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Abstract. We examine n-player stochastic games. These are dynamic games
where a play evolves in stages along a finite set of states; at each stage players
independently have to choose actions in the present state and these choices
determine a stage payoff to each player as well as a transition to a new state
where actions have to be chosen at the next stage. For each player the infinite
sequence of his stage payoffs is evaluated by taking the limiting average.
Normally stochastic games are examined under the condition of full moni-
toring, i.e. at any stage each player observes the present state and the actions
chosen by all players. This paper is a first attempt towards understanding
under what circumstances equilibria could exist in n-player stochastic games
without full monitoring. We demonstrate the non-existence of e-equilibria in
n-player stochastic games, with respect to the average reward, when at each
stage each player is able to observe the present state, his own action, his own
payoff, and the payoffs of the other players, but is unable to observe the
actions of them. For this purpose, we present and examine a counterexample
with 3 players. If we further drop the assumption that the players can observe
the payoffs of the others, then counterexamples already exist in games with
only 2 players.

1 Introduction

Stochastic games can be seen as multi-player Markov decision processes. A
stochastic game canbedescribedby (1) a nonempty andfinite set of players I ; (2)
a nonempty and finite set of states S, (3) for each state s; a nonempty and finite
set of actions AiðsÞ for each player i, (4) for each state s and each joint action
a 2 �i2I AiðsÞ, a payoff riðs; aÞ 2 R to each player i, (5) for each state s and each
joint action a 2 �i2I AiðsÞ, a transition probability vector pðs; aÞ ¼ ðpðtjs; aÞÞt2S .
The game is to be played at stages in N in the following way. The play starts at
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stage 1 in an initial state, say in state s1 2 S, where, simultaneously and inde-
pendently, each player i is to choose an action ai

1 2 Aiðs1Þ. These choices induce
an immediate payoff riðs1; ðaj

1Þj2IÞ to player i, and next, the playmoves to a new
state according to the probability vector pðs1; ðaj

1Þj2IÞ, say to state s2.At stage 2 a
new action ai

2 2 Aiðs2Þ is to be chosen by each player i in state s2. Then player i
receives payoff riðs2; ðaj

2Þj2IÞ and the play moves to some state s3 according to
the probability vector pðs2; ðaj

2Þj2IÞ, and so on.
A stochastic game is usually played under the assumption of full moni-

toring:

Assumption of full monitoring: each player is able to observe the present state,
his own action and the actions of the other players. So, a history for player
i 2 I up to stage n is of the form:

hiðnÞ ¼ ðs1; ðaj
1Þj2I ; . . . ; sn; ðaj

nÞj2IÞ:

Notice that, under the assumption of full monitoring, the histories of the
players coincide.

A mixed action xiðsÞ for player i in state s is a probability distribution on
AiðsÞ: The set of mixed actions for player i in state s is denoted by X iðsÞ. A
(history dependent or behavior) strategy ri for player i is a decision rule that,
for the choice of action, prescribes a mixed action riðs; hiÞ 2 X iðsÞ in the
present state s depending on his past history hi. If the mixed actions pre-
scribed by a strategy only depend on the present state and stage then the
strategy is called Markov, while if they only depend on the present state then
the strategy is called stationary.

A joint strategy r ¼ ðriÞi2I together with an initial state s 2 S determines a
stochastic process on the payoffs. The sequences of payoffs are evaluated by
the average reward, which is given for player i 2 I by

ciðs; rÞ :¼ lim inf
N!1

Esr
1

N

XN

n¼1
Ri

n

 !
¼ lim inf

N!1

1

N

XN

n¼1
Esr Ri

n

� �
;

where Esr stands for expectation and where Ri
n is a random variable for the

payoff for player i at stage n.
A joint strategy r ¼ ðriÞi2I is called an e-equilibrium, e � 0, with respect to
the average reward, if for each player i 2 I and initial state s 2 S

ci s; �ri; ðrjÞj2Infig

� �
� ci s; rð Þ þ e 8�ri;

which means that no player can gain more than e by a unilateral deviation, for
any initial state s 2 S. Hence, for small e, the rewards corresponding to an
e-equilibrium are an appealing solution of the stochastic game.

Under the assumption of full monitoring, the famous game called the Big
Match, in Gillette (1957) and Blackwell & Ferguson (1968), showed that 0-
equilibria do not always exist and history dependent strategies are indis-
pensable for obtaining e-equilibria, with e > 0. However the existence of
e-equilibria for all e > 0 is not yet known in general and is the most chal-
lenging open problem these days, even though the existence problem has been
answered in the affirmative for several special classes, such as for games with
only two players (cf. Vieille (2000, I and II)).
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As far as we know, non zero-sum stochastic games have always been
studied with the assumption of full monitoring. So the question arises what
happens if the assumption of full monitoring is dropped. We shall therefore
examine the following two weaker assumptions:

Assumption 1: each player is able to observe the present state, his own action,
his own payoff, and the payoffs of the other players. So, a history for player
i 2 I up to stage n is of the form

hiðnÞ ¼ ðs1; ai
1; ðu

j
1Þj2I ; . . . ; sn; ai

n; ðuj
nÞj2IÞ;

where uj
k denotes the payoff for player j at stage k.

Assumption 2: each player is able to observe the present state, his own action
and his own payoff. So, a history for player i 2 I up to stage n is of the form

hiðnÞ ¼ ðs1; ai
1; u

i
1; . . . ; sn; ai

n; u
i
nÞ;

where ui
k denotes the payoff for player i at stage k:

Notice that Assumption 1 is somewhat weaker than the assumption of full
monitoring, because if a player can observe all the actions then he can con-
clude all the payoffs. Vieille (2000, III) recently managed to show that, in this
case, each two-player stochastic game has at least one initial state for which
e-equilibria exist for all e > 0: Despite this result, we will show that stochastic
games do not always admit e-equilibria for all initial states, which shall be
demonstrated by a counterexample with 3 players. Consequently, for
obtaining e-equilibria, the players should be able to gain more information
during the play of the game than under Assumption 1. It is not clear whether
or not a counterexample exists with only 2 players.

Obviously, Assumption 2 is the weakest amongst the assumptions above.
Under this assumption counterexamples already exist in games with only 2
players. Such an example shall also be analyzed below.

The idea that the players cannot fully monitor the behavior of their
opponents is not new. However, the earlier studies on stochastic games
without full monitoring always focused on the zero-sum case, see for instance
Coulomb (1992, 1999). Thus, our goal is to provide a first step towards
understanding under what circumstances equilibria could exist in n -player
stochastic games with non-observable actions.

Absorbing games. Both counterexamples we will present below are so-called
absorbing games. These are very special stochastic games with the properties
that all the states but one are absorbing (play remains there forever,
regardless the actions chosen by the players) and in any absorbing state each
player has only one action. Note that if the play moves to an absorbing state s
(absorption occurs in state sÞ then the play is strategically over and the
average rewards of the players will equal the payoffs in state s.

In these absorbing games, since the non-absorbing state is the only non-
trivial state, we will assume that it is the initial state and we will surpress the
states in the notations. For a (history dependent) strategy ri for player i, the
prescribed mixed action after past history hi (if no absorption has occured) is
denoted by riðhiÞ, while for a Markov strategy ri; the mixed action for stage n
is riðnÞ. The probability on action ai is denoted by riðhi; aiÞ or riðn; aiÞ;
respectively.
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For convenience, let t� denote the random variable for the stage of
absorption; if no absorption occurs at all, then let t� ¼ 1: Moreover, with
regard to a joint Markov strategy r ¼ rjð Þj2I , we use the notation ri� r nð Þð Þ
for the expected payoff of player i with respect to the joint mixed action r nð Þ
given absorption occurs.

2 A counterexample under Assumption 2

Example 1. Under Assumption 2, consider the following game with 2 players:

In this game, player 1’s actions are the rows (Top andBottom) and player 2’s
actions are the columns (Left and Right). Entries (Top, Left) and (Top, Right)
are non-absorbing, meaning that after the players receive the payoffs the play
remains in the non-absorbing state. On the other hand, entries (Bottom, Left)
and (Bottom, Right) are absorbing with probability 1 (indicated by �), meaning
that the play moves to an absorbing state whose payoffs are given in this entry.
(This game shows some similarity with the Big Match, cf. Gillette (1957).)

Notice that player 1 can determine the time of absorption, but it is player 2
who determines the place of it. Also, if player 1 plays Top then no absorption
occurs and due to Assumption 2, player 2’s behavior is completely invisible to
player 1; while as soon as player 1 plays Bottom, absorption occurs with
probability 1.

Based on the above observations we will now show the following lemma,
which says that player 1 has only Markov strategies at his disposal, while
player 2 can also restrict himself to using Markov strategies, in a certain
sense.

Lemma 1. Consider example 1 (under Assumption 2).

1. Any strategy r1 of player 1 is simply a Markov strategy.
2. For any strategy r2 of player 2, there exists a Markov strategy �r2 so that for

any strategy r1 of player 1

ci r1; r2
� �

¼ ci r1; �r2
� �

8i 2 I ¼ 1; 2f g:

Proof. Part 1. If the play is at stage n and no absorption has occured, then
player 1’s history must be

h1ðn� 1Þ ¼ ðTop; 0; . . . ;Top; 0Þ:
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Hence, the only information such a history carries is its ‘‘length’’ n� 1; or
equivalently that the present stage is n. This means that player 1 can only have
Markov strategies, indeed.

Part 2. Take an arbitrary strategy r2 for player 2. Let qn be the probability of
playing Left at stage n with respect to r2, given that no absorption has
occurred. Note that this probability is independent of the strategy of player 1,
since, as long as no absorption occurs, player 1’s actions have been Top at all
stages. Let �r2 be the Markov strategy where player 2 plays ðqn; 1� qnÞ at
stage n. Then, for any strategy r1 of player 1, we have for each stage n and for
each player i:

Eðr1;r2ÞðR
i
nÞ ¼ Eðr1;r2ÞðRi

nÞ:

Hence the average rewards are the same as well. h

The following corollary will make it sufficient to deal with Markov
e-equilibria.

Corollary 2. Consider example 1 (under Assumption 2). Suppose there exists an
e-equilibrium for some e � 0: Then, there must also exist a Markov e-equilib-
rium.

Proof. Suppose r1; r2
� �

is an e-equilibrium for some e � 0. For r2, take a
Markov strategy �r2 as in part 2 of lemma 1. Then by lemma 1, the pair
ðr1; �r2Þ must be a Markov e-equilibrium. h

The main result of this section is the following theorem.

Theorem 3. Consider example 1 (under Assumption 2). There exists no
e-equilibrium for e 2 ½0; 18Þ.

Proof. Suppose the opposite. Then by corollary 2 we should have a Markov
e-equilibrium ðr1; r2Þ for some e 2 ½0; 18Þ. We will subsequently derive a con-
tradiction in several steps.

� Step 1. c1(r1; r2Þ � � e

Observe that player 1 can guarantee 0 by playing the stationary strategy
x ¼ ð1; 0Þ; which prescribes action Top for each stage. Since r1; r2

� �
is an

e-equilibrium, we obtain

c1 r1; r2
� �

� c1 x; r2
� �

� e ¼ � e:

� Step 2. c2ðr1;r2Þ � 1� e

(The arguments below are similar to ones used in the study of the Big Match
by Gillette (1957) and by Blackwell & Ferguson (1968).)
Since

Pr1 t� <1ð Þ ¼ lim
n!1

Pr1 t� � nð Þ;

we have

lim
n!1

Pr1 n < t� <1ð Þ ¼ lim
n!1

Pr1 t� <1ð Þ � Pr1 t� � nð Þ½ � ¼ 0: ð1Þ
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Let d > 0 be arbitrary. By (1), there must exist a stage nd such that

Pr1 nd < t� <1ð Þ � d:

Consider the Markov strategy s2d for player 2 which prescribes action Right
for stages 1; . . . ; nd and action Left at all further stages.

Then, with respect to r1; s2d
� �

; the following 3 events can occur:

(i) Absorption takes place in entry (Bottom, Right) at some stage in
1; . . . ; nd;

(ii) Absorption takes place in entry (Bottom, Left) at some stage in
nd þ 1; nd þ 2; :::;

(iii) No absorption occurs at all, and entry (Top, Left) is played at all stages
in nd þ 1; nd þ 2; :::

By the choice of nd; event (ii) has probability at most d , hence
c2 r1; s2d
� �

� 1� d: Due to the fact that r1; r2
� �

is an e-equilibrium, we have

c2 r1; r2
� �

� c2 r1; s2d
� �

� e � 1� d� e:

Since d > 0 was arbitrary, the proof of step 2 is complete.

� Step 3. the probability of absorbtion in entry (Bottom, Left) is at most e
with respect to ðr1; r2Þ
It follows immediately from step 2.

� Step 4. c1ðr1;r2Þ � e

It is a consequence of step 3.

� Step 5. the probability of absorbtion in cell (Bottom, Right) is at most 2e
with respect to ðr1; r2Þ

It is an easy implication of steps 1 and 3.

� Step 6. there exists a stage n for which r2ðn; LeftÞ � 1� 3e

Suppose by way of contradiction that r2ðn; LeftÞ < 1� 3e for all n 2 N:
Let w denote the overall probability of absorption in entry (Bottom,
Right), with respect to r1; r2

� �
. Then by using step 5, we must have

w � 2e: Hence

c2 r1; r2
� �

< w � 1þ ð1� wÞ� 1� 3eð Þ � 2eþ 1� 3eð Þ ¼ 1� e;

which is in contradiction with step 2.

� Step 7. Deriving a contradiction

Take a stage n as in step 6. Consider a Markov strategy s1 for player 1 which
prescribes action Top at stages 1; . . . ; n� 1 and action Bottom at stage n.

Then

c1 s1; r2
� �

¼ 1 � r2 n;Leftð Þ � 1 � r2 n;Rightð Þ
¼ 2 � r2 n;Leftð Þ � 1

� 2 � 1� 3eð Þ � 1

¼ 1� 6e:

By using e 2 ½0; 18Þ and step 4, this implies
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c1 s1; r2
� �

� 1� 6e >
1

4
> 2e � c1 r1; r2

� �
þ e;

which is a contradiction, as r1; r2
� �

should be an e-equilibrium: Therefore,
the proof is complete. h

Remark. Consider now example 1 under the stronger Assumption 1 (or the
assumption of full monitoring). Notice that, in this case, player 1 can con-
clude the past actions of player 2, since player 2’s payoffs are different in
entries (Top, Left) and (Top, Right). Therefore, the approach in Vrieze &
Thuijsman (1989) is directly applicable to proving the existence of e-equilib-
ria, for all e > 0:

3 A counterexample under Assumption 1

Example 2. Under Assumption 1, consider the following game with 3 play-
ers:

This is in fact a cubic 3-player game, in which each player has 3 actions: the
actions of player 1 are the rows, the actions of player 2 are the columns and
the actions of player 3 are the blocks. The interpretation is further similar to
that of example 1.

Observe that the payoff and the transition structures are cyclically sym-
metric, namely it holds for any entry a1; a2; a3

� �
2 1; 2; 3f g3 that

(i) r1 a1; a2; a3
� �

¼ r2 a3; a1; a2
� �

¼ r3 a2; a3; a1
� �

(ii) entries a1; a2; a3
� �

; a3; a1; a2
� �

; a2; a3; a1
� �

are all absorbing or non-
absorbing simultaneously.

However, we wish to emphasize that we have only introduced this cyclic
symmetry to make the analysis of this game clearer.

In the above game, as long as all the players choose their first or second
action all the payoffs equal 0 and no absorption occurs; while as soon as at
least one player chooses his third action, absorption occurs with probability 1.

We will show for example 2 under Assumption 1 that there exist no
e-equilibria for small e > 0 (cf. theorem 10). We will now convey the main
ideas lying behind the proof.

Idea of the proof. For the sake of simplicity we only explain why 0-equilibria
fail to exist. Then the general proof for e-equilibria goes along similar lines
(even though it is more technical). We shall now sketch the steps and the
arguments and give the formal proofs thereafter.
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Suppose by way of contradiction that there exists a 0-equilibrium. We
will show that this would imply the existence of a Markov 0-equilibrium
(cf. corollary 5). The advantage of dealing with Markov strategies
only is, that it is much easier to examine deviations, because such do not
effect the behavior of the other players. With respect to a Markov
0-equilibrium we derive a number of steps, which will finally lead to a
contradiction.

Because the absorbing payoffs are mainly positive, the first two steps cause
no real difficulties.

� Step 1. Absorption must occur with probability 1 (cf. lemma 7).
� Step 2. Each player’s average reward is positive (cf. part 1 of lemma 8).

Notice that absorption cannot occur in entries with payoffs (1,1,1) with
probability 1, because at least one player could always improve his reward by
switching to action 1 and receive payoff 3 with a good chance. Hence, step 1
implies that absorption must have a positive probability in at least one other
absorbing entry. By looking at the sum of the payoffs in each absorbing entry,
this implies that the sum of the average rewards must be larger than 3. This
observation brings us to the following conclusion.

� Step 3. The average reward for at least one player is larger than 1 (cf. part 2
of lemma 8).

Due to symmetry, we may now assume that player 3’s reward is more than
1. It is therefore also reasonable to assume that at stage 1 absorption occurs
with positive probability and player 3’s reward given absorption at stage 1 is
larger than 1 (if it is not the case for stage 1, then we could do the same
with the first stage which satisfies this property). Let x; y and z denote the
mixed actions for stage 1. Under the two previous assumptions we proceed
as follows. Player 3 surely does not use action 3, as it offers a reward at
most 1. Also, action 2 is worse than action 1 for player 3, because his
reward given absorption is at most 1 if he selects action 2. Hence the
following conclusion.

� Step 4. zð1Þ ¼ 1; zð2Þ ¼ zð3Þ ¼ 0 (cf. part 1 of lemma 9).

Now, we only need to look at the first block of the game. We will first
derive that yð3Þ ¼ 0. Assume, by way of contradiction, that yð3Þ > 0. Then,
because of step 4, action 1 is worse than action 2 for player 1, hence
xð1Þ ¼ 0. But then step 2 would imply yð3Þ ¼ 0; which is a contradiction. So
yð3Þ ¼ 0 indeed.

Since we assume that the probability of absorption is positive, we con-
clude that xð3Þ > 0, and therefore yð2Þ ¼ 0 since action 1 gives player 2 a
higher absorbing payoff. Thus, from steps 2 and 4, we have derived:

� Step 5. yð1Þ ¼ 1, yð2Þ ¼ yð3Þ ¼ 0 (cf. part 2 of lemma 9).

To conclude the sketch of the proof, the final argument is as follows (cf.
proof of theorem 10). Recall the assumption that player 3’s reward given
absorption at stage 1 is more than 1. Then notice that steps 4 and 5 only
allow absorption in entry (3,1,1) with payoff 0 for player 3, which is a
contradiction. Therefore no 0-equilibrium exists for example 2 under
Assumption 1.

466 J. Flesch et al.



We will now turn to the formal proofs. We will often deal with sequences
in compact spaces. We shall assume that these sequences are convergent,
because we may restrict to a convergent subsequence otherwise.

Based on the property that all the payoffs in the non-absorbing entries
are the same (namely 0), one can show the following lemma similarly to part 2
of lemma 1. It says that, essentially, it is sufficient to deal with Markov
strategies.

Lemma 4. Consider example 2 (under Assumption 1). For any strategy r1 of
player 1, there exists a Markov strategy �r1 so that for any strategies r2 and r3

of players 2 and 3

ci r1; r2; r3
� �

¼ ci �r1; r2; r3
� �

8i 2 I ¼ 1; 2; 3f g:
A similar statement holds for the other players, as well.

The next corollary can be shown analogously to corollary 2.

Corollary 5. Consider example 2 (under Assumption 1). Suppose there exists an
e-equilibrium for some e � 0: Then, there must also exist a Markov e-equilib-
rium.

The following lemma deals with the tails of Markov e-equilibria.

Lemma 6. Consider example 2 (under Assumption 1). Let r1; r2; r3
� �

be a
Markov e-equilibrium for some e � 0. Let n 2 N and suppose that stage n is
reached with positive probability, i.e.

P r1;r2;r3ð Þ t� � nð Þ > 0:

For any player i, let rijn be the Markov strategy which equals the tail of ri

starting from stage n :

rijn mð Þ :¼ ri mþ n� 1ð Þ 8m 2 N:

Then r1jn; r2jn; r3jn
� �

is a Markov d-equilibrium with

d ¼ e
P r1;r2;r3ð Þ t� � nð Þ :

Proof. The proof is quite straightforward. Assume by way of contradiction
that r1jn; r2jn; r3jn

� �
is no d-equilibrium: Then, there must exist a player, say

player 1, with a strategy s1 such that

c1 s1; r2jn; r3jn
� �

� c1 r1jn; r2jn; r3jn
� �

> d:

Now consider the Markov strategy �r1 for player 1 which coincides with r1 up
to stage n� 1 and starts to play s1 afterwards. Then we have

c1 �r1; r2; r3
� �

� c1 r1; r2; r3
� �

¼ P r1;r2;r3ð Þ t� � nð Þ � c1 s1; r2jn; r3jn
� ��

�c1 r1jn; r2jn; r3jn
� ��

> P r1;r2;r3ð Þ t� � nð Þ � d

¼ e;

which contradicts the assumption that r1; r2; r3
� �

is an e-equilibrium. h
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Next, we observe that absorption should occur almost certainly with re-
spect to Markov e-equilibria, with small e > 0:

Lemma 7. Consider example 2 (under Assumption 1). Let r1; r2; r3
� �

be a
Markov e-equilibrium for e 2 ½0; 15�. Then the overall probability of absorption is
more than 1�

ffiffi
e
p

, i.e.:

Pðr1;r2;r3Þðt� <1Þ > 1�
ffiffi
e
p

or equivalently Pðr1;r2;r3Þðt� ¼ 1Þ <
ffiffi
e
p
:

Proof. It can be checked that, with respect to any joint mixed action, there is
at least one player who can get at least 1

2 by playing action 3. (Take player 1 if
player 3 plays action 1 with probability at least 1

2, and take player 2 other-
wise.) Therefore, there is always one player who would rather stop play than
to continue forever. Therefore we should have P r1;r2;r3ð Þ t� ¼ 1ð Þ <

ffiffi
e
p

, for
otherwise the deviation would yield at least 1

2

ffiffi
e
p

> e , contradicting that
r1; r2; r3
� �

is an e-equilibrium. Hence the result. h

The next lemma derives some bounds for rewards corresponding to
Markov e-equilibria.

Lemma 8. Consider example 2 (under Assumption 1). There exist �e > 0 and
M > 0 such that for any e 2 0;�e½ � and any Markov e-equilibrium r1; r2; r3

� �
we

have the following two properties:

1. for all players i 2 1; 2; 3f g

ci r1; r2; r3
� �

� 2M ;

2. there is a player i 2 1; 2; 3f g such that

ci r1; r2; r3
� �

� 1þ 2M :

Proof. Let r1
k ; r

2
k ; r

3
k

� �
be an arbitrary sequence of Markov ek-equilibria, for a

positive sequence ek converging to 0. First we derive some general observa-
tions.

For any a1; a2; a3
� �

2 1; 2; 3f g3; let wk a1; a2; a3
� �

denote the overall
probability, with respect to r1

k ; r
2
k ;r

3
k

� �
; that absorption occurs in entry

a1; a2; a3
� �

; and let

w a1; a2; a3
� �

¼ lim
k!1

wk a1; a2; a3
� �

(by taking a subsequence, the above limits exist).
Now, let E� denote the set of absorbing entries of the game, i.e.

E� ¼ 1; 2; 3f g3� 1; 2f g3.
Clearly, for any k 2 N

P r1
k ;r

2
k ;r

3
kð Þ t� <1ð Þ ¼

X

a1;a2;a3ð Þ2E�
wk a1; a2; a3
� �

(note that summation is taken over absorbing entries only). Therefore, by
lemma 7
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X

a1;a2;a3ð Þ2E�
w a1; a2; a3
� �

¼ lim
k!1

X

a1;a2;a3ð Þ2E�
wk a1; a2; a3
� �

¼ lim
k!1

P r1
k ;r

2
k ;r

3
kð Þ t� <1ð Þ

¼ 1: ð2Þ
As all the payoffs in the non-absorbing entries equal 0, we have for all players
i 2 1; 2; 3f g

ci r1
k ; r

2
k ; r

3
k

� �
¼

X

a1;a2;a3ð Þ2E�
wk a1; a2; a3
� �

ri� a1; a2; a3
� �

ð3Þ
lim

k!1
ci r1

k ; r
2
k ; r

3
k

� �
¼

X

a1;a2;a3ð Þ2E�
w a1; a2; a3
� �

ri� a1; a2; a3
� �

:

Obviously, it suffices to find an �e and an M for properties 1 and 2 separately.
We will first show statement (2) of the lemma and then continue with state-
ment (1).

Proof of statement 2. Suppose this statement is false. Then, there exists a
positive sequence ek converging to 0 and a sequence of Markov ek-equilibria
ðr1

k ; r
2
k ; r

3
kÞ so that

lim
k!1

ci r1
k ; r

2
k ;r

3
k

� �
� 1 ð4Þ

for all players i 2 1; 2; 3f g. Hence
X

i2 1;2;3f g
lim

k!1
ci r1

k ; r
2
k ; r

3
k

� �
� 3:

Therefore, (3) yields

X

a1;a2;a3ð Þ2E�
w a1; a2; a3
� � X

i2 1;2;3f g
ri� a1; a2; a3
� �

2
4

3
5 � 3:

Observe that the sum of the payoffs is at least 3 in any absorbing entry
a1; a2; a3
� �

; namely
X

i2 1;2;3f g
ri� a1; a2; a3
� �

� 3:

Hence (2) yields
X

a1;a2;a3ð Þ2 2;3f g3� 2;2;2ð Þf g½ �
w a1; a2; a3
� �

¼ 1 ð5Þ

(here the summation is taken over all absorbing entries in which the sum of
the payoffs equals 3).

We distinguish two cases. In each case we derive a contradiction by finding
a player with a profitable deviation.

� Case 1. w 2; 3; 2ð Þ þ w 2; 2; 3ð Þ þ wð2; 3; 3Þ > 0 or wð3; 2; 2Þ þ wð2; 2; 3Þþ
wð3; 2; 3Þ > 0 or wð3; 2; 2Þ þ wð2; 3; 2Þ þ wð3; 3; 2Þ > 0

By symmetry, we may assume without loss of generality that
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w 2; 3; 2ð Þ þ w 2; 2; 3ð Þ þ w 2; 3; 3ð Þ > 0:

Clearly (5) yields wð2; 3; 1Þ ¼ 0. Note that the payoffs for player 1 in entries
ð1; 3; 2Þ; ð1; 2; 3Þ; ð1; 3; 3Þ are all equal to 3, while the payoffs in entries
ð2; 3; 2Þ; ð2; 2; 3Þ; ð2; 3; 3Þ are all equal to 1. This implies that, for k sufficiently
large (or equivalently ek sufficiently small), player 1 allows for absorption
through his second action while absorption through his first action would
yield a higher payoff, namely 3 instead of 1. This contradicts the fact that the
triples r1

k ; r
2
k ; r

3
k

� �
are ek-equilibria.

� Case 2. wð3; 3; 3Þ = 1

This can only happen if, for k sufficiently large (or equivalently ek sufficiently
small), there exists a stage such that the players play their third action
simultaneously with probability almost 1. Then by using that the payoff for
player 1 is higher in entry ð1; 3; 3Þ than in ð3; 3; 3Þ, we again derive a con-
tradiction with the fact that the triples r1

k ; r
2
k ; r

3
k

� �
are ek-equilibria.

Proof of statement 1. Suppose this statement is false. Then, there exists a
positive sequence ek converging to 0 and a sequence of Markov ek-equilibria
ðr1

k ; r
2
k ; r

3
kÞ so that

lim
k!1

ci r1
k ; r

2
k ;r

3
k

� �
¼ 0

for some player i 2 f1; 2; 3g. Due to symmetry, we may assume without loss
of generality that

lim
k!1

c1 r1
k ; r

2
k ; r

3
k

� �
¼ 0: ð6Þ

Then just like for (5) in the proof of part 1, one can show that

w 1; 3; 1ð Þ þ wð3; 1; 2Þ þ w 3; 1; 3ð Þ ¼ 1:

We distinguish three cases. In each case we derive a contradiction by finding a
player with a profitable deviation.

� Case 1. w 1; 3; 1ð Þ > 0

Clearly impossible because player 1 could get a positive reward by shifting all
the weights from action 1 to action 2, for which all absorbing entries give
positive payoffs. Especially entry ð2; 3; 1Þ will appear with positive probabil-
ity, giving player 1 a payoff 1

2.

� Case 2. w 3; 1; 3ð Þ > 0

The proof is similar to case 1, but now player 1 has to shift weight from action
3 to action 2.

� Case 3. w 3; 1; 2ð Þ ¼ 1

This condition implies

lim
k!1

c3 r1
k ; r

2
k ; r

3
k

� �
¼ 1

2

and also that there must be a stage at which player 2 plays his first action with
probability almost 1. It is now player 3 who can deviate in a profitable way by
playing action 3 at that stage, which gives him 1. h
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Next we derive for Markov e-equilibria some properties on the
overall probability of absorption in certain entries. Take �e and M as in
lemma 8. From now on let ek 2 ½0;minf�e2; 15g� be a sequence converging to
0 and let r1

k ; r
2
k ; r

3
k

� �
be Markov ek-equilibria. For any player i and k 2 N;

let ri
kjn be the Markov strategy which equals the tail of ri

k starting from
stage n:

ri
kjnðmÞ :¼ ri

k mþ n� 1ð Þ 8m 2 N:

Define for all players i and for all k; n 2 N the average reward conditioned on
starting at stage n by:

gi
k nð Þ :¼ ci r1

k jn; r2
k jn;r3

k jn
� �

:

In view of lemma 8 we assume, without loss of generality, that, similar to the
0-equilibrium case, player 3’s average reward is essentially larger than 1, i.e.

g3
k 1ð Þ ¼ c3 r1

k ; r
2
k ; r

3
k

� �
� 1þ 2M 8k 2 N:

For any k 2 N; let Bk be the set of stages which are reached with probability
at least

ffiffiffiffi
ek
p

with respect to r1
k ; r

2
k ; r

3
k

� �
:

Bk ¼ fn 2 NjP r1
k ;r

2
k ;r

3
kð Þðt

� � nÞ � ffiffiffiffi
ek
p g:

Then Bk is a connected set of stages that contains at least the initial stage 1.
By lemma 7 the set Bk is finite and the probability of absorption in Bk is
almost 1:

P r1
k ;r

2
k ;r

3
kð Þðt

� 2 BkÞ ¼ P r1
k ;r

2
k ;r

3
kð Þðt

� <1Þ � P r1
k ;r

2
k ;r

3
kð Þðt

� <1 and t�=2BkÞ

� ð1� ffiffiffiffi
ek
p Þ � ffiffiffiffi

ek
p ¼ 1� 2

ffiffiffiffi
ek
p

: ð7Þ
Hence the average reward is mainly determined on Bk.

Also notice that for each n 2 Bk the strategy triple r1
k jn; r2

k jn; r3
k jn

� �
is a

dk;n-equilibrium, where by using lemma 6:

dk;n ¼
ek

P r1
k ;r

2
k ;r

3
kð Þðt� � nÞ �

ffiffiffiffi
ek
p � �e:

Therefore part 1 of lemma 8 is applicable for the triple r1
k jn; r2

k jn; r3
k jn

� �
and

yields for each player i:

ci r1
k jn; r2

k jn; r3
k jn

� �
� 2M : ð8Þ

Let nk be the last stage of the first block in Bk at which player 3’s future
reward is above 1þM , i.e.

g3
k 1ð Þ � 1þM ; . . . ; g3

k nkð Þ � 1þM :

Define this first block by B3
k , so B3

k ¼ f1; 2; . . . ; nkg. Notice that either B3
k ¼ Bk

or g3
k nk þ 1ð Þ < 1þM . Moreover, let B3�

k consist of those stages n in B3
k for

which

P r1
k ;r

2
k ;r

3
kð Þ t� ¼ nð Þ > 0 and r3� r1

k nð Þ; r2
k nð Þ; r3

k nð Þ
� �

� 1þM : ð9Þ

For any a1; a2; a3
� �

2 1; 2; 3f g3; let wk a1; a2; a3
� �

denote the overall proba-
bility, with respect to r1

k ; r
2
k ; r

3
k

� �
; that absorption occurs in entry a1; a2; a3

� �

at some stage in B3�
k , and let
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w a1; a2; a3
� �

¼ lim
k!1

wk a1; a2; a3
� �

(due to compactness, it suffices to deal with convergent subsequences).
Therefore, similarly to steps 4 and 5 in the 0-equilibrium case, players 2 and 3
will essentially refrain from using actions 2 and 3.

Lemma 9. wð�; �; 2Þ ¼ wð�; �; 3Þ ¼ 0 and wð�; 2; �Þ ¼ wð�; 3; �Þ ¼ 0.

Proof. Notice that for any n 2 B3�
k we have

r3�ðr1
kðnÞ; r2

kðnÞ; 2Þ � 1; r3�ðr1
kðnÞ;r2

kðnÞ; 3Þ � 1; ð10Þ
hence, by (9), we must also have

r3�ðr1
kðnÞ; r2

kðnÞ; 1Þ � 1þM : ð11Þ
We divide the proof into several steps. Below, we will consider several
deviations of the players at stages in B3�

k , for large k 2 N. In most
cases, the deviations consist of shifting probability from action 2 to action
1 or from action 1 to action 2. For these deviations, the distribution of t�

(time of absorption) does not change because of the transition structure of
the game. (Note that the place of absorption may actually change.)
However, we also need to consider deviations when the probabilities are
shifted from action 3 (to either action 1 or action 2). Since here the
distribution of t� will change, we need to examine these deviations in more
detail.

� Step 1. w �; �; 3ð Þ ¼ 0

Take an entry a1; a2; 3
� �

for some a1; a2 2 1; 2; 3f g: We will show for any
k 2 N that there exist a Markov strategy s3k for player 3 for which

c3 r1
k ; r

2
k ; s

3
k

� �
� c3 r1

k ; r
2
k ; r

3
k

� �
� wk a1; a2; 3

� �
�M : ð12Þ

Since r1
k ; r

2
k ; r

3
k

� �
is an ek-equilibrium, the left-hand side must be at most ek.

Taking the limit for k to 1 completes the proof.
Let ~t denote the time of absorption in entry ða1; a2; 3Þ; if no absorption

occurs in this entry at all then let ~t ¼ 1: So
P r1

k ;r
2
k ;r

3
kð Þ ~t 2 B3�

k

� �
¼ wk a1; a2; 3

� �
: ð13Þ

Suppose m1
k is the first stage of B3�

k and consider player 3 deviating from r3
k by

only shifting at stage m1
k , the probability from action 3 to action 1. Denote

this strategy by s3;1k . Because of (10) and (11) action 3 gives at most 1 to player
3, and action 1 dominates action 2 at stage m1

k . Since m1
k 2 B3�

k 	 B3
k we must

have that at stage m1
k action 1 yields an expected reward of at least 1þM .

Therefore,

c3 r1
k ; r

2
k ; s

3;1
k

� �
� c3 r1

k ; r
2
k ; r

3
k

� �
� P r1

k ;r
2
k ;r

3
kð Þðt

� � m1
kÞ � ðð1þMÞ � 1Þ

� P r1
k ;r

2
k ;r

3
kð Þ ~t ¼ m1

k

� �
�M :

Let m2
k be the second stage of B3�

k and consider player 3 deviating from r3
k by

only shifting at stages m1
k and m2

k , the probability from action 3 to action 1.
Denote this strategy by s3;2k . Then, similarly:
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c3 r1
k ; r

2
k ; s

3;2
k

� �
� c3 r1

k ;r
2
k ; s

3;1
k

� �
� P r1

k ;r
2
k ;s

3;1
kð Þðt

� � m2
kÞ � ðð1þMÞ � 1Þ

� P r1
k ;r

2
k ;s

3;1
kð Þ ~t ¼ m2

k

� �
�M .

� P r1
k ;r

2
k ;r

3
kð Þ ~t ¼ m2

k

� �
�M :

We can continue like this for all stages in the finite set B3�
k and, reaching the

final stage of that set, we have a strategy s3k which has player 3 shifting weight

from action 3 to action 1 at all stages in B3�
k . Then, by (13) and identifying s3;0k

with r3
k , we get

c3 r1
k ; r

2
k ; s

3
k

� �
� c3 r1

k ; r
2
k ; r

3
k

� �
¼
X

d

c3 r1
k ; r

2
k ; s

3;d
k

� �
� c3 r1

k ; r
2
k ; s

3;d�1
k

� �� �

�
X

d

P r1
k ;r

2
k ;r

3
kð Þ ~t ¼ md

k

� �
�M .

¼ wk a1; a2; 3
� �

�M :

Hence, step 1 follows.

� Step 2. w �; �; 2ð Þ ¼ 0

Take an absorbing entry a1; a2; 2
� �

for some a1; a2 2 1; 2; 3f g: Consider a
deviation by player 3 from r3

k that consists of shifting the probability from
action 2 to action 1 at all stages in B3�

k : Then his reward would increase, in
view of (10) and (11), by at least

wk a1; a2; 2
� �

� 1þMð Þ � 1½ �:
Since r1

k ; r
2
k ; r

3
k

� �
is an ek-equilibrium, this expression must be at most ek.

Taking the limit for k to 1 completes the proof.

� Step 3. w �; 3; �ð Þ ¼ 0

Notice that it is enough to show w �; 3; 1ð Þ ¼ 0, because of steps 1 and 2.
Consider a deviation by player 1 from r1

k that consists of shifting the
probability from action 1 to action 2 at all stages in B3�

k : Then he would gain
at least

wk 1; 3; 1ð Þ � 1

2
� 0

� 	
:

Since r1
k ; r

2
k ; r

3
k

� �
is an ek-equilibrium, this expression must be at most ek.

Taking the limit for k to 1 yields wð1; 3; 1Þ ¼ 0.
Consider player 2 deviating by shifting the probability from action 3 to

action 1 at all stages in B3�
k : In fact, by using that wð1; 3; 1Þ ¼ 0, and the

approach of the proof of step 1, it may be seen that player 2 could gain at
least

1

2
wk 2; 3; 1ð Þ þ wkð3; 3; 1Þ½ � � M � 0½ �:

Since r1
k ; r

2
k ; r

3
k

� �
is an ek-equilibrium, this expression must be at most ek.

Taking the limit for k to 1 yields wk 2; 3; 1ð Þ ¼ wkð3; 3; 1Þ ¼ 0, which com-
pletes the proof.
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� Step 4. w �; 2; �ð Þ ¼ 0

Notice that it is enough to show w 3; 2; 1ð Þ ¼ 0, because of steps 1 and 2.
Consider player 2 deviating by shifting the probability from action 2 to

action 1 at all stages in B3�
k : By doing so he could gain at least

wk 3; 2; 1ð Þ � 3� 1½ �:
Since r1

k ; r
2
k ; r

3
k

� �
is an ek-equilibrium, this expression must be at most ek.

Taking the limit for k to 1 completes the proof. h

Now we are ready to prove the main theorem of this section.

Theorem 10. Consider example 2 (under Assumption 1). There exist no
e-equilibria for small e > 0:

Proof. Suppose the opposite. Let ek be a positive sequence converging to 0.
Then by corollary 5 there exists a Markov ek-equilibrium ðr1

k ; r
2
k ; r

3
kÞ for all

k 2 N.
We will now use the notations of lemma 9. By disregarding symmetric

cases and taking a subsequence, in view of lemma 8, we may assume that
ek 2 ½0;minfe2; 15g� and

g3
kð1Þ ¼ c3ðr1

k ; r
2
k ; r

3
kÞ � 1þ 2M for all k 2 N: ð14Þ

First we would like to show that the probability of absorption in B3�
k goes to 0:

lim
k!1

P r1
k ;r

2
k ;r

3
kð Þ t� 2 B3�

k

� �
¼ 0:

Suppose not, then, because of

P r1
k ;r

2
k ;r

3
kð Þ t� 2 B3�

k

� �
¼

X

a1;a2;a3ð Þ
wk a1; a2; a3
� �

;

we have that there is an absorbing entry a1; a2; a3
� �

for which

w a1; a2; a3
� �

> 0. By lemma 9 we conclude that a1; a2; a3
� �

¼ ð3; 1; 1Þ since w
is 0 in all other entries. Therefore, player 3’s average reward conditioned on
absorption in B3�

k goes to 0. This contradicts the fact that, given absorption at
any stage in B3�

k player 3 would get at least 1þM .
Observe that

g3
k 1ð Þ � P r1

k ;r
2
k ;r

3
kð Þ t� 2 B3�

k

� �
� 3þ P r1

k ;r
2
k ;r

3
kð Þ t� 2 B3

k � B3�
k

� �
� 1þMð Þ

þ P r1
k ;r

2
k ;r

3
kð Þ t� =2 B3

k

� �
� g3

k nk þ 1ð Þ:

Recall that either g3
k nk þ 1ð Þ < 1þM or B3

k ¼ Bk . In the latter case, recall

that P r1
k ;r

2
k ;r

3
kð Þ t� =2 B3

k

� �
goes to 0 by (7). Therefore, by taking limits we always

have:

lim
k!1

g3
k 1ð Þ � 1þM ;

which contradicts (14). So, the proof is complete. h

Remark. For 3-player absorbing games under the assumption of full moni-
toring, Solan (1999) has shown the existence of e -equilibria for all e > 0.
However, it is crucial that the players are able to observe the actions of the
other players.
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We wish to remark that example 2 has some similarity with an example
examined in Flesch et al. (1997), but the latter example can not be used for the
purposes of this paper.

Finally, it should be noted that the situation for 2-player stochastic games
under Assumption 1 remains unclear and subject to further study.
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