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L’algorithme du produit médian, I.

Résumé : Nous présentons de nouveaux algorithmes pour l'inverse, le quotient et la racine
carrée de séries formelles. L’ingrédient clé de ces algorithmes est un nouvel algorithme —
appelé MiddleProduct, ou plus brievement MP — qui calcule les n coefficients médians d’un
produit (2n—1) x n en le méme nombre de multiplications qu’un produit complet n x n. Ces
résultats améliorent des travaux de Brent, Mulders, Karp et Markstein, Burnikel et Ziegler.
Un travail en préparation étudiera le cas des nombres flottants.

Mots-clés : Produit médian, inversion, division, racine carrée, méthode de Newton



The Middle Product Algorithm, I 3

Introduction

One of the major tools for performing arithmetic or computing special functions is Newton’s
iteration. Indeed its quadratic rate of convergence (so that the number of correct digits or
terms doubles at each step) and its self-correcting character make it especially suitable for
this kind of computations.

In full generality, Newton’s rule for computing a root of a differentiable function f(z) can
be written as zxy1 = xx — f(zx)/f'(xx). As a rule of thumb, the term z; should be seen as
the main term, whereas f(xx)/f'(zx) should be seen as the correcting term. In particular,
not all the digits of f(xy)/f'(zx) are significant, since the low weight ones will be corrected
in the next iteration. Furthermore, since f(zy) is supposed to tend to zero quickly, one can
expect important cancellations in the evaluation of f(zy)/f'(xx). The present paper shows
how to evaluate only the meaningful part of f(zx)/f'(xk), i.e., the “middle” digits, in some
situations where the evaluation of f is mainly based on a multiplication. As a consequence,
new algorithms for inversion, division and square root are derived.

Another application of the “middle product” is the efficient computation of some trans-
posed multiplications [11].

We will make use of the following notations: M (n) denotes the complexity of the underly-
ing multiplication algorithm on two polynomials® of degree n; K(n) denotes the complexity
of Karatsuba’s algorithm, given by K (1) = 1, K(n) = 2K([n/2]) + K(|n/2]); FFT(n)
denotes the complexity of the Schénhage-Strassen multiplication algorithm [10].

The paper is organized as follows. Section 1 describes the basic trick in the specific case of
Karatsuba’s algorithm, proves its correctness and analyzes its complexity. Section 2 proves
that the trick is in fact functorial and exists for any underlying multiplication algorithm.
Sections 3 and 4 show how this trick can be used to compute the square and the inverse
of a power series of order n in respectively 1K (n) and K (n) (or 2FFT(n)) ring operations.
Section 5 studies the applications of these results to the computation of the quotient of two
power series; we give two algorithms, one based on the inverse and Karp-Markstein trick
that needs ~ $K(n) (or 2FFT(n)) ring operations and another one which needs K(n) (or
LFFT(n)logy(n)) operations.

In section 6, we study the problem of computing the square root of a power series. We
shall give an algorithm of complexity %K (n) based on Newton’s iteration, and an algorithm
of complexity 2K (n) in the worst case (roughly 0.66K (n) on average), based on the square
root with remainder.

In section 7, an implementation of these algorithms is presented, which confirms the
complexity results in practice.

We conclude the paper by a table summarizing the previous and new worst-case com-
plexities under the Karatsuba and FFT models, for the middle product, inverse, quotient

Tt may seem more natural to express the complexities of operations on power series in term of multi-
plications on power series (short products) instead of multiplications on polynomials (full products). For
example, if M*(n) denotes the complexity of a short product, Brent gives in [1, Table 7.1] upper bounds of
3M*(n), 4M*(n), and 5.5M*(n) for the inverse, quotient, and square root respectively. However all known
subquadratic algorithms for short products are based on full products, and in the FFT case, it is not even
known whether a short product can be computed faster than a full product! This explains our choice of the
full product as basic operation.

RR n°® 4664



4 Guillaume Hanrot , Michel Quercia and Paul Zimmermann

and square root operations, following work of Brent [1], Mulders [9], Burnikel and Ziegler

[2].

1 Newton’s iteration for the inverse and the basic trick

Newton’s iteration for computing 1/A — where A is a number, a polynomial, or a series —
follows the recurrence:
Tk+1 = Tk + $k(1 — A$k) (1)

Suppose we are looking for an approximation of 1/A to precision n. In the last step of
Newton’s iteration, xj is then accurate to precision n/2, and we have to compute Axy to
precision n, where the n/2 most significant? coefficients — or bits — of Az, vanish with
1. To get an approximation zy.; to precision n of 1/A, we multiply z; by the n/2 most
significant coefficients of 1 — Axy. The cost of this last step was 3M(n/2) so far: 2M(n/2)
for the product Az, which splits into two products of n/2 coefficients, and M (n/2) for the
product of zx by 1 — Azy. The total cost of Newton’s iteration to compute 1/A to precision
n is thus 3FFT (n) for FFT multiplication and 2K (n) for Karatsuba multiplication [6].

As we know in advance that the upper n/2 bits of Azxy will vanish with 1, a natural
question is the following: is there a faster way to compute directly the n/2 required bits —
from position n/2 to n — of the product Az;? We give in this section a positive answer
under the Karatsuba model. In the next section, we will show that the full answer lies deeper
but applies to any multiplication algorithm. Note that other papers already investigated the
computation of only part (usually the most significant bits) of the product of power series
or floating-point numbers. See e.g. [8], [9].

1.1 Example: Karatsuba model when n is a power of 2

We first start by describing our trick and then the corresponding algorithm in the simple
case when n is a power of 2, and when the underlying multiplication algorithm used is the
Karatsuba method.

Basic trick. For the sake of clarity, we suppose A is a Taylor series in the variable ¢ (at
t = 0). Assume we have A = ay + a1t + ast? and = = x¢ + x,t. We have
Az = apwo + (w1 + a170)t + (@121 + agx0)t* + agz:t?

and we want to compute
(CL().Z'l + al.’L'())t + (alxl + agmo)tQ.

The algorithm works as follows (see Fig. 1):

2By most significant, we mean the low order terms in the case of power series, and the leftmost digits in
the usual notation for floating-point numbers.

INRIA



The Middle Product Algorithm, I 5
A Aq A As

Xo u' v

X3 U v

u—+ v = o = MP(Xl, [AO;AI] + [A17A2])
u —-—v = ﬁ = MP(XO — Xl; [AlaAQ])
u +v = v = MP(XQ, [Al, A2] + [A27 A3])

Figure 1: MiddleProduct recursion

Algorithm MiddleProduct.

Input: z = z¢ + 21t, A = ag + a1t + ast?
Output: h = agx1 + a1z and | = a1 + asxg
1. o« (CL() + CL1).T1

2. B« ai(zg — x1)

3. Y ((1,1 + (1,2)370

4. h+a+pf

5. L+ ~v—p.

Now we can use this idea recursively (note that here and in the sequel we use MP as
a shortcut for MiddleProduct). This yields the following algorithm, described in the case
when n is a power of 2. See the next section for the general case.

Algorithm MP([zg, ..., %, 1], [a0, ..., G2, 2])

0. If n = 1, return [agxo]

1. p<«n/2.

2. a4+ MP([:EP, R ,Igp_l], [a,() +ap,...,0p 2+ agp_g])
3. ﬁ — MP([.’L'() —Zpy. .3 Tp—1 — pr—l]a [ap, R ,a3p_2])
4. v« MP([zg,...,2p_1],[ap + agp, - .., A3p_2 + Asp_2])
5. Return [ + 3,y — f]-

Theorem 1 When n is a power of two, Algorithm MP returns [cp—1, ..., Con—2| where ¢y =
> ik @iy, using exactly K(n) = n'82% ring multiplications.

2 The general situation

In this section, we give a more general and formal presentation of the trick described above.
This presentation is suitable for any multiplication algorithm, and gives, in the case of
Karatsuba and FFT multiplication, corresponding algorithms of the same complexity for
the middle product.

RR n°® 4664



6 Guillaume Hanrot , Michel Quercia and Paul Zimmermann

Lemma 1 Let A be a commutative ring. There is a natural isomorphism

Gnpq: (A") @4 (A7)) — (A")" @4 (AP)" @4 (A7)
g—1
(Uoy -y Ug1) — Z(uk ® er),
k=0

where (ey) is the dual basis of the canonical basis of AY. Furthermore, there is also an
isomorphism

Prpa: (A")" ®a (A7) @4 (A7) — (A7) ®4 (A7) ®a (A")
u — (Y, 2, X)) ulX,Y,Z),

where Y = (Yo, .- Yp—1) and Y = (Yp_1, ..., %)

PROOF. Obvious. |

Theorem 2 Let (f}), (g;), (e}) be the canonical bases of (A™)*, (AP)*, (A7)*.

— * * — * *

Let Hn,p,q — E fz ® g] and Mp,q,n - : : g] ® €k
0<i<n 0<j<p
0<j<p 0<k<gq . 0<k<q 0<i<n
i+j=k - Jj+k=i+p—1 -

Then
Mpgn = bpgn© © B p,g(Tn,p,g) (2)
b,q,n p,g,n pnapaq n,p,q n,p,q/*

PrROOF. This is a matter of a simple calculation:

N * * *
Gpan(Mpgn) = E 9; ® e ® [,
0<i<n
0<j<p
0<k<q
Jj+k=i+p—1
_ * * x * * *
Prpg © Pnpq(Unpg) = E g1 ®e® fi = E Qe [
0<i<n 0<i<n
0<j<p 0<j<p
0<k<q 0<k<q
itj=k itp—1—j=k

Corollary 1 With the notations of Theorem 2, let X € A", Y € AP and Z € AY. Then we
have

(X ‘ Mp,q,n(Y, Z)) = (Hn,p,q(Xa Y) ‘ Z), (3)

where (| ) denotes the canonical inner product of two vectors of the same length.

INRIA



The Middle Product Algorithm, I 7

PROOF. On the one hand we have
(X | MP:Q:” (Y7 Z)) = ¢paqan(Mp7q’n) (Y7 Z’ X)’
and on the other hand we have

(H”zp7Q(X’ }N/) ‘ Z) = ¢n,p,q(Hn,p,q) (X’ }77 Z) = pnip!q ° ¢n,p,q(Hn,p,q) (K Z’ X)'
Thus, both sides are equal according to (2). ]

The I1,, , , and M, ,, bilinear mappings are related to the product of power series in the
following way. Let X = (z¢,...,2,-1) € A", Y = (yo,...,Yp—1) € AP and Z = (29, ..., 24-1)

€ A9, We have
Z TilYjs - Z xiyj)

Hn,p,q(Xa Y) =
i+35=0 i+j=q—1

coefficients of t°,... ¢ in (3 z:t*) (D yjtj)>,

(
(

Mpn(Y,Z) = ( Z YjZks --es Z Z/j%)
(

Jj+k=p—1 j+k=n+p—2
coefficients of "1 ... "% in (3 y;t/) (> zktk))

From a practical point of view, Theorem 2 has the following meaning. One way of seeing
usual algorithms for computing products rest on finding a set of products of linear forms in
the multiplicands and expressing the coefficients to be computed as linear combinations of
those products®. Suppose that we have a formula

)4

Mopg(X,Y) = D (am | X) (b | Y)ew (4)

m=1

with a,, € A", b,, € AP and ¢,, € A%. Such a formula will be called “a decomposition of
I1,, , 4 into £ ring multiplications”. Then we have

(X | Mp,q,n(Ya Z)) = (Hn,p,q(Xa i/) | Z)
¢

= D (| X)(bu | V)(ew | 2)

m=1

14

= ) (am | X)(bm | YV)(cm | 2),

m=1
X being an arbitrary vector in A™. Therefore

14
Mpgn(Y,Z) = > (b | Y)(Cm | Z)am, (5)

m=1

3Note that for the algorithm to be efficient, not only has the set of products to be small, but the linear
forms and reconstruction formulas have to be evaluated with the smallest possible number of multiplications,
see e.g. the case of the FFT.

RR n°® 4664



8 Guillaume Hanrot , Michel Quercia and Paul Zimmermann

and M, ,, can also be decomposed into ¢ ring multiplications.

Matrix multiplication — With the above notations, let us write an,, = (ami, ..., 0mn),
b = (bints---3bmp), €m = (Cm1s---,Cmyq) and let A, B, C be the (¢,n), (¢,p) and (4, q)
corresponding matrices. Then formulas (4)—(5) read:

,,,(X,Y)=C" x (AX")x (BY")), M, .(Y,2)=A" x ((BY")x(C.Z")),

where * denote the component-wise product of two vectors of length /. From the “trans-
position principle” [5, Def. 8 and Th. 4], we conclude that one can transform a bilinear
algorithm P computing I, , ,(X,Y) into a bilinear algorithm M computing M, ,,(Y, Z).
If a(X), B(X) and v(X) denote the number of additions, multiplications by a known scalar
and multiplications between two indeterminates for algorithm X then we have

aM)=a(P)+q¢—p, BM)=B(P), yM)=~(P). (6)

This means, in the case p = n, ¢ = 2n—1, that from any multiplication bilinear algorithm
of complexity M(n) we can derive an algorithm for MP of complexity M(n). The number
of additions in the second algorithm exceeds the corresponding number for the first one by
n— 1.

We illustrate this theorem with two corollaries showing how to derive formulas for com-
puting MP under the two most usual non-trivial multiplication models.

Corollary 2 The Karatsuba algorithm can be adapted so as to yield an algorithm computing
MP(z,y) in K(n) multiplications.

PROOF. Let X = (xi)0§i<n e A" Y = (yj)0§j<n € A" and Z = (Zk)0§k<2n71 € A1 Write
n =ngy + ny1, with 0 < ng < ny and split X, Y in the following way.

X = [X(),Xl,XQ] Wlth XO = (il?(), e ;Ino—l)a X1 = (l‘no, e ,.Tnl_l), XQ = (l’nl, Ceey .’L‘n_l),

Y = [Yba lea Y'Q ] with YE) = (y()a DR yno—l)’ le = (ynm ce. ayn1—1)a }/2 = (ynu R yn—l)'
Note that the subvectors X; and Y; are empty when ny = n;. Furthermore, we define
Zy, Z19, Z11 and Zy as the following subvectors of Z:

Z() = (Zo, caay ZQnI,Q),
Zl() = (2711, cery 23711*2)7 le = (an, ceey Zn1+2n072)a
Ly = (Z2n1, ) Z2n—2)-

Then, using equation (3) and Karatsuba’s method, we can write

(X [ Mapn1n(Y,2)) = (Dopons(X,Y) [ 2)
= (T np,2n, -1 ([Xo, X1, [Yz, 171]) | ~Zo +~Zlo~)
— (I ny 20 —1 ([Xo - Xo, X4], [Yo = Y4, Y1) | Z1o)
+ (Mg mo,2n0—1(X2, Y0) | Z2 + Z11)
= ([Xo, X1] | My, 20110, ([Y1, Y2, Z0 + Z10))

INRIA



The Middle Product Algorithm, I 9

B Mo . 2n; — 1 . 2 — 1 ,
X :‘ XO !Xl! X2 ‘ Z:! ZO H Z2 ‘
ve[ % M %] i el
V=W 0] % ] oz e

Figure 2: Karatsuba and MP splitting.

— ([Xo — Xo, Xu] | My, 2ny 1,0, ([Y1, Yo — Y0, Z10))
+ (Xo | Mg 2no—1,n0(Yo, Zo + Z11))
= (X [[a— B,y +low(B)])
where
a = Mp on 10, ([Y1,Y2], Zo + Z10),
B = My on—10, (Y1, Yo = Y], Z10),
low(ﬂ) = (ﬁOa ceey ﬁno—l)a
Y = Mpg2ng-1m0 (Yo, Z2 + Z11).

X being an arbitrary vector of A™, we infer:
Mn,?nfl,n(yva Z) = [O! - ﬁa Y + IOW(ﬂ)] (7)

From a practical viewpoint, this formula yields optimal results for no = |n/2], n; = n—ny
(but see the first remark below). Finally, we get a direct Karatsuba-type algorithm for MP:

Algorithm MP-Karatsuba([yo, - - -, Yn_1], [0 - - - » 22n_2])
0. If n =1, return [yozo).
1. ng < [n/2], mn1 <« [n/2].

2. a < MP-Karatsuba([Yng, - - - Yn—1], [20 + Znys - - - » 22n1—2 + 230, —2))
3. If n is even

3.1 < MP-Karatsuba([¥n, — Yo, -+ Yn—-1 — Yno—1)s [Zn1s- - - » 230 —2))
else

3.2 ﬂ «— MP—Karatsuba([ynO, Yni — Y05+ Yn-1 — ynofl]a [an AR Z3n172])
4. 7y < MP-Karatsuba([yo, - - - Yng—1], [Zny + 22nys - - - Zny+2n0—2 + Zon—2])

5. Return [O{() - ﬁOa vy Qg1 — /Bnl—la Yo + ﬁOa ~e vy Yno—1 + ﬁno—l]-

Corollary 3 Schonhage’s FFT algorithm can be adapted so as to yield an algorithm com-
puting MP(z, y) in FFT (n) multiplications.

PROOF. Let w, be a fixed primitive (2n)-th root of unity, X € A", Y € A" and Z € A*".

The FF'T algorithm becomes, in our formalism,
1 2n—1

M n,on(X,Y) = oo D (@ ocicn] X) (@57 )o<jcnY) (wn ™ )o<k<an-
m=0

RR n°® 4664



10 Guillaume Hanrot , Michel Quercia and Paul Zimmermann

Hence we obtain from (4)—(5) the formula

2n—1

My onn(Y, Z) = o= > (@i¥)o<jen| V) (wn ™ )o<kean| Z) (@ )o<icn-

m=0

In more classical notations, if fz-(2 is the direct Fourier transform and gZ ) the inverse
one, we get

2n—1
Z Yz, = Zwmzf% 7,0,...,0)@"(2), 0<i<n.
0<j<n
0<k<2n
Jjt+k=i+n—1

This means that MP(z,y) can be computed in two Fourier transforms of size 2n and one
inverse Fourier transform of size 2n, which is exactly the same as for a full n X n product.
We leave the task of writing the detailed MP-FFT algorithm to the reader.

Remark. — The preceding formulas are still valid if we suppose X of length n + 1:

2n—1
Z ((w;m)0<z<n|X)(( ])O<]<n|Y)( Wn mk)oglc<2m
m=0
2n—1

Z ((%Tj)OSKnW) ((w;m)ogkzn Z) (w;"i)ogign,

m=0

1

I1n+l712n()( }/) 2n

1

A4n2n7r+1(yréz) 2n
therefore we can compute the n+ 1 middle coefficients of the product (3 y;t7)(3 2xt*) with
no additional operations (assuming no particular optimization).

3 Squaring power series

In this section, we show how to use the MP algorithm to compute the square of a power
series. This algorithm can also be used to compute the upper half part (or lower half part)
from the square of a polynomial.

Theorem 3 From an algorithm computing the product of two power series of order n in
M (n) operations, one can deduce — using the MP algorithm — an algorithm computing the
square of a power series of order n in R(n) ring multiplications, where R(n) = R([n/2]) +
M(|n/2]) + (nmod 2), R(1) = 1. Under the Karatsuba model, R(n) < %

PROOF. We use the following algorithm (at step 4 the second argument of MP should read
2ay, . ..,2a, 1] for n odd, p < 2). Let A = Y0 fa;it! = A + tPA;, we have A2 = A2 +
24, A1t? mod t*, plus an extra term a’t* when n is odd. At step 3 we have o = A*> mod ¢"~?,
and at step 4 3 gives the coefficients of degree n—p to n—1 of A2+2A4,A;t?, thus a+¢"?p,
plus a2t* when n is odd, gives A* mod ¢".

INRIA



The Middle Product Algorithm, I. 11

Algorithm MP-square([ay, ..., a, 1])

1. If n = 1, return [a2].

2. p<+ |n/2]

3. a < MP-square([ag, . .., an—p_1])

4. ﬁ — MP([&(), ceey ap_l], [an_2p+1, sy Qpo1, 2ap, ceey 2an_1])
5. if nmod 2 =1 then 3, ; < (3,1 + a’

6. Return [, ..., np-1,B0s - - -, Bp—1]-

Assume that R(k) < K& for k < n. If n = 2k, we have R(n) = R(k) + K (k) < 2B <

KL 1 p = 2k +1, then R(n) = R(k+1) + K (k) +1 < KEHUZKES o 2K DK R
K(n)+1

—Z2= using the fact that the sequence (K (n)) is strictly increasing with odd values.

4 Power series inversion

In this section, we explain how the MP algorithm can be applied, when plugged into Newton’s
iteration, to compute inverses.

Theorem 4 From an algorithm computing the product of two power series of order n in
M (n) operations, one can deduce — using the MP algorithm — an algorithm computing the
inverse of a power series of order n in one ring division and I(n) ring multiplications, where

I(n) = I([n/2]) + M([n/2]) + M([n/2)), I(1) = 0.

PrOOF. We describe the algorithm, which simply rests on Newton’s iteration, with the
usual product replaced by an MP call. According to the assumptions of the theorem, we
are given a multiplication algorithm, which we denote by mul, making M (n) operations on
two power series of order n. We can thus compute a middle product n x (2n — 1) in M (n)
multiplications also.

Algorithm MP-Inv([ag,...,a,_1])

0. If n =1, return [1/ay).

1. p« [n/2].

2. a < MP-Inv([ag, ..., an—p_1]);

3. B MP([ag, ..., Qn_p1],[a1,--., 0, 1,0])
4. v mul([ag, ..., 1],[Bo;-- -, Bp-1])

5. Return [, ..., n—p_1, —Y05- - -» —Vp_1]-

Note that the code above assumes in the MP call that MP can deal with its second argument
possibly larger than what is needed (when n is even). Otherwise one just needs to remove
the trailing 0 when n is even.

The algorithm performs just one division. The number of multiplications is given by the
relation I(1) =0, I(n) = I([n/2]) + M([n/2]) + M(|n/2]). ]

Tt can be shown that K(n + 1) — K(n) = 2*(+1 where z(n) is the number of zeroes in the binary
expansion of n.

RR n°® 4664



12 Guillaume Hanrot , Michel Quercia and Paul Zimmermann

Corollary 4 Using Karatsuba’s algorithm, we get an algorithm of complexity I(n) = K(n)—
1.

PROOF. Due to the fact that I(n) + 1 satisfies the same recurrence relation as K(n). =

Remark. — The analysis of all the FF'T variants from now on is biased by the fact that exact
FFT complexity (i.e., exact formulas for FF'T(n)) highly depends on the implementation. We
shall thus content ourselves with “reasonable estimates”, assuming mainly that FFT(2n) ~
2FFT(n) and FFT(n+ 1) ~ FFT(n).

In the present case, one gets that way I(n) ~ 2FFT(n).

Remark. — More generally, note that the mul call can be replaced by a call to Mulders’
short product method. This yields no improvement if n is a power of 2, but can otherwise
be significantly better. See [9] for more details.

5 Algorithms for power series division

5.1 Newton’s method

From our inversion algorithm, we can mechanically deduce a division algorithm as follows:

Theorem 5 The quotient of two degree n polynomials or two order n power series — called
short division by Mulders — can be computed in I(n) + M(n/2) operations.

ProOOF. We use Karp and Markstein’s trick [7] to incorporate the dividend in the last
Newton’s iteration. This can be done by using a short multiplication. Thus the total cost is

equivalent to that of one inversion plus one short multiplication of size n/2, i.e. I(n)+M (n/2),
i.e. 3K (n) under the Karatsuba model, and 2FFT(n) under the FFT model. =

Corollary 5 The division with remainder of a polynomial of degree 2n — 1 by a polynomial
of degree n can be performed in LFFT (n).

Remark. — The same remark as above applies concerning Mulders’ short product, but
the worst-case complexity %K (n) already improves on the previous best-known algorithm of
average complexity ~ 1.397K(n) from Mulders [9, Table 6]. However, see also subsection
5.2.

The corresponding algorithm is as follows:

Algorithm MP-Div-KM([by, .. ., bn—1], [@0,- - -, Gn_1])

0. If n =1, return [by/ay].

1. p« [n/2].

2. a < MP-Inv([ag,...,an—p_1]);

3. B+ mul(a, [b(), ceey bn—p—l]);

4. v+ MP(B, a1, ---,an_1,0]);

5. 0 <~ mul([ag,---, 1] [bn—p — Y05 -5 bn—1 — Vp-1]);
6. Return [By, ..., Bn—p_1,00,---;0p_1]-

INRIA



The Middle Product Algorithm, I. 13

5.2 Direct division using MP

Algorithm MP may also be used directly — i.e. without Newton’s iteration — to compute
the quotient of polynomials or power series. This new algorithm is described and analyzed
in this section.

Assume that we are dividing B by A, and split B as (By, B;), and A as (Ag, A1). Let
the quotient be @ = (Qg, @1). Then the algorithm can be illustrated by Figure 3.

B
@ ™ Ap(Qo, A)

@1

Figure 3: Algorithm MP-Divide.

Namely, the upper part of the quotient () is obtained by dividing By by Ay. The lower
part is then just obtained by dividing B; minus the middle terms of the product AQy (hence
MP(Qo, A)) by Ap. This gives more formally the following algorithm:

Algorithm MP-Divide ([bo, ..., bn—1], a0, ..., Gn-1])

0. If n = 1, return [by/aq].

1. p<+ |n/2].

2. a+— MP—DiVide([b(), cey bn—p—l]a [a(), ey an_p_l]).

3. 7 < MP(a, [a1, . . ., Qn_1,0]).

4. ﬂ — MP—Divide([bn_p —T05---, bn—l - Tp—l]; [0,0, cee ap_l]).
5. Return [a, 3].

Note that there, as in section 3, we assumed for the sake of simplicity that the second
argument of MP can be larger than needed.

Theorem 6 Algorithm MP-Divide with input B of degree n and A of degree n correctly
computes the first n terms of their quotient.

PRrROOF. Follows easily from the explanations of the picture above. [

Let D,,(n) be the number of multiplications in the base field, D4(n) be the number of
divisions. Then one has D4(n) = Dy(|n/2]) + Da([n/2]), and D4(1) = 1, hence Dy(n) = n.
As for D,,(n), we have D,,(n) = D,,([n/2]) + Dp(|n/2]) + M([n/2]), Dy(1) = 0.

Corollary 6 If the underlying multiplication algorithm is Karatsuba’s algorithm, then one
has Dy,(n) = K(n) — n.
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14 Guillaume Hanrot , Michel Quercia and Paul Zimmermann

ProoOF. This is obvious by a simple induction, since the recurrence relations are closely
related to those that one obtains for Karatsuba method. [

In the case of the FFT, we get the “reasonable estimate” Dy, (n) ~ 3 FFT(n)log,(n) for
n large enough. As a consequence, Newton’s method should be prefered in that case.

5.3 Division with remainder

Since Algorithm MP-Divide computes the quotient of two polynomials in K (n) operations,
and the remainder can be obtained from B — A- @ in K (n) additional operations, this yields
a division with remainder in 2K (n) operations, which equals the best known complexity in
the Karatsuba model [2].

We show in this section how to compute the remainder, i.e. the low part from A - @), in
2K (n) operations, which gives a division with remainder in 2K (n) operations.

In the following algorithm we assume that the high part S of AQ is known (which
is the case in division, since this is just the high part of the dividend B). Note that
Mul_low([ag, ..., Gn_1,[bo,---,bn_1)] for a and b of size n is defined as the n — 1 low terms of

the product a - b, i.e., [(Z?;kl_nﬂ ibk—i)ln<k<on—2.

Algorithm ShortRen([ag, - .., an_1],[d0s- - > Gn-1],[S0;- - -, Sn_1])

0. p+ [n/2].

1. T < Mul low([ap, -, Gn-1], [Gp,-- - qn-1])-

2. If n is even

2.1. U + Mul([ao +ap,...,ap1+ an_l], [qo +qp, -1+ qn_1]) ;

2.2 Return [ug +up —to — So — Spy - - -, Up—o + Ugp_2 — L2 — Sp_o — Sp—2, Up_1 —
Sp—1 — Sn—1, t(), . ,tp_g]

else

2.3 U « Mul([ag + ap, ..., ap—2 + Gn-1,0p—1], (G0 + Qps - - - Gp—2 + Gn—1, Gp—1]) ;

2.4 Return [up—1 —to — Sp—1, U+ Up —t1 — S0 — Spy - -, Up—a + Up—a — tp_3— Sp_a —
Sop—a, Up—3 + Uop_3 — Sp—3 — Sop—3, Up—2 + Uzp—2 — Sp—2 — Sp—1,%0, - - ., Tp—3].

Theorem 7 Algorithm ShortRem correctly computes the low half of A - Q, and uses %K(n)
operations under the Karatsuba model, if A and @) have size n.

PROOF. The idea is that the remainder comes from the computation A-(), which Karatsuba
decomposes as the three multiplications A¢Qy, A1Q1 and (Ag + A1)(Qo + Q1). But in the
present case, the upper half is already known, and we can recover Ay()y from it and the two
other products.

More precisely, put A = Ay + tPA;, Q = Qo + t*Q1, and write 4,Q = Ty + t" P~ 'T,
AoQo = Zo +1tPZ1, (Ao + A1) (Qo+ Q1) = Uy +t" PU;, S = Sy +t"PS;.

The low part of the remainder is simply the low part of A;Q)y, i.e. T;. By definition, S
is the high part of

AgQo + tP(AoQ1 + A1Qo) + 17 A1 Q. (8)

Ifnis even, SO = Z() and Sl = Z1 +U0 —T() —Z(). This implies that Z1 = Sl +T0 — U0+S().
According to (8), the high part of the remainder is the low part of (8), i.e., the low part of
(AoQ1 + A1Qy) plus the high part of A;Q4, namely To+U, —T — 7, = Uy+U; =T — Sy — S;.

INRIA



The Middle Product Algorithm, I. 15

If now n is odd, we have Sy = Zy, S = Z1+t(Uy—To—Zp), hence Z; = S1+tSy+tTo—tUy,
and the high part of the remainder is U; — T — Z; — tTy = tUy + U; — T — tSy — S1, and the
result follows.

The computation of 7" is a product of [§] x |5 ], which costs K(|n/2]); that of (4 +
A1) - (Qo+ Q1) is a full product [5] x [5], which costs K([n/2]) too. Thus ShortRem costs

K([n/2]) + K([n/2]) ~ 3K(n). .

Remark. — since we only need the sum of Uy or tU, and U;, we may replace the full
product (Ag + A1) - (Qo + Q1) by a product mod ¥ — 1, which would directly give the
sum Uy + U; or tUy + U;. If p is even or, better, divisible by a large power of 2, the
evaluation of such a product can be improved by simple FFT-like techniques, using the fact
that (z,y) — (x +y)/2 + t*(z — y)/2 is an isomorphism from A[t]/(t* — 1) x A[t]/(t* + 1)
onto A[t]/(t* — 1), when p = 2k, if the characteristic of the ring A is odd.

Remark. — When using FFT multiplication, the ShortRem algorithm is of no interest, since
it replaces a multiplication of size p by two multiplications of size p/2. However, the fact
that the product (Ay + A4;) - (Qo + Q1) is needed only modulo #* — 1 (whereas FFT might
compute it modulo #?” — 1) can probably be used to speed up things.

6 Algorithms for the square root of power series

6.1 Newton’s method

From our division algorithm, we can derive a square root algorithm by the classical Newton’s
A—w%
ZZEk )

iteration xpy1 = xx +
Theorem 8 The square root of a power series of order n can be computed in S(n) multi-
plications, with S(n) = S([n/2])+ D(|n/2]) + M([n/2] — 1), i.e., S(n) < K(n) —n under
the Karatsuba model and S(n) ~ ZFFT(n) under the FFT model.

The corresponding algorithm is as follows:

Algorithm MP-sqrt([ag, ..., 0, 1])

0. If n =1, return [,/ay).

1. p« [n/2].

2. a < MP-sqrt([ao, - - -, Gn—p_1]);

3. B mul([oq,...,0n—p-1],[0q; ..., Qn_p_1]);

4. 7 <= MP-Divide([an_p — Bnp-2,---s0n-1 — Pn_3), 2c);
5. Return [, ..., 0y p1,%05- - - » Vp—1)-

where at step 4 it is assumed that 3, , o = 0if n = 2, 8, 3 = 0 if n is even, and 2« is
truncated to p terms.

Remark. — Using the inverse square root iteration zy1 = zx+% (1—Az}) with Karp/Markstein
idea gives 2K (n) (using MP to evaluate (Azy)zy, one needs 4K (n/2) to go from precision
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16 Guillaume Hanrot , Michel Quercia and Paul Zimmermann

n/2 to n; and the last step on its own with the computation of y, = Axy requires three short
products of size n/2, i.e. K(n) operations).

Corollary 7 The square root of a power series can be computed in %K (n) multiplications
under the Karatsuba model, and 3FFT (n) multiplications under the FFT model.

PRrooOF. If one replaces the full product from step 3 by a short square giving the n —p — 1
high order terms of a? (§3) , one gets S(n) < 3K (n) under the Karatsuba model. In practice,
one just need to replace the call to mul by a call to MP-square.

For the FFT model, instead of dividing A — =z by z at step 4 of MP-sqrt, we multiply by
yr where g, = yx_1 +yr_1(1 — Txyx_1) is an approximation of 1/v/A, computed together with
xy. For the last step, this replaces one division of size n/2 by one multiplication of size n/2
— the last y, is not needed — and for the preceding steps this replaces one division of size
n/2* by three multiplications of size n/2¥, whence a total gain of M (n/2) for D(n) ~ 2M(n).
]

Corollary 8 The square root of a polynomial (i.e., a square root with remainder) can be
computed in gK (n) multiplications under the Karatsuba model.

ProOOF. Under the Karatsuba model, we can compute the square root S of a polynomial
of degree 2n — 2 in 3K (n) operations and the n — 1 low order terms of S? in K (n) + O(1)
operations using Algorithm MP-square, thus we are able to perform a square root with
remainder in 2K (n), improving the 2K (n) bound from [13].

6.2 A variant

We can also give a slightly more general algorithm. Assume that A is given to precision n,
and we have an approximation A = S? + tPR to the precision p. Write S’ = S + 6t?, with
§ of size n — p. One has A = S + RtP — 6tP(2S’ — 6t?). To get the right S’, we just need
that RtP — §tP(2S" — §tP) be 0 to precision n, hence 6 = R/(2S + §t?) to precision n — p.
This identity is meaningful as soon as p > 0, since the quotient is performed “online”: the
term of degree k£ of 6 only depends on the terms of § of degree < k£ — p. However for our
recursive algorithm to work, all the first half bits of (25 + §t?) are needed to compute the
first half of 6. Hence we can give an “in place” formulation of MP-Divide finding  as soon
as p > (n—p)/2, i.e., p > n/3. The previous algorithm corresponds to the case p = n/2,
hence we can ignore the term 6?7, and simply compute R/(2S) using MP-Divide.

Precisely, MP-Divide-inplace(a, g, ¢,n) computes the quotient of [ag, ..., a, 1] by [ qo,
.. »qn—1] and puts the result in [gy,. .., @eyn—1]-

Algorithm MP-Divide-inplace ([aq,-- -, @n_1],[q0,- - -, Gern_1],¢,n).
If n=1 gy + aog/qy- Return.

p <+ |n/2].

MP-Divide-inplace(a, q, ¥, n — p);

v MP([qZ, SRR QK-}—nfpfl], [QIa -y qn-1, 0])7
MP-Divide-inplace([@n—p — Y0, - -5 -1 — Vp-1],¢ ¢ +n — D, p).

W= o
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The Middle Product Algorithm, I. 17

Algorithm MP-sqrt-generic([ag,--.,ay_1], D).

0. If n = 1 return [{/ag].

1. o < Sqrt([ag, - - ., a2 2));

2. B «+ MP-square();

3. v+ 2a.

4. MP-Divide-inplace([a, — Bp—2;-- -, Q2p—2— B0, A2p—1, - - -, Cp—1], Y, D+ 1, n—Dp);
4. Return [ag, .-, Qp—1,%05 - - - Yn—p—1)-

One can then try to optimize the choice of the splitting point p. We have computed
the value of p giving the optimal number of multiplications under the Karatsuba model.
Experimental observations yield the following rule:

e for n between 2¥ and 2% +2%~1 choose p = 271, except for n = 2* +1 where one should
choose p = 2F=1 + 1 ;

e for n between 2~ 4 2% and 2¥*!, choose p = n — 2*.

Using those simple rules, we seem to get the optimal number of multiplications up to a 5%
loss; furthermore those rules seem to be asymptotically optimal. The asymptotic behaviour
for S(n)/K(n) is then limsup S(n)/K(n) = 3/4 (eg. for n = 2¥ where we use in fact the
first algorithm) and liminf S(n)/K (n) seems to be 17/28 (roughly 0.607... for n up to 2%%),

S(k)

and obtained for n = 2¥ + 2¥~1. On average we get 272° Eig}é *ery ~ 0-6607....

7 Implementation results

Since the algorithms we propose offer only a gain on the constant factor, it seemed to us
that a realistic (by opposition with complexity estimates) implementation was required. We
describe it shortly in the present section, and give experimental results on several different
architectures.

We chose to implement the algorithms on power series with coefficients in Z/pZ, with
p the largest prime such that p? fits into a machine word (p = 65521 on 32-bit machines,
p = 4294967291 on 64-bit machines).

For small sizes of arguments, quadratic algorithms are used. The optimal threshold for
each algorithm is determined by a tuning program. Experiments have been done for series
from degree 16 to 2000.

We discuss the results algorithm by algorithm.

7.1 Middle product

The middle product algorithm has been compared with Karatsuba’s algorithm. The thresh-
olds with the quadratic version are very similar on all architectures, though slightly smaller
for the middle product. In practice, we recover the expected result M P(n) ~ K(n). We
sometimes get (ev6 and K7) a little better, roughly 0.9K (n).
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7.2 Short square

We have compared the MP-square algorithm (see section 3) with the following algorithm:

Algorithm Kara-square([ag, . .., an_1])

0. If n = 1 return [ad].

1. p+ |n/2].

2. a +— mul([ag,...,an_p_1],[G0,- -, Gnp-1]);
3. B« mul([ag, .-, an—p-1], [Gnp,-- -, An_1])-
4. Return [«, 2/].

where the mul call at step 3. is a call to a short product (see [9]).

The theoretical complexity of this algorithm is %K (n). However, a square is usually
less expensive to compute than a product, i.e., the call at step 2 is on average of complex-
ity 0.8 K (n/2). With the average gain due to Mulders’ algorithm, we get an algorithm of
practical complexity 0.5K (n).

The MP-square code is of theoretical complexity K (n).

On the following diagrams, the upper curve is the time for execution of a full square using
Karatsuba, the second one is the time for computing a short square using Kara-square and
the third one the time for computing a short square using MP-square.
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7.3 Division

We have compared our MP-Divide algorithm with Burnikel-Ziegler division, in which we have
used short products to compute the remainder associated to the high part of the quotient.
We get the following diagrams:
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Division on a K7-550MHz Division on a ev6-500MHz
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7.4 Square root

We have compared our MP-Sqrt algorithm with Karatsuba square root (see [13]), in which
we have used the Kara-square algorithm. We get the following diagrams.
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7.5 Synthesis

The complexity results obtained in this paper, which might be subject to caution since
they deal with constants, are reliable. Our experiments confirm that we really obtain those
constants in practice. We even get slightly better since the middle product seems to perform
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slightly better than Karatsuba on a variety of machines. We do not have an explanation for
this phenomenon.

8 Conclusion

This paper presents a new algorithm to compute a short division of two degree n polynomials
or series in at most the same number K (n) of arithmetic operations as a full product using
Karatsuba’s algorithm. An implementation in Maple of these algorithms is available at the
URL http://www.loria.fr/~zimmerma/papers/MP.mpl.

In addition a new square root algorithm without remainder is presented, with an asymp-
totic complexity of 2K (n) in the worst case, roughly 0.66K (n) on average. Both algorithms
use a new algorithm to compute the n middle coefficients of a (2n — 1) x n product. A de-
tailed analysis of the number of coefficient operations used by those algorithms with respect
to previously known algorithms is given.

Our algorithms need only a O(n) memory space, i.e. proportional to the input size. If
one enables a larger memory usage, then other algorithms exist. In particular, Joris van der
Hoeven showed that a division with remainder can be performed in exactly K(n) operations
with so-called relazed algorithms [12].

It is possible to obtain floating point versions of the middle product algorithm wusing
only O(1) extra memory at each recursion step. This, and the applications to multiprecision
floating point arithmetic, is a work in progress and will be presented in a forthcoming paper

3]-

In [11], Victor Shoup asks if a matrix/vector product of the following form can be reduced
to a single multiplication of polynomials of degree less than n:

Vo U1 Up—1 bo
(%1 V2 Un by
Un-1 Up *°° Up—2 bn—1

This is exactly MP([b,_1, - - -, bol, [0, - - - , Uan_2]), whence the “middle product” algorithm par-
tially answers to that open question: it does not reduce the matrix/vector product to a single
n X n product, but to the same number of ring multiplications, provided the product algo-
rithm uses linear forms. This is a particular instance of the “transposition principle” problem
[4, Open Problem 6] in the case of Toeplitz matrices: if M is the (2n — 1) X n matrix with

M;; = xi_j for 0 < i —j < n, and M;; = 0 otherwise, y is the vector (ag,...,an_1)7,
and z is the vector (ag, o,-..,a9)", then M -y gives the full product of [zg,...,z, 1] and
[ag, - -, 0, 1], whereas M - z gives MP([zy, - - -, Tpn_1], (@0, - - - , G2n_2]), in Teversed order.

Table 1 is a synthetic presentation of the results obtained in the present paper. All
the complexities from Table 1 are worst-case complexities. Furthermore (cf. Table 2) we
improve the complexity of division with remainder to ZM (n) under the FFT model, that of
the square root with remainder to 2K (n) under the Karatsuba model, and 4M (n) under the
FFT model.
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Middle prod. Inverse Quotient Square root
Karatsu- | previous 2K (n) SK(n) [2] SK(n) [2] K(n) [13]
ba model | this paper | K(n) [Co. 2] | K(n) [Co. 4] | K(n) [Co. 6] | 2K (n) [Co. 7]
FFT previous 2M(n) 3M(n) TM(n) TM(n)
model | this paper | M(n) [Co. 3] | 2M(n) [Co. 4] | 2M(n) [Th. 5] | 3M(n) [Co. 7]

Table 1: Previous and new best-known complexities for several operations on power series,
under the Karatsuba and FF'T models.

Division with remainder | square root with remainder
Karatsu- | previous 2K (n) [2] 2K (n) [13]
ba model | this paper 2K(n) (Th. 7) 2K (n) (Co. 8)
FFT previous SM(n) SM(n)
model | this paper TM(n) (Co. 5) AM(n) (Co. 7)

Table 2: Previous and new best-known complexities for several operations on polynomials,
under the Karatsuba and FFT models.
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