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Abstract

Let A be a nonempty finite subset of the plane representing the geographical
coordinates of a set of demand points (towns, ...), to be served by a facility, whose
location within a given region S is sought.

Assuming that the unit cost for a € A if the facility is located at z € S is
proportional to dist(z,a) — the distance from z to a — and that demand of point a
is given by w,, minimizing the total transportation cost 7'C(w, z) amounts to solving
the Weber problem.

In practice, it may be the case, however, that the demand vector w is not known,
and only an estimator @ can be provided. Moreover the errors in such estimation
process may be non-negligible.

We propose a new model for this situation: select a threshold value B > 0
representing the highest admissible transportation cost. Define the robustness p of a
location z as the minimum increase in demand needed to become inadmissible, i.e.
p(z) = min{||w* — &|| : TC(w*,z) > B, w* > 0} and find the x maximizing p to get
the most robust location.

Subject classification: Facilities, location, continuous; Decision analysis, risk; Program-
ming, fractional.



1 Introduction

In location planning one is typically concerned with finding a good location for one or
several new facilities with respect to a given set of existing facilities (clients). The most
common model in planar location theory for increasing the quality of the location of one
new facility is the so-called Weber problem, where the average (weighted) distance of the
new to the existing facilities is taken into account (see [7] [19] [16]).

More precisely we are given a finite set A of existing facilities (represented by their
geographical coordinates) and distances d, assigned to each existing facility a € A. Addi-
tionally, weights w, reflecting the relative importance of existing facility a € A are provided.

With these definitions the objective function for the Weber problem can be written as

TCO(w,z) := ) wedy(2)

a€A

which should be minimized over all x in the plane or over a nonempty closed subset
S C IR? for given weight set w = (w,)aca-

When applying this model to real world problems, mainly two sets of parameters have
to be determined:

1. What kind of distances d, should be used in the model.

2. How can we determine the weights w,.

A lot of research for finding appropriate distance functions for applying the Weber
problem to different geographical settings has been done in the last decades, starting with
([20]). Other contributions to this topic can be found in [12], [16], [3] and references therein.

For the determination of the weights the situation is somehow different. The existing
approaches can be divided roughly into three categories:

1. All weights are assumed to be known and reliable (situation of complete information).

2. All weights are again assumed to be known but a sensitivity analysis is performed in
order to get information about the stability of the optimal solution with respect to
small changes in the input data ([11]).

3. All weights are assumed to be given with respect to a known distribution ([6], [16])
and references therein.

In practice, it may however be the case that the demand w is not known and no
probabilistic distribution can be provided. Moreover, when replacing the demand w by an
estimate @ the errors made might be rather high and uncontrollable so that a sensitivity
analysis would be of no help.

Examples are the planning of unique and major events for which no knowledge of the
demand exists, or the planning of installations which are supposed to serve potential clients
over a long period of time for which the evaluation of demand is unknown.
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In this paper we propose a different strategy for handling the weight estimation problem.
Select a threshold value B > 0 representing the highest admissible transportation cost or
just the budget given and fix an estimation @ with positive components. Now, define the
robustness p of a location z as the minimum deviation in demand with respect to @ for
which the total cost for location z exceeds the budget. In other words: Given a norm || - ||
on the space of weights we have

p(z) =inf{||w — & : TC(w,z) > B, w > 0}
By solving then the optimization problem

2 ()
we get a most robust location z*.

The rest of the paper is organized as follows: In the next section the model is introduced,
and a general solution technique is proposed. In Section 3 we discuss a particular case,
namely, the case in which distances are measured by the Manhattan norm. The structure
is then used to provide efficient algorithms for particular choices of norm || - ||. The paper
ends with a detailed example, some conclusions and an outlook to further research.

2 A possible model
For any feasible location z € S C IR?, its robustness p(z) is defined as the optimal value

of the optimization problem
inf ||w— &

st. TC(w,z) > B (2.1)
w>0
where || - || is a norm in the space of weights IR, such as
|Ual
= 2.2
Jull = g 2 22)

thus measuring the highest relative deviation, or

[[ull = max fu,| (2.3)

measuring the highest absolute deviation, or

lull = 3 Jual, (2.4)

a€A

measuring the total absolute deviation, or

ol = (% 2) (2.5

a€EA

D=
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measuring the squared root of the sum of squares.

The case in which A consists of exactly one point, A = {a}, is trivial: the total trans-
portation cost TC(w, a) from a equals 0, thus p(a) = +o00, and then a is the most robust
solution. Throughout the paper we will exclude this trivial case and assume hereafter

A has at least two points (A1)

2.1 Some reformulations

Under Assumption Al, TC(w, z) is strictly positive for any w with strictly positive com-
ponents, which implies the following

Proposition 2.1. For any x € IR?, the problem (2.1) is feasible. In particular,
p(z) < 400 Vr € IR?

Moreover, p(x) can also be expressed as

plz) = min [w—of
st. TC(w,z)> B (2.6)
w>0

By Proposition 2.1, measuring the robustness of a given x amounts to solving the
nonlinear optimization problem (2.6). We will show below that, under very mild conditions,
the optimal value of (2.6) can be obtained explicitly.

We first recall that a norm || - || in IR" is said to be absolute iff

[(ur; ug, s un)ll = [[(Jua, [zl - fua )l Vo € IR

In particular, weighted [, norms, such as those given in (2.2)-(2.5) are absolute norms.
For technical reasons we assume in the following that

|| - || is an absolute norm (A2)
Proposition 2.2. For any z € IR?,
B—TC(, 1)
p(z) = max {0, —} (2.7)
1(da(2))acall’

For the proof, see the Appendix.

From Propositions 2.1 and 2.2 one immediately obtains

Proposition 2.3. Define 2,64 = minges TC(w, z).



1. If z,yeq > B, then
p(z) =0 Ve e S

In particular, any x € S is a most robust location.

2. If zpmea < B, then maxgcs p(x) > 0. Moreover, a feasible point z* € S is a most
robust location iff it solves the problem

e B-TC(w,x)
2€S [|(da(2))acall®

Hence, for z,,.q > B, the problem is trivial, and will not be considered in the following,
by assuming
Zmed < B (A3)

2.2 A general solution approach

Denote by p the function
SN B-TC(w,x)
O da@)aeall
By Proposition 2.3, solving (2.1) may be reduced to maximizing on S the nonlinear function
p defined in (2.8). Function g has, however, a rich structure which enables its maximization
by existing methods. In particular, we can use the approach of Dinkelbach (see [5]) to get

the following iterative solution procedure for

(2.8)

wale) = -

1. Find an optimal solution z* for problem maxcs N(z).
2. q:= p(a*).
3. Compute an optimal solution z’ for

max N (z) - 4D/(z) (2:9)

4. If N(z')—gD(2") = 0 then STOP: 2’ is an optimal solution to the fractional program.
5. ¢ := p(z"). Goto Step 3.

In [17] it is shown that the Dinkelbach’s algorithm converges superlinearly and often (loc-
ally) quadratically.

Hence, in order to use Dinkelbach’s approach, at each iteration a problem of type (2.9)
must be solved. In turns out that problems (2.9) are manageable at least for a wide class
of distance measures. Indeed, one has



Lemma 2.4. Suppose that, for each a € A, d, is induced by a norm in IR?. Then, any
problem of type (2.9) to be solved in Step 3 of Dinkelbach’s algorithm has a concave
objective.

Proof. Since || - || is, by assumption, monotone, its dual || - ||° is also monotone [1]. Hence,
the function z +— ||(dy())aca|® is convex, since it is the composition of the convex functions
d, with the monotonically increasing convex function || - ||°. Moreover, by Assumption A3,
p(x*) > 0, and by construction of N and D, each ¢ obtained in Step 5 is also positive, thus
the function  — ¢||(da())acall® is convex, from which the result follows. O

Hence, as soon as the feasible region S is a convex set, the optimization problem in Step
3 is a maximization of a concave function over a convex set (or equivalently a minimization
of a convex function over a convex set) for which numerous algorithms exist (see, for
example, [10]).

Example 2.1. We are given 10 existing facilities a; = (0,0), as = (1,0), a3 = (1,-1),
a4 = (0, 1), a5 = (0,2), g = (5,6), a7 = (6,3), ag = (8,4), g = (10, 5) and 190 = (6, 10)
The estimator for the weights is & = (4,4,4,4,4,1,1,1,1,1) and the budget B is 100. The
distance d,(z) is measured by the Euclidean norm and also the deviation in the space of
weights is measured by the Fuclidean norm. Note that the dual of the Fuclidean norm is
again the FEuclidean norm. Therefore our objective function for finding the most robust

location is now
~( ) 100 — ZQEA wal2(xa CL)
pz) =
1122, @)acall,
where || - ||2 denotes the Euclidean norm. Dinkelbach’s algorithm needs 3 iterations to
find the most robust location x = (0.758401,0.652517) with objective value 1.8481. Note

that in every iteration a nonlinear program has to be solved. The solutions to the single
iterations are given in the following table

b

Iteration | = p(x)

0 (0.58947,0.46865) 1.82525
1 (0.75621,0.65004) | 1.84809
2 (0.75840,0.652516) | 1.84810
3 (0.758401,0.652517) | 1.84810

In Figure 2.1 the solutions of the different iterations are shown.

Anyway, Dinkelbach’s approach is not the only option to maximize p. We recall that
a function f is said to be explicitly quasiconcave if both upper level sets and strict upper
level sets are convex sets, see e.g. [13] for further details.

Lemma 2.5. Suppose that, for each a € A, d, is induced by a norm in IR®. Then,
is explicitly quasiconcave. In particular, for S convex, any local maximum of p is also a
global maximum on S.
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Figure 2.1: Tlustration for Example 2.1.

Proof. It has been shown in the proof of Lemma 2.4 that the function z — ||(dy(z))ecal|®
is convex, and it is obviously positive. The result then follows from the algebra of convex
functions (see [13]). O

Hence, any local-search procedure leads to global optimality.

3 Solution procedures for the Manhattan metric

In this section we will develop efficient solution procedures for the unconstrained case with
the Manhattan metric, i.e. S =IR? and

do(z) = li(z,a) = |21 — a1| + |22 — | Va € A

where the index 1 and 2 refers to the first and second coordinate, respectively. By Propos-
ition 2.1, the robust facility location problem can now be written as

B — Wi (x,
max p(z) = 2acAW 11(:15 a)
2R |l (z, @)acall




Let @} ,...,ap, be the different values of the first coordinates of the existing facilities A
sorted in increasing order, such that

! ! !
0111<a/21<"'<01P1

holds. a,, ..., ag, are defined analogously with respect to the second coordinates of a € A.
Additionally we define a;, = a5, = —o0o and ap ., = ag,,; = +00 and we get a subdivision
of the plane into O(]|A|?) rectangular cells

— — . ! ! ! !
<S,t> = {.T = (331;352) PG, <x < Qg 415 Gy, <1y < at2+1} )

for s € {0,1,2,..., P} and t € {0,1,2,...,Q}.
By the structure of the /; norm, we can eliminate a part of the plane being candidate
for containing a globally optimal solution. Indeed, one has

Lemma 3.1. Let R = [a},,ap,| X [a},, ag,] be the smallest rectangle containing all a € A.
Then all globally optimal solutions for the robust location problem are contained in R.

Proof. Let 2/ ¢ R and z” its orthogonal projection on R. Then we know from [9] that
li(z",a) < li(2',a), for all @ € A. Using this fact we have for the nominator of p, that
B — Y cawai(z",a) > B — Y cawali(2',a). For the denominator of p we get using in
addition that || - ||° is monotone ||I;(z',a)||® > ||l1(z",a)|]°. In total we get p(z") > p(z')
and therefore only points in R can be globally optimal.

|

As will be shown in Subsection 3.2, finding the most robust location with a cell (s, t),
i.e., solving
B — al )
e B Saeads(2,0)
ze(st)  ||li(x, a)acal

(P.(s,t))

can be efficiently done for particular choices of norm || - ||.

This fact and Lemma 3.1 suggest a procedure for finding the most robust location in
the plane presumably more efficient than Dinkelbach’s algorithm, namely, solve for each
bounded cell (s, t) the corresponding problem (P.(s,t)). We will postpone to Subsection 3.2
a detailed discussion on how Problems (P.(s,t)) can be solved, and devote Subsection 3.1
to design more efficient search procedures which avoid complete enumeration of the O(|A|?)
bounded cells.

3.1 A search procedure

Using the fact that p is explicitly quasiconcave (Lemma 2.5) we get the following result,
to be used to derive domination rules.



Lemma 3.2. Let C be closed and convex, and let x* be optimal to

s ()

Denote by T¢(z*) the set
To(z*) = {x €R?: z=2"+ \z° — 2*) for some A > 0, 2° € C’}

Then, x* also solves

max p(zx
Lanax p(z)

The interest of this result stems from the fact that, if C' is a bounded cell (s, ), then
the sets T are either the whole plane, a halfspace or a quadrant.
We introduce now the following notation: for any bounded cell (s,t), let us denote by
3

) L : : 1 _ ! i 2 __ 1 ! _ i i
Clspy0 @ = 1,2,3,4 its corner points, ¢! = (a},,ay,), ¢ = (a,,a,,,), ¢ = (a},,a4,,,) and

¢! = (a1, 0a;,), see Figure 3.1, and let 1, 4 denote an optimal solution to P.(s, ).

With this notation we obtain from Lemma 3.2 the following
Lemma 3.3. Let (s,t) be a bounded cell, and let x7; ,, € argmax,e(s p(z)
o Ifaj,, €int((s,t)) then zj, , is also an optimal solution to Problem (P.(s,t)).

e If a7, , Is contained in the relative interior of an edge of (s,t) then the complete
halfspace defined by this edge and (s,t) can be excluded from the search, (see Fig-
ure 3.2).

o If T,y Is a corner point of (s,t), then the cone generated by Tl and the two
adjacent edges of (s,t) can be excluded (see Figure 3.3).

If a part of the cells can be excluded from the search procedure we can delete them from
the set of cells and perform a search procedure only for the remaining ones. We say row i
can be deleted if all cells (i, ), for j = 1,...,Q can be excluded form the search procedure.
We say column j can be deleted if all cells (7, j), for i = 1,..., P can be excluded form the
search procedure.

Given two points u, v, let (uv) denote the open segment with endpoints u,v. Using
Lemma 3.1 and Lemma 3.3 we get the following corollary, which will serve as a start-point
for a search procedure.

2

Corollary 3.4. For cell (1,1) with corner points c', ¢, ¢ and c* we have the following

cases.

o Ifaf,,y €int((1,1)) oraf,y € (c'c?) or {14y € (c*e!) or afy = c' then x7, ) is also
globally optimal.

o Ifzf, € (c2c3) or a7,,1y = ¢ then row 1 can be deleted.
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Figure 3.1: A subdivision of the plane in cells (s,t), with P =6 and Q = 4.

o Ifz, € (c3¢%) or 7,1y = ¢' then column 1 can be deleted.

o Ifxj,,, = c® then only cell (1,1) can be excluded.

From this result we get the following idea for an algorithm. We start with cell (1, 1)
and apply Corollary 3.4. If a row or a column can be deleted we restart with a reduced
cell system and a new cell (1,1). Otherwise we perform diagonal steps to (2,2), (3, 3), ...,
(k, k) until another domination rule as the ones shown in the following lemmata is fulfilled.

Lemma 3.5. Ifzj; = c?l,w foralll =1,2,...,min(P, Q) then, if Q < P (respect. P < Q)

we can eliminate the first ¢) columns (respect. the first P rows).

Lemma 3.6. Consider the robust location problem in cell {k,k) with k > 1 and
min(P, Q) > k and corner points c!, ¢?, ¢® and ¢*. Additionally we assume that Ty 7 C
and in all cells (1,1), with | < k, 7y ) = c?l,l). Then the following cases can occur.

o Ifxj \y € int((k,k)) then z7, , is also globally optimal.

o Ifazj € (c2c3) then the first k rows (row 1 up to row k) can be deleted.
o Ifaj, ;) € (3ct) then the first k columns can be deleted.

o Ifzj € (clc?) or Tjy, yy = C° then the first k — 1 rows can be deleted.

o Ifzyy ) € (c*c?) or jy, gy = ¢* then the first k — 1 columns can be deleted.

10
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Figure 3.2: If a7, 4 is in the relative interior of the boundary then the whole halfspace containing (s, ?)
can be excluded.
o Ifx, = c' then the deletion rules depends on cell (k —1,k) (see Figure 3.4).
— Ifxjy 1y € int((k — 1,k)) then xj,_, ,, is also globally optimal.

—Ifaf_yp € (c%k—l,k)cgk—l,k)) Or Ty 1 gy € (c%k—l,lc)cz())k—l,k)) Or Ty 1 gy = C%kfl,k)
then the first k — 1 rows can be deleted.

- If 'Tzkfl,k) € (C:(ikfl,k)cé(lkfl,k)) or f{kq,k) € (Cz(lkfl,k)cbcfl,k)) or f{kq,k) = cl(lkfl,k)
then the first k — 1 columns can be deleted.

Proof. The proof follows from Lemma 3.3 and using the fact that by assumption all cells
(1,7) with 4, j < k are already dominated. In the last case it should be noted that by the
explicitly quasiconcavity of p and the given solution in the adjacent cells isolated locally
optimal points in c%k_l,@ or c?k_l,k) cannot occur.

|

Now we have all technical details fixed to formulate a search algorithm to solve the
problem.

Algorithm 3.1. Algorithm to find the most robust location

Input: Existing facilities A with corresponding weights @.

Output: z* € argmax p(z)
z€R?

1. Compute the data for the cells (s,t). Denote the set of all bounded cells by C.

11



Figure 3.3: 1f (s 4 18 a corner point of the cell, only a cone can be excluded.

2. k:=1
3. While P > 1 and QQ > 1 DO

(a) Compute (. and apply Corollary 3.4, Lemma 3.5 and Lemma 3.6.

(b) If rows or columns can be deleted then reduce C, P, ) accordingly and set
k :=1. Goto Step 3.

(c) k:=k+1.

(d) If k > min{P, Q} then delete the first k rows in the case P = min{P, @} and
the first k columns otherwise. Reduce C, P, () accordingly and set k := 1. Goto
Step 3.

4. Now only one row or column is left. Do any search procedure to determine the cell
containing an optimal solution x*.

5. Output: z*.

It is clear that the algorithm leads to an optimal solution. We discuss now its com-
plexity. Since by the preceding results we are able to delete at least £ — 1 rows or columns
after investigating k£ + 1 cells, we have

Lemma 3.7. Algorithm 3.1 solves O(|A|) problems of type P.(s,t).

Step 1 needs O(|A|log|A|) time for sorting. Moreover, by Lemma 3.7, the while loop
needs O(|A| x K) time, where K is the complexity for finding an optimal solution with
respect to a cell. Searching the last row or column needs also O(]A|) x K time. Summing
up we have

12
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Figure 3.4: The region which can be excluded if Tk = Tlh—t,ho1)-

Proposition 3.8. If each problem P.(s,t) can be solved in O(K) time, then a most robust
location can be obtained in O(|A|log(|A|) + |A|K) time.

In the following we will show how the problem in a cell can be solved and therefore
determining the overall complexity of the algorithm.

3.2 Finding the most robust location in a cell

In the last section we have seen how we can search in linear time all cells (s,¢). Now we
will fix a cell (s,t) and solve P.(s,t). The following lemma shows that in a cell p has an
additional property.

Lemma 3.9 (see [7]). l1(z,a), a € A is affine linear in (s,t) for all s € {0,1,2,..., P}
andt €{0,1,2,...,Q}.

We denote the nominator of g in (s,t) by N(z) and the denominator by D(z). From
Lemma 3.9 we know that N(z) can be written as an affine linear function say N(z) =
sz;,t)x + Bs,1y- Therefore only the form of the denominator D(x) has to be determined. In
order to do that we have to look at possible choices for norm || - ||.

3.2.1 The maximum error

If we choose || - || as the maximum norm || - ||;.., we get D(z) = Y ,ca li(z,a). Therefore
we can also apply the cell subdivision for the denominator and get an affine linear repres-
entation of D(z) in (s,t), i.e. D(x) = X[,y + fi(s,y- Summing up we can write P.(s, )
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as ’
max M , (3.1)
TE(s,t) )\<s,t>$ + sty

a linear fractional program. Using the fact that in this case p(z) is pseudoconvex (see [2])

we get the following lemma.

Lemma 3.10. An optimal solution for (3.1) can always be found in one of the four corner
points of (s, t).

Since s sy, Bis,tys A(s,tys His,yy can be found in O(|A[) time, the total complexity for solv-
ing each P.(s,t) is linear, thus, by Proposition 3.8, a most robust location can be obtained
in O(|A|log(|A]) + |A]?) = O(]A]?) time. Such complexity can be further improved by ob-
serving that, in Algorithm 3.1, one moves from a cell (s, ) to an adjacent one or eventually
(case 3d) to a cell of the form (s +14,t) or (s,t+ j).

It turns out that the linear fractional representation of p in such new cell is easily
obtained in terms of the coefficients for cell (s,t). Indeed, it is easily checked the following

Lemma 3.11. Define

Ti(s,t) = {k1:a,, <ap <a}
Io(s,t) = {ko:a,, <ar, <ay}
One has:
Astiprs) = s+ (2 > w2 Y, w)
k€Zi(s+1,5+1) l€La(t+1,t+7)
Bistitryy = Ben—2 Y,  wpar, —2 >, way
k€L (s+1,5+1) IE€L> (t+1,t+7)
Notigrs) = Nsy (2 Z 1,2 Z 1)
kETi (541,544 €T (t+1,t+5)
Isipts) = sty = 2 Z Uy — 2 Z iy
k€Zi(s+1,5+1) IELa(t+1,t+7)

Hence, after solving P.(1,1) in O(|A|) time, by Lemma 3.7, only O(|A|) updates of
parameters «, 3, A, u are required. By Lemma 3.11, it follows that such updates can be
performed in total O(|A|) time. Hence, Steps 2 to 5 of Algorithm 3.1 can be executed
in O(|A]) time. Since Step 1 requires O(|A|log(|A|)) time, the overall complexity of the
procedure is O(|A|log(|A]) + |A]) = O(|A|log(|A|)) time.

3.2.2 Sum of errors

If we measure the error as the absolute sum of errors, i.e., we choose || - || as the /; norm
| - ||;;, we get D(z) = max{li(z,a): a € A}.
The denominator can be simplified by using the following lemma (see [15]).

14



Lemma 3.12. There exists a partition Al.(s, t), A%.(s, t), A3.(s, t), A%.(s, t) of A, such that
for all x € (s,1)

dg () T+ Ty +cu Va € A'(s, 1)
do(T) = T1 — 2o+ ¢ Va € A%.(s,t)
do(1) = —21+ 29+ c, Va € A3 (s,1)
do(z) = —x1— 39+ c, Va € A*(s,1)

Furthermore, for any nonempty A* there exists a; € A*.(s,t), 1 =1,...,4, such that for all
x € (s,1)

max {dy(z)} = max {d,, (z) : A'.(s,1) #0} .
With this result we can write the problem again as a linear fractional program of the
following type
a%;,t)x + Bis,t)

max
z
subject to
do,(z) < 2 Vi=1,...,4 with A".(s,t) #0
r 2 a/;l
T S a151+1
Ty 2 af‘a
Ty < a£+22

In addition, we know from [4] that a linear fractional program can be converted in a linear
program by introducing one additional variable. Therefore the dimension is fixed and the
problem
zrg(%?t()p (@)

can be solved in O(1) time after building the sets A’.(s,t), and then the coefficients
Q(s1), Bis,y and the points a; defined in Lemma 3.12 have been obtained. Since this in-
formation can be obtained in O(|A|) time, it follows from Proposition 3.8 that a most
robust location can be obtained in O(]A|?), although, as in Section 3.2.1, such complexity
can be improved if, at each iteration, the problem P.(s,t) is not constructed from scratch
but from the corresponding problem in the previous iteration. Such goal can be attained
if, e.g., the elements of each A.(s,t) are stored in Fibonacci heaps, thus enabling the con-
struction of the corresponding a; in constant time, while insertions and deletions are done
in logarithmic time. See [8] for details.

3.2.3 More general cases

The previous approach can directly be adapted to the case where || - || is a monotone
polyhedral norm, because its dual is then also polyhedral and monotone, and each problem
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P.(s,t) can also be transformed in a fractional linear program using the fact that
|z||° = max e’z Ve € Ext(B),

where Ext(B) denotes the set of extreme points of the unit ball of || - ||. By substituting
the constraints
de;(z) < 2

by
el (z — a;) < z Ve € Ext(B)

we get a fractional linear program for the general polyhedral norm case, with three variables
and O(|A||Ext(B)|) constraints. By including one additional variable, this problem turns
out to be equivalent to a linear problem with four variables and O(|A||Ezt(B)|) constraints,
thus solvable in O(|A||Ext(B)]|) time by existing procedures, [14].

If ||-]| is a general (non-polyhedral) monotone norm we can use the approach of Dinkel-
bach (see Section 2.2) for solving

xrg(éi,}t()p ()

Example 3.1. We are using the same input data as in Example 2.1. The distance d,(z) =
l1(x,a) and the deviation in the space of weights is measured by the maximum error
(I - ll.s )- Therefore our objective function for finding the most robust location is now like
in Section 3.2.1. We use Algorithm 3.1 together with Lemma 3.10 to solve the problem.
In our case we proceed as follows:

1. Start in cell (1,1) and compute p(x) for all corner points. We get a7, ;, = ¢* (with
objective value 0.22) and we continue with (2,2). Now we get xj,, = ¢® (with
objective value 0.25) and by Lemma 3.6 we can delete the first row and restart.

2. Start in cell (1,2). We get a7, 5 = ¢® (with objective value 0.25) and we continue
with (2,3). Now we get x, 5 = c' (with objective value 0.25) and we have to look
at cell (1,3) according to Lemma 3.6. Here we have x7; 5 = ¢* (with objective value
0.25) and we can delete the first column.

3. Restart with (2,2), where we get x7, 5, = ¢* and delete according to Corollary 3.4 the
first row.

4. Restart in cell (2,3) and get 7, 5 = ¢! (with objective value 0.25) and conclude by

3

Corollary 3.4 that a7, 3y = ¢! = (1,1) is globally optimal.

In Figure 3.5 the cell system with the deleted rows and columns is shown.
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Figure 3.5: Tllustration for Example 3.1.

4 Conclusions

In this paper we have addressed a planar single-facility location problem in which a high
level of uncertainty is involved in the demand vector.

The concept of robustness of a feasible solution = as a measure of the acceptance of x
is introduced, and the most robust location is then sought.

Finding the most robust location amounts to solving a nonlinear fractional problem,
solvable by existing methods such as Dinkelbach’s algorithm when distances are induced
by norms, or by more efficient ad-hoc procedures when further assumptions (e.g. distances
measured by the Manhattan norm) are made.

The concept of robustness could also be used in another usual location setting, namely,
location on networks, leading again to nonlinear fractional programs which, under further
assumptions on the norm || - ||, can be solved by inspecting a finite set of candidate points.
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Another interesting extension of this model is obtained if not only the robustness but
also the actual transportation cost are taken into account via a biobjective problem, which
again becomes piecewise linear and tractable under polyhedrality assumptions on || - ||.

These extensions are currently under research.

5 Appendix

Lemma 5.1. Let z € IR such that TC (&, ) < B. Then,

min{||jw —&||: TC(w,z) > B, w > 0} = min{||w — &|| : TC(w,z) = B}

Proof. For any w' € R4l such that

define )\ as
_ TC(w',z)-B

- TC (W —@,7)
It follows from the assumptions and (5.2) that

A

TC(w',z) > B>TC(,x),
thus X € [0,1). Defining w? as
w?=(1-Nw' + &,

it follows that

TC(W* z) = TO(W,z) - A\TCw'—&,2)

B.
Hence, since \ € [0, 1),
lw! =a > (1=N|e' -]
= ||(1 = ANw"+ & — Q|
= |w*-al

Hence,

p(z) 2 min{|lw — ol : TC(w,z) = B}
Conversely, given w? € IRl such that TC(w,r) = B, define w* € R as

wh =max{w? 0} VaecA

o =

18

> min{|lw—-ol||: TC(w,z) = B}

(5.1)

(5.2)



Then, w* > 0 and

TC(whz) = Y wyda(z)

a€A

= Y uwld2)+ Y widi(z)

{a€A:w3>0} {a€A:w3<0}

= Z wzda(i)

{a€A:w3>0}

> Y wid,(z)

a€A
= TC(w* )
= B
This implies that p(z) < ||w* — @]

Moreover, since,
|Cd3—(:)a| < |w2_d)a| VGEA,

thus, since any absolute norm is a monotonic norm, [1],
lw* =&l < J|lw® — &l

and hence
|w? — &|| > min{|jw — &| : TC(w,z) > B, w > 0}

|

Proof of Proposition 2.2 If TC (@, z) > B, then w is feasible for (2.6), thus p(z) = 0.
If z satisfies TC(w,x) < B, then, by Lemma 5.1, p(x) is the distance (according to metric
| - 1|) from point & € IR“! to the hyperplane {w € Rl : TC(w,z) = B}. Hence,
_ B-TC(w,x)

[1(da(@))acall®”

and then the result follows. O

p(z)
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