in p on [0,1] for every
threshold i*.

V) 7, p),, (1) and - ) (i) are continuous in p on [0, 1] for every threshold
i* and for every state i.

(Vi) 7, p), (i) and - p) (i) are continuous in p on [0,1] for every threshold

i* and for every state i.

—

This lemma will pe proven at the Appendix.
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3 A cost model

In this section we consider the model of the previous section without the
restriction on the percentage of replacements in the bad state N. We introduce
the following cost function d(©) for ¢ € R*:

d9(,00=0, iel, d9G,1)=1, ie{l,...,N—1} and
d9N,1)=1+c. (5)

The first component is the state before repair and the second one represents
the action that is chosen at this replacement model. Hence we take the cost
function used by Nakagawa [8] with ¢; =1 and ¢; = 1 4 ¢. His model was
already described in the introduction. The value ¢ may be interpreted as a
penalty cost for being in the bad state N. Derman [4], p. 125, has shown that
the unique strategy optimizing this average cost replacement model is a con-
trol-limit policy. Next we look at the average cost in this cost model:

With ¢;(c) being the average cost functlon of this cost replacement prob-
lem under strategy 0 and cost function d(©), we have

¢;-(¢) = 7= (0)(1 — poo) + ¢ (N) = 7;-(0) (1 — poo + 67::((](;[))) (6)

Hence, ¢;. is obviously continuous on R™. (7)

The goal of this section is to find out how the strategy optimizing this cost
model depends on the constant c¢. This result is given in Theorem 2 and helps
us finding a strategy optimizing the original model in the next section. For the
proof of Theorem 2 we need the next three lemmas:

Lemma 2. Let o := poy > 0, then

bs(c) = a(d (N, 1) + T (0))), (8)
(¢)

where V;)

Sfunctions

is the mean (1 — o) discounted cost function of the cost model with

~ pij — o2lgny ()

d) =4 . (1-a), Py = e e[0,1).

Proof: A simple computation (e.g. Hernandez-Lerma, Lasserre [5], formula
(4.2.15)) leads to

740 Zpy (7)) + (1= @) T3, (1 = 8())
N Dii -
= D725 (= 2d9G.00) + (1= ) T, =()))
— (L= DA (N, 1) + (1= 2)P31-(0)). 9)
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N
= va(d“)(jﬁ(j)) + V9 G =)} (10)

Using ¢(©) := a(d)(N,N) + 17(5(? ( )) and Al9) = 17(, , (bounded because 7
is finite) we get A9 (i) + ¢\ = - ip,,( (J,0())) + ( /(1 —6(j))). Hence
g'“) equals ¢s(c) (e.g. Ross [11], p. 93). M

Lemma 3. Let 0 <i* <j* and ¢;.(co) = ¢;-(co) for some co € R*. Then we
have for c € R*: ‘

$i-(c) < ¢;.(c) & ¢ = . (11)
Proof: We have

N
Z ) + comti(N) = @i (co) = =¢;( co) an + comj+ (N).

Lemma 2 yields 7+ (N) > 7;+(N). So if ¢o becomes larger (smaller), ¢;.(co) will
become smaller (larger) than or equal to ¢;.(co). Hence this Lemma is also
proven. W

Lemma 4. Let the cost ¢ be fixed. If the control-limit policies with thresholds i*
and j* (>i*) optimize the average cost, every control-limit policy with threshold
ieZ",i* <i<j* is optimal, too.

This lemma will be proven at the Appendix.

Theorem 2. There is a jo in I and there are positive real numbers cj, =
Cjo+1 = -+ = cn such that the control-limit policy ;- with threshold

N if 0<c<ecy,
i"=<j ifcgan<c<g,
Jo i = ¢,

is optimal. If po, < p1y one can take jy = 1.

Proof: First consider the case ¢ =0. Using the control-limit policy with
threshold i* the average cost are 7;+(0)(1 — pgo). These average cost decrease
if i* increases, so the control-limit policy with threshold N is optimal. In gen-
eral, there are two possibilities:

Case a: The control-limit policy with threshold N, dy, is optimal for every
ceR".

Case b: Suppose dy is not optimal for every ¢ > 0, that is for some ¢ > 0
and some state i # N, ¢y (c) > ¢;(c). Then, let
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¢ =inf{c > 0] dy(c) > ¢;(c) for some i € I'}
and

ip = min{i e I'|gy(c) > ¢i(6)}.

$;,(¢) = ¢x(C) holds because of the continuity of the function ¢; — ¢y (recall
(6)) and ¢, (c) = dy(c) for ¢ > ¢. For all i with ip <i < N let ¢; :=¢. We
remark that if ¢ = d, every control-limit policy with a threshold i € {iy,..., N}
is optimal because of Lemma 4. For every c less than ¢ we have found an
optimal strategy. For values of ¢ which are larger then ¢ we use the following
recursive procedure:

Case b(i): The control-limit policy with threshold iy, J;,, is optimal for
every ¢ € [¢, o0). ~

We choose jo :=iand ¢; = ¢.

Case b(ii): Suppose J;, is not optimal for every ¢ € [¢, «0), that is, for some
c € [¢, o) and for some state i € {0,...,ip — 1}, ¢;(c) < ¢;,(c). Then, let

¢ =inf{ce ¢, 0)|¢; (c) > ¢;(c) for some i e I}
and

iy =min{i e I|¢,; (¢) > ¢,(C)}.

Now for all i with iy < i < i let ¢; = ¢. For every c less that ¢ we found the
optimal strategy. Using #; and ¢ instead of iy and ¢ we repeat this procedure
again. Recursively, we obtain a sequence (ci)fi s Where jo is state i, for which
case a or b(ii) is valid for the first time. This will be the case at j, = 1 at the
latest.

We prove the second part of this Theorem indirectly. Assume that
ponv < p1y and that j, = 1 can not be chosen to be 1. We recall the following
identity which is valid for every threshold i*:

¢ () = 1+ (0)(1 = poo) + 7+ (N) - c.
Case I: 75, (N) < 75, (N). We get

#j,(c) = 91(c) = (1 = poo) (75, (0) — 75, (0)) + ¢(s5, (N) — 75, (V). (12)

The first summand is nonpositive. Since the factor of ¢ is positive, there is a
¢o € R so that the above term is positive for all values ¢ > ¢y. For these values
¢ the control-limit strategy J; is better than J;. This contradiction yields
Jo=1.

Case II: 75, (N) = 75, (N).

Lemma 1(ii) yields to 75 (N)=---=7 (N) and Lemma I(iii) to
T, (0) == n(;jo (0)

Thus we have ¢, (c) = ¢;(c) for every c € R". So besides the control-limit
policy with threshold jy the control-limit policy with threshold 1 is optimal,
too. Again we obtain a contradiction. H

If pox # p1wy, then 75, (0) = - - - = w5, (0) by Lemma 1(iii). If on the other hand

70

the identity poy = piny = --- = pj,—1,~ holds, we have for every je {1,..., jo}
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-1 -1
5, (N) = Zﬂ(sj(i)])w :PONZﬂaj(i) =pon, SOT(N)=---=1 (N).
=0 =0

Now we show that the condition pg, < p1, is necessary to get jo = 1: under
the conditions poy = p1y and po; > 0 the strategy o, is better than strategy o,
for every penalty cost ¢ € R, as we now compute:

1
1+ por

7'5()‘2(0) =1- 7'5(52(1) <1- n(;z(O)pgl, SO 7[52(0) < <1= 71'51(0),

75, (N) = 75,(0) pox + 75, (1) p1nv
= pon (75, (0) + 75,(1)) = pon = 75, (0) pon = 75, (N),
since poy = p1n. Hence,
$5,(¢) = m5,(0) + c7ts,(N) < m5,(0) + 5, (N) = 65, (c).

Under these conditions the probability of visiting state N is the same for the
initial states 0 and 1, so the probability that a machine will reach the worst
state IV is the same under both strategies. But the number of replacements in
every time interval [0, 7], T € IN will be smaller under d, than under J;. In the
sequel we need the second part of Theorem 2, so that we assume

Probability condition: 0 > poy # p1y and p; > 0 for every state i € /.

which holds for the subsequent results. The second part of that condition was
just repeated.

4 Optimal strategies in the original model

Now let us return to the original model. Using Theorem 2 of Section 3 we first
prove that the search for an optimal strategy may be restricted to the class of
pre-randomized strategies or to the class of post-randomized strategies. The
existence and the construction of the optimal strategy will be studied in the
next section.

Theorem 3. For every strategy 0 satisfying f:s({g)) < &, there are numbers je I
and 2 € 0, 1] with '
(7,2, (N)  idis (N) + (1 — M)z, (N) < 13)

7., (0) A5, (0) + (1 — D7, (0)

pre

and
(7,2, (0) = 475,(0) + (1 = A)7s,,, (0) = 75(0).
Proof: Lemma 1(i) yields to
75, (0) < --- < 75,(0) = 1. (14)
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Since a system in state N has to be replaced under every strategy, dy is the
strategy which replaces most rarely. Thus using dy the process (X,), . Visits
state N most rarely so this strategy minimizes 75(0). So 75(0) < 75, (0) for
every strategy 0. Lemma 1 yields the same result if we look at the subset of
control-limit policies only.

For every strategy 0 we have

1 =75,(0) = 75(0) > 75, (0). (15)
(14) yields that for every o there is a j € I with

75, (0) < 75(0) < 75 (0). (16)
Take 7 € [0, 1) such that 75(0) = Az (0) + (1 — A)7s,,, (0). (17)

The cost model with ¢ := ¢;;1 defined in Theorem 2 will be optimized by both
control-limit policies J; and J;1. Therefore, every strategy ¢ satisfies

$;(c) = i1 (c) < ¢s(c)- (18)

Hence

7;(0)(1 = poo) + 7t (N) = 7;1(0)(1 — poo) + c7tjy1(N)

< 75(0)(1 — poo) + c7ts(N). (19)

Now we find that
(j,a),, (1) = Ami(i) + (1 = A)mi (i) foriel, (20)
A () = Am(i) + (1 = )@ (i) foriel. (21)

pre

The main idea of this proof stands behind the subsequent inequality.

70,2, (0)(1 = poo) + ¢7(j 3, (N)
= (4m5,(0) + (1 = )75, (0))(1 = poo) + (47, (N) + (1 = )7, (N))
= w5, (0)(1 = poo) + ¢t5 (N)) + (1 = A)(75,,, (0) (1 — poo) + s, (N))
< Ams(0)(1 = poo) + c7ts(N)) + (1 = 2)(75(0) (1 = poo) + ¢7t5(N))
=75(0)(1 — poo) + cits(N). (22)
This, together with
7(j,2),,(0) = 2m5,(0) + (1 — A)ms,,, (0) = 75(0)

gives us
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(j.2),,(N) < 5(N).

pre

Finally

7[(]-72) (0) = 77,',3(0)

pre
yields

(5,2, (N) _ %)

< <¢g. N
(2, (0) = 7s(0) :

For the proof of an analogous result regarding to the post-randomized strat-
egies which is formulated in the next Theorem we need an auxiliary Lemma:
Lemma 5. (i) For every strategy (i,p), .., i€{l,....,N—1}, pe[0,1] we can
choose q € [0, 1], such that

pre>

Dy, (€)= (c) forallce R™. (23)

pre post

(ii) For every strategy (i,q),,> i€{l,...,N =1}, g€0,1] we can choose

q
75, (0)
= 1—q
7o ©) 7 )
such that
b, q>w(c) = p)m(c) forall ce RT (24)

Proof: If p =0 then ¢ ) (¢) = d5(c) = b0, () = 0, (c) and if p =1
then ¢ 1) (¢) = Pir10),(¢) = Pir1.0),(€) =da, (€)= uy, > so that 23
holds true. For p € (0,1) we look at the two assertions separately:

L i p), (¢) =pdisi(c) + (1 = p)gi(c).

Thus for every ip and ¢ the graph of the function gf : p — ¢ p)w(c) is
a straight line joining (0, ¢,-(¢)) and (1, ¢;.,(c)).

According to Lemma 1, ¢, Phos is continuous in p. Since ¢(,-"0)m = ¢<i_0)m
and ¢(l¥1>m = ¢(i’l)posl hold and gf is linear, there is a g€ [0,1] for which

Blio, ) (€) = Blig ), (€)-

2. For every n € N we define the random variable 7, as the time at which
the n-th visit to state 0 takes place, not counting visits from zero. Let Cj(J) be
the cost during the interval J — Z" using any strategy & such that zero is
positive recurrent for the process (X,) and using ‘penalty cost’ ¢. Since state

zero is positive recurrent, we have

post

i ECs ([ w))) _ E(Ci([m1, 7))
¢6(C) o nl—mc E(‘Cn — Tnfl) o E(T2 - ‘L']) ' (25)

Hence,
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Pig), (€)

_ E(Cilmwa) 16 =0r) - PO =00+ E(CEl[r152)) [0 = 0r-01)) - P(6 = 3111
P(5 :5,'*) ‘E(‘L’Z —T1 |5:51*) -I-P(é:é,'ur]) 'E(Tz —T1 |5 :5i*+1)

E(Cs ([t1, 7)) - (1= q) + E(Cs. ([t1,7])) - ¢
1—q q
o (0) 1 w50, (0)

> e 41 (0)
E(G. ([t w)) - 7o, (0) - ——
o (0) 7oy, (0)

:w@»u—m+@wwmp:mwm.-

)> < ¢ there are

numbers j € -7+ and p € [0, 1] such that:

T, 0)0 (V)

(o100 (0) (0) = 75(0).

<eé&  and TT(j,p)

s K post

Proof: Due to (16) there exists a number j € Z" with 75, (0) < 75(0) < 75,(0).
Because of 6; = d;,¢) Jpag? 0j+1 =0y, Do and the fact that I (0) is contin-
uous and non-increasing on the unit interval, there exists a e [0,1] with
75(0) = 7(j ), (0). Because of the last Lemma there exists a 4 e [0, 1], such
that we have for ¢ := ¢j;1:

(24)

= ¢¢,.(€)

pre

7'[(_/',/12)’,,,,” (O)(l _POO) + Cﬁ(./}/h)pm (N) = ¢(jﬂu2),m.\f(c)
=7(;,1),,(0)(1 = poo) + ¢7ij 7, (N)
< 71'5(0)(1 —pgo) + Cﬁ(;(N). (26)

To see (26), note that for every 4 € [0, 1] and for all i € I we have:

m, (1) & s (i) + (1 = W)y, (i) and

e
- 2 ) A\~ .
ﬂ(jy/l)m(l) = Ass (i) + (1 = )75, (7).
(710, (0) = 75(0) - yields 7, (N) < 75(N),

A (N)_ To(N)
”(j,ﬂ)w,(o) ~ 75(0)

SO <¢g. N
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Summarizing, for every strategy i N < 81} there exists a pre-
7 ( ) ]

randomized bang-bang strategy yielding the same value O] which is to
be minimized. Moreover, there exists a post-randomized bang- %ang strategy
having the same value. Hence the search for an optimal strategy can be
restricted to the class of pre-randomized strategies or to the class of post-

randomized strategies.
5 Construction of optimal strategies
First we show how to find for an optimal pre-randomized strategy:
From the monotonicity of 7;+(0) and #;-(N) in i*, as described in Lemma

1, we conclude the monotonocity of 7 ,) (0) and 7;-, ,,)W(N) in i* and p
from the equalities

(1= p)- (i) + pri-a () and

i p), (1)

i+, p),,, (1) = (1 = p)Tie (0) + pAiie 1 (i)
(%, p)pre (V)

Thus 76 phpre (0) 76 phpre (0)
term may be not larger than ¢; and the second has to be maximized, we look
for parameters i* and p with

are non-decreasing in i* and in p. Since the first

i+, p),,, (V)
— P —gy.
i, p), (0)
Thus we get
(N
it = max{i 7:;[((0)) < 81} (27)

and the value p is obtained as solution of the equation

(1 = p)7i-(N) + prti-1(N)
(1 = p)mi-(0) + pri-11(0)

Thus,

= &].

e 11(0) — 1 (N)
(N) — -1 (N)) — e1(m- (0) — 1341 (0))

P=7 (28)

Hence we have obtained an optimal strategy in the class of pre-randomized
bang-bang strategies. Then the strategy optimizes our replacement system in
the whole class /1.

Now we are also able to compute an optimal post-randomized bang-bang
strategy. We simply have to compute the second parameter, because the first
is identical to that of the optimal pre-randomized bang-bang strategy. We
obtain the second parameter ¢ using Lemma 5. If p = 0 we choose ¢ = 0 and
if p # 0 we know that
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q

7 1(0
PR
7 (0) s (0)
so that
L 1(0
y= 7i+41(0) (29)

mi-1(0) = (1= 4)m (0)

6 Numerical examples

We conclude this paper with some numerical results generated by a C-
program, which solves (27), (28) and (29) after computing the stationary
probabilities (7;-(i)) and (7;-(i)). The following transition probabilities have
the Markovian deterioration property:

A8 L N\B
i+1 i+1 . .
(5) - (r) v>i=i
By=19 (i .
! (1</++11> J=N,
0 otherwise.

In Table 1 optimal strategies are given for various values of &V, f and &. The
identity
q
p:0<:>q:0 clse p= liqniHl(O)q ,
7+ (0) w1 (0)

where ¢ is the parameter of the post-randomized strategy and p is the
parameter of the pre-randomized strategy yields to

q q
q> 0 =p= l_q”i*+l(0)q > ]_q”i*ﬂ(o) ; =p. (31)
+
m=(0) © my(0) 7i+41(0) 7;i«41(0)
Hence,
P =q.

Comparisons of both optimal strategies would be an interesting topic for fur-
ther research.

7 Appendix

Proof of Lemma 1:
(i) For any subsets 4, B = I and a family of random variables (Z,),.n
with values in J and P(Z,;1 =j|Z, = i) =pj, i,jel, ne N, let

=n

AZB:={ZyeA,Z ¢B,....Z, ¢ B,Im>n:Z,c B} (32)
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Table 1. Some examples for optimal strategies

N B & PoN A 2P | P D) poy
2 1075] 075 || 0738 || 1 0.056 0.047
2 1075 09 0.738 || 1 0.663 0.619
2 1075 099 || 0738 || 1 0.968 0.962
10 | 05 | 05 0426 | 1 0.793 0.768
10 | 05 | 09 0.426 || 7 0.915 0.912
10 | 05 | 099 || 0426 || 9 0.789 0.785
100 | 0.75 | 0.1 0.053 || 3 0.710 0.694
100 | 0.75 | 025 || 0.053 || 14 0.908 0.907
100 | 075 | 05 0.053 || 39 0.082 0.082
100 | 0.75 | 0.75 || 0.053 || 67 0.824 0.824
100 | 0.75 | 0.99 || 0.053 || 98 0.656 0.656
100 | 09 | 0.1 0.029 || 6 0.827 0.821
100 | 09 | 025 || 0.029 || 20 0.648 0.646
100 | 09 | 05 0.029 || 45 0.758 0.758
100 | 09 | 09 0.029 || 88 0.842 0.842
100 | 09 | 099 || 0.029 || 98 0.879 0.878
100 | 1.0 | 0.05 0.02 4 0.053 0.050
100 | 1.0 | 05 0.02 || 49 0.501 0.500
100 | 1.0 | 09 0.02 || 89 0.900 0.900
100 | 1.0 | 0.99 0.02 || 98 0.990 0.990
100 | 2.0 | 0.001 || 0.0004 || 2 0.192 0.172
100 | 2.0 | 0.01 || 0.0004 || 9 0.098 0.096
100 | 20 | 0.1 || 0.0004 || 30 0.938 0.938
100 | 20 | 09 || 0.0004 || 94 0.816 0.816
100 | 2.0 | 0.99 || 0.0004 || 99 0.493 0.492

P. Bruns
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and
P(Ti)=m):=P(Z) #i,....2Zm1 #,Zyn=1|2Zy=1) (33)

We define ¢;;(i*) as the probability that the process (X;), .y, using the bang-
bang strategy with threshold i* and starting in state 7, will reach state j after at
least n steps. If i # j the process (X;),.z+ has to leave state i before reaching it
again. Furthermore, let (p;;) = P". The condition p;; # 0 for every i € I yields

that the process (Z,), . Will visit a state of {i* + 1,..., N} after a visit in i* in
a finite number of steps. If i = j the process has to leave state i before reaching
it again. Thus we have for n € N:

Uy 2+ 1, N ey 2"+ 1, +2,... N}},
SO
P} (i i+ 1, N} < P{i} 2 {i* + 1,i* +2,... ,N}),

that is ¢} (i*) < ¢}y (i* + 1) for all n € N. Hence

n—1

api) =g VP(Zy =i, Zy # i, .., Zyps1 # | Zin = 0)
m=1

o0

+Y P(Zp=i,Zpr # iy, Zy #1] Zy = 0) (34)
<N @+ VP(Zy=i,Zu 1 # iy, Zinis # 0| Ziy = 0)

.
+Y P(Zn=i,Zn1 #i,.. 21 #1| Zo=0) = q}(i* +1). (35)

m=n

To see (34) recall that ¢}(i*) is the probability that X} conditioned to start at i
and to use ;- first visits state i after visiting a state which is different from i
after at least n steps. Thus during the time between these two visits there is a
visit to state 0. Now we define the random variable X as the number of steps
until the first visit at state zero and the random variable Y as the number of
steps to the subsequent visit at state i. Then we get:

n—1

PX+Y>2n=Y P(X+Y=nY=m+PY =n)
m=1
n—1
=Y PX=n—m,Y=m)+ P(Y =n). (36)
k=1

Hence equation (34) holds.
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Furthermore we have for all i < i*:

= B (T0) = 3 o (T() 2 ) = Y ()
! neN neN
Nk _ ) = 1
< ,;\jqﬁ(l + 1) - E51*+1 (T( )) - 7[1'*4—1(1') . (37)

Therefore 7;-(i) is non-increasing in i* € {i +1,..., N} and the first part of
the Lemma is proven.

(ii) Part (i) yields the existence of a constant a;-(i) > 0 for every state i < i*
such that

751‘*(1)_751 +1()+az () (38)
We have

it—1 it—1 i*—1

S ap() =Y m(i) = Y mega (i) = w1 (i)
i i=0 i=0

i=0 i=
and

i*—1 i*—1 i*—1

7%i* (N) = Z 7[1* PzN = Z T *+1 PzN + Z al pzN (39)
i=0 i=0
i*—1 i*—1 N

= i1 () pin + Pien Z a;j-(i)  since piy = Z pix 1 (i)

i=0 i=0 k=N

1 — 1
= i1 () pin + w1 () pien = Z i1 (0) Pin
i=0 i=0

= 71 (V). (40)

which proves the second part of the Lemma -
(iii) 7 (N) = &1 (N) yields 7" ar ()p,-*N =Y ar()pin and

because of p; v < p;« v for every i e {0 ,i* — 1} the subsequent statement
holds:
If a;- (i) = 0 then 7;- (i) = 711 (i) OF piy = pir1i,N =+ = Pien.

Hence part (iii) is also proven.
(iv) Forall je{l,...,i* — 1}, i€ {0,...,i*} the following identities hold:

(i 7P)p(m
q[/ - p’/’

(1) post
q,l* " =p-pi;» and

N
(I, ) post (T, ) pose
G " =po+(L=p)pi-+ Y pic soqy "

k=i*+1
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(75P) pos S Ppost . Lo .
Thus ¢, ;""" is non- decreasmg and ‘10 ’ {s non-increasing in This

means 7;- ) _(0) is non-increasing in p. The reason is that this probablllty is
equal to the Teciprocal of the mean number of steps the process (X, )n“ | uses
from starting at state zero, leaving it and returning the first time: if we increase
the value p, probability q<0 ) will decrease or not change and q P will
increase or not change for every i € {0,...,i* — 1}; hence this mean number
either increases or stays the same. Part (1v) of the Lemma is therefore also
proven.
(v) The continuity of 7, p),. 1 p follows from the identity

i ,p),, = (1 = P)ie + prieq1.

Now we look at (i ) . Define QU P as the square matrix of size i* + 1

( 7p oSt
with elements (q; ") jcpye (%0, %0) = (T p),,, (), e ), (V)

is the unique solution of the system of equations

0

) X0 .

( Q(l J’)pm — Ii*+1 ) . = :
Xj* 1

Thus the rank of the (i* +2) x (i* + 1) matrix

( Q(i*,p),m — Ejq )
1 1

is i* + 1. Eliminate one row which is linear dependent on the others and call
the resulting non-singular matrix 4(p) = (a;(p))p<; j<;-» Where (A(p) " =
(bi(P)) (o<, j<i+- Then

(i, p),y = (if(P))eir 1 = ﬁ@ﬂ—l- (41)

Since the entries of (a;(p)) are determinants and thus polynomials in p,
5, ) (i) is continuous in p. Thus part (iv) is proven completely and it
remains to prove the last part.

(vi) To prove the continuity of the probabilities 7 ,) (i), we are faced
with the problem that the process (X, ) using strategy O+ D)o , does not form
a Markov process, since the probability ( =] Xuoi . yXup =10%) 18
in general not equal to the probability P(X, =j| X, | =i* X,, 2 < i*). We
avoid this problem by splitting the state X" = i* into states X = (i) if

X, =X, =i" and X, = (i*,<i*), if X,_; < X, =i*. Then the process
(X, ), forms a Markov chain with the following transmon probabilities: for
ief{0,...,i* = 1,i*+1,...,N) we have

~(I",P) post (*5) post

@y " = piliiciny + pojlisiy, q(i fﬁ (iviv) = Piricy

~<i*1p)7u.\'l
q(,‘*7<,{*),(ix’i*) = (1 _p)pi*i*a
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~ (1%, P) ot ~ (1%, P) post ~ (1%, 1) ot

Qv iy i<y = O e <y, v, <ir) =P P05 e i) = Piy
~<l post .,(l'*,p) ost

9 ’) =(L=p)-po+ppivj, G0 =0,

~ (1%, P) post
q; i+ o1y = Pii Lj<ivy £ Pois 1oy

Deﬁning the correspondmg matrix QU P for these probabilities
(dim Q"+l = dim QU"Phox 4 1), the continuity of the probabilities (i, )
can be proven similiarly to the continuity of the probabilities 7 ;.. Ppost”

Proof of Lemma 4: From Lemma 2 we recall (8):
ds() = (1= 2)(d(N, 1) + F5(0) with o= 1~ poy < 1.

We have ¢;. < ¢5 and ¢o < ¢ for every strategy oell.

Hence V" L(0) < V 7(0) and V L(0) < V 7(0) for every & e I1.
A control limit strategy with threshold i opt1rn1zes V( )( 0) in ¢, if and only

if:
N N R .
<O<Zﬁ,, VOG) = (1 —a)+ oY py Vo) or D py = 0)
j=0 J=0 n=0
forie {i*,i*+1,...,N—1}
and
o wr )
< Z Voc()( ) < (1_“)+“Zﬁ0j1€t(c)(1) or ZPOIZ :0>
=0 =0 =0

forie{l,2,...,i" —1}.

We prove this indirectly. First we consider states i satisfying >~ pol> > 0.
If the inequality regarding this state i is not fulfilled, we introduce the strategy
0 which is equal to J;+ except at state i, where it takes the other action Then
we have V 9 < I{S( )a, i.e. d;- is not optimal. Now let 7 satisfy >~ opol =0.
Starting at state 0 it is almost sure that state i will never be visited. Thus for
every strategy ¢ the value V (0) is independent of the behaviour of J at i.
Us1ng the function V( ) to denote the discounted cost up to the nth interval it
is standard to prove ‘that V< is non-decreasing, since d is non-decreasing and
the Markovian deterioration of the (py) yields the Markovian deterioration of
the (p;) (e.g. Ross, [11], pp. 37). If the control-limit policies with thresholds i*

and j* are both optimal, we get the following:
(n)
o = 0}.

If the state is an element of {i|> ., pgf.) = 0} both actions are optimal, so all

N

fl) = Vof )(j) is constant in {i*,...,j }\{

J=0
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control-limit policies with thresholds {i*, ..., j*} minimize ¥ ,(0) and hence
also ¢;ino. M
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