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Abstract. We study a replacement system with discrete-time Markovian dete-
rioration and finite state space f0; . . . ;Ng. State 0 stands for a new system,
and the larger the state the worse the condition of the system with N as the
failure state. We impose the condition that the long-term fraction of replace-
ments in state N should not be larger than some fixed number. We prove that a
generalized control-limit policy maximizes the expected time between two suc-
cessive replacements and we explain explicitly how to derive this (randomized)
optimal policy. Some numerical examples are given.
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1 Introduction

We consider a model for a system which deteriorates stochastically over time
but may be replaced by a new system. The state of the system is an element
of the set I ¼ f0; 1; . . . ;Ng, 0 being the best and N being the worst state. We
assume that the state of the system is detected by inspection at times n ¼
0; 1; . . . and that a decision to replace the system can be taken immediately
after inspection.

The most famous replacement models of this type are those of Derman [4]
and Ross [11]. They assume operating cost/rewards which are higher/lower as
the system gets worse, constant replacement cost and Markovian deteriora-
tion. Optimal replacement strategies for these models are control-limit policies,
which are policies prescribing replacement if the system state exceeds a par-
ticular level. Also in many related models optimal policies are of the control-
limit type, e.g. Stadje and Zuckerman [12], Parlar and Perry [9], Perry and



Posner [10] and Bruns [2]. A comprehensive review of replacement models is
given in Valdes-Florez [13], Jensen [6] and in the book of Aven and Jensen [1].

The model we are interested in has Markovian deterioration (also known
as Derman’s condition) but there are no cost involved. Rather we want the
fraction of replacements when the state of the system is N (the failure state)
to be not larger than a fixed e0 A ½0; 1�. A system which is in this bad state has
to be replaced. We will show that there is an optimal bang-bang strategy (a
control-limit policy with a randomized threshold). Since this is a control-limit
replacement policy with a randomized threshold, it may be interpreted as a
generalized control-limit policy.

An example of a system whose status is an element of f0; . . . ;Ng is a par-
allel N-component system: the status reveals the number of failed compo-
nents; the machine functions if at least one component is working. Therefore
only status N identifies a failed system. Such a system with parallel compo-
nents has been dealt with by Nakagawa [8], for example. With his model,
which will be mentioned again later, the deterioration is caused by shocks.
Since the components are identical and independent, every component fails
with a constant probability p. Nakagawa used constant cost c2 for a replace-
ment and constant cost c1 ð>c2Þ for a replacement of a failed system and dis-
covered that a control-limit policy minimizes the long-term average cost.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce some basic notation and terminology. In Section 3 we change the model
to a cost model by introducing a cost c for every replacement. In this new
model we do not consider the restriction regarding the fraction of replace-
ments taking place in state N. The structure of some strategies minimizing the
average cost of this new system will be obtained. Using this result we find two
di¤erent kinds of strategies optimizing our original model in Section 4. In Sec-
tion 5 we present formulas to compute the optimal strategies and in Section 6
we present some numerical examples.

2 Preliminaries

Our model deals with a system starting at time 0. X0 stands for the initial state
of the system. For all n A N we call the time period ½n � 1; nÞ the nth interval.

We let pij be the probability of deterioration from state i to state j b i in

one interval. We assume Markovian Deterioration (MD), that is,
PN

j¼k pij is
non-decreasing in i for all k A I .

We suppose that pii < 1 (to exclude trivialities) and p0N > 0, which by MD
implies that piN > 0 so that the failure state N is reached from anywhere in
one step with positive probability.

At the end of each interval an inspection takes place after which the man-
ager of the system can choose between two actions: to replace or not to
replace. If the state of the system is N it has to be replaced. An admissible
(randomized) strategy d can be represented as a family of random varia-

bles fdðnÞðiÞ; i A I ; n A Ng with PðdðnÞðiÞ A f0; 1gÞ ¼ 1 for all i A I ; n A N and
dðnÞðNÞ ¼ 1 for every n A N. Decision dðnÞðiÞ ¼ 1 stands for replacing a system
in time n being in state i and dðnÞðiÞ ¼ 0 stands for not replacing it. If dðnÞ ¼ dð1Þ

holds for every n A N, we use dðiÞ instead of dðnÞðiÞ. The space of all admissible
strategies is denoted by P.

We let X�
n be the state before and Xn be the state after the n-th action.
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Obviously, under any strategy d the processes ðX�
n Þn AN and ðXnÞn AZþ are

Markov chains. We let ðqd
ijÞi; j A I and ð~qqd

ijÞi; j A I be the transition probabilities,

and ðpdðiÞÞi A I and ð~ppdðiÞÞi A I be the stationary distributions of the stochastic
processes ðXnÞn AN and ðX�

n Þn AN under strategy d, respectively. There exists
exactly one distribution ðpdðiÞÞi A I since pii < 1, pij ¼ 0 for j < i and
dðnÞðNÞ ¼ N for every n A N leads to the fact that 0 is positive recurrent in
ðXnÞn AN and I is irreducible. Because of the identity

~ppdð jÞ ¼
Xj

i¼0
pdðiÞpij i; j A I

there exists exactly one distribution ð~ppdðiÞÞi A I , too. We observe that in a sta-
tionary setting

pdð0Þ ¼ PdðXn ¼ 0Þ ¼ PdðXn ¼ 0;X�
n ¼ 0Þ þ PdðXn ¼ 0;X�

n 0 0Þ

¼ PdðX�
n ¼ 0;Xn�1 ¼ 0Þ þ PdðXn ¼ 0;X�

n 0 0Þ

¼ pdð0Þ ¼ pdð0Þp00 þ PdðXn ¼ 0;X�
n 0 0Þ;

so that

PdðXn ¼ 0;X�
n 0 0Þ ¼ pdð0Þð1� p00Þ: ð1Þ

We will show later that both processes are ergodic. Hence, the expected cycle
length, that is the time between two replacements, under d is 1

pdð0Þð1�p00Þ , since

pdð0Þð1� p00Þ is the expected relative frequency of state zero occurring under
strategy d, excluding direct visits from state zero (in this case there was no
replacement).

From fX�
n ¼ NgH fXn ¼ 0;X�

n 0 0g and (1) we get

PdðX�
n ¼ N jXn ¼ 0;X�

n 00Þ ¼ PdðX�
n ¼ NÞ

PdðXn ¼ 0;X�
n 00Þ ¼

~ppdðNÞ
pdð0Þð1� p00Þ

: ð2Þ

As a consequence, we can phrase our problem in the following way. We look
for a strategy d A P which minimizes pdð0Þð1� p00Þ subject to the condition

~ppdðNÞ
pdð0Þð1� p00Þ

a e0; ð3Þ

since from (2) we know that the latter fraction equals the probability that a
replacement at time n (that is, the event fXn ¼ 0;X�

n 0 0gÞ was caused by a
failure (that is, the event fX�

n ¼ NgÞ.
We let

e1 :¼ e0ð1� p00Þ:

In the next Theorem we give a condition for a strategy satisfying (3) to exist.

Theorem 1. There exists a strategy d with
~ppdðNÞ
pdð0Þ

a e1 if and only if p0N a e1.
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Proof: We note that

~ppdðNÞ ¼
XN
i¼0

pdðiÞpiN ¼ pdð0Þp0N þ
XN
i¼1

pdðiÞpiN : ð4Þ

The last summand is non-negative and vanishes if the strategy chosen is the

control-limit policy with threshold one, defined as d1. Thus p0N ¼ ~ppd1 ðNÞ
pd1 ð0Þ

¼
mind AP

~ppdðNÞ
pdð0Þ

. 9

Next we define the strategies used in this paper:

Definition 1.

(i) A control-limit policy with threshold i�, denoted by di � , is a policy which
prescribes replacement in state i if and only if i b i�.

(ii) A pre-randomized bang-bang strategy with parameter ði�; pÞ A I � ½0; 1�,
denoted by ði�; pÞpre, is equal to the control-limit policy di � with proba-
bility 1� p and to di �þ1 with probability p. Hence, Pðdð1Þði�Þ ¼ i�Þ ¼ p,
dðnÞ ¼ dð1Þ for every n A N.

(iii) A post-randomized bang-bang strategy with parameter ði�; pÞ A I � ½0; 1�,
denoted by ði�; pÞpost, is the strategy which prescribes for every machine
seperately to choose the control-limit policy with threshold i� or that
with threshold i� þ 1 with probabilities 1� p and p, respectively. Hence,
PðdðnÞði�Þ ¼ i�Þ ¼ 1� p for every AN (independent on ðdð1Þ; . . . ; dðn�1ÞÞ.

Using a pre-randomized strategy means making one decision before starting
the process; using a post-randomized strategy means making a new decision
for every machine. Obviously with the use of any bang-bang strategy d (pre-,
post-randomized) for the process ðXnÞn AN only one stationary distribution
exists because of the Markovian deterioration and the condition pii < 1 for
every state i: if d A P meaning the threshold i� is less than or equal to N state 0
is reachable from every other state. In the opposite case ði� > NÞ this is valid
for state N. Of course for the process ðX�

n Þn AN there is only one stationary
distribution, too. In the next Lemma some properties of the stationary prob-
abilities are given. We write pi � ðiÞ instead of pdi � ðiÞ.

Lemma 1.

(i) pi � ð0Þ is non-increasing in i�.
(ii) ~ppi � ðNÞ is non-decreasing in i�.
(iii) If ~ppi � ðNÞ ¼ ~ppi �þ1ðNÞ then pi � ðiÞ ¼ pi �þ1ðiÞ or pi;N ¼ piþ1;N ¼ 
 
 
 ¼ pi �;N

holds for all i A f0; . . . ; i� � 1g.
(iv) pði �; pÞpre

ð0Þ and pði �; pÞpost
ð0Þ are non-increasing in p on ½0; 1� for every

threshold i�.
(v) pði �; pÞpre

ðiÞ and pði �; pÞpost
ðiÞ are continuous in p on ½0; 1� for every threshold

i� and for every state i.
(vi) ~ppði �; pÞpre

ðiÞ and ~ppði �; pÞpost
ðiÞ are continuous in p on ½0; 1� for every threshold

i� and for every state i.

This lemma will pe proven at the Appendix.
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3 A cost model

In this section we consider the model of the previous section without the
restriction on the percentage of replacements in the bad state N. We introduce
the following cost function dðcÞ for c A Rþ:

dðcÞði; 0Þ ¼ 0; i A I ; dðcÞði; 1Þ ¼ 1; i A f1; . . . ;N � 1g and

dðcÞðN; 1Þ ¼ 1þ c: ð5Þ

The first component is the state before repair and the second one represents
the action that is chosen at this replacement model. Hence we take the cost
function used by Nakagawa [8] with c2 ¼ 1 and c1 ¼ 1þ c. His model was
already described in the introduction. The value c may be interpreted as a
penalty cost for being in the bad state N. Derman [4], p. 125, has shown that
the unique strategy optimizing this average cost replacement model is a con-
trol-limit policy. Next we look at the average cost in this cost model:

With fdðcÞ being the average cost function of this cost replacement prob-
lem under strategy d and cost function dðcÞ, we have

fi � ðcÞ ¼ pi � ð0Þð1� p00Þ þ c~ppi � ðNÞ ¼ pi� ð0Þ 1� p00 þ c
~ppi � ðNÞ
pi � ð0Þ

� �
: ð6Þ

Hence, fi � is obviously continuous on Rþ. ð7Þ

The goal of this section is to find out how the strategy optimizing this cost
model depends on the constant c. This result is given in Theorem 2 and helps
us finding a strategy optimizing the original model in the next section. For the
proof of Theorem 2 we need the next three lemmas:

Lemma 2. Let a :¼ p0N > 0, then

fdðcÞ ¼ aðdðcÞðN; 1Þ þ ~VV
ðcÞ
d;1�að0ÞÞÞ; ð8Þ

where ~VV
ðcÞ
d;1�a is the mean ð1� aÞ discounted cost function of the cost model with

functions

~ddðcÞ ¼ dðcÞ 
 ð1� aÞ; ~ppij ¼
pij � a1fNgð jÞ

1� a
A ½0; 1Þ:

Proof: A simple computation (e.g. Hernandez-Lerma, Lasserre [5], formula
(4.2.15)) leads to

~VV
ðcÞ
d;1�aðiÞ ¼

XN
j¼i

~ppijð~ddðcÞð j; dð jÞÞ þ ð1� aÞ ~VV ðcÞ
d;1�að jð1� dð jÞÞÞÞ

¼
XN
j¼i

pij

1� a
ðð1� aÞdðcÞð j; dð jÞÞ þ ð1� aÞ ~VV ðcÞ

d;1�að jð1� dð jÞÞÞÞ

� a

1� a
ðð1� aÞdðcÞðN; 1Þ þ ð1� aÞ ~VVd;1�að0ÞÞ: ð9Þ
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Thus

~VV
ðcÞ
d;1�aðiÞ þ aðdðcÞðN;NÞ þ ~VV

ðcÞ
d;1�að0ÞÞ

¼
XN
j¼i

pijðdðcÞð j; dð jÞÞ þ ~VV
ðcÞ
d;1�að jð1� dð jÞÞÞg: ð10Þ

Using gðcÞ :¼ aðdðcÞðN;NÞ þ ~VV
ðcÞ
d;1�að0ÞÞ and hðcÞ :¼ ~VV

ðcÞ
d;1�a (bounded because I

is finite) we get hðcÞðiÞ þ gðcÞ ¼
PN

j¼i pijðdð j; dð jÞÞ þ hðcÞð jð1� dð jÞÞÞ. Hence

gðcÞ equals fdðcÞ (e.g. Ross [11], p. 93). 9

Lemma 3. Let 0a i� < j � and fi � ðc0Þ ¼ fj � ðc0Þ for some c0 A Rþ. Then we
have for c A Rþ:

fi � ðcÞa fj � ðcÞ , c b c0: ð11Þ

Proof: We have

XN
i¼i �

~ppi � ðiÞ þ c0~ppi � ðNÞ ¼ fi � ðc0Þ ¼ fj � ðc0Þ ¼
XN
i¼j �

~ppj � ðiÞ þ c0~ppj � ðNÞ:

Lemma 2 yields ~ppj � ðNÞb ~ppi � ðNÞ. So if c0 becomes larger (smaller), fj � ðc0Þ will
become smaller (larger) than or equal to fi � ðc0Þ. Hence this Lemma is also
proven. 9

Lemma 4. Let the cost c be fixed. If the control-limit policies with thresholds i�

and j � ð>i�Þ optimize the average cost, every control-limit policy with threshold
i A Zþ, i� < i < j �, is optimal, too.

This lemma will be proven at the Appendix.

Theorem 2. There is a j0 in I and there are positive real numbers cj0 b

cj0þ1 b 
 
 
b cN such that the control-limit policy di � with threshold

i� ¼
N if 0a c < cN ;

j if cjþ1 a c < cj;

j0 if c b cj0 ;

8<
:

is optimal. If p0n < p1N one can take j0 ¼ 1.

Proof: First consider the case c ¼ 0. Using the control-limit policy with
threshold i� the average cost are pi � ð0Þð1� p00Þ. These average cost decrease
if i� increases, so the control-limit policy with threshold N is optimal. In gen-
eral, there are two possibilities:

Case a: The control-limit policy with threshold N, dN , is optimal for every
c A Rþ.

Case b: Suppose dN is not optimal for every c > 0, that is for some c > 0
and some state i0N, fNðcÞ > fiðcÞ. Then, let
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~cc ¼ inffc > 0 j fNðcÞ > fiðcÞ for some i A Ig

and

i0 ¼ minfi A I j fNð~ccÞ > fið~ccÞg:

fi0
ð~ccÞ ¼ fNð~ccÞ holds because of the continuity of the function fi0

� fN (recall
(6)) and fi0

ðcÞb fNðcÞ for c > ~cc. For all i with i0 < i a N let ci :¼ ~cc. We
remark that if c ¼ d0, every control-limit policy with a threshold i A fi0; . . . ;Ng
is optimal because of Lemma 4. For every c less than ~cc we have found an
optimal strategy. For values of c which are larger then ~cc we use the following
recursive procedure:

Case b(i): The control-limit policy with threshold i0, di0 , is optimal for
every c A ½~cc;yÞ.

We choose j0 :¼ ~ii and c~ii ¼ ~cc.
Case b(ii): Suppose di0 is not optimal for every c A ½~cc;yÞ, that is, for some

c A ½~cc;yÞ and for some state i A f0; . . . ; i0 � 1g, fiðcÞ < fi0
ðcÞ. Then, let

~~cc~cc ¼ inffc A ½~cc;yÞ j fi0
ðcÞ > fiðcÞ for some i A Ig

and

i1 ¼ minfi A I j fi0
ð~~cc~ccÞ > fið~~cc~ccÞg:

Now for all i with i1 < i a i0 let ci ¼ ~~cc~cc. For every c less that ~~cc~cc we found the
optimal strategy. Using i1 and ~~cc~cc instead of i0 and ~cc we repeat this procedure
again. Recursively, we obtain a sequence ðciÞN

i¼j0
, where j0 is state i�, for which

case a or b(ii) is valid for the first time. This will be the case at j0 ¼ 1 at the
latest.

We prove the second part of this Theorem indirectly. Assume that
p0N < p1N and that j0 ¼ 1 can not be chosen to be 1. We recall the following
identity which is valid for every threshold i�:

fi � ðcÞ ¼ pi � ð0Þð1� p00Þ þ ~ppi � ðNÞ 
 c:

Case I: ~ppd1ðNÞ < ~ppdj0
ðNÞ. We get

fj0
ðcÞ � f1ðcÞ ¼ ð1� p00Þðpdj0

ð0Þ � pd1ð0ÞÞ þ cð~ppdj0
ðNÞ � ~ppd1ðNÞÞ: ð12Þ

The first summand is nonpositive. Since the factor of c is positive, there is a
c0 A R so that the above term is positive for all values c > c0. For these values
c the control-limit strategy d1 is better than dj0 . This contradiction yields
j0 ¼ 1.

Case II: ~ppd1ðNÞ ¼ ~ppdj0
ðNÞ.

Lemma 1(ii) yields to ~ppd1ðNÞ ¼ 
 
 
 ¼ ~ppdj0
ðNÞ and Lemma 1(iii) to

pd1ð0Þ ¼ 
 
 
 ¼ pdj0
ð0Þ.

Thus we have fj0
ðcÞ ¼ f1ðcÞ for every c A Rþ. So besides the control-limit

policy with threshold j0 the control-limit policy with threshold 1 is optimal,
too. Again we obtain a contradiction. 9

If p0N 0 p1N , then pd1ð0Þ ¼ 
 
 
 ¼ pdj0
ð0Þ by Lemma 1(iii). If on the other hand

the identity p0N ¼ p1N ¼ 
 
 
 ¼ pj0�1;N holds, we have for every j A f1; . . . ; j0g
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~ppdj
ðNÞ ¼

Xj�1
i¼0

pdj
ðiÞpiN ¼ p0N

Xj�1
i¼0

pdj
ðiÞ ¼ p0N ; so ~ppd1ðNÞ ¼ 
 
 
 ¼ ~ppdj0

ðNÞ:

Now we show that the condition p0n < p1n is necessary to get j0 ¼ 1: under
the conditions p0N ¼ p1N and p01 > 0 the strategy d2 is better than strategy d1
for every penalty cost c A Rþ, as we now compute:

pd2ð0Þ ¼ 1� pd2ð1Þ � 1� pd2ð0Þp01; so pd2ð0Þa
1

1þ p01
< 1 ¼ pd1ð0Þ;

~ppd2ðNÞ ¼ pd2ð0Þp0N þ pd2ð1Þp1N

¼ p0Nðpd2ð0Þ þ pd2ð1ÞÞ ¼ p0N ¼ pd1ð0Þp0N ¼ ~ppd1ðNÞ;

since p0N ¼ p1N . Hence,

fd2ðcÞ ¼ pd2ð0Þ þ c~ppd2ðNÞ < pd1ð0Þ þ c~ppd2ðNÞ ¼ fd1ðcÞ:

Under these conditions the probability of visiting state N is the same for the
initial states 0 and 1, so the probability that a machine will reach the worst
state N is the same under both strategies. But the number of replacements in
every time interval ½0;T �;T A N will be smaller under d2 than under d1. In the
sequel we need the second part of Theorem 2, so that we assume

Probability condition: 0 > p0N 0 p1N and pii > 0 for every state i A I .

which holds for the subsequent results. The second part of that condition was
just repeated.

4 Optimal strategies in the original model

Now let us return to the original model. Using Theorem 2 of Section 3 we first
prove that the search for an optimal strategy may be restricted to the class of
pre-randomized strategies or to the class of post-randomized strategies. The
existence and the construction of the optimal strategy will be studied in the
next section.

Theorem 3. For every strategy d satisfying
~ppdðNÞ
pdð0Þ a e1, there are numbers j A I

and l A ½0; 1� with

~ppð j;lÞpre
ðNÞ

pð j;lÞpre
ð0Þ ¼

l~ppdj
ðNÞ þ ð1� lÞ~ppdjþ1ðNÞ

lpdj
ð0Þ þ ð1� lÞpdjþ1ð0Þ

a e1 ð13Þ

and

pð j;lÞpre
ð0Þ ¼ lpdj

ð0Þ þ ð1� lÞpdjþ1ð0Þ ¼ pdð0Þ:

Proof: Lemma 1(i) yields to

pdN
ð0Þa 
 
 
a pd1ð0Þ ¼ 1: ð14Þ
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Since a system in state N has to be replaced under every strategy, dN is the
strategy which replaces most rarely. Thus using dN the process ðXnÞn AN visits
state N most rarely so this strategy minimizes pdð0Þ. So pdð0Þa pdN

ð0Þ for
every strategy d. Lemma 1 yields the same result if we look at the subset of
control-limit policies only.

For every strategy d we have

1 ¼ pd1ð0Þb pdð0Þb pdN
ð0Þ: ð15Þ

(14) yields that for every d there is a j A I with

pdjþ1ð0Þa pdð0Þa pdj
ð0Þ: ð16Þ

Take l A ½0; 1Þ such that pdð0Þ ¼ lpdj
ð0Þ þ ð1� lÞpdjþ1ð0Þ. ð17Þ

The cost model with c :¼ cjþ1 defined in Theorem 2 will be optimized by both
control-limit policies dj and djþ1. Therefore, every strategy d satisfies

fjðcÞ ¼ fjþ1ðcÞa fdðcÞ: ð18Þ

Hence

pjð0Þð1� p00Þ þ c~ppjðNÞ ¼ pjþ1ð0Þð1� p00Þ þ c~ppjþ1ðNÞ

a pdð0Þð1� p00Þ þ c~ppdðNÞ: ð19Þ

Now we find that

pð j;lÞpre
ðiÞ ¼ lpjðiÞ þ ð1� lÞpjþ1ðiÞ for i A I ; ð20Þ

~ppð j;lÞpre
ðiÞ ¼ l~ppjðiÞ þ ð1� lÞ~ppjþ1ðiÞ for i A I : ð21Þ

The main idea of this proof stands behind the subsequent inequality.

pð j;lÞpre
ð0Þð1� p00Þ þ c~ppð j;lÞpre

ðNÞ

¼ ðlpdj
ð0Þ þ ð1� lÞpdjþ1ð0ÞÞð1� p00Þ þ cðl~ppdj

ðNÞ þ ð1� lÞ~ppdjþ1ðNÞÞ

¼ lðpdj
ð0Þð1� p00Þ þ c~ppdj

ðNÞÞ þ ð1� lÞðpdjþ1ð0Þð1� p00Þ þ c~ppdjþ1ðNÞÞ

a lðpdð0Þð1� p00Þ þ c~ppdðNÞÞ þ ð1� lÞðpdð0Þð1� p00Þ þ c~ppdðNÞÞ

¼ pdð0Þð1� p00Þ þ c~ppdðNÞ: ð22Þ

This, together with

pð j;lÞpre
ð0Þ ¼ lpdj

ð0Þ þ ð1� lÞpdjþ1ð0Þ ¼ pdð0Þ

gives us
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~ppð j;lÞpre
ðNÞa ~ppdðNÞ:

Finally

pð j;lÞpre
ð0Þ ¼ pdð0Þ

yields

~ppð j;lÞpre
ðNÞ

pð j;lÞpre
ð0Þ a

~ppdðNÞ
pdð0Þ

a e1: 9

For the proof of an analogous result regarding to the post-randomized strat-
egies which is formulated in the next Theorem we need an auxiliary Lemma:

Lemma 5. (i) For every strategy ði; pÞpre, i A f1; . . . ;N � 1g, p A ½0; 1� we can
choose q A ½0; 1�, such that

fði; pÞpre
ðcÞ ¼ fði;qÞpost

ðcÞ for all c A Rþ: ð23Þ

(ii) For every strategy ði; qÞpost, i A f1; . . . ;N � 1g, q A ½0; 1� we can choose

p :¼
q

pdi � ð0Þ
q

pdi � ð0Þ
þ 1�q

pdi �þ1 ð0Þ

such that

fði;qÞpost
ðcÞ ¼ fði; pÞpre

ðcÞ for all c A Rþ ð24Þ

Proof: If p ¼ 0 then fði;0Þpre
ðcÞ ¼ fdi

ðcÞ ¼ fði;0Þpost
ðcÞ ¼ fði;0Þpost

ðcÞ and if p ¼ 1

then fði;1Þpre
ðcÞ ¼ fðiþ1;0Þpre

ðcÞ ¼ fðiþ1;0Þpost
ðcÞ ¼ fði;1Þpost

ðcÞ ¼ fði;1Þpost
, so that 23

holds true. For p 2 ð0; 1Þ we look at the two assertions separately:
1. fði; pÞpre

ðcÞ ¼ pfiþ1ðcÞ þ ð1� pÞfiðcÞ.
Thus for every i0 and c the graph of the function gc

i0
: p ! fði0; pÞpre

ðcÞ is
a straight line joining ð0; fi � ðcÞÞ and ð1; fi �þ1ðcÞÞ.

According to Lemma 1, fði0; pÞpost
is continuous in p. Since fði;0Þpre

1 fði;0Þpost

and fði;1Þpre
1 fði;1Þpost

hold and gc
i is linear, there is a q A ½0; 1� for which

fði0; pÞpre
ðcÞ ¼ fði0;qÞpost

ðcÞ.
2. For every n A N we define the random variable tn as the time at which

the n-th visit to state 0 takes place, not counting visits from zero. Let ~CCc
d ðJÞ be

the cost during the interval J HZþ using any strategy d such that zero is
positive recurrent for the process ðXnÞ and using ‘penalty cost’ c. Since state
zero is positive recurrent, we have

fdðcÞ ¼ lim
n!y

Eð ~CCc
d ð½tn�1; tn�ÞÞ

Eðtn � tn�1Þ
¼ Eð ~CCc

d ð½t1; t2�ÞÞ
Eðt2 � t1Þ

: ð25Þ

Hence,
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fði �;qÞpost
ðcÞ

¼ Eð ~CCc
d ð½t1; t2�Þ j d¼ di � Þ 
 Pðd¼ di � Þ þEð ~CCc

d ð½t1; t2�Þ j d¼ di �þ1ÞÞ 
Pðd¼ di �þ1Þ
Pðd ¼ di � Þ 
 Eðt2 � t1 j d ¼ di � Þ þ Pðd ¼ di �þ1Þ 
 Eðt2 � t1 j d ¼ di �þ1Þ

¼
Eð ~CCc

di �
ð½t1; t2�ÞÞ 
 ð1� qÞ þ Eð ~CCc

di �þ1
ð½t1; t2�ÞÞ 
 q

1�q

pdi � ð0Þ
þ q

pdi �þ1 ð0Þ

¼ Eð ~CCc
di �
ð½t1; t2�ÞÞ 
 pdi � ð0Þ 


1�q

pdi � ð0Þ
1�q

pdi � ð0Þ
þ q

pdi �þ1 ð0Þ

þ Eð ~CCc
di �þ1

ð½t1; t2�ÞÞ 
 pdi �þ1ð0Þ 

q

pdi �þ1 ð0Þ
1�q

pdi � ð0Þ
þ q

pdi �þ1 ð0Þ

¼ fi � ðcÞ 
 ð1� pÞ þ fi �þ1ðcÞ 
 p ¼ fði �; pÞpre
: 9

Theorem 4. For every strategy d satisfying the inequality
~ppdðNÞ
pdð0Þ

a e1 there are
numbers j A Zþ and m A ½0; 1� such that:

~ppð j;mÞpost
ðNÞ

pð j;mÞpost
ð0Þ a e1 and pð j;mÞpost

ð0Þ ¼ pdð0Þ:

Proof: Due to (16) there exists a number j A Zþ with pdjþ1ð0Þa pdð0Þa pdj
ð0Þ.

Because of dj ¼ dð j;0Þpost
, djþ1 ¼ dð j;1Þpost

and the fact that pð j;mÞpost
ð0Þ is contin-

uous and non-increasing on the unit interval, there exists a m A ½0; 1� with
pdð0Þ ¼ pð j;mÞpost

ð0Þ. Because of the last Lemma there exists a l A ½0; 1�, such
that we have for c :¼ cjþ1:

pð j;m2Þpost
ð0Þð1� p00Þ þ c~ppð j;m2Þpost

ðNÞ ¼ fð j;m2Þpost
ðcÞ ¼ð24Þ fð j;lÞpre

ðcÞ

¼ pð j;lÞpre
ð0Þð1� p00Þ þ c~ppð j;lÞpre

ðNÞ

a pdð0Þð1� p00Þ þ c~ppdðNÞ: ð26Þ

To see (26), note that for every l A ½0; 1� and for all i A I we have:

pð j;lÞpre
ðiÞ ¼ð20Þ lpdj

ðiÞ þ ð1� lÞpdjþ1ðiÞ and

~ppð j;lÞpre
ðiÞ ¼ð21Þ l~ppdj

ðiÞ þ ð1� lÞ~ppdjþ1ðiÞ:

pð j;mÞpost
ð0Þ ¼ pdð0Þ yields ~ppð j;mÞpost

ðNÞa ~ppdðNÞ;

so
~ppð j;mÞpost

ðNÞ
pð j;mÞpost

ð0Þ a
~ppdðNÞ
pdð0Þ

a e1: 9
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Summarizing, for every strategy in the class d :
~ppdðNÞ
pdð0Þ a e1

n o
there exists a pre-

randomized bang-bang strategy yielding the same value 1
pdð0Þð1�p00Þ which is to

be minimized. Moreover, there exists a post-randomized bang-bang strategy
having the same value. Hence the search for an optimal strategy can be
restricted to the class of pre-randomized strategies or to the class of post-
randomized strategies.

5 Construction of optimal strategies

First we show how to find for an optimal pre-randomized strategy:
From the monotonicity of pi � ð0Þ and ~ppi � ðNÞ in i�, as described in Lemma

1, we conclude the monotonocity of pði �; pÞpre
ð0Þ and ~ppði �; pÞpre

ðNÞ in i� and p
from the equalities

pði �; pÞpre
ðiÞ ¼ ð1� pÞpi � ðiÞ þ ppi �þ1ðiÞ and

~ppði �; pÞpre
ðiÞ ¼ ð1� pÞ~ppi � ðiÞ þ p~ppi �þ1ðiÞ:

Thus
~ppði � ; pÞpre

ðNÞ
pði � ; pÞpre

ð0Þ and
1

pði � ; pÞpre
ð0Þ are non-decreasing in i� and in p. Since the first

term may be not larger than e1 and the second has to be maximized, we look
for parameters i� and p with

~ppði �; pÞpre
ðNÞ

pði �; pÞpre
ð0Þ ¼ e1:

Thus we get

i� ¼ max i





 ~ppiðNÞ
pið0Þ

a e1

� �
ð27Þ

and the value p is obtained as solution of the equation

ð1� pÞ~ppi � ðNÞ þ p~ppi �þ1ðNÞ
ð1� pÞpi � ð0Þ þ ppi �þ1ð0Þ

¼ e1:

Thus,

p ¼ e1pi �þ1ð0Þ � ~ppi �þ1ðNÞ
ð~ppi � ðNÞ � ~ppi �þ1ðNÞÞ � e1ðpi � ð0Þ � pi �þ1ð0ÞÞ

: ð28Þ

Hence we have obtained an optimal strategy in the class of pre-randomized
bang-bang strategies. Then the strategy optimizes our replacement system in
the whole class P.

Now we are also able to compute an optimal post-randomized bang-bang
strategy. We simply have to compute the second parameter, because the first
is identical to that of the optimal pre-randomized bang-bang strategy. We
obtain the second parameter q using Lemma 5. If p ¼ 0 we choose q ¼ 0 and
if p0 0 we know that
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p ¼
q

pi �þ1ð0Þ
1�q

pi � ð0Þ
þ q

pi �þ1ð0Þ

;

so that

q ¼ pi �þ1ð0Þ
pi �þ1ð0Þ � 1� 1

p


 �
pi � ð0Þ

: ð29Þ

6 Numerical examples

We conclude this paper with some numerical results generated by a C-
program, which solves (27), (28) and (29) after computing the stationary
probabilities ðpi � ðiÞÞ and ð~ppi � ðiÞÞ. The following transition probabilities have
the Markovian deterioration property:

~ppij ¼

iþ1
jþ1


 �b
� iþ1

jþ2


 �b
N > j b i;

iþ1
Nþ1


 �b
j ¼ N;

0 otherwise:

8>>><
>>>:

In Table 1 optimal strategies are given for various values of N, b and e0. The
identity

p ¼ 0 , q ¼ 0 else p ¼
q

pi �þ1ð0Þ
1�q

pi � ð0Þ
þ q

pi �þ1ð0Þ

;

where q is the parameter of the post-randomized strategy and p is the
parameter of the pre-randomized strategy yields to

q ¼ 0 ) p ¼ q ð30Þ

q > 0 ) p ¼
q

pi �þ1ð0Þ
1�q

pi � ð0Þ
þ q

pi �þ1ð0Þ

b

q

pi �þ1ð0Þ
1�q

pi �þ1ð0Þ
þ q

pi �þ1ð0Þ

¼ p: ð31Þ

Hence,

p b q:

Comparisons of both optimal strategies would be an interesting topic for fur-
ther research.

7 Appendix

Proof of Lemma 1:
(i) For any subsets A;BH I and a family of random variables ðZnÞn AN

with values in I and PðZnþ1 ¼ j jZn ¼ iÞ ¼ pij, i; j A I , n A N, let

A !bn
B :¼ fZ0 A A;Z1 B B; . . . ;Zn�1 B B; bm b n : Zm A Bg ð32Þ
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Table 1. Some examples for optimal strategies

N b e0 p0N i � p : ði �; pÞpre p : ði �; pÞpost

2 0.75 0.75 0.738 1 0.056 0.047

2 0.75 0.9 0.738 1 0.663 0.619

2 0.75 0.99 0.738 1 0.968 0.962

10 0.5 0.5 0.426 1 0.793 0.768

10 0.5 0.9 0.426 7 0.915 0.912

10 0.5 0.99 0.426 9 0.789 0.785

100 0.75 0.1 0.053 3 0.710 0.694

100 0.75 0.25 0.053 14 0.908 0.907

100 0.75 0.5 0.053 39 0.082 0.082

100 0.75 0.75 0.053 67 0.824 0.824

100 0.75 0.99 0.053 98 0.656 0.656

100 0.9 0.1 0.029 6 0.827 0.821

100 0.9 0.25 0.029 20 0.648 0.646

100 0.9 0.5 0.029 45 0.758 0.758

100 0.9 0.9 0.029 88 0.842 0.842

100 0.9 0.99 0.029 98 0.879 0.878

100 1.0 0.05 0.02 4 0.053 0.050

100 1.0 0.5 0.02 49 0.501 0.500

100 1.0 0.9 0.02 89 0.900 0.900

100 1.0 0.99 0.02 98 0.990 0.990

100 2.0 0.001 0.0004 2 0.192 0.172

100 2.0 0.01 0.0004 9 0.098 0.096

100 2.0 0.1 0.0004 30 0.938 0.938

100 2.0 0.9 0.0004 94 0.816 0.816

100 2.0 0.99 0.0004 99 0.493 0.492
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and

PðTðiÞ ¼ mÞ :¼ PðZ10 i; . . . ;Zm�10 i;Zm ¼ i jZ0 ¼ iÞ ð33Þ

We define qn
ijði�Þ as the probability that the process ðXnÞn AN, using the bang-

bang strategy with threshold i� and starting in state i, will reach state j after at
least n steps. If i0 j the process ðXnÞn AZþ has to leave state i before reaching it
again. Furthermore, let ðpn

ijÞ ¼ Pn. The condition pii 0 0 for every i A I yields

that the process ðZnÞn AN will visit a state of fi� þ 1; . . . ;Ng after a visit in i� in
a finite number of steps. If i ¼ j the process has to leave state i before reaching
it again. Thus we have for n A N:

ffig !bn fi�; i� þ 1; . . . ;NggH ffig !bn fi� þ 1; i� þ 2; . . . ;Ngg;

so

Pðfig !bn fi�; i� þ 1; . . . ;NgÞa Pðfig !bn fi� þ 1; i� þ 2; . . . ;NgÞ;

that is qn
i0ði�Þa qn

i0ði� þ 1Þ for all n A N. Hence

qn
iiði�Þ ¼

Xn�1
m¼1

qm
i0ði�ÞPðZn ¼ i;Zn�10 i; . . . ;Zmþ10 i jZm ¼ 0Þ

þ
Xy
m¼n

PðZm ¼ i;Zm�10 i; . . . ;Z10 i jZ0 ¼ 0Þ ð34Þ

a
Xn�1
m¼1

qm
i0ði� þ 1ÞPðZn ¼ i;Zn�10 i; . . . ;Zmþ10 i jZm ¼ 0Þ

þ
Xy
m¼n

PðZm ¼ i;Zm�10 i; . . . ;Z10 i jZ0 ¼ 0Þ ¼ qn
iiði� þ 1Þ: ð35Þ

To see (34) recall that qn
iiði�Þ is the probability that Xk conditioned to start at i

and to use di � first visits state i after visiting a state which is di¤erent from i
after at least n steps. Thus during the time between these two visits there is a
visit to state 0. Now we define the random variable X as the number of steps
until the first visit at state zero and the random variable Y as the number of
steps to the subsequent visit at state i. Then we get:

PðX þ Y b nÞ ¼
Xn�1
m¼1

PðX þ Y b n;Y ¼ mÞ þ PðY b nÞ

¼
Xn�1
k¼1

PðX b n � m;Y ¼ mÞ þ PðY b nÞ: ð36Þ

Hence equation (34) holds.
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Furthermore we have for all i < i�:

1

pi � ðiÞ
¼ Edi � ðTðiÞÞ ¼

X
n AN

Pdi � ðTðiÞb nÞ ¼
X
n AN

qn
iiði�Þ

a
X
n AN

qn
iiði� þ 1Þ ¼ Edi �þ1ðTðiÞÞ ¼ 1

pi �þ1ðiÞ
: ð37Þ

Therefore pi � ðiÞ is non-increasing in i� A fi þ 1; . . . ;Ng and the first part of
the Lemma is proven.

(ii) Part (i) yields the existence of a constant ai � ðiÞb 0 for every state i < i�

such that

pi � ðiÞ ¼ pi �þ1ðiÞ þ ai � ðiÞ: ð38Þ

We have

Xi ��1
i¼0

ai � ðiÞ ¼
Xi ��1
i¼0

pi � ðiÞ �
Xi ��1
i¼0

pi �þ1ðiÞ ¼ pi �þ1ði�Þ

and

~ppi � ðNÞ ¼
Xi ��1
i¼0

pi � ðiÞpiN ¼
Xi ��1
i¼0

pi �þ1ðiÞpiN þ
Xi ��1
i¼0

ai � ðiÞpiN ð39Þ

a
Xi ��1
i¼0

pi �þ1ðiÞpiN þ pi �N

Xi ��1
i¼0

ai � ðiÞ since piN ¼
XN
k¼N

pik " ðiÞ

¼ð7Þ
Xi ��1
i¼0

pi �þ1ðiÞpiN þ pi �þ1ði�Þpi �N ¼
Xi �
i¼0

pi �þ1ðiÞpiN

¼ ~ppi �þ1ðNÞ: ð40Þ

which proves the second part of the Lemma.
(iii) ~ppi � ðNÞ ¼ ~ppi �þ1ðNÞ yields

P i ��1
i¼0 ai � ðiÞpi �N ¼

P i ��1
i¼0 ai � ðiÞpi;N and

because of pi;N a pi �;N for every i A f0; . . . ; i� � 1g the subsequent statement
holds:

If ai � ðiÞ ¼ 0 then pi � ðiÞ ¼ pi �þ1ðiÞ or piN ¼ piþ1;N ¼ 
 
 
 ¼ pi �N .
Hence part (iii) is also proven.
(iv) For all j A f1; . . . ; i� � 1g, i A f0; . . . ; i�g the following identities hold:

q
ði �; pÞpost

ij ¼ pij ,

q
ði �; pÞpost

i; i � ¼ p 
 pi; i � and

q
ði �; pÞpost

i0 ¼ pi0 þ ð1� pÞpii � þ
XN

k¼i �þ1
pik so q

ði �; pÞpost

i0 :
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Thus q
ði �; pÞpost

i; i � is non-decreasing and q
ði �; pÞpost

i0 is non-increasing in p. This
means pði �; pÞpost

ð0Þ is non-increasing in p. The reason is that this probability is
equal to the reciprocal of the mean number of steps the process ðXnÞyn¼1 uses
from starting at state zero, leaving it and returning the first time: if we increase
the value p, probability q

ði �; pÞ
i;0 will decrease or not change and q

ði �; pÞ
i; i � will

increase or not change for every i A f0; . . . ; i� � 1g; hence this mean number
either increases or stays the same. Part (iv) of the Lemma is therefore also
proven.

(v) The continuity of pði �; pÞpre
in p follows from the identity

pði �; pÞpre
¼ ð1� pÞpi � þ ppi �þ1:

Now we look at pði �; pÞpost
. Define Qði �; pÞpost as the square matrix of size i� þ 1

with elements ðqði
�; pÞpost

ji Þfði; jÞ A I 2g. ðx0; . . . ; xi � Þ ¼ ðpði �; pÞpost
ð0Þ; . . . ; pði �; pÞpost

ðNÞÞ
is the unique solution of the system of equations

Qði �; pÞpost � Ii �þ1
1 . . . 1

� � x0

..

.

xi �

0
B@

1
CA ¼

0

..

.

0

1

0
BBB@

1
CCCA:

Thus the rank of the ði� þ 2Þ � ði� þ 1Þ matrix

Qði �; pÞpost � Ei �þ1
1 . . . 1

� �

is i� þ 1. Eliminate one row which is linear dependent on the others and call
the resulting non-singular matrix AðpÞ ¼ ðaijðpÞÞf0ai; jai �g, where ðAðpÞÞ�1 ¼
ðbijðpÞÞf0ai; jai �g: Then

pði �; pÞpost
¼ ðbijðpÞÞei �þ1 ¼

ða�
jiðpÞÞ

jðaijÞðpÞj
ei �þ1: ð41Þ

Since the entries of ða�
jiðpÞÞ are determinants and thus polynomials in p,

pði �; pÞpost
ðiÞ is continuous in p. Thus part (iv) is proven completely and it

remains to prove the last part.
(vi) To prove the continuity of the probabilities ~ppði �; pÞpost

ðiÞ, we are faced
with the problem that the process ðX�

n Þ using strategy dði �; pÞpost
does not form

a Markov process, since the probability PðX�
n ¼ j jXn�1 ¼ i�;Xn�2 ¼ i�Þ is

in general not equal to the probability PðX�
n ¼ j jX�

n�1 ¼ i�;Xn�2 < i�Þ. We
avoid this problem by splitting the state X�

n ¼ i� into states X�
n ¼ ði�; i�Þ if

Xn�1 ¼ X�
n ¼ i� and X�

n ¼ ði�; <i�Þ, if Xn�1 < X�
n ¼ i�. Then the process

ðX�
n Þn AN forms a Markov chain with the following transition probabilities: for

i A f0; . . . ; i� � 1; i� þ 1; . . . ;NÞ we have

~qq
ði �; pÞpost

ij ¼ pij1fi<i �g þ p0j1fi>i �g; ~qq
ði �; pÞpost

ði �; i �Þ; ði �; i �Þ ¼ pi �i � ;

~qq
ði �; pÞpost

ði �;<i �Þ; ði �; i �Þ ¼ ð1� pÞpi �i � ;
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~qq
ði �; pÞpost

ði �; i �Þ; ði �;<i �Þ ¼ 0; ~qq
ði �; pÞpost

ði �;<i �Þ; ði �;<i �Þ ¼ p 
 p0i � ; ~qq
ði �; pÞpost

ði �; i �Þ; j ¼ pi �; j;

~qq
ði �; pÞpost

ði �;<i �Þ; j ¼ ð1� pÞ 
 p0j þ ppi �j ; ~qq
ði �; pÞpost

j; ði �; i �Þ ¼ 0;

~qq
ði �; pÞpost

j; ði �;<i �Þ ¼ pji �1f j<i �g þ p0i �1f j>i �g:

Defining the corresponding matrix ~QQði �; pÞpost for these probabilities

ðdim ~QQði �; pÞpost ¼ dimQði �; pÞpost þ 1Þ, the continuity of the probabilities ~ppði �; pÞpost

can be proven similiarly to the continuity of the probabilities pði �; pÞpost
. 9

Proof of Lemma 4: From Lemma 2 we recall (8):

fdðcÞ ¼ ð1� aÞðdðcÞðN; 1Þ þ ~VV
ðcÞ
d;a ð0ÞÞ with a :¼ 1� p0N < 1:

We have fdi �
a fd and fdj �

a fd for every strategy d A P.

Hence ~VV
ðcÞ
di � ;a

ð0Þa ~VV
ðcÞ
d;a ð0Þ and ~VV

ðcÞ
dj � ;a

ð0Þa ~VV
ðcÞ
d;a ð0Þ for every d A P.

A control-limit strategy with threshold i� optimizes V
ðcÞ
d;a ð0Þ in d, if and only

if:

a
XN
j¼0

~ppij
~VV ðcÞ
a ð jÞb ð1� aÞ þ a

XN
j¼0

~pp0j ~VV
ðcÞ
a ð jÞ or

Xy
n¼0

~pp
ðnÞ
0i ¼ 0

 !

for i A fi�; i� þ 1; . . . ;N � 1g

and

a
XN
j¼0

~ppij
~VV ðcÞ
a ð jÞ � ð1� aÞ þ a

XN
j¼0

~pp0j ~VV
ðcÞ
a ð jÞ or

Xy
n¼0

~pp
ðnÞ
0i ¼ 0

 !

for i A f1; 2; . . . ; i� � 1g:

We prove this indirectly. First we consider states i satisfying
Py

n¼0 p
ðnÞ
0i > 0.

If the inequality regarding this state i is not fulfilled, we introduce the strategy
d which is equal to di � except at state i, where it takes the other action. Then

we have ~VV
ðcÞ
d;a < ~VV

ðcÞ
di � ;a

, i.e. di � is not optimal. Now let i satisfy
Py

n¼0 ~pp
ðnÞ
0i ¼ 0.

Starting at state 0 it is almost sure that state i will never be visited. Thus for
every strategy d the value ~VV

ðcÞ
d;a ð0Þ is independent of the behaviour of d at i.

Using the function ~VV ðc;nÞ
a to denote the discounted cost up to the nth interval it

is standard to prove that ~VV ðcÞ
a is non-decreasing, since ~dd is non-decreasing and

the Markovian deterioration of the ðpijÞ yields the Markovian deterioration of
the ð ~ppijÞ (e.g. Ross, [11], pp. 37). If the control-limit policies with thresholds i�

and j � are both optimal, we get the following:

f ðiÞ :¼
XN
j¼0

~ppij
~VV ðcÞ
a ð jÞ is constant in fi�; . . . ; j �g

�
i





 Xy
n¼0

p
ðnÞ
0i ¼ 0

( )
:

If the state is an element of fi j
Py

n¼0 p
ðnÞ
0i ¼ 0g both actions are optimal, so all
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control-limit policies with thresholds fi�; . . . ; j �g minimize ~VVd;að0Þ and hence
also fd in d. 9
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