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Abstract

Cooperative games on antimatroids are cooperative games restricted by a
combinatorial structure which generalize the permission structure. So, cooper-
ative games on antimatroids group several well-known families of games which
have important applications in economics and politics. Therefore, the study of
the rectricted games by antimatroids allows to unify criteria of various lines of
research. The current paper establishes axioms that determine the restricted
Banzhaf value on antimatroids by conditions on the cooperative game v and
the structure determined by the antimatroid. The set of given axioms general-
ize the axiomatizations given for the Banzhaf permission values. We also give
an axomatization of the restricted Banzhaf value for the smaller class of poset
antimatroids. Finally, we apply the above results to auction situations.

Mathematics Subject Classification 2000: 91A12

Key words: Cooperative game, antimatroid, permission structure, Banzhaf
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1 Introduction

A cooperative game describes a situation in which a finite set of players N can
generate certain payoffs by cooperation. A one-point solution concept for cooperative
games is a function which assigns to every cooperative game a n-dimensional real
vector which represents a payoff distribution over the players. The study of solution
concepts is central in cooperative game theory. Two well-known solution concepts
are the Shapley value as proposed by Shapley (1953), and the Banzhaf value, initially
introduced in the context of voting games by Banzhaf (1965), and later on extended
to arbitrary games by, e.g., Owen (1975) and Dubey and Shapley (1979). These
values satisfy a set of intuitively reasonable axioms that characterizes each one of
them. The assessment that both values assign to a player is the average of the
marginal contribution to any coalition which the player belongs to, although they
associate different weights to each coalition. The Banzhaf value considers that every
player is equally likely to enter to any coalition whereas the Shapley value assumes
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that every player is equally likely to join to any coalition of the same size and all
coalitions with the same size are equally likely.

In a cooperative game the players are assumed to be socially identical in the
sense that every player can cooperate with every other player. However, in practice
there exist social asymmetries among the players. For this reason, the game theoretic
analysis of decision processes in which one imposes asymmetric constraints on the
behavior of the players has been and continues to be an important subject to study.
Important consequences have been obtained of adopting this type of restrictions on
economic behavior. Some models which analyze social asymmetries among players in
a cooperative game are described in, e.g., Myerson (1977), Owen (1986) and Borm,
Owen and Tijs (1992). In these models the possibilities of coalition formation are
determined by the positions of the players in a communication graph.

Another type of asymmetry among the players in a cooperative game is introduced
in Gilles, Owen and van den Brink (1992), Gilles and Owen (1999), van den Brink
and Gilles (1996) and van den Brink (1997). In these models, the possibilities of
coalition formation are determined by the positions of the players in a hierarchical
permission structure. Two different approaches were introduced for these games:
conjunctive and disjunctive. Games on antimatroids were introduced in Jiménez-
Losada (1998). Later, Algaba, Bilbao, van den Brink and Jiménez-Losada (2000)
showed that the feasible coalition systems derived from both the conjunctive and
disjunctive approach to games with a permission structure were identified to certain
families of antimatroids: poset antimatroids and antimatroids with the path property,
respectively. On the other hand, Branzei, Fragnelli and Tijs (2001) introduced peer
group games that were described by a rooted tree. This type of games allows to
study particular cases of auction situations, communication situations, sequencing
situations and flow games. These games are restricted games on poset antimatroids
with the path property. This class of antimatroids are the permission forest and
permission tree structures which are often encountered in the economic literature.
So, the study of games on antimatroids allows to unify several research lines in the
same one. Another model in which cooperation possibilities in a game are limited
by some hierarchical structure on the set of players can be found in Faigle and Kern
(1992) who consider feasible rankings of the players.

A relevant aspect in permission structures has been the study and characterization
of solution concepts, the so-called permission values, defined with the aid of the
Shapley value of two different permission games (see van den Brink and Gilles (1996)
and van den Brink (1997)) and the permission Banzhaf values based on the Banzhaf
value for these games (see van den Brink (2000)). However, as we have already
pointed out antimatroids extend this model allowing us to study new situations
and at the same time unify different approaches. One of the important aspects of
paying attention to cooperative games on antimatroids is revealed in the study of
a characterization of the Shapley value for cooperative games on antimatroids in
Algaba, Bilbao, van den Brink and Jiménez-Losada (2001) where in particular we
unify the fairness axioms used in both the conjunctive and disjunctive approaches.
This allows us at the same time to simplify the existing literature as well as provide
new insights. The study of the Banzhaf value for cooperative games on antimatroids
is dealt with in the current paper.

The paper is organized as follows. In Section 2 we recall some preliminaries on
cooperative TU-games, antimatroids and permission structures. Section 3 contains
the main result which is focussed on an axiomatization of the restricted Banzhaf value
for games on antimatroids. The set of given axioms generalize the axiomatizations
of both the conjunctive and disjunctive Banzhaf permission values for games with



a permission structure. In particular, with respect to these we unify the fairness
axioms as well as the predeccessor fairness used in both conjunctive and disjunctive
approaches to a stronger fairness axiom. In Section 4, we restrict our attention on a
special class of antimatroids the so-called poset antimatroids, showing that deleting
the strong fairness axiom characterizes the restricted Banzhaf value for the class of
cooperative games on poset antimatroids. Moreover, it turns out that the class of
games on poset antimatroids is characterized as that class of games on which the
restricted Banzhaf value is the unique solution satisfying these axioms. Finally, we
apply the obtained results to auction situations.

2 Cooperative games on antimatroids

A cooperative game is a pair (N,v), where N C N is a finite set of players and
v: 2N — N is a characteristic function on N satisfying v(#) = 0. A cooperative
game (N, v) is monotone if v(E) < v(F') whenever E C F'C N.

We assume that the set of feasible coalitions A C 2V is an antimatroid. Anti-
matroids were introduced by Dilworth (1940) as particular examples of semimodular
lattices. A symmetric study of these structures was started by Edelman and Jamison
(1985) emphasizing the combinatorial abstraction of convexity. The convex geome-
tries are a dual concept of antimatroids (see Bilbao, 2000).

Definition 1 An antimatroid A on N is a family of subsets of 2%V, satisfying

Al. D e A
A2. (Accessibility) If E € A, E # 0, then there exists i € E such that E\ {i} € A.
A3. (Closed under union) If E,F € A then EUF € A.

The definition of antimatroid implies the following augmentation property: if
E,F € A with |E| > |F| then there exists ¢ € E \ F such that F U {i} € A.
From now on, we only consider antimatroids satisfying

A4. (Normality) For every i € N there exists an E € A such thati € E.

In particular, this implies that N € A. Now we introduce some well-known
concepts about antimatroids which can be found in Korte, Lovdsz and Schrader
(1991, Chapter III). Let A be an antimatroid on N. This set family allows to define
the interior operator int 4 : 2V — A, given by int o(E) = UFCE,FeAF € A, for all
E C N. This operator satisfies the following properties which characterize it:

I1. int 4 (0) =0,

12. int4(E) C E,

I3. if E C F then into(E) C int4(F),

I4. int 4(int 4 (E)) = int 4(E),

I5. if 4,5 € int4(F) and j ¢ int4(E \ {i}) then i € int4(E \ {j}).

Let A be an antimatroid on N. An augmentation point (Jiménez-Losada, 1998)
of E € Ais aplayer i € N\ E such that FU {i} € A, i.e., those players that can
be joined to a feasible coalition keeping feasibility. In a dual way, an extreme point
(Edelman and Jamison, 1985) of E € A is a player i € E such that E \ {i} € A, i.e.,



those players that can leave a feasible coalition E keeping feasibility. By condition
A2 (Accessibility) every non-empty coalition in A has at least one extreme point. A
set £ € Ais a path in A if it has a single extreme point. The path E € A is called a
i-path in A if it has i € N as unique extreme point. A coalition F € A if and only if
F is a union of paths. Moreover, for every E € A with ¢ € E there exists an i-path
F such that FF C E. The set of i-paths for a given player ¢« € N will be denoted by
A(i).

The next concept is based on paths in an antimatroid and is necessary to describe
certain permission structures. This notion is closely related to the conditions on paths
that are obtained in a tree.

Definition 2 An antimatroid A on N is said to have the path property if

P1. Every path E has a unique feasible ordering, i.e. E := (i1 > --- > 1i;) such that
{i1,...,ix} € A for all 1 < k < t. Furthermore, the union of these orderings
for all paths is a partial ordering of N.

P2. If E, F and E\{i} are paths such that the extreme point of F' equals the extreme
point of E\ {i}, then FU{i} € A.

A special class of antimatroids are the poset antimatroids being antimatroids that
are closed under intersection.

Definition 3 An antimatroid A is a poset antimatroid if ENF € A for every
E F e A

Alternatively, the poset antimatroids are characterized as those antimatroids such
that for every ¢ € N there is exactly one i-path.

For a cooperative game (N, v) and an antimatroid A on N we define the restricted
characteristic function v4 which assigns to every coalition F the worth generated by
the interior of E, i.e., va(E) = v(int4(E)), for all E C N. For properties of these
restricted games we refer to Algaba, Bilbao, van den Brink and Jiménez-Losada
(2000). A solution for games on antimatroids is a function f that assigns a payoff
distribution f (N,v,A) € R™ to every cooperative game (N,v) and antimatroid .4
on N. Algaba, Bilbao, van den Brink and Jiménez-Losada (2001) characterized the
restricted Shapley value for cooperative games on antimatroids. In this paper we
characterize the restricted Banzhaf value B(N,v,.A) for a cooperative game (N,v)
and an antimatroid A on N which is obtained by applying the Banzhaf value to game
(N,v4), ie.,

Bi(No, )= Bi(No) =gy S0 (0a(B) —wa(B\ (1)),
{ECN:€E}

The Banzhaf value was introduced as a power index for voting games by Banzhaf
(1965), and later was generalized to arbitrary games by, e.g., Owen (1975) and Dubey
and Shapley (1979).

As we have already indicated games on antimatroids generalize cooperative games
with an acyclic permission structure. A permission structure on N is a mapping
S : N — 2N, The players in S(i) are called the successors of i in S. The players
in S71(i) := {j € N : i € S(j)} are called the predecessors of i in S. By S we
denote the transitive closure of the permission structure S, i.e., j € S (7) if and only
if there exists a sequence of players (hi,...,h:) such that hy =4, hyy1 € S(hy) for



all 1 <k <t—1and h; =j. The players in §(z) are called the subordinates of i in
S. A permission structure S is acyclic if i ¢ S(i) for all i € N. In the conjunctive
approach as developed in Gilles, Owen and van den Brink (1992), it is assumed
that each player needs permission from all its predecessors before it is allowed to

cooperate. This implies that the set of feasible coalitions is given by
¢={ECN:5'(i) CEforeveryic E}.

Alternatively, in the disjunctive approach as discussed in Gilles and Owen (1999)
it is assumed that each player that has predecessors only needs permission from at
least one of its predecessors before it is allowed to cooperate with other players.
Consequently, the set of feasible coalitions is given by

L ={FECN:S'(i)=0or S'(i) N E #  for every i € E}.

Algaba, Bilbao, van den Brink and Jiménez-Losada (2000) show that for every acyclic
permission structure S, both ®§ and <I>ds are antimatroids. Moreover, the class of
all sets of feasible coalitions that can be obtained as conjunctive feasible coalitions is
exactly the class of poset antimatroids. The class of all sets of feasible coalitions that
can be obtained as disjunctive feasible coalitions is exactly the class of antimatroids
satisfying the path property.

A solution for games with a permission structure is a function f that assigns a
payoff distribution f(N,v,S) € R™ to every cooperative game (N, v) and permission
structure S on N. The conjunctive Banzhaf permission value is obtained by applying
the Banzhaf value to the conjunctive restricted games (NN, ve, ), while the disjunctive
Banzhaf permission value is obtained by applying the Banzhaf value to the disjunctive
restricted games (N, Vg ), i.e., they are the restricted Banzhaf values

B(N,v,8%) = B (N,ve:) and B (N,0,8%) = B <N, %é) ,

respectively.

The purpose in the next sections will be to generalize axiomatizations given for the
conjunctive and disjunctive Banzhaf permission values to obtain an axiomatization
of the restricted Banzhaf value for cooperative games on antimatroids.

3 An axiomatization of the restricted Banzhaf value

We provide an axiomatization of the restricted Banzhaf value for games on antima-
troids generalizing the axiomatizations of the conjunctive and disjunctive Banzhaf
permission values given in van den Brink (2000). The first axiom is a weaker version
of the usual efficiency axiom.

Axiom 1 (One-player efficiency) For every cooperative game (N,v) and anti-
matroid A on N, if N = {i} then f; (N,v, A) = v({i}).

The next three axioms are generalizations of corresponding axioms for cooperative
games with a permission structure and are already stated in Algaba, Bilbao, van den
Brink and Jiménez-Losada (2001). For two cooperative games (N, v) and (N, w) the
game (N, v+ w) is given by (v + w)(E) = v(E) + w(E) for all E C N.

Axiom 2 (Additivity) For every pair of cooperative games (N,v), (N,w) and an-
timatroid A on N, f (N,v+w, A) = f (N,v, A) + f (N, w, A).



Axiom 3 (Necessary player property) For every monotone cooperative game
(N,v) and antimatroid A on N, if i € N satisfies v(E) =0 for all E C N\ {i} then
fi(N,v, A) > f; (N,v, A) forall j € N.

Given the antimatroid A on N, the basic path group P; of player i is given by
those players that are in every i-path, ie., P; = (g AG) E. This set is formed by
those players that totally control player ¢ in A, i.e., without them player ¢ can not
be in any feasible coalition. Obviously, ¢ € P; for all : € N.

Axiom 4 (Structural monotonicity) For every monotone cooperative game (N, v)
and antimatroid A on N, if j € N then for all i € P; we have f;(N,v, A) >
fj (N, v, A)

Before introducing three new axioms for cooperative games on antimatroids, we
introduce some concepts. For cooperative game (N,v) and j € N define cooperative
game (N \ {j},v_;) by v_;(E) = v(E) for all E C N \ {j}. For antimatroid A on
N define the set system A_; on N\ {j} by A_; = {E\{j}: E € A}. So, A_; is
obtained by deleting j from all coalitions in \A. Next we establish that A_; is an
antimatroid.

Lemma 1 If A is an antimatroid on N and j € N then A_; is an antimatroid on

NA{j}-

Proof. (i) As () € A we have that ) € A_;.

(ii) Suppose that E, F' € A_;. Then we can establish the following: (a) if £, F €
Athen EUF € A, and (since j ¢ EUF), EUF € A_j; (b) if {E,F} ¢ A then
EUFU{j} €A and thus EUF € A_;. So, A_; is closed under union.

(iii) Consider E € A_;. We establish the following: (a) if £ € A then there
exists ¢ € E such that E'\ {i} € A. Since j ¢ E, it holds that E \ {i} € A_j; (b) if
E ¢ Athen EU{j} € A, implying that there exists i € E (clearly ¢ # j) such that
(EU{j})\ {i} € A. But then E\ {i} € A_;. So, A_; satisfies accessibility.

(iv) Finally, it follows straightforward that A_; satisfies normality, i.e., N\ {j} €
A O

Given the antimatroid A on N, the path group P! of player i is defined as the
set of players that are in some i-path, i.e., P! = UEGA(i) E. So, the path group of
player ¢ are all those players of which ¢ has some dependence, i.e., these players in
some sense partially control player i. Obviously, P; C P’ for all i € N. Now, given
an antimatroid A on N, we call i € N an inessential player for A in (N, v) if player
i and every player j € N such that i € P7 are null players in (N, v).

The first of the three new axioms is related to the null player out property of the
Banzhaf value (see Derks and Haller, 1994) and states in addition to the inessential
player property as introduced in Algaba, Bilbao, van den Brink and Jiménez-Losada
(2001), that deleting an inessential player from a game on an antimatroid does not
change the payoffs of the other players.

Axiom 5 (Strong inessential player property) For every cooperative game (N, v)
and antimatroid A on N, if i is an inessential player for A in (N,v) then

_fo ifj =1,
fi (N,v, A) = {fj (N\{i},v_i, A_;) otherwise.



As we have already indicated the fairness axiom introduced in Algaba, Bilbao,
van den Brink and Jiménez-Losada (2001) generalizes both conjunctive and disjunc-
tive fairness for games with a permission structure (see van den Brink 1997, 1999).
In order to provide a characterization of the restricted Banzhaf value we need to
strengthen this axiom in a way such that it also generalizes predecessor fairness for
games with a permission structure (see van den Brink, 2000).

For antimatroid A on N and coalition E € A, let aua(E) be the set of all
augmentation points of E in A. The new strong fairness axiom states that deleting
the feasible coalition E from the set of feasible coalitions (as long as A\ {E} is still
an antimatroid) changes the payoffs of all players in F by the same amount and,
moreover, the payoffs of the augmentation points of F in A also change by this same
amount but in opposite direction with respect to the elements in F.

Axiom 6 (Strong fairness) For every cooperative game (N,v), antimatroid A on
N, and E € A with |E| > 2 such that A\ {E} is an antimatroid on N, it holds that
foralli € E and j € auy(E)

fi(N>v7A)_fi (N>'U>A\{E}) :fj (vavA\{E})_fj (N>U7A)'

The following result (given in Algaba, Bilbao, van den Brink and Jiménez-Losada
(2001)) establishes under what conditions a coalition E can be deleted, A\ {E} being
still an antimatroid.

Lemma 2 Let A be an antimatroid on N and E € A. Then, A\ {E} is an antima-
troid on N if and only if E is a path, E ¢ {0, N} and every F € A satisfying E C F
and |F| = |E| + 1 is not a path.

The last axiom is based on the proxy neutrality and amalgamation properties of
the Banzhaf value as considered in Lehrer (1988) and Haller (1994). For antimatroid
Aon N and player j € N define 4; on N by A; ={E € A:j € E}, ie., A, is the
set of coalitions in A4 that contain player j. Further, for player h € N\ N we define
Anj by

A ={EU{h}: Ec A YU{E\{j}U{h}: Ec A;}U(A\ A;).

Note that A\ A; need not be equal to A_;. In some sense player h € N\ N
is controlling player j when going from antimatroid A to Ap;. Feasible coalitions
containing player j now should also contain player h. Moreover, all feasible coalitions
in A that contain player j are still feasible if we replace player j by player h. Finally,
all feasible coalitions in .4 that do not contain player j stay feasible. We first establish
that Ap; is an antimatroid.

Lemma 3 If A is an antimatroid on N, then for every j € N and h € N\ N, Ay;
is an antimatroid on N U {h}.

Proof. (i) If ) € A then ) € A\ A;, and thus 0 € Ay;.

(ii) For E € Ayp; we establish that: (a) if h ¢ E then j ¢ E, and thus E € A\ A;;
(b)if h € F and j ¢ E then E\ {h}U{j} € A; (c) if h € E and j € E then
EN{h}U{j} = E\{h} € A

Suppose that E, F' € Ap;. With the cases (a), (b) and (c) it follows that: (1) if
h¢ EUF then E,F € A\ A;, and thus EUF € A\ A; C Aj; (2)ifhe EUF
then [E\{h}U{j}, F\{h}U{j} € Al or [E\{h} € A\ Aj and F\ {h}U{j} € A] or
[E\{h}U{j} € Aand F\ {h} € A\ Aj]. In all these cases (EUF U {j})\{h} € A
But then EUF € Apj. So, Ap; is closed under union.



(iii) For E € Ap; we have that: (a) if j € E then h € E, and thus E'\ {j} € An;;
(b)if j ¢ EF and h ¢ E then E € A\ A;, and thus there exists ¢ € E such that
E\{i} € A\ A; C Apj; (c)if j ¢ F and h € E then EU {j} \ {h} € A and
thus there exists k € EU {j} \ {h} such that F U {j} \ {h,k} € A. If k = j then
EU{j}\{h,k} = E\{h} € A\ A; C Ap;. Otherwise k # j and EU{j}\{h,k} € A,
implying that £\ {k} € Ap;. So, Ap; satisfies accessibility.

(iv) Finally, it follows straightforward that Aj; satisfies normality, i.e., NU{h} €
Apj. O

Besides letting player h control player j in the antimatroid we also let h control
j in the game by requiring the presence of h for any non-zero contribution of j.
This is the only contribution of player h. This means that we consider the game
(N U {h},vp;) with vp; on N U {h} given by v;(E) = v(E\ {j}) if h ¢ E, and
vpj(E) = v(E \ {h}) otherwise. The next axiom states that the sum of payoffs of
players h € N\ N and j € N after letting player h control player j is equal to
the payoff of player j when h is not yet present. This axiom generalizes vertical
and horizontal neutrality for games with a permission structure (see van den Brink,
2000).

Axiom 7 (Proxy neutrality) For every cooperative game (N,v), antimatroid A on
N, je N andh € N\N, it holds that fn, (N U{h},vnj, Anj)+f; (N U{h}, vpj, Anj) =
fj (N, v, A) .

The restricted Banzhaf value satisfies the seven axioms discussed above.

Theorem 1 The restricted Banzhaf value B for cooperative games on antimatroids
satisfies ome-player efficiency, additivity, the mecessary player property, structural
monotonicity, the strong inessential player property, strong fairness and prory neu-
trality.

Proof. Let (N,v) be a cooperative game and A be an antimatroid on N.

1. If N = {i} then A = {0, N}, and thus v = v4. One-player efficiency then
follows from one-player efficiency of the Banzhaf value for cooperative games.

2., 3. and 4. Additivity, the necessary player property and structural monotonic-
ity of the restricted Banzhaf value follow in a similar way as for the restricted Shap-
ley value in Algaba, Bilbao, van den Brink and Jiménez-Losada (2001). (To show
the necessary player property and structural monotonicity take ‘Banzhaf’ weights

-1 ‘ " wei 1 — (NI=Z[EDI(E[=D!

Pe = 5wt instead of ‘Shapley” weights p, = ! ).

5. If 7 is an inessential player for A in (N,v) then i is a null player in (N, v4).
The null player property of the Banzhaf value then implies that f; (N,v,.4) = 0.
From the null player out property of the Banzhaf value (see Derks and Haller, 1994)
it follows that fj (N,”U,.A) = f]‘ (N\{i},v_i,A_i) for ] 7£ 7.

6. Let E € A be such that A\ {E} is an antimatroid on N. For ¢ € F we have:

(a) If E ¢ F then int 4(F) = Uireancry H=Upea(py.ncry H = inta\ gy (F).
Hence, vA(F) = va\(g}(F). In particular, as i € E it holds that E ¢ F\{i} and
therefore v4(F'\ {i}) = va\ (e (F\{7}).

(b) If there exists j € aus(E) such that EU{j} C F then int 4(F) = int 4\ (g} (F).
Hence also in this case, va(F) = v\ (g} (F).

Since ¢ € F and F C F implies that i € F, it follows for i € E and j € auy(F)
that



B; (N,v,A) — B; (N,v, A\ {E})
= Bi (N,v4) = Bi (N, v (£})

= 5 Yo (wal®) —vaF\A{D) = vaymy(F) +vagey (F\{i})
(FCN:eF}

_ 2W1|_1 3 (va(F) = vayiey (F))
{FCN:ECF,Fnaua(E)=0}

= o > (vA(P\GY) = vav ey (F\(D)

{FCN:ECF,Fnaua(E)={j}}
v Y (AN — vy (A G + vy (F) — va(F))
{FCN:jeF}
(N vavgey) = Bj (N, va)
(N.v, A\{E}) B (N0, A).

B,
5

showing that B satisfies strong fairness.

7. Let j € N and h € N\ N. We establish the following facts:

(a) if {h,j} € F then vy;(H) = vp;(H \ {h,j}) = v(H \ {h,j}) for all H C F.

(b) since F' € A\ A; implies that h ¢ F, and F C Ay \ A; implies that h € F,
we have for F C NU{h} and h € F that

('Uhj).Ahj (F) = Unj (intAhj (F)) = Vp; ( U H)

{HeA;:HCF}

= vp; U HU U Hu |J H

He{BEU{h}|E€A;} He{BE\{j}U{h}| E€A;} HEA\A;
HCF HCF HCF

= vp; U @ufhu U H)

{HeA;:HCF} {HEA\A;:HCF}

v( U H U U H)

{HeA;:HCF\{h}} {HeA\A;:HCF\{h}}

v U H
{HeA:HCF\{h}}

v(int A(F\{h})) = va (F\{h}),

and



(vnj) Ay (F\{R}) = vnj (inta,; (F\ {h})) = v, ( U H)
{HeA,;:HCF\{h}}

= vy U HU U Hu |J H

He{BU{n}|EEA;} He{E\{j}U{h} EEA;} HEA\A;
HCF\{h} HCF\{h} HCF\{h}

= Unj U H|=v U H
{HEA\A;: HCF\{h}} {HEA\A;: HCF\{h}}

=0 U H
{HeA:HCF\{h,j}}

= v (inta(F\{h,j})) = va (F\{h,j}).

‘With this it follows that

By, (N U {h},vnj, Anj) + Bj (N U {h},vnj, Anj)
=By (N U {h}v (vhj)Ahj) + Bj (N U {h}> (vhj).Ahj)

—ow Y () (B) — (), (F\ {RD)
{FCNU{h}:heF}

b 2 ()an (B) = )an, (FA D)
{FCNU{h}:jeF}

= o (017) 0, (F) = (o) 4, (F \ {2)
{FENU{h}:{h,j}CF}

b ((0n3).tny (F) = (ons) s, (\ 51)
{FENU{h}:{h,j}CF}

o Y AP\ P\ (b))
{FENU{h}:{h,j}CF}

bom X @alP\ ) P\ ()

{FENU{h}:{h,j}CF}

:2%1\/( Y ) - F\ G+ Y (vA(F)—vA(F\{j}))>

{FCN:jeF} {FCN:jeF}
1 . —
= SN > ((walF) —va(F\{j}) = Bj(N,v4) = B;(N,v, A),
{FCN:jeF}
showing that B satisfies proxy neutrality. (Il

The axioms discussed above characterize the restricted Banzhaf value for cooper-
ative games on antimatroids.
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Theorem 2 A solution f for cooperative games on antimatroids is equal to the re-
stricted Banzhaf value B if and only if it satisfies one-player efficiency, additivity,
the necessary player property, structural monotonicity, the strong inessential player
property, strong fairness and proxy neutrality.

Proof. To prove uniqueness, suppose that solution f satisfies the seven axioms.
Consider antimatroid A on N and the monotone game wr = crur, cr > 0, where
ur is the unanimity game of T' C N, ie., wp(E) = ¢p if E O T, and wyp(E) =
0 otherwise. If ¢y = 0 then the strong inessential player property implies that
fi (N,wr, A) =0 for all i € N. Suppose that e > 0.

We show that f (N, wr,.A) is uniquely determined by induction on |N|.

If N = {i} then f (N, wr,.A) is uniquely determined by one-player efficiency.

Proceeding by induction assume that f (N’ wr,.A) is uniquely determined if
|IN'| < |NJ.

We use a second induction step on |A|. (Note that |A| > |N|+ 1). Consider the
sets PT = J,cp P and Pp = J;ep Pr.

1. If | A| = |N|+1 then there is a unique coalition in A of cardinality ¢ from ¢ = 1
until ¢ = n. So, there exists a unique i-path for every player i. In this case, we have
that PT = Pp . We distinguish the following two cases:

(i) Suppose that PT # N. Then there exist inessential players. Take an inessen-
tial player j. The strong inessential player property implies that f; (N, wr, A) =0
and f; (N, wr, A) = (N\{j},(wT)_j,A_j) for i € N\ {j}. By the induction
hypothesis f; (N, wr,.A) is uniquely determined for all i € N \ {j}.

(ii) Suppose that PT = N. Then there exist ig,i; € N such that P = N and
Piv = P\ {ig}. Since (A_;, ), ; = Aand (wp\(,}), . = wr, proxy neutrality
implies that

fir (Nywr, A) + fio (Nwr, A) = fio (N {in}, wr gy, A-iy ) - (1)

1110 1110

Structural monotonicity and the necessary player property imply that there exists
¢ € R such that f; (N,wp, A) = c for all i € Pp = N. With (1) it follows that
c= %f i (N \ i1}, wi iy .A_il). With the induction hypothesis ¢ is uniquely de-
termined, and so is f (N, wr, A).

2. Now we suppose that |A| > |[N| 4+ 1. Proceeding by induction assume that
f(N,wr, A’) is uniquely determined if | 4’| < |A|. Again we distinguish the following
two cases:

(i) Suppose that PT # N. Then f(N,wr,.A) is uniquely determined by the
strong inessential player property and the induction hypothesis similarly as shown
above for the case |A| = |N|+ 1.

(ii) Suppose that PT = N. If i € Pr then structural monotonicity and the
necessary player property imply that there exists ¢ € R such that f; (N, wr, A) = c.

If i € PT\ Pr then there exists j € T and j-paths E,F € A such that i € E
and i ¢ F. We define a chain from coalition E to N to be a sequence of coalitions
(Eo, En, ..., E;)satisfying Eg = FE, E; = N and there is a sequence of distinct players
(h1,...,hs) such that hy, € N\ Ex_1 and E, = E_1 U {ht} for all k € {1,... ,t}.
If all coalitions in the chain belong to the antimatroid A it is called a chain in A.
The augmentation property implies that there exist chains in A from E to N and
from F' to N. We choose a chain from E to N and a chain from F' to N in such
a way that the first common coalition M of these chains is the largest coalition
possible, i.e., there are no other two chains from E and F to N with a first larger

11



common coalition M’ D M. (Note that a first common coalition always exists because
coalition N is always a common coalition). Our goal is to find a coalition containing
¢ and 7 and, under the conditions of Lemma 2 to apply the strong fairness axiom.
If He A |H| =|E|+1, H D FE imply that H is not a path in A, then define
A" = A\ {FE}. By Lemma 2 A’ is an antimatroid. Otherwise, i.e., if there is a
path £y € A, |Ey| = |E|+ 1, E1 D E, it can happen that H € A, |H| = |Ey| + 1,
H D E; imply that H is not a path in .A. Then define A" = A\ {E1}. In case this
does not occur we can proceed in this way, and thus choose a sequence of coalitions
labeled by E1, Fs, ... , E,, being paths in A and such that if H € A, |H| = |E,,|+1,
H D FE,, then H is not a path in A. In this process as maximum we would get to a
path E,, with |E,,| = |M| —1,M D E,,. There cannot exist any coalition @ € A,
Q#M,|Q|=|En|+1,Q D E,, because if there would be such a coalition @) then
the chain chosen from F' to N and this alternative chain from E to N through @
would have a larger first common coalition. So, taking A" = A\ {E,,} and applying
Lemma 2, A’ is an antimatroid. Thus, fairness implies that f; (N, wr, A) = ¢ — ¢;
with ¢; = f; (N,wp, A’) — f; (N,wrp, A’) for an A" with |A'| = |A| - 1.

On the other hand, as E,, C M there exists k € aua(E,,) and thus k ¢ E.
Applying strong fairness, it holds for ¢ € E,,, that

fi (N,wp, A) — fi (N,wp, A") = fi, (N,wp, A") — fi (N,wr, A),

where A" = A\{FE,,}. Since fi (N,wr, A) = c—cy, denoting by ¢, = f; (N, wr, A" )+
fr (N, wp, A') it follows that ¢ — ¢; — f;(N,wr, A') = fr(N,wp, A") — ¢ + ¢; imply-
ing that ¢ = %(Ek + ¢k +¢;) (like ¢;, ¢x and T are determined by the induction
hypothesis). With cases (i) and (ii) above f; (N, wr,.A) is determined for all i € N.

Above we showed that f (N,wr,A) is uniquely determined for all (monotone)
games wp = cpur with ¢ > 0. Suppose that wr = cpur with ¢ < 0. (Then wy is
not monotone and the necessary player property and structural monotonicity cannot
be applied.) Let vg € GV denote the null game, i.e., vo(E) = 0 for all E C N. From
the strong inessential player property it follows that f; (IV,vg,.4) = 0 for all i € N.
Since —wr = —crur with —cp >0, and (vo) 4 = (wr) 4 + (—(wr).4), it follows from
additivity of f that f (N,wr, A) = f (N,vo, A) — f (N, —wp, A) = —f (N, —wr, A)
is uniquely determined because —w7 is monotone. So, f(N,crur,.A) is uniquely
determined for all ¢ € R. Since every cooperative game v on N can be expressed as
a linear combination of unanimity games it follows with additivity that f(N,v,.A)
is uniquely determined. (Il

We end this section by showing logical independence of the axioms stated in
Theorem 1.

1. The zero solution given by f; (N,v, A) = 0 for all i € N satisfies additivity,
the necessary player property, structural monotonicity, the strong inessential player
property, strong fairness and proxy neutrality. It does not satisfy one-player efficiency.

2. Let A(v) = max{d,(T) : T C N}, dp(T) = 3 pep(=1)TI=IFly(F) the
Harsanyi dividends and D(v) = {T' C N :d,(T) = A(v)}. The solution given by
f(N,v,A) =B <N D re D(v) dU(T)uT,A) satisfies one-player efficiency, the neces-
sary player property, structural monotonicity, the strong inessential player property,
strong fairness and proxy neutrality. It does not satisfy additivity.

3. Let f; (N,v,A) = v (N)—v(N\{i}) if {i} € Aand f; (N,v,A) =0 otherwise.
This solution satisfies one-player efficiency, additivity, structural monotonicity, the
strong inessential player property, strong fairness and proxy neutrality. It does not
satisfy the necessary player property.
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4. The solution given by f (N, v, A) = B(N,v) satisfies one-player efficiency, ad-
ditivity, the necessary player property, the strong inessential player property, strong
fairness and proxy neutrality. It does not satisfy structural monotonicity.

5. The solution, f; (N,v, A) = W for all © € N, satisfies one-player efficiency,
additivity, the necessary player property, structural monotonicity, strong fairness and
proxy neutrality. It does not satisfy the strong inessential player property.

6. For antimatroid A on N and player i« € N, consider P, = Ngca)E. To
every antimatroid A on N we associate the poset antimatroid A" that is obtained
by taking all coalitions that can be obtained as unions of coalitions in {P; : i € N}.
The solution f; (N, v, A) = B (N,v, A") satisfies one-player efficiency, additivity,
the necessary player property, structural monotonicity, the strong inessential player
property and proxy neutrality. It does not satisfy strong fairness.

7. The solution f; (N,v, A) = v ({i}) if {i} € A and f; (N,v, A) = 0 otherwise
satisfies one-player efficiency, additivity, the necessary player property, structural
monotonicity, the strong inessential player property and strong fairness. It does not
satisfy proxy neutrality.

4 Poset antimatroids

Deleting strong fairness from the set of axioms stated in Theorem 2 characterizes
the restricted Banzhaf value for games on poset antimatroids. Moreover, poset an-
timatroids are the unique antimatroids for which it is possible to delete the strong
fairness axiom.

Note that poset antimatroids are the unique antimatroids such that every player
has a unique path. In particular, we can conclude that given an antimatroid A on
N, then A is a poset antimatroid if and only if P* = P;, for all i € N.

Theorem 3 A solution f for games on poset antimatroids is equal to the restricted
Banzhaf value if and only if it satisfies one-player efficiency, additivity, the necessary
player property, structural monotonicity, the strong inessential player property and
proxy neutrality.

Proof. Suppose that solution f satisfies the six axioms on poset antimatroids.
Consider a poset antimatroid A on N and the game wr = crur, cp > 0. Taking
into account that for a poset antimatroid PT = Pr the proof follows of the first part
from Theorem 2. For arbitrary v it follows that f (N,v,.A) is uniquely determined
in a similar way as in the proof of Theorem 2. O

Hence, on poset antimatroids the restricted Banzhaf value is uniquely determined
without using strong fairness. The solutions 1,2,3,4,5 and 7 given at the end of the
previous section show logical independence of the axioms stated in Theorem 3.

In Algaba, Bilbao, van den Brink and Jiménez-Losada (2000) is showed that for
every i1 € N,

B (N,v, A) = Z 2|E‘

EcA;

Next, we remark that for games on poset antimatroids the restricted Banzhaf value
can be written using dividends of the original game as follows.
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Proposition 1 If A is a poset antimatroid on N then

BWed= Y D

oIPTT-1"
{TCN:#ePT}

Proof. Since d,(E) =0 for every E ¢ A it follows that

5 dv, (E) > (rcpp—pry do(T) dyo(T)
Bi (N, v, A) = Z 2|§|71 = Z oIE—1 = Z SIPTI—1
EcA; EcA; {TCN:iePT}

O

We can characterize the class of cooperative TU-games on poset antimatroids as

the class of games on which the restricted Banzhaf value satisfies the six axioms of

Theorem 3. Given an antimatroid A on N, let B (-,.A) be the function that assigns
to every cooperative game (N, v) the restricted Banzhaf value B (N, v, A).

Theorem 4 Let A be an antimatroid on N. Then A is a poset antimatroid if and
only ifE(-,A) is the unique solution satisfying one-player efficiency, additivity, the
necessary player property, structural monotonicity, the strong inessential player prop-
erty and proxy neutrality.

Proof. From Theorem 3 it follows that given a poset antimatroid A, B (-, A) is
the unique solution satisfying one-player efficiency, additivity, the necessary player
property, structural monotonicity, the strong inessential player property and proxy
neutrality. Suppose that A is not a poset antimatroid. Define the solution g for
cooperative TU-games on antimatroids by

1 ifie Pr=\J)._.P,
4 _ Jamr i (S gy U1€T &
9i (N, ur, A) { 0 otherwise,

and for arbitrary game v

gi (N,v, A) = Z dy(T)gi (N,ur, A) = Z %.

TCN {TCN:iePr}

This solution satisfies one-player efficiency, additivity, the necessary player property,
structural monotonicity, the strong inessential player property and proxy neutrality.

To prove that g (-, .A) # B (-, A) note that, if A is not a poset antimatroid then
there exists j € N with P/ # P;. By Proposition 1 it then follows that g (N, ur, .A) #
B (N,ur, A)if j ¢ T and (P7\ P;)NT # 0. O

An acyclic permission structure S is a permission forest structure if |S7!(i)| < 1
for all ¢ € N. So, in a permission forest structure every player has at most one
predecessor. A permission forest structure is a permission tree structure if there is
exactly one player ig for which S~1(ip) = (). Algaba, Bilbao, van den Brink and
Jiménez-Losada (2000, Lemma 2) showed that the permission forest structures are
exactly those acyclic permission structures for which the sets of conjunctive and
disjunctive feasible coalitions coincide. We also showed that the poset antimatroids
satisfying the path property are exactly those antimatroids that can be obtained
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as the set of conjunctive or disjunctive feasible coalitions of some permission forest
structure. From Theorem 4 we directly obtain a characterization of the Banzhaf
value restricted to the class of poset antimatroids satisfying the path property, i.e.,
antimatroids that are obtained as the feasible coalitions for permission forest or tree
structures. This result is interesting from an economic point of view since in economic
theory we often encounter hierarchical structures that can be represented by forests
or trees (see, e.g., a hierarchically structured firm).

Corollary 1 Let A be a poset antimatroid on N satisfying the path property. Then
B (-, A) is the unique solution satisfying one-player efficiency, additivity, the neces-
sary player property, structural monotonicity, the strong inessential player property
and proxy neutrality.

5 An application: auction situations

We have already indicated that an antimatroid can be the conjunctive feasible coali-
tion set as well as the disjunctive feasible coalition set of some permission structure if
and only if it is a poset antimatroid satisfying the path property (see Algaba, Bilbao,
van den Brink and Jiménez-Losada (2000)). A special class of such antimatroids are
the feasible sets of peer group situations as considered in Branzei, Fragnelli and Tijs
(2001). In fact, they consider games with an acyclic permission structure (N,v,.S)
with |S ’l(i)| <1 for all i € N. The games v assign zero dividends to all coalitions
that are not paths. With acyclicity of the permission structure there is exactly one
player, the root ig, such that S~1(ip) = (. The restricted peer group game then
coincides with the (conjunctive or disjunctive) restricted game vee = Vg4 arising
from this game with permission (tree) structure. Given that all coalitions that are
not paths get a zero dividend, the restricted game is equal to the game itself, i.e.,
V= Vgg = Ugd. (Note that the same restricted game is obtained if we consider
the game that assigns to every player ¢ the dividend of its path P;). Defining one-
player efficiency, additivity, the necessary player property, structural monotonicity,
the strong inessential player property and proxy neutrality restricted to this class we
characterize the restricted Banzhaf value on this class.

As argued by Branzei, Fragnelli and Tijs (2001) peer group situations generalize
some other situations such as sealed bid second price auction situations (see Ras-
musen, 1994). Consider a seller of an object who has a reservation value r > 0, and a
set N ={1,...,n} of n bidders. Each bidder has a valuation w; > r for the object.
Assume that the bidders are labelled such that wy > - -+ > w,. Using dominant bid-
ding strategies for such auction situations Branzei, Fragnelli and Tijs (2001) define the
corresponding peer group situation that can be represented as the game with permis-
sion (tree) structure (N, v, S) with S(z) = {i+1} for 1 <i <n—1, S(n) =0, and the
game v determined by the dividends d,, ({1,...,i}) = w; —w;41 if 1 <i <n—1 and
dy (N) = wy, — r. All other coalitions have a zero dividend. Clearly these games are
determined by the set N of players and the vector of valuations (w,r) € Riﬂ. Given
such a valuation vector let B(N,w,r) denote the restricted Banzhaf value of the cor-
responding game on the antimatroid A = {0,{1},{1,2},...,{1,2,... ,n—1},N}.
Allowing the strict inequalities to be weak inequalities w; > --- > w,, apply-
ing the axioms stated above to these situations yields that one-player efficiency
straightforward says that f;({i},w,r) = w; — r. Structural monotonicity states that
filN,w,r) > f;(N,w,r) if w; > w;. The strong inessential player property states
that if w; =, then f;(N,w,r) =0 and f;(N,w,r) = f;(N\{i}, w_;,r) for all j # 1,
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where (w—;,7) € RY is given by (w—;); = wj for all j # . Specifying additivity we
must take care that the underlying permission structure does not change. So, we re-
quire additivity only for reservation value vectors that ‘preserve the order of players’,
ie, f(Nyw+zr+s) = f(N,w,r)+ f(N,z:s) if w, >w; & 2z > z;. We refer to
this as additivity over order preserving valuations. Proxy neutrality establishes that
given h € N\N, fo(NU{h},w',r)+ f;(NU{h},w',7) = f;(N,w,7r)if (w’,7) € R}
is given by w’ = w;_1, wj, = w; and wj = w; for all i # j, h.

Note that proxy neutrality means that player j participates as representative of
a hierarchical society formed by two players h,j where player h is superior to j. In
this case, the value is neutral with respect to the negotiation with the superior h or
with the society formed by h and j. Notice that although the auction follows the
same above process where j, in some sense, is the representative of the society, the
feasible coalitions do not form a chain in this case. For example, consider an auction
situation with five players. In this case, the feasible coalitions are represented in
Figure 1. Suppose that player 3 is the representative in the hierarchical society
formed by 3 and 6 where 6 is superior to 3, in others words 6 controls 3. This
information, leads to the rest of bidders think about the feasible coalitions of Figure
2, where besides negotiation with player 3 and therefore with the superior 6, also
negotiations directly with 6 appear.

o (12345) {1,2,6,3,4,5}
! {1234} {1,2,6,3,4}
{1,2,6,4,5}
{1,2,3}
[ ) {1,2,6,3} {1,2,64
{12
[
{12
® {1
Py
Figure 1 Figure 2

Finally, we can give a characterization of the restricted Banzhaf value for auction
situations without using the necessary player property.

Theorem 5 The restricted Banzhaf value B(N,w,r) is the unique solution for auc-
tion situations (w,r) € Rﬁ“ satisfying one-player efficiency, structural monotonic-
ity, the strong inessential player property, additivity over order preserving valuations
and proxy neutrality. Moreover,

Ei(N,’UJ,T) = = h .

2i—1 et oh—1  on-—1°
=1

Proof. For auction situations, B(N,w,r) is characterized by the axioms from Corol-
lary 1 . However, we have to prove that we do not have to use the necessary player
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property and need additivity only over order preserving valuations. Suppose that f
is a solution for auction situations that satisfies the axioms, and let (w,r) € R}
be an auction situation. For k = 1,...,n — 1 define the auction situation (w*,0)
by w¥ = wg — wiyq for all i € {1,... k}, wf =0 foralli € {k+1,... ,n}, and
define (w™,r) by wl = w, for all i € {1,...,n}. Let k € {1,...,n —1}. Struc-
tural monotonicity implies that all f;(N,w*,0) are equal for all i € {1,... ,k}, i.e.,
fi(N,w* 0) = ¢, 1 <i <k for some ¢;, € R. On the other hand, structural mono-
tonicity also implies that f;(N,w",r) = ¢,, ¢ € N, for some ¢, € R. The strong
inessential player property implies that f;(N,w",0) =0 for alli € {k+1,...,n}.

If N = {i} then f (N, w,r) is uniquely determined by one-player efficiency.

Proceeding by induction assume that f (N', w,r) is uniquely determined if | N'| <
|N|.

(i) For k = 1,... ,n — 1 consider the auction situation (w*,0). Then there ex-
ist inessential players. Take an inessential player j. The strong inessential player
property implies that f; (N,w*,0) = 0 and f; (N,w*,0) = fi (N'\ {j},w"*;,0) for
i € N\ {j}. Thus by the induction hypothesis f; (N ,wh, 0) is uniquely determined
for alli e N\ {j}.

(ii) For k = n consider (w™,r). Then, proxy neutrality implies that for h,j € N,

fh (N7wn>7‘) +fj (vanvr) = fj (N\{h‘}7wﬁh’r) : (2)

With (2) it follows that ¢, = £ f; (N \ {h},w™,,r). With the induction hypothesis
¢y, is uniquely determined, and so is f (N, w™,r).

Since all (w*,0), k =1,...,n —1, and (w",r) are order preserving, additivity
over order preserving valuations determines f(N,w,r).

Let (w,r) € R’ be an auction situation. Then its corresponding poset antima-
troid is A ={0,{1},...,{1,2,... ,n— 1}, N}. It follows from Proposition 1 that

— dy(T
Bi(w,r) = Z 2']35“‘_)1

{TCN:iePT}

n—1
Wi — Wi+1 Z Wg — Wk+1 Wp — T

2i71 2]671 27171
k=i+1
n
w; Wi r
T 9i-1 9k—1 "~ on—1°
k=i1+1

O

From the proof of the above theorem it follows that structural monotonicity could
be replaced by symmetry stating that f;(N,w,r) = f;(N,w,r) if w; = w;. Note that
this cannot be done in more general cases as discussed earlier in the paper. In
a similar way we can characterize solutions for other economic situations such as
airport games or hierarchically structured firms.
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