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Abstract: In this paper, we study linear control systems over Ore algebras. Within this mathe-
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as time-varying systems of ordinary differential equations (ODEs), differential time-delay systems,
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Algorithmes effectifs pour la paramétrisation
des systémes de controle linéaires sur des algébres de Ore

Résumé : Dans ce papier, nous étudions les systémes de controle linéaires sur des algébres de
Ore. Cette approche nous permet d’étudier dans un méme cadre mathématique différentes classes
de systémes de controle linéaires telles que les systémes d’équations différentielles ordinaires (EDQOs)
variants dans le temps, les systémes différentiels & retards, les systémes sous-déterminés d’équations
aux dérivées partielles (EDPs), les systémes multidimensionnels discrets, les codes convolutionnels
multidimensionnels etc. Nous donnons des algorithmes effectifs vérifiant si un systéme de controle
linéaire sur une algébre de Ore est controlable, paramétrisable, plat ou 7-libre.

Mots-clés : Systémes linéaires sur des algébres de Ore, contrélabilité, paramétrisation, platitude,
w-liberté, algorithmes effectifs, bases de Grobner non-commutatives.



1 Introduction

Over the last thirty years, for practical and theoretical reasons, different new classes of linear con-
trol systems have been introduced such as differential time-delay systems, multidimensional systems,
partial differential equations, convolutional codes, hybrid systems... All these classes of systems are
governed by new types of mathematical equations and have needed new techniques in order to analyze
their structural properties and to synthesize new control laws. This growth of new types of control
systems has led to generalize some previously known results and techniques so that they could be
used for more general classes of systems. The main interest is to get similar concepts, techniques and
algorithms for studying different classes of linear systems.

In this paper, we study linear control systems over Ore algebras. An Ore algebra is an alge-
bra of non-commutative functional operators which satisfy certain commutation rules. For instance,
differential /time-delay/advance/discrete shift/divided difference... operators are examples of ele-
ments of some Ore algebras. Within this mathematical framework, we can simultaneously deal with
different classes of linear control systems such as time-varying ordinary differential systems (ODEs),
differential time-delay systems, partial differential equations (PDEs), multidimensional discrete sys-
tems. .. Moreover, the recent extension of Grébner bases to some non-commutative polynomial rings
allows us to work effectively in Ore algebras [6, 7].

The purpose of this paper is to give effective algorithms which check whether or not a linear
control system over some Ore algebra is controllable, parametrizable, flat or 7-free. These problems
have been intensively studied in [11, 20, 21] for linear differential time-delay systems and, in [22, 24,
25, 26, 27, 29, 30, 31, 32, 36, 37], for linear multidimensional systems. The main novelty of this paper
is to present algorithms which work for both classes of systems as well as for new ones. In particular,
our approach allows us to effectively obtain parametrizations of a controllable plant and flat outputs
of a flat system. Let us notice that such algorithms were still missing for linear differential time-delay
systems (see [11, 20, 21] for more details). The results developed in this paper give new effective
machinery for the study of the structural properties of linear systems. We hope that they could play
important roles for the study of motion planning or tracking [11, 20, 21].

Ore algebras are rings of non-commutative polynomials that represent linear functional operators in
anatural way. A recent extension of the theory of Grobner bases to this setting [5] makes manipulations
of (one-sided) ideals of Ore algebras effective. We recall the basics of this theory in Section 2. As is
the case for linear differential systems of algebraic analysis, a fundamental remark is that a module
over an Ore algebra is canonically associated with any linear control system. Before we provide the
readers in Section 4 with a dictionary, first introduced in [30], between structural properties of control
systems and algebraic properties of modules, we recall in Section 3 the definitions and results of
module theory to be used in the rest of the article. Next, the question is to algorithmically decide
the algebraic properties of modules. This is done by means of homological algebra in Sections 5
and 7. The good point is that the central homological objects as syzygy modules, free resolutions,
and extension modules can all be computed by algorithms which we recall and exemplify on cases
of application. In passing, the classical notion of involution, which exchanges left and right module
structures, is recalled in Section 6, where explicit examples of involutions of Ore algebras that appear
in control theory are also given.

Beside realizing the applicability of non-commutative Grébner bases to make the theory algorith-
mic, the main contribution of the paper lies in the new approach for the proofs of algorithms in
Sections 8 and 9. These sections extend earlier results, previously obtained in special situations only,
to the broad setting of linear control systems over Ore algebras. After collecting further results of
homological algebra that could prove difficult to find in the literature, Section 8 gives an algorithm
to determine whether a control system is parametrizable and, if so, to compute a parametrization,
while, if not, to compute a basis of autonomous elements. Section 9 restricts to control systems over
commutative Ore algebras in order to provide algorithms for deciding flatness, for studying n-freeness,
and when they exist, for computing left and right inverses and minimal parametrizations.

In an appendix, we have illustrated all the main results and algorithms of the paper with explicit
examples. All the computations were done using the Maple package OreModules written by the authors
based on the library Mgfun [6]. These libraries as well as all the example worksheets of the appendix
are available on the web page http://wwwb.math.rwth-aachen.de/OreModules. Some results are
new (e.g., the parametrization of the electric transmission line [20, 34]) and we believe that these
examples have some educational interest.

Some of the results developed in this paper were firstly presented in the conference papers [8, 9].
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2 Ore algebras

2.1 Definition and examples

In order to deal with different classes of linear systems (ODEs, PDEs, differential time-delay systems,
discrete systems, multidimensional systems. ..) in a unified framework, we represent them by means
of matrices with entries in an Ore algebra of functional operators.

Definition 2.1. 1. [17] Let A be an integral domain (i.e., ab = 0,a # 0 = b = 0). The skew
polynomial ring A[0;0,6] is the non-commutative ring consisting of all polynomials in 9 with
coefficients in A obeying the commutation rule

da=o0c(a)d+6(a), a€A, (1)
where ¢ is a k-algebra endomorphism of A, namely o : A — A satisfies

o(1) =1,
o(a+b)=0(a)+a(b), a,be A,
o(ab) =o(a)o(b), a,be A,

and 6 is a o-derivation of A, namely 6 : A — A satisfies:

{ 8(a+b) =6(a) +6(b), a,b€ A,
6(ab) =0(a)é(b) +6(a)db, a,be A.

2. [7] Let A = k[z1,...,z,] be a commutative polynomial ring over a field k£ (if n = 0 then A = k).
The iterated skew polynomial ring D = A[d1;01,61] ... [Om; Om, Om] is called Ore algebra if the
o;’s and ¢;’s commute for 1 <4, j < m and satisfy:

O'i(aj):aj, 61-(6]-):0, 7 <.

Remark 2.2. [7, 17] Let D = A[0;0,6] be a skew polynomial ring. Every element P of D has a
unique normal form which is given by P = Y"1 | a; 9" for suitable a; € A and n € Zx¢. If a,, # 0,
then the degree of P is n. For every Ore algebra, we get a similar normal form of its elements by
moving all products of 9y, ..., &, on the right in each summand.

Example 2.3. Our first example is the Weyl algebra A; = k[t][9; o, §], where:
d
dt’

Rule (1) expresses the commutation of the operator which acts as differentiation w.r.t. ¢:

g = id}c[t], 6=

d d
da=ad+ d_LZ’ a € k[t], to compare with 9 (ay)=ady+ (d_ttl) .

For instance, we associate R = [0 1 — A(t) : —B(t)] € AP*"*™ with the time-varying Kalman system
z(t) = A(t) z(t) + B(t) u(t), where A and B are polynomial matrices in ¢.

Similar to polynomial rings in 2n indeterminates, we can define the so-called Weyl algebra A, =
k[x1,...,20][01;01,61] .. [On; On,0,], where o; and 6; on k[zy,...,z,] are the maps
0
- 15] xX; ’

and every other commutation rule is prescribed by Definition 2.1. In particular, we have:

0; = idk[ml,...,zn]a 61 i= ]-7 ceey My

Oix; =2;0; +6i5, 1<4,7<mn, where §;;=1,if¢=j, and 0 else.

Example 2.4. The algebra of shift operators with polynomial coefficients is another special case of
an Ore algebra. For h € R, we define S, = k[t][6n; on, 8] by:
on(a)(t) =a(t—h), é(a) =0, a€kft].

Hence, the commutation rule 6, t = (t — h) 8, actually represents the action of the shift operator on
polynomials. For instance, the matrix of operators R = [1 — 6§, : —67] € S,ll><2 is associated with the
time-delay system xz(t) = z(t — h) + u(t — 2 h). Let us notice that 9, is a time-delay operator if h > 0
and an advance operator if h < 0.
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Example 2.5. In order to treat differential time-delay systems, we mix the constructions of the two
preceding examples. We define the Ore algebra D), = k[t][0; 01, 61][0r; 02, 02], where:

d

o o) =at—h), =0, heR, ackl

o1 = idgpy, 01 =
For instance, we associate the matrix R = [0 — A(t) : —B(t)6,] € D:X("+m) with the system
z(t) = A(t) z(t) + B(t) u(t — h), where A and B are polynomial matrices in ¢.
If the considered system also involves the advance operator, which is the inverse operator of the
time-delay operator, then we may work with the Ore algebra

Hy, = k[t][0; 01, 61][0n; 02, 62][Th; 03, 3],
where o;, 6;, 1 = 1,2, are as above and:

o3(a)(t) =a(t+h), 63=0, a€k[t].
We then compute with elements of H;, modulo 6, 7, = 7, 65, = 1.

Example 2.6. In order to study multidimensional discrete linear systems, we define the following
Ore algebra D = k[z1,...,2,][01;01,01] - .. [On;On, 6n], where o; and 6; on k[z1,...,z,] are the maps:

O'i(a)(.’ll']_,-..7.’ll'n):a(xl,...,xi,1,$i+1,.’Ei+17-.<,$n), 61':07 7/21,,72

Similarly to Example 2.5, we can define an Ore algebra which combines the shift operator o; and the
inverse shift 7; defined by 7 (a)(z1,--.,zn) = a(x1,- .., Ti—1,2;—1,Zit1,.-.,Zn)- Such a construction
is then a generalization of the Laurent polynomial ring to non-commutative polynomials.

Ore algebras based on other functional operators can also be defined (discrete shifts, divided
differences, g-shift, Eulerian operators...). We refer to [7, 17] for more examples.

2.2 Properties of Ore algebras & Grobner bases

We summarize the most important properties of Ore algebras that will enable us to computationally
deal with modules over Ore algebras.

Proposition 2.7. [7] If A has the left Ore property (resp. right Ore property), namely, for each pair
(a1,a2) € A x A, there is a pair (0,0) # (b1, b2) € A x A such that by a1 = baas (resp. a1 by = az ba),
then A[0;a,0] has also the left (resp. right) Ore property.

Proposition 2.8. [17] If A is an integral domain and o is injective, then the skew polynomial ring
A[0;0,6] is an integral domain.

Proposition 2.9. [17] If A is a left noetherian ring and o is an automorphism (e.g., A,, Sh, Dp,
H},), then the skew polynomial ring A[0; 0, 6] is a left noetherian ring.

In order to study systems over (non-commutative) polynomial rings effectively, we need to introduce
some algorithmic methods based on Grobner bases. We first need monomial orders to compare (non-
commutative) polynomials.

Definition 2.10. 1. Let D be an Ore algebra. A monomial order < on D is defined as a total
order on the set of monomials Mon(D) satisfying 1 < m for all monomials m € Mon(D) and, if
my < ma holds for two monomials mq, ms € Mon(D), then mq -n < ma - n for all n € Mon(D).

2. Given a polynomial P € D and a monomial order <, we can compare the monomials with a
non-zero coefficient in P w.r.t. <. The greatest of these monomials is the leading monomial
Im(P) of P.

Definition 2.11. [1] Let A be a polynomial ring and I an ideal of A. A set of non-zero polynomials
G ={91,-..,9:} is called a Grobner basis for I if for all 0 # f € I, there exists 1 < < ¢ such that
Im(g;) divides Im(f).

Remark 2.12. A consequence of the condition that defines Grébner bases is that every polynomial
fin I is reduced to 0 modulo G, i.e., by iterative division of f by suitable g; € G we obtain the zero
polynomial.
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For the case of commutative polynomial rings, Buchberger’s algorithm ([1, 2]) computes Grébner
bases of polynomial ideals. The next theorem states that this algorithm can be extended to certain
Ore algebras. Every Ore algebra within our scope is of this kind.

Theorem 2.13. [7, 12] Let A = k[z1,...,xy] be the polynomial ring with n indeterminates over the
field k and A[d1;01,61] ... [Om; Om,0m] an Ore algebra with

ai(a:j):aijxj+bij, 61(.1']):0” 1<i<m, 1<753<n, (2)
for certain a;; € k\ {0}, bij € k, ¢;j € A. If the ¢i; are of total degree at most 1 in the x;’s, then a
non-commutative version of Buchberger’s algorithm terminates for any monomial order on x1,...,%n,
O1,...,0m, and its result is a Grébner basis w.r.t. the given monomial order.

An important technique that uses Grobner bases is elimination of variables.

Definition 2.14. [1] Let D be the polynomial ring over k with variables %1,...,Zn, Y1,---,Ym-
Assume that monomial orders <, and <, on the monomials that contain only the x;’s or y;’s resp.
are given. An elimination order is then defined by

mi-ng < mMmg- Ng <= M1 <gpMy Or My = ms and nq <y N2,
. .. , ,
where m1, mo (resp. m1,m2) are monomials containing only the x;’s (resp. v;’s).

The elimination order which we shall use in this paper is the one induced by the degree reverse
lexicographical orders on x1, ..., , and y1, - .., Y resp.. This is a very common order called lexdeg
in the Maple package Groebner.

Example 2.15. Given an ideal I of D, we obtain a Grobner basis of the ideal I N kfyi,...,ym] by
computing the Grobner basis G of I w.r.t. an elimination order and intersecting G with k[y1, ..., ¥m]
(which amounts only to omit all polynomials in G that involve any x;).

3 Module theory over Ore algebras

Let us give a motivation for the use of modules. Let D be an integral domain and let us consider a
system of equations

P
> Rijy; =0, 1<i<yg, (3)
j=1

where R;; € D, p,q € N. By collecting the coefficients R;;, we obtain a matrix R € D?*P which,
multiplied by the column vector y = (y; : ... :y,)T, yields system (3) again.
Let us consider the following left D-morphism (D-linear map):

Dlxq -R l)1><p7

(P:...:P) — (Pi:...:P)R.

Then, im .R = D'X9 R is the left D-module generated by the left D-linear combinations of the rows
of R (namely, the ring D acts on the elements of im .R = D'*? R from the left).

Let us show how system (3) corresponds to the left D-module M = D'*?/D'%4 R. We denote by
{ei}1<i<p (resp. {fj}1<j<q) the canonical basis of D'XP (resp. D**?), namely e, is the row vector with
1 in 4th position and 0 elsewhere. Let us define by 7 : D'*P — M the left D-morphism which maps
every element of D!*P to its residue class in M, i.e., modulo D9 R (r()\;) = 7(\3) & I u € DIX4
such that A\; — A2 = p R). Then, fori =1,...,¢q, we have

P P P
fiR=(Rj:...:Rjp) =Y Rjie;e D R=>n(f;R)=m (Z}@m) = Rjim(e;) =0,
i=1 i=1

=1 =

and thus, if we denote by y; = 7(e;) the residue class of e; in M, then M is defined by
P
> Ruyi=0, 1<j<gq, & Ry=0,
i=1

as well as by the left D-linear combinations of its equations, where y = (y1 : ... : yp)T. The left
D-module M = D'*?P/D1*4 R is finitely generated because every element m € M can be written as
m =Y "% P;y;, where P, € D.
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Definition 3.1. We say that the finitely generated left D-module M = D'*?/D'*¢ R is associated
with (or corresponds to) (3).

Let us recall that if D is a commutative ring, then a left D-module M is also a right D-module
and conversely. In this case, we shall only say that M is a D-module.

Example 3.2. Let us consider an Ore algebra Dy = R(a, k, {, w)[0;01,61][0n; 02, 62] of the type of
Example 2.5 and revisit the following wind tunnel model defined in [19]

21(t) = —ax1(t) + kaza(t — h),
Ta(t) = 23(t), (4)
#3(t) = —w? 2o (t) — 2 Cwas(t) + w? u(t),

where a, k, ( and w are real constants. System (4) gives rise to the following matrix

o+a —kabdp 0 0
R= 0 d -1 0 € D34, (5)
0 w? 0+2(w —w?

and thus, system (4) corresponds to the (left) Dj-module M = D;**/D,;*3 R.

In Section 4, we shall develop a dictionary between the properties of the left D-module M and the
properties of the system Ry = 0. But, at first, let us introduce some defintions of module theory and
homological algebra.

Definition 3.3. [33] Let D be an integral domain.

1. A family (M;);cz of D-modules together with a family (d;);cz of D-module morphisms d; :
M; — M;_; is a complez, if d; od;y1 = 0 for all ¢ € Z. We write:

.. —>di+2 i1 —>di+1 M; i M;_1 —>di_1 ce (6)
The complex (6) is called exact at position i if the defect of exactness of (6) at position i,
H(Mz) = ker d,/lm di+1,

is equal to 0 or, equivalently, if ker d; = im d; 1. The complex (6) is called ezact if it is exact at
every position.

2. The exact sequence 0 — M’ Tom L — 0, i.e., where f is injective, g is surjective and
kerg =im f, is called a short exact sequence.

We recall some properties of D-modules that will be important in the course of the paper.

Definition 3.4. [33] Let D be an integral domain which is a left Ore ring and M a finitely generated
left D-module.

1. The left D-module M is free if it is isomorphic to D1*¢ for a certain s € Zxg.
2. M is a stably free left D-module if there exist 7, s € Z>q such that M & D'X" = Dxs,

3. M is a projective left D-module if there exist a left D-module N and s € Z3o such that
M @ N = D'xs,

4. Define by homp(M, D) the right D-module consisting of all D-morphisms M — D. The set
homp(homp(M, D), D) is again a left D-module and there is a canonical map

EM :M—’homD(homD(MvD)vD)v EM(m)(f):f(m)v
m € M, f € homp(M, D). If €)s is an isomorphism, then M is called reflexive left D-module.

5. Theset t(M)={m e M |30# P € D: Pm =0} is a left submodule of M which is called
the torsion submodule of M. The non-zero elements of t(M) are all the torsion elements of M.
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6. The left D-module M is called torsion-free if its torsion submodule is trivial, i.e., t(M) = 0.
We have similar definitions for right D-modules over integral domains which are right Ore rings.

Let us notice that the fact that ¢(M) is a (left/right) D-submodule of M implies that we have the
short exact sequence:
00— t(M)— M — M/t(M) — 0.

Proposition 3.5. [33] Let D be an integral domain which is a (left/right) Ore ring and M be a finitely
generated (left/right) D-module. Then, we have the following implications among these concepts:

free = projective = reflexive = torsion-free.

Theorem 3.6. 1. [17, 88] If D is a left hereditary ring — namely, every left ideal of D is a
left projective D-module — (e.g., a commutative Dedekind domain, D = A; ), then every finitely
generated torsion-free left D-module is projective. Moreover, if D is o left principal ideal domain
— namely, every left ideal of D is principal — (e.g., k[z] or k(t)[0;idx), 41, where k is a field
of constants), then every finitely generated torsion-free left D-module is free.

2. [17, 33] Every projective module over a commutative polynomial ring with coefficients in a field
is free (Quillen-Suslin theorem,).

Definition 3.7. [33] A short exact sequence of (left/right) D-modules 0 — M’ Lo LM —o0
is called a split exact sequence if one of the following equivalent conditions is satisfied:

e there exists an D-morphism h : M" — M such that go h = idy»,
e there exists an D-morphism k : M — M’ such that ko f = idy,

e the (left/right) D-module M is isomorphic to the direct sum of M’ and M", which is denoted
by M = M' @& M", or equivalently, there exist two D-morphisms

¢=(lg€):M—>M’€BM”,

v=(f:h): MM — M,
satisfying ¢ o ¥ = idarrgr and ¥ o ¢ = idyy.
Proposition 3.8. [/, 33] If M" is a (left/right) projective D-module and M' and M are (left/right)

D-modules, then the short exact sequence 0 — M’ Jom L m—o splits.
In the course of the paper, we shall need the following classical lemma.

Lemma 3.9. [83] Let D be a commutative noetherian ring, M a finitely generated D-module and
S a multiplicatively closed subset of D (namely, 1 € S and Vs1, 82 € S = s185 € S). Let us
introduce the commutative noetherian ring S~'D = {a/s|a € D, s € S} and the S~ D-module
ST D®p M ={m/s|me M, se€ S}. Then, we have:

S~ D @p ext), (M, D) = ext’

Y1 p(ST'Dep M,57' D), j>0.

In the following sections, we shall develop effective algorithms based on Grébner bases in order to
check whether or not a left D-module M associated with a linear control system (e.g., the differential
time-delay system (4)) is torsion-free, reflexive, ..., or free. In the next section, we shall give some
system interpretations of these properties of modules.

4 System interpretations of module properties

In what follows, we shall not precise the Ore algebra D we use (e.g., if we study time-varying ordinary
differential systems (resp. differential time-delay systems...), then D = A; (resp. D = Dj,...)).

Let us give some system interpretations of the previous properties of modules by introducing
some definitions which generalize to linear systems over Ore algebras some definitions commonly used
in the literature for some particular classes of systems (e.g., ordinary/partial differential equations,
differential time-delay systems). In the following definition and the next proposition, the references
therein refer to the particular classes of systems for which these concepts have been firstly introduced.
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Definition 4.1. o [25, 36] An observable of a linear control system Ry = 0 is a scalar D-linear
combination of the components of y (i.e., of the system variables including inputs, states, out-
puts). An observable ¢(y) is called autonomous if it satisfies some linear equation by itself,
namely P ¢(y) = 0, where 0 # P € D. An observable is said to be free if it is not autonomous.

e [11, 25, 36] A linear control system is said to be controllable if every observable is free.

e [25, 26, 27] A linear control system Ry = 0 is parametrizable if there exist a matrix R_; with en-
tries in D and arbitrary functions z such that the compatibility conditions of the inhomogeneous
system y = R_; z are exactly generated by Ry = 0 or, equivalently, if there exists R_; € DP*™
such that M = D*?/D1*¢ R =2 D1*P R_;. Then, R_; is called a parametrization of the system
Ry =0 and z is a potential of the system.

e [11, 20, 31] If a linear control system is parametrized by R_; and there exist a matrix S_; with
entries in D and 0 # 7 € D satisfying S_1 R_1 = 7 I, where I denotes the identity matrix, then
the system is said to be w-free.

e [11,20] A linear control system is flat (or free) if it is 1-free or, in other words, it is parametrizable
and every component z; of the potential z is an observable of the system or, equivalently, if
there exists a parametrization R_; € DP*™ which admits a left-inverse S_y € D™*P i.e.,
S_1R_1 = I,,. Then, z is called a flat output of the system.

We refer to [36] for a nice survey on the duality existing between the module-theoretic approach
[11, 20, 21, 25, 26, 27, 30] and the behavioural approach [10, 22, 23, 32, 37] to multidimensional
systems. This duality was firstly observed and developed by U. Oberst in [18]. Let us notice that
research of parametrizations for multidimensional linear systems is called the image representation
problem in the behavioural approach.

Proposition 4.2. Let D be an Ore algebra, R € D7*P and M = D' ?/D'*9 R the left D-module
associated with the system Ry = 0 (see Definition 3.1).

1. [25, 26, 36] The observables of the system are in a one-to-one correspondence with the left
D-module M.

2. [11, 22, 25, 26, 86] The autonomous elements of the system are in a one-to-one correspondence
with the torsion elements of M.

3. [11, 20, 22, 25, 26] The system is controllable iff M is a torsion-free left D-module.

4. [11, 20] If D is a commutative polynomial ring, then the system is m-free iff there exists a
polynomial 0 # m € D such that D @p M = {m/fa|m € M,a=7",n € Z>o} is a free D, =
{b/a|b€ D, a=r",n € Zx>o}-module.

5. [11, 20] The system is flat iff M is a free left D-module. Then, a basis of M is a flat output of
the system.

Let us recall the following well-known concepts of coprimeness developed in the literature of mul-
tidimensional systems. These concepts allow us to classify the systems.

Definition 4.3. [11, 18, 27, 37] Let D = R]z1,...,2,] be a commutative polynomial ring, R a full
row rank matriz (namely, its rows are D-linearly independent) in D%, J the ideal generated by the
g x g minors of R and V(J) = {£ € C"|VP € J: P(£) = 0} the algebraic variety defined by J.
Then,

e R is called minor left-prime if dimcV(J) < n — 1, i.e., the greatest common divisor of all the
q X ¢ minors of R is 1.

e R is called weakly zero left-prime if dimgV(J) < 0, i.e., all the ¢ X ¢ minors of R may only
vanish simultaneously in a finite number of points of C™.

e R is called zero left-prime if dimgV(J) = —1, i.e., all the g X ¢ minors of R do not vanish
simultaneously in C™.

Theorem 4.4. [11, 18, 27] Let D = Rzy,...,2,] be a commutative polynomial ring and R o full
row rank matriz in D?*P. Then, we have:
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1. R is minor left-prime iff the D-module M = D'*P /DX R is torsion-free.
2. If n = 3, then R is weakly zero left-prime iff the D-module M = D*P/D1*% R is reflexive.
3. R is zero left-prime iff the D-module M = D**P /DX R is free.

Hence, the concepts of torsion-freeness, reflexiveness, projectiveness and freeness generalize to non-
commutative polynomial rings the well-known concepts of primeness developed for multidimensional
systems [27]. The next sections are dedicated to giving effective algorithms which check the module
properties and compute the parametrizations and flat outputs.

5 Syzygy modules and free resolutions

Let M be a finitely generated left module over a left noetherian ring D. We can reformulate the fact
that M is finitely generated by saying that there exists a surjective D-morphism ¢ : D'X? — M which
maps the ith vector of the canonical basis {e;}1<i<, of D*P to some m; € M. We have the exact
sequence:

D> 2, M — 0,

e; —  m;.

This map can fail to be injective since there can be linear relations among the {m;}1<i<p:

P P
kergp ={P=(Py:...: P,) € D™? | o(P) =) Pip(e;) =Y Pim; =0} (7)

i=1 i=1
Definition 5.1. [33] The D-linear relations among the mq, ..., m, form the left D-module S(M)

defined by (7) which is called the syzygy module of M (this module is uniquely defined up to projective
equivalence [33]). A similar definition exists for right D-modules.

Since D is a left noetherian ring, S(M) is a finitely generated left D-module. Therefore, we can
again find a suitable free D-module D'*? and a map 1) sending the canonical basis vectors of D!*4
to a family of generators of S(M) and we have the following exact sequence:

Dixe Y, pix» £, 4,

This exact sequence is called a finite presentation of the left D-module M and M is said to be finitely
presented. Let us notice that, w.r.t. the canonical (standard) bases of D'*? and D'*P, 1) is defined by
multiplication on the right with the matrix whose ith row corresponds to the ith generator of S(M).
Finally, iterating the preceding construction, we get the definition of a free resolution of the D-module
M.

Definition 5.2. 1. [33] An exact sequence of the form
LB, p B p A py o (8)

is called a (left/right) projective resolution of M if the D-modules P; are projective (left/right)
D-modules. The (left/right) D-module S;(M) = kerd; is called the ith syzygy module of M.

2. [33] If the D-modules P; in (8) are free, then (8) is a free resolution of M.

3. [33] Let 0 — P, S, P, 1 Lnot, Ly, P 4, P, Lo, M — 0bea projective resolution of

M. We define the length of this resolution to be n.

4. [33] The minimal length of a left (resp. right) projective resolution of M is called the left (resp.
right) projective dimension pd,(pM) (resp. pdp(Mp)) of the left (resp. right) D-module M.
The (left/right) projective dimension can be infinite.

5. [33] We set lgld D = sup{pdp(pM) | M aleft D-module} € Z>( U {00}, which is called the
left global dimension of D. Similarly for the right global dimension rgld D. If D is commutative,
then we write gld D =1gld D = rgld D.
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We describe the computational tools for the construction of free resolutions. The techniques to
compute syzygy modules use Grobner bases and elimination techniques (see Section 6.1 of [2]). Let D
be an Ore algebra which satisfies (2) and L a finitely generated left D-module which is a submodule
of a free D-module D'*P, p € N. Thus, a set of generators of L consists of row vectors in D1*P,

Algorithm 5.3.
Input: Set of generators {Ry, ..., R,} C D'*? of the left D-module L,

where RZ = (R,l : "':R’ip); 1= 1,.‘.,q.
Output: S € D™ such that the left D-module D'*" S is the syzygy module S(L) of L.
SYZYGIES (Ry,. .., Ry)
Introduce the indeterminates Ay, ..., Ap, ft1,- .., g over D.

P {EleRU)\] — s |’L= 1,,(]}

Compute the Grobner basis G of P in the free left D-module generated by Ai,..., Ap, i1, ..., lg,
namely @ , DX\; & @_, D p;, w.r.t. an order which eliminates the \;’s.

S = (S”) € DT> hGﬂ@gle,ui = {Z;I-:lsij,uj | 1= 1,...,7’}.

Remark 5.4. Let us suppose that we have R € D?*? and the left D-module M = D'*?/D1*¢ R,
Then, we can apply the preceding algorithm to the set formed by

Ri=(Ry:...:Ryp) € L=DRCD™, i=1,...,q,

in order to obtain the matrix S = (S,;) € D"*? such that

q
S(M)=ker.R={(P,:...: P;) € D'*7 | ZPiRiZO}ZDIXTS
1=1

and we obtain the exact sequence D'*" =25 pixa &, pixp T, a1 0. Iterating the process, we
obtain a free resolution of the left D-module M.

For further developments and optimization of the technique, see [14].

Example 5.5. Let D), be the differential time-delay Ore algebra introduced in Example 3.2, R € D3**
defined by (5) and the Dj-module L = D}** RT generated by the rows of the matrix:

d+a 0 0
—kaé 0 w?
T _ h 4x3
R = 0 -1 0+2¢w |EPn
0 0 —w?

We shall see later that the transposed matrix RT plays an important role in the characterization of
the algebraic properties of the Dj-module M = D}L“ / D,{LX3 R. Let us compute the syzygy module of
the Dj-module L. The reduced Grobner basis of

P= {(6+a))\1 — 1, —kadp A1+ 0 Ao +w2)\3—ug,—)\2+(8+2(w))\3—ug,—wzz\g—m}

w.r.t. the elimination ordering induced by the degree reverse lexicographical orderings on A\; > Ay > A3
and g1 > po > g > pg > 6p > O resp. is:

G={w?h+0ps+w?uz+2¢wpa, w*kady A1 +w? pa +w? 9 puz + (8% +2¢ w0 + w?) pa,
Wkabypr +Wo+w?a)ps + (W +w?ad)us + (8% +(2¢w+a)d? + (w?+2alw)d
+aw?®) pa, (8 +a) M — p1, @ Az + g}

Intersecting G with @?:1 D p; we get

S={w?kabypus + (W*O+w?a) s+ (W20 +w?ad)uz + (8° + (2¢w +a) 9+
(W? +2aCw)d+aw?) py}

If we denote by R”, the following row vector with entries in D,
RT, = (W¥kaén: w?0+wa: w?d?+w?ad: P +2Cw+a)d?* + (W +2alw)d+aw?),

then we obtain the following free resolution of the D-module N = D}*®/D,** RT:

T
0 — D), ==t pix4 £, pbxs 1,y g 9)
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We conclude this section by giving examples of left (right) global dimensions and by stating that
free resolutions of finite length exist for every finitely generated module over Ore algebras D =
AlO1;01,61] - - . [Om; Om,6m), where all o; are automorphisms. Note that every Ore algebra that we
consider is of this kind (see e.g., Examples 2.3, 2.4, and 2.5).

Proposition 5.6. [17] Let A be an integral domain with a finite left (resp. right) global dimension
lgld A (resp. tgld A) and o an automorphism of A.

1. The left (resp. right) global dimension of A[0;0, 6] satisfies:
lgld A <lgld A[0;0,6] <lgldA+1 (rgld A <rgld A[0;0,6] <rgld A +1).
If 6 =0, then we have:

lgld A[9;0,0] =1gld A+1 (rgld A[9;0,0] =rgld A +1).

2. If k is a field, then we have 1gld k[z1,...,x,] = rgldk[xy1,...,2,] = n and the Weyl algebra
A, (see Ezample 2.3) satisfies 1gld A, = rgld A, = n if k is a field of characteristic 0 and
lgld A,, = rgld A,, = 2n if k is a field of characteristic p > 0.

Example 5.7. By the preceding proposition, the Ore algebra S, of Example 2.4 has left (resp. right)
global dimension 2 because Igld k[t] = rgld k[t] = 1. For the Ore algebra D), of Example 2.5, we have
lgld D), = rgld D, = 2 since k[t][0; 01,61] = Aq has left (resp. right) global dimension 1 and 6, = 0.

Let us notice that we do not know examples of rings satisfying lgld A[9; 0, 8] = 1gld A.

Proposition 5.8. [17, 83] Let D = A[d1;01,61] ... [Om; Om,0m] be an Ore algebra, where o; is an
automorphism, i = 1,...,m, and M a finitely generated (left/right) D-module. Then, there is a free
resolution of M of length less than or equal lgld D + 1 (resp. rgld D + 1).

Proof. Tteratively applying Corollary 3.3 of [17] according to the construction of D from the field %,
it follows that every finitely generated projective (left/right) D-module P is stably free. Since D has
finite (left/right) global dimension according to Proposition 5.6, M has a projective resolution (8) of
length less or equal to lgld D (resp. rgld D), where all P; are finitely generated projective, i.e., stably
free (left/right) D-modules. Now, Lemma 9.40 of [33] states that, if M has a stably free resolution of
length n, namely a resolution of the form (8) where every F; is a stably free (left/right) D-module,
then M has a free resolution of length less or equal to n + 1. Hence, we conclude that M has a free
resolution of length less or equal to lgld D 4+ 1 (resp. rgld D + 1). O

Let us notice that the previous result is a reminiscence of the concept of a Janet sequence developed
in the theory of differential operators [25].

6 Involutions

Definition 6.1. Let k be a field and D a (non-commutative) k-algebra. An involution 6 of D is a
k-linear map 6 : D — D satisfying

9(&1 . (1,2) = G(ag) . 0(0,1)7 ai,ay € D, (10)
Aol = idD,

i.e., # is an anti-automorphism of order two of the k-algebra D.

Proposition 6.2. By means of an involution 6 of D, left D-modules can be turned into right D-
modules and vice versa: let D be a k-algebra, M a right D-module and § an involution of D, then we
can define the left D-module M, which is equal to M as o set and which is endowed with the same
addition as M, but with the following left action of D:

am =méb(a), meM, a€D.

Property (10) of 6 ensures that M isa well-defined left D-module.
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Example 6.3. 1. Let D be a commutative ring (e.g., D = k[z1,...,2,]). Then, § = idp is a
trivial involution of D.

2. Let A, = k[x1,...,2,][01;01,061] ... [On;0n,0n] be the Weyl algebra (see Example 2.3). An
involution 0 of A, can be defined by z; — z;, 9;— —0;, 1<i<n.

3. Let S, = k[t][6n; on, 6] be the shift Ore algebra (see Example 2.4). An involution 6 of S), can
be defined by t — —t, 6, — Op.

4. Let Hy, = k[t][0;01,61][6n; 02, 82][Th; 03, 63] be the Ore algebra of differential time-delay and
advance operators (see Example 2.5 for more details). An involution § of Hj, can be defined by
t—t, O~ —0, On—Th, Tn+r On.

5. We can prove that there is no non-trivial involution for the Ore algebra D), of differential time-
delay operators (see Example 2.5). Therefore, we need to embed Dy, into the Ore algebra Hj, of
differential time-delay and advance operators.

Definition 6.4. Let D be a left Ore algebra with an involution 6, R € D?%? and M = D'*?/D*¢ R
a left D-module.

e The dual M* of M is the right D-module defined by homp (M, D).
e The transposed module of M is the right D-module defined by:
N =D?/RDP".
If D is a commutative ring, then we have N = D'X9/D'*? RT  which explains the terminology.
e The adjoint module of M is the left D-module defined by
N = D'*1/D'*?§(R),
where 6(R) is the transpose of the matrix obtained by applying 6 to each of its entries, i.e.:

G(R) = (G(Rij))fgigq,lgjgp‘

Hence, the left D-module N = D¢ /DXPQ(R) corresponds to the linear system 6(R)z = 0,
where 2 = (21 : ... : 24)%.

Example 6.5. 1. If D is a commutative ring (e.g., D» = R(a, k, {, w)[0; 01,61][0n; 02, 2] defined
in Example 3.2), then the involution @ is just the transposition of matrices, namely 8(R) = R”,
and the transposed D-module is defined by N = D*9/D*? RT = D1/RDP = N.

2. Let us consider the Ore algebra H), = k[t][0;01,61][0n; 02, 02][Th; 03, 03] defined in Example 2.5
and R = [t : —t28,] € H}**. Then, using 4 of Example 6.3, we obtain:

O(R) = ( __7_‘3:2 ) — ( —(_tt—fh_)"’lrh ) € H¥,
7 Computation of extension modules
Definition 7.1. [33] Let M be a finitely generated left D-module, M’ a left D-module and
Ny AR TN - RN /Y
a free resolution of M. Then, the defects of exactness of the complex
.. —— homp(Fy, M') <2 homp(Fy, M") <5 homp (Fy, M') — 0,
where df is defined by di(f) = f od; for f € homp(F;_1,M'), i > 1, are defined by the abelian

groups:
{ext%(M,M’) = kerd; = homp(M, M"),

exth,(M,M') = kerd;,,/imd}, i>1.
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In the following, we shall only consider the case M " = D, and thus, ext’, (M, D), i € Z>o. Let us
notice that ext}, (M, D), i € Z>o, inherit a right module structure by the right action of D.

Proposition 7.2. [33] The right D-module ext’,(M, D) only depends on M, i.e., we can choose any
free resolution of M to compute ext’,(M, D), i € Zxo.

The next algorithm gives a description of the left D-module ext}, (M, D), which corresponds to
the right D-module ext}, (M, D) (see Proposition 6.2).

Algorithm 7.3.
Input: Ore algebra D satisfying (2) with an involution § and R = (R{ : ...: R])T € D9*?.
Output: A list L = (L, L) of two matrices such that:

Ly € D™*4 is such that ext}, (M, D) = D'*™ L, /D'*? §(R), where M = D'*?/D'*1 R,
L, € D9*7 is such that L; = SYZYGIES (Ls).

ADJEXT1 (R)
Ry — SyzycIes (R),
Ly « 0(R2),
Ly «— SYZYGIES (Ls),
L «— (Ll, Lg)

Proof. The module M is given as the cokernel D*?/D'*9R of the D-linear map:
Dixa i DLxp.
Computing the first syzygy module of M, we obtain a matrix Ry € D"*? such that the sequence
pixr -_RQ_>D1><q -B, Dixp
is exact. Upon dualization, we get the complex
prx1 Ba- paxl i prx1

with defect of exactness ext},(M, D) = ker(Ry.)/RDP*! at D9*!. Taking adjoints and writing Ly =
A(R2) € DI*", we obtain the complex

D1><’r Lo D1><q O(R) Dl)(p

——

with defect of exactness extl,(M, D). Computing the first syzygy module of coker(.L,) yields the
exact sequence
Dlxr (-L_2D1><q & Dlxm

such that:

—

exth, (M, D) = ker(.Ly)/D'**P§(R) = D**™L, /D' *P4(R).
O

Example 7.4. Let us compute extbh (N, Dy,) of the Dyp-module N defined in Example 5.5. In Ex-
ample 5.5, we have already computed the free resolution (9) of N = D}LX3 /D}L><4 RT. Thus, we
have ker .RT = D, RT,, where R”, is defined in Example 5.5. Then, using the fact that D; =
R(a, k, ¢, w)[8;01,61][6n; 02, 82] is a commutative polynomial ring, we obtain that §(RL;) = R_; (see
1 of Example 6.3). Hence, we have the following complex

i -R
0 — Dy «—— D;** «= D;"** —0

and its defects of exactness are defined by:

exth, (N,Dy) = ker.R_i/D}*®R, (1)
ext}h, (N,Dy) = Du/DY*R_;. (12)
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Following Algorithm 7.3, we need to compute the syzygy module of D}LM R_1. The reduced Grobner
basis of
P={(w?kabp) X — 1, (W20 +w?a) X — pa, (w? 8% +w?ad) X\ — pus,
(B +2¢wd?+ad*+w?d+2alwd+aw?) X — s}
w.r.t. the elimination ordering induced by the degree reverse lexicographical orderings on A and
1 > o > ps > g > 6p > O resp. is:

G={(0+a)m —kabps, w?pz+(0+2Cw)ps —w? pa, 8z — 3,
w2 (@+a)A—p2, wkadA—p}.

Therefore, we obtain that the syzygy module of D}L“ R_ is defined by the matrix

O+a —kaby 0 0
L= 0 w? d+2¢w —w? | € D¥, (13)
0 0 -1 0

and thus, we have ext}, (N, Dy) = D,*® L/D;*® R. Finally, using (12), ext?, (N, D) corresponds to
the system associated with R_; z = 0, namely:

(14)

Note that ext%h (N, Dy) # 0 because, otherwise, in G, we would have had A — 2?21 P; u;, for some
P; € Dy,.

The quotient module ext},(M, D) = D™ L; /D'X? §(R) can be computed using elimination tech-
niques similar to Algorithm 5.3.

Algorithm 7.5.
Input: ReD?Pand Ly = (If:...:11)T € D™*9 computed by ADJIEXT1(R).
Output: A set S of generating equations satisfied by the residue class

z; of [T in the left D-module D'*™ L; /D*? §(R).

QUOTIENT (L1, R)
Introduce the indeterminates Aq,..., Ay and pq, ..., by over D.
Compute 6(R).
fori=1,...,m do
L= {30 1l A — it UL 0(R)ks Ay | k=1,...,p}
Compute the Grobner basis G; of L in @j_, DA; ® D p;
w.r.t. an order which eliminates the A;’s.

endfor
S — U;r;l(Gl n D/,Lz)

Remark 7.6. In the result of the preceding algorithm, each G; N D u; is a generating set of the
relations fulfilled by z;. Let us notice that every polynomial in G; N D u; has the form P pu;, for a
certain P € D.

Example 7.7. In Example 7.4, we proved that ext}, (N,D,) = D;*® L/D;*® R, where R (resp. L)
is defined by (5) (resp. (13)), N = D;*3/D}** RT and Dj, = R(a, k, {, w)[0;01,61][6n; 02,62]. In
order to check whether or not ext}, (N, Dy) is equal to 0, we apply QUOTIENT(L, R) described in
Algorithm 7.5. If we denote

R=RT:Ry: RN, L= :13:1)7,

then we easily check that we have G;ND u; = {u;}, fori =1,...,3, because we have Iy = Ry, lo = R,
I3 = R,. Hence, we have D} *® L = D, *® R, which shows that ext}, (N,Dy)=D,”**L/D;** R =0.

The next algorithm gives a description of ext}, (M, D) = D} *™ Ly /D, *? §(R) in which the quotient
is explicitly computed.
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Algorithm 7.8.

Input:  An Ore algebra D satisfying (2) with an involution # and R = (R{ :...: R])" € D1*?.
Output: A tuple L = (Lo, L1, L2) such that:
Li=(If :...:15)T € D™*1 is such that

extL(M, D) = DY*™ L, /D**? §(R), where M = D'XP/D'*4 R,
L, € D9*" is such that L1 = SYzyGIES(Ls),
Ly is the set of the relations satisfied by the residue class z;
of IT in the left D-module D'*™ L;/D*? §(R).
ExT1(R)

(L1,L2) «— ADJEXT(R),

Lq — QUOTIENT(L1, R),

L« (Lg, Ly, Ly).

Remark 7.9. First of all, if Ly is an identity matrix, then we have exth(M,D) = 0 (e.g., see
Example 7.7). Secondly, let us notice that while using EXT1, we start to compute a free resolution of
the left D-module M (see Algorithm 7.3). If we denote this resolution by

. . .R
L Bs, pixee B2, pixpn B, pixee T4 g

—~—

where py = p, p1 = ¢ and R; = R, then EXT1(R;) computes ext®, (M, D), i > 1.

8 Characterization of module properties

The main motivation for introducing the concept of extension functor is explained in the next theorems
which give an effective way to check the module properties defined in Section 3, and thus, the structural
properties of the corresponding linear control system (see Section 4).

Definition 8.1. Let A and B be two rings and M an abelian group. M is said to be an A-B-bimodule,
denoted 4 Mp if M is a left A-module and a right B-module and the two actions are related by the
following associative law Va € A, Vb€ B, Vm € M, a(mb) = (am)b.

In this section, D is supposed to be a left and a right noetherian integral domain having the left
and right Ore properties (see Proposition 2.7). Let us recall a classical result in homological algebra
saying that a short exact sequence of bimodules gives rise to a long exact sequence of the cohomology
right modules.

Lemma 8.2. [33] Let N be a left D-module and 0 — A — B — C' — 0 an ezact sequence of
D-D-bimodules. Then, we have the following exact sequence of right D-modules:

0 — homp(N,A) — homp(N,B) — homp(N,C)
—  exth(N,4) — exth(N,B) — exth(V,0)
—  exty(N,4) —

Theorem 8.3. [29] Let M be a left D-module defined by the finite presentation
F - Fy— M —s0, (15)

and the right D-module N the transposed module of M defined by:

*

O<—N<—Ff<d—1F6"<—M*<—O. (16)
Then t(M) = extl, (N, D). In particular, M is a torsion-free left D-module iff extl,(N, D) = 0.
D D

Proof. Let X be a D-D-bimodule. Then, applying the right exact functor X ®p - [4, 33] to the exact
sequence (15) gives the exact sequence

idx ®ds
_—

XopFR X®pF — X®p M — 0,
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whereas applying the left exact functor hom(-, X') to the exact sequence (16) yields the exact sequence:
0 — homp(N, X) — homp(Fy, X) — homp(Fy, X).

Using that the F; are finitely generated free left D-modules, we have homp(F*, X) = X ®p F; [33],
for 4 = 1,2, and thus, we finally obtain the following exact sequence:

0 — homp(N,X) — X@pF — X®p Fy — X®p M — 0. (17)

Now, let K = Q(D) be the quotient field of D with its bimodule structure and let us consider the
exact sequence of D-D-bimodules:

0—D—K— K/D—0. (18)
Using Lemma 8.2 with A = D, B= K, C = K/D, we get the exact sequence of right D-modules
0 —s homp(N, D) —s homp(N, K) — homp(N, K/D) — exth(N,D) — 0, (19)
because exth, (N, K) = 0 since K is a left injective D-module (see [33] for more details).
Moreover, by applying the right exact functor - ® p M to the short exact sequence (18), we obtain
the exact sequence of left D-modules
M K®p M — (K/D)®p M — 0,
which extends to the following exact sequence:
0—t(M) — M2 Kop M — (K/D)®p M — 0, (20)

where the kernel of the D-morphism ik, defined by {m € M |ix(m) = 1 ® m = 0}, is the left
submodule of M formed by all elements m € M for which there exists 0 # d € D such that dm = 0,
i.e., the torsion submodule ¢(M) of M [33].

Using the fact that the F; are finitely generated free left D-modules, and thus, flat left D-modules
[4, 33], by applying - ® p F; to the exact sequence (18), we obtain the exact sequence:

0—>E—>K®DF,'—>(K'/D)®DFZ'—>O. (21)

Finally, combining together the exact sequences (17) for X = D, K and K/D, (19), (20) and (21),
we obtain the following commutative exact diagram:

0

0 0 0 t(M)
1 1 !

0 — homp (N, D) — Fy — Fy — M — 0
1 1 1

0 e homD(N,K) —_— K®p Fy — K ®p Fy —_ KQ®p M —_— 0

! l 1 1

0 — homp(N,K/D) — (K/D)®p F1 — (K/D)®pFy — (K/D)®p M — 0.
1 1 ! 1
exth (N, D) 0 0 0

1
0

Then, an easy chase in the previous commutative exact diagram shows that t(M) = exth (N, D). O

Lemma 8.4. [{] If My =% My =2 M3z =% M, is a complex of (left/right) D-modules, then we have
an ezract ker-coker sequence induced by the map as

0 — H(Ms,) — coker ay — kerag — ker H(M3) — 0,

where H(M;) is the defect of exactness of the complex at M;, namely H(M;) = kera; /ima;_1, 4 = 2,3,
and cokerag = Mz /im oy .

Theorem 8.5. Let M be a finitely presented left D-module, i.e., defined by the finite presentation
(15), and N the transposed module of M defined by the finite presentation (16). Then, we have the
following exact sequence:

0 — exth(N,D) — M 24 M* — ext} (N, D) — 0. (22)
Hence, M is a reflezive left D-module iff ext’, (N, D) =0,i=1, 2.
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Proof. Let (15) be a finite presentation of M. Then, its transposed module is defined by N = coker dj
in the exact sequence (16). We extend this finite presentation to an exact sequence by computing the
second and the third syzygy module of N. We obtain the following exact sequence:

* dI * ds * dil *
0— N «— F «— Fy «— F*, «— F7,. (23)

Dualizing the exact sequence (23) and using the fact that F; is canonically isomorphic to F;* because
the F; are finitely generated free left D-modules, we obtain the following complex

RS lr, 2, (24)

Now, applying Lemma 8.4 to the complex (24) and using the definitions of extl, (N, D) and
ext? (N, D), we obtain the exact sequence:

0 — exth (N, D) — cokerd; — kerd_; — ext% (N, D) — 0.

According to the presentation of M, we have M = cokerd;. Now, using the exact sequences (16)
and (23), we obtain the following exact sequence:

d*
0 — M* =kerd] «— F*; «—— F*,. (25)
By applying the left exact functor homp (-, D) to (25) [4, 33], we obtain the following exact sequence

0— M*™ — F, X8,

proving that M** = kerd_;. Finally, we have the exact sequence (22), which proves that M = M**
iff extt)(N,D) = 0,i =1, 2. O

Corollary 8.6. Let M be a finitely generated left D-module satisfying homp(M,D) = 0. Then, M
18 a torsion left D-module.

Proof. If M* = homp(M,D) =0, then M** = homp(M*,D) = 0. Then, using the exact sequence
(22), we obtain that extl,(N,D) = kerey, = M. Finally, using Theorem 8.3, we obtain that t(M) =
extl,(N,D) = M, i.e., M is a torsion left D-module. O

Theorem 8.7. Let us suppose that rgld D = n < +o00 and let M be a left D-module defined by the
finite presentation (15) and N its transposed module defined by the finite presentation (16). Then, M
is a projective left D-module iff ext’,(N,D) =0, i=1,...,1gld D.

Proof. = Let us suppose that M is a projective left D-module. In particular, M is a reflexive left
D-module, and thus, by Theorem 8.5, we have ext’,(N,D) =0,i =1, 2.
Let us notice that from the exact sequence (16), we deduce [4, 33]:

ext'T?(N,D) = ext’,(M*,D), i>1.

Now, using the fact that M is a projective left D-module, we obtain that M* is a projective right
D-module. Therefore, we have ext’s(M*, D) = 0, i > 1 [4, 33] which implies that ext’, (N, D) = 0,
1 > 3, and finally proves the first implication.

< Let us suppose that extﬁ)(N ,D)=0,i=1,...,rgld D. Let us consider a projective resolution
of length rgld D of the right D-module N:

Tr
0— N— P p 2 p 2 edl

Prglap +— 0. (26)

Dualizing (26) and using the fact that ext’, (N, D) = 0,4 = 1,...,1gld D, we obtain that the following
complex

* * * *
* x T x T2 « T3 Trgld D *
0— N* — Py L Py 5 Py 25 2 P — 0 (27)

is an exact sequence. The dual of a projective D-module is also a projective D-module [4, 33|, and
thus, P} is a projective left D-module for ¢ = 0,...,rq4 p. Moreover, the exact sequence (27) ends

with a projective left D-module Py,4 p, and thus, (27) is a split exact sequence (see Proposition 3.8).
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Therefore, by induction, we deduce that imr} is a projective left D-module for i = 1,...,rgld D, and
thus, we obtain the split exact sequence

0— N*— Py —imr] — 0,

which shows that Py &2 N* @imry], i.e., N* is a projective left D-module. Hence, the right D-module
N** is also projective. Dualizing again the split exact sequence (27) and using the fact that the P;
are projective D-modules, and thus, reflexive, namely P}* 2 P;, we obtain the split exact sequence

Trgld D
O‘—N**<—P0<T—1P1<T—2P2<T—3 i

Pglap «+— 0,

from which we deduce that N = N** and thus, N is a projective right D-module. The exact
sequence (16) ends with the projective right D-module N, and thus, (16) is a split exact sequence (see
Proposition 3.8). Thus, we deduce that M* is a projective right D-module, which implies that M**
is a projective left D-module. Finally, using the fact that ext%, (N, D) = 0, i = 1,2, by Theorem 8.5,
we obtain that M =2 M™** and thus, M is a projective left D-module. O

Corollary 8.8. Let M = D% /D% R be a left D-module and N = D'*9/DY%? (R) the transposed
module of M. Then, we have the following equivalences:

1. The system Ry = 0 is parametrizable iff t(M) = extl,(N,D) = 0. Then, the matriz Lo in
EXT1(R) is a parametrization of the system Ry = 0.

2. If R has full row rank, namely S(D'*% R) = 0, then the following assertions are equivalent:

(a) M is a projective left D-module,
(b) IS e€DP*i: RS =1,
(c) N =extl,(M,D) =0.

Proof. 1. = Let us suppose that Ry = 0 is parametrizable. Then there exists R_; € DP*™ such that
M = DY? /D4R = DP R | C D™, Therefore, the left D-module M is isomorphic to a left
submodule ¢(M) of D1*™ where ¢ is the isomorphism between M and D'*P R_;. Let us suppose
that there exists a non-zero torsion element z € M satisfying d z = 0, where 0 # d € D. Then, we have
¢(d z) = 0, and thus, using the fact that ¢ is a D-morphism, then we obtain d ¢(z) = 0, i.e., ¢(z) is a
torsion element of D'*™. But, D'X™ is a free left D-module, and thus, {(D**™) = 0, which proves
that t(M) = exth, (N, D) = 0 (or, equivalently, if {e;}1<i<m is a basis of D1*™ then z = Y"1~ a;e;,
where a; € D, and thus, dz =0 = da; =0, =1,...,m, because {e;}1<i<m is a basis, which proves
that a; =0,i=1,...,m,ie., 2 =0, since 0 # d € D and D is an integral domain).
1. < Let us consider the following free resolution of N:

O(R_1)

0 — N - D1><q H(R) D1><p D1><m.

Using the fact that ¢(M) = extl, (N, D) = 0, we have the following exact sequence:
D1><q _R> Dlxp B—1 Dlxm‘
Therefore, we have M = D1*P/D1*4 R = coker .R = im.R_; = D'*P R_,,i.e., Ry = 0 is parametrized

by means of R_;.
2. Using the fact that M is defined by a full row rank matrix, we have the exact sequence:

0— Dxa B pixr _, pr 0. (28)
Dualizing this exact sequence, we obtain the following exact sequence
0— N« DI & pr e M* 0, (29)
where we easily check that N = extL, (M, D).
a = b. Let us suppose that M is a projective left D-module. Therefore, (28) is a split exact

sequence because it ends in a projective left D-module (see Proposition 3.8), i.e., there exists S € DP*?
such that RS = I,.
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b = c. Let us suppose that there exists S € DP*? such that RS = I;. Hence, for all A € D9, we
have Ry = A with u = S A € DP. Therefore, the D-morphism R. : DP — DY is surjective, and thus,
N = coker R. = 0.

¢ = a. Let us suppose that N = 0. Then, (29) ends in a free D-module, and thus, (29) splits
(see Proposition 3.8), i.e., there exists S € DP*? such that RS = I,. Therefore, (28) is also a split
exact sequence, and thus, we have D1XP = D!X4 g M, which proves that M is a projective left
D-module. O

Example 8.9. Let us check whether or not the differential time-delay system defined by (4) is
controllable or, equivalently, parametrizable. By Proposition 4.2, we know that (4) is controllable iff
the D,-module M = D}**/D}*3 R is torsion-free, where R is defined by (5). By Theorem 8.3, this is
equivalent to check ext}, (N, Dh) =0, where N = D, *3/D}** RT (see 1 of Example 6.5). Therefore,
system (4) is controllable and, using 1 of Corollary 8 8, we deduce that a parametrization of (4) is
given by the matrix R4 deﬁned in Example 5.5:

(W?kady) 2(t) = 21 (1),

(w20 +w?a) 2(t) = 22 (t),

(w282 +w? ad) 2(t) = z3(t),

(0% + (2w +a) 9 + (w* +2a(w) 0+ aw?) 2(t) = u(t),

Finally, the fact that ext3, (N, Dy) # 0 implies that M = D;**/D;*® R is not a projective, and thus,
is not a free Dj-module (see 2 of Theorem 3.6). The obstruction for M to be free is given by (14): the
fact that system (14) is not equivalent to y = 0 means that it is not possible to express z in terms of a
Dp-linear combination of x1, x5, 3 and u. Therefore, (4) is not a flat differential time-delay system.

9 rw-freeness, minimal parametrizations and flatness

9.1 Left-Inverses & m-freeness

In order to check the flatness of a linear control system, we need to know whether or not the as-
sociated D-module is projective, and thus, by Theorem 8.7, we need to compute ext’; (N, D) for
t=1,...,rgld D. However, if the system is defined by a full row rank matrix, then 2 of Corollary 8.8
gives a more economic way to check projectiveness. We need to check if R admits a right-inverse S.

Algorithm 9.1.
Input: An Ore algebra D satisfying (2) and a matrix R € DI*P.
Output: A matrix S € DP*? satisfying SR = I, if it exists and [ | otherwise.

LEFT-INVERSE (R)
Introduce the indeterminates A\;, y =1,...,pand p;, ¢ =1,...,q, over D.
P« {E?:lRij)‘j — M; |Z: ].,...,q},
Compute the Grobner basis G of P in @Y, DX\ & @7, D ;
w.r.t. an order which eliminates the \;’s.
Remove from G the elements which do not contain any A;
and call G’ this new set.
Write G’ in the form Q1 - (A1 :...: A\) T = Qo (p1 : ... pg) T
If Q, is invertible in D, then return S = Q' Q2 € DP*9, else return [ |.

Now, we can compute a right-inverse S € DP*? of R € D9*? (RS = I,), when such an in-
verse exists, by doing RIGHT-INVERSE(R) = O(LEFT-INVERSE(A(R))). Therefore, if R € D?*P
has full row rank, by 2 of Corollary 8.8, the left D-module M = D'X?/D1X4 R is projective iff
RIGHT-INVERSE(R) # [].

Example 9.2. Let us consider again the differential time-delay system defined by (4). Applying
Algorithm 9.1 to §(R) = RT, where R is defined by (5), we are led to the Grébner basis G defined
in Example 5.5. We easily check that G does not contain any relation of the form A; — Zj‘:l Sij W,

where S;; € Dy, for i = 1,...,3. Therefore, M = D;**/D}*® R is not a projective Dj-module, and
thus, (4) is not a flat system [20] (see also Example 8.9).
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If D = k[zy,...,2,] is a commutative polynomial ring over a field k, then we can study the obstruc-
tions for a system to be free (i.e., projective by the Quillen-Suslin theorem stated in Theorem 3.6).
In this case, they are given by polynomials containing a certain number of variables z; which depends
on the properties of the corresponding D-module M.

Definition 9.3. Let D = k[x1,...,2,], R € D?*P be a full row rank matrix and let us define the
D-module M = D'*?/D' 4 R. Then, let us define:

i(M) = min{i — 1| ext’,(N, D) # 0} € {0,...,n — 1, +00}.

i(M) is called the torsion-free degree of M.

Let us notice that the torsion-free degree of the module M = D**?/D'*% R over D = k[z1, ..., =)
measures how far M is from projectivity. In particular, i(M) = 0 means that M has some torsion
elements, whereas (M) = 1 means that M is a torsion-free but not reflexive D-module, ..., and
i(M) = 400 means that for all i > 1, we have ext’, (N, D) = 0, i.e., M is a projective D-module.

Proposition 9.4. [81] Let D = k[x1,...,z,], R € D¥*? be a full row rank matriz and the D-modules
M = DY*P/DY™4 R gnd N = D'*9/D'*P RT. For every partition of X = {z1,...,z,} into two
disjoint subsets X1 and Xo with respectively n — i(M) elements and i(M) elements, there exists

7rn—i(M) S k[Xl], if OSi(M) Sn—].,
Tn—i( M) S k7 if ’L(M) = +00,

such that the module over D ,=1d/a|d €D, a= Wf_i(M), m € Z>o}

Tn—i(M
Dy, _isy ®p M = {m/a |me M, a=mn" ;) mE ZZO}

is free. Moreover, there exist R_y € DP*(P=9) T € DPX4 T_; € DP~DXP gnd v € Z>o such that:

R v R v
(TI R—l) ( T71 > :Wn—i(M) Ip, ( T,]_ ) (T R_l) :ﬂ-n—i(M) Ip. (31)

Proof. If i(M) = 400, then, using 2 of Proposition 5.6, we have:
extt,(N,D)=0, i=1,...,gldD=n.

So, by Proposition 8.7, M is a projective D-module, and thus, by 2 of Theorem 3.6, M is a free
D-module. Hence, we can choose 7, o =1 € k\0 and we have D = D. Using the fact that R
has full row rank, then we have the following exact sequence:

Tn—oco

0— Da B plxr _, pr 0. (32)

We apply the functor K ®p - to the exact sequence (32), where K = Q(D) is the quotient field of D.
Using the fact that K is a flat D-module, then we obtain the exact sequence

0— K> B gxr L geoM o,

which shows that rankp (M) = dimg (K ®p M) = dimgx K1XP — dim g K1X9 = p — q. Hence, since M
is free, therefore isomorphic to DP~9, we obtain the split exact sequence

0 — Dxe B pixp B2t pixp-g) — 0,
T T,
— —

and thus, identities (31).
Now, let us suppose that we have 0 < i(M) < n — 1. Then, we have:

ext) (N,D) =0, 0<j<i(M).
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Let us consider the multiplicatively closed subset S = k[X1]\{0} of D and S~ D = k(X;)[X2]. By 2
of Proposition 5.6, we have gld S~ D = ¢(M), and thus, for the S~ D-module S~! D®p N, we have:

Vji>i(M)+1, extl, (S'DepN,S*D)=0.

Then, by Lemma 3.9, we conclude that:

Vj>i(M)+1, S™'D®pext] (N,D)= ext’

11 p(ST'D@p N,S7' D) =0,

ie., S1D ®p ext] (N,D) =0, for all j >i(M) + 1. |
Let us consider i(M)+1 < j < n. One can prove that a non-zero ext],(N, D) is a torsion D-module
for j > 1 (see [25, 29| for more details). So, if ext?, (N, D) # 0, then:

ann(ext},(N,D)) = {P € D|¥m € ext],(N,D), Pm =0} # 0.

If ig-1p : extd (N, D) — S~ D ® extd (N, D) denotes the canonical map (see (20) for more details),
then, for 0 # z € ext}, (N, D), we have ig-1p(z) = 0 iff {P € D|Pz =0} NS # 0. Therefore, using
the fact that S~' D ® ext), (NN, D) = 0, we obtain:

ann(ext},(N, D)) N (K[X:1\{0}) # 0.

Fori(M)+1<j<m,if extJb(N,D) # 0, we take any p; € ann(extjb(N,D)) N (k[X1]\ {0}), else, we
take p; = 1. Let us denote by m,_;a) the product of the p; for i(M) +1 < j < n. By construction,
we have m,_; ) € k[X1] and:

Toi(u) €xth(N,D) =0, 0<j<n.

If we denote by S, _, .,y = {1, Th_i(m), wi_i( My - .} the multiplicatively closed subset of D defined
4 g1 D ={d/a|d € D, a= (m,_im)", m € Z>o}, then, using

Tn—i(M) T —i(M)

Lemma 3.9, from D, _, ., ®p ext? (N, D) =0, 0 < j < n, we conclude that:

by 7n_iym) and D

ethDW (D

n—i(M)

T —i(M) ®p N7 DTn—i(M)) =0, 0 SJ <n.

Since the transposed module of M’ £ Dy, _iory®p M is Dx, .,y ®p N, by Proposition 8.7, it follows
that M’ is a projective Dy, _, ,,-module, and thus, by 2 of Theorem 3.6, M" is a free D -module.

Now, using the fact that M’ is a free D, -module of rank p — ¢, there exist R’ | € Dﬁ:g’(}f)),
T' € DR,

Tn—i(M)

n—i(M)

,and T, € Dgr’i ~XP such that we have the following split exact sequence

M (M)
R R 1x(p—q)
1xgq . 1xp Tt X(p—¢q
0 Dﬂ'n—i(M) DWn-i(M) D”n—i(M) 0,
T’ T

or, equivalently, the following identities:

(1 R’l)(TZ>=1p, (Tl,i ) (T': R, =1,

Collecting common denominators yields matrices R_; € DP*(P=9) T ¢ Dp*4 T_; € DP~9)*P and
v € Z>p as asserted in the theorem. O

In order to compute such a polynomial 7,_;(as), we can follow T-POLYNOMIAL [31].

Algorithm 9.5.
Input: A commutative polynomial ring D = k[z1,...,2,], where k is a field,
a left D-module M = D'*? /D4 R, (M) the torsion-free degree of M,
a partition of X = {z1,...,2z,} into disjoint subsets X; and X,
with respectively n — (M) elements and (M) elements.
Output: An ideal J of k[X1] such that any element
7 € J satisfies that D, @ p M is a free D,-module.
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T-POLYNOMIAL (R, X7)

Rl — R.

for i =i(M)+1,...,ndo
L, = [Lio, Lila ng] — EXT].(RZ)
Introduce the indeterminates p;, j = 1,...,rowdim(L;;) over D.
Pij (—{dED | d'/ij ELio}, 7= 17...7rowdim(Li1).
R; 1 « SYZYGIES(R;).

endfor

I — nz‘,j<Pij>-

J — INk[X].

In 7-POLYNOMIAL, the set {d € D | d - u; € Lio} is obtained in the step QUOTIENT of EXT1(R;).
See Remark 7.6 for more details. Moreover, in the last step of 7-POLYNOMIAL, the intersection of ideals
of Ore algebras can be computed by means of elimination algorithms (see [2] and Example 2.15).

Example 9.6. In Examples 8.9 and 9.2, we proved that the linear differential time-delay system
defined by (4) is not flat, i.e., the associated Dj-module M = D}**/D;**® R is not free. Let us
find a polynomial m € R(a, k, {, w)[6n; 02, 62] such that the (Dy),-module (Dp). ®p, M is free. In
Example 7.4, we saw that ext}, (N,Dp) = 0 and ext}, (N, Dp) # 0. Therefore, the torsion-free degree
i(M) of M is 1. Applying Algorithm 9.5 and using (14), we find that:

I=(w?kaén, w?0+w?a, w? 0 +w?ad, ®+ (2¢w+a)d* + (W +2alw)+ aw?).
Thus, we have I NR(a, k, ¢, w)[6n; 02,82] = (61), which shows that (4) is é5-free [20].

We refer to [31] for an extension of Proposition 9.4 to none full row rank matrices.

9.2 Minimal parametrizations and flatness

The next theorem generalizes a result of [26] obtained for systems of partial differential equations. We
assume that D is a left/right noetherian integral domain.

Theorem 9.7. [30] Let M be a torsion-free left D-module defined by the finite presentation (15).
Then, there always exists a left D-morphism dy : Fy — F' |, where F' | is a finitely generated free
left D-module, such that we have the following exact sequence
dl
R3S R,
and M', = cokerdy is either 0 or a torsion left D-module. Such a morphism dj is then called a
minimal parametrization of M.
Proof. Let us consider the beginning of a free resolution of the transposed right D-module N of M,
i.e., we have the following exact sequence
w4 e 40 s
00— N — F «— Fy «— F*, «— L+ 0,

where F*, is a finitely generated free right D-module and L = kerdj.
If we have L = 0, dualizing the previous exact sequence and using the fact that M is a torsion-free
left D-module, and thus, ext},(IV, D) = 0 by Theorem 8.3, then the following complex

) eIy AU Y|

is exact in Fp. Then, we have ext? (N, D) = cokerdy. Hence, ext? (N, D) is either 0 if M is a reflexive
left D-module (and thus, M = imdy = F_; is a free left D-module) or, by Corollary 8.6, ext%,(N, D)
is a non-zero torsion left D-module because we have hom p(ext% (N, D), D) = 0. Hence, dj = dy and
Fj = Fy satisfy the theorem and dy is a minimal parametrization of M.

Now, let us suppose that L # 0. Then, we have the following exact sequence

0—imdy «— F*; «— L — 0,
from which we deduce that:

rankp im dj = rankp F*, —rankp L > 1. (33)
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Indeed, if rankp imdj§ = dimg (K ®p imdj) = 0, then K @p imd§ = 0, i.e., imdf is a torsion right
D-module. But, imd§ C Fy and Fy is a free, and thus, torsion-free right D-module. Hence, im dj = 0,
and thus, F*; = 0 which contradicts the hypothesis that L # 0. Hence, we have I’ £ rankp im dg > 1.

From the matrix Ry which corresponds to dj in the canonical basis of F*; and Fj, let us extract
a (rankp F§ x I')-submatrix Rj composed by D-linear independent columns of Ry, which, in turn,
defines a right D-morphism dff : F”*, — F in the canonical basis, where F" is a free right D-
module of rank !’. Using the fact that R{ has full column rank, then df is injective. Thus, we have
the following commutative exact diagram

0
T
0 coker ¢
T ) T
0e— N, — F & p — L «—0 (34)
I T¢
0— N — F &y o
T T
0 0

where dff = df o ¢, N1 = cokerd* ; and Nj = cokerd”™;. Using the snake lemma [4, 33], we obtain the

following exact sequence 0 «— N A N{ «— coker ¢ «— L «— 0. Using (33), we have:
rankp Ny — rankp N| = rankp L — rankp coker ¢ = rankp L — rankp F*; + rankp F"™
= —rankp im df + rankp F™ = 0.

Therefore, we have rankp N; = rankp N{, and thus, rankp keri) = 0 because we have the exact

sequence 0 «— N; & N{ «— kerty «— 0. Hence, kert is a torsion right D-module. This

fact implies that homp(kere, D) = 0 and, dualizing the previous exact sequence, we have N; £
homp(Ny, D) = Nj* £ homp(N], D). Dualizing the commutative exact diagram (34), we obtain the

following commutative exact diagram:

0 0
! !

0— N — F 2 F,
Ly [

0— NFf — R B g
! !
0 0

Therefore, we have kerdy = Ny and kerd = N{*. Hence, the defect of exactness of the following
complex

N T Ny o (35)

at Fy is defined by H(Fy) = kerdy/imd; = kerd/kerdy, because kerdy = imd; as we have
extl, (N, D) = 0. Finally, we obtain that H(Fy) = Ni/Nj* = 0 because we have N; = Nj*. Thus, (35)
is an exact sequence, and thus, dj is a parametrization of M. Finally, we have hom p(coker dy, D) =
ker dy = 0, and thus, by Corollary 8.6, coker dj, is a torsion left D-module, which proves the result. O

Algorithm 9.8.

Input: An Ore algebra D satisfying (2) with an involution 6,
a torsion-free left D-module M = D'*P/D'*1 R,

Output: A minimal parametrization R’ ; € DP*™ of M.

MINIMAL-PARAMETRIZATION (R)
L — SyzyGIEs (A(R)).
m « rankp(L).
Select m D-linearly independent rows of L and
form a p x m-matrix L' with them.
R, —6(L).
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Example 9.9. Let us consider the first set of Maxwell equations [15], namely

0B - -
— ANE =0
ot TV ’ (36)

V.B =0,

where B (resp. E) denotes the magnetic (resp. electric) field. In electromagnetism, it is well-known
that (36) is parametrized by

VAA=DB,

T . (37)
w2 _ 5

ot

where (4, V) is called quadri-potential [15]. In terms of module theory, this result means that the D-
module M = D*¢/D!x% R is torsion-free, where D = A, denotes the Weyl algebra (see Example 2.3),
x4 =t the time variable, and R is the matrix of differential operators defining (36), namely:

s 0 O 0 -0 O
0 04+ 0 O 0 —-o
0 0 04 —02 O 0
O 02 03 O 0 0

R = c D4X6.

We easily check that a free resolution of the D-module M is defined by
0— D22, ptxs B, pix6 __ pr o, (38)

where Ry = (8, : 02 : 03 : —0,) € D'**, Therefore, we obtain rankp(M) = 6 —4 +1 = 3 or, in other
words, system (36) is defined by 4 — 1 = 3 D-linearly independent equations in 6 unknowns (B, E),
and thus, its solutions depend on 3 arbitrary functions of (z1, 2, x3, £4). But, the parametrization
(37) of the torsion-free D-module M depends on 4 arbitrary potentials, namely (/f,V). Hence, by
Theorem 9.7, we know that system (36) admits some parametrizations with only 3 arbitrary potentials.
Let us compute such parametrizations following Algorithm 9.8. Using Algorithm 5.3, the D-module
N = D'*4/D'*6 RT admits the following free resolution

O(_N<_D1X4 .R” D1><6 )

where:
0 —-935 O O 0 0
03 0 -0 0 Oy 0 T
-0y O 0 0 0 Oy ’
0 0 0 -0 -0 —05

erl -

Let us point out that

R . . oD |
w(5)-(2) + {gns

V.D =p,

is exactly the secon_gi set of Maxwell equations, Wh_gre 7 denotes the density of current, p the density
of electric charge, H the magnetic induction and D the electric induction. Then, the conservation of
current is given by:

R, (7 )=0 & Z4+V.r=0
*(ﬂ) ot TV

If we denote by S(RT) the syzygy module of RT, from the free resolution (39) of N, we obtain that
rankp S(RT) = rankp D1** RT, = 4—1 = 3. Hence, if we select 3 different rows of RZ | and transpose
the corresponding matrix, we obtain a parametrization of (36) with only 3 potentials. Hence, we have
the following 4 minimal parametrizations of (36) with only 3 arbitrary potentials £ = (& : & : &)T:

( 036 = By, ( —02 &2 = By, (9381 — 026 = By,
L. —03&1 = Bs, —03&1 + 01 &2 = Bo, 01 &2 = Bo,
_YAng’ ) 026 — 01 & = Bs, ) 02 &1 = Bs, ) —01 &1 = B,
a—f:ﬁ, 0161 — 01 &3 = Ey, 0461 — 01 &3 = Fy, —01&3 = Ey,
0y &a — 02 &3 = B, —0y &3 = B, 0461 — 0283 = En,
(| —03&3 = E3, \ 0182 — 0383 = E3, (| 0182 — 0383 = Ej.
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To finish, let us give a new result which will allow us to compute some bases of a m-free linear
control system.

Proposition 9.10. Let D = k[x1,...,%,] be a commutative polynomial ring over a field k and M =
D' ?/DYX4 R be a torsion-free D-module. By Theorem 9.7, there exists a minimal parametrization
R_; € DP*™ of M, i.e., a parametrization R_y of M such that L = D'*™ /D' P R_; is a torsion
D-module. Then, for all 0 # 7 € ann(L) = {P € D|VI € L: Pl = 0}, the D,-module D, @ p M
is free. In particular, there exists S_y € DT*P such that S_1 R_y = I, and, with the notations of
Section 8, z = S_1 4 is a basis of the free D, -module D, @p M satisfying Ry=0&y=R_1 2.

Proof. By hypothesis, we have the following exact sequence:

.R_
pixa B, pixp -1,

D™ — [ — 0. (40)
Moreover, the fact that the D-module L is torsion implies that ann(L) # 0. If 0 # 7w € ann(L), then,
using the fact that D, is a flat D-module [33], then, by applying the right exact functor D, ®p - to
the exact sequence (40), we obtain the following exact sequence:

pixa 2B, plxp B2t pixm oo 1o, (41)

But, by definition of 7, we have D, ® p L = 0. Thus, we have D, @ p M = DL*P/Dl*x¢ R == plxm
i.e., the D -module D, ®p M is free of rank m. Moreover, by Proposition 3.8, the exact sequence (41)
splits, and thus, there exists S_; € D**? such that S_; R_; = I,,,. Finally, in terms of equations, in
the D -module D, @ p M, we have Ry=0<y=R_j;zand 2= (S_1R_1)z2=5_1y. O

From Proposition 9.10, we easily obtain the following effective algorithm: using Algorithm 9.8,
we first compute a minimal parametrization R_; of the torsion-free D-module M and then compute
ann(D'*™/DXP R_|). After choosing 0 # m € ann(L), using Algorithm 9.1 over D,, we finally
compute a left-inverse S_; of R_;, which gives the basis z = S_; y of the D,-module D, ® p M.

Example 9.11. In Example 8.9, we proved that (30) is a parametrization of system (4). We easily
check that (30) is also a minimal parametrization of system (4) as the Dj-module L = D, /D}** R_; =
ext], (N, Dy) is torsion. From the definition (14) of ext, (N, D), we obtain ann(L) = (8, 9 + a).
Hence, if we choose ™ = 65, then we easily check that S_; = (77 '/(w?ka) : 0: 0: 0) € D} is a
left-inverse of the parametrization R_; defined in Example 5.5. Hence, up to a constant, we obtain
that z = 7~ ! 2, and thus z;, are bases (resp. flat outputs) of the D, -module D, ®p M.

10 Conclusion

We hope that we have convinced the reader that the simultaneous use of module theory, homological
algebra, effective algebra and computational methods allows us to study effectively the structural
properties of linear multidimensional systems (e.g., systems of ODEs, systems of PDEs, (differential)
time-delay systems, discrete systems, convolutional codes with constant or variables coefficients). In
particular, in this unified mathematical framework, we presented effective algorithms which check
controllability /flatness/m-freeness. .. and compute the parametrizations/autonomous elements/flat
outputs/m-polynomials. Certain of these problems were still open for some classes of linear multidi-
mensional systems [36, 37] and, in particular, for linear differential time-delay systems [11, 20].

The Maple package OreModules, based on Mgfun [6], as well as Maple worksheets containing the
explicit examples of the appendix are available at http://wwwb.math.rwth-aachen.de/0OreModules.
We hope that OREMODULES will become in the future a platform for the implementation of different
algorithms obtained in the literature of multidimensional linear systems (see e.g., [10, 13, 23, 25, 26,
27, 30, 32, 36, 37| and the references therein).

A Appendix: Examples
In this appendix, we give some Maple worksheets which decide controllability, parametrizability, flat-

ness and m-freeness of some linear time-invariant/time-varying OD systems, differential time-delay
systems and systems of PDE with constant or variable coefficients, multidimensional convolutional
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codes'. These results have been obtained using the Maple package OreModules® which is crucially
based on the library Mgfun [6] (e.g. Ore algebras and non-commutative Grobner bases are developed
in Mgfun). In these examples, the most time-consuming computation is that of the ext®,(N, D). We
give some timings for these operations. All examples were run on a Pentium II, 450 MHz with 512 MB
RAM using Maple 8 (OreModules is available for Maple V release 5, Maple 6, Maple 8, and Maple 9).
Finally, we refer the reader to [9] for a complete description of the package OreModules and for more
examples using other functions of OreModules.

A.1 Two pendula mounted on a cart

The first example that we consider is the linearized time-invariant OD system formed by two pendula
mounted on a cart. See for more details Examples 5.2.1 and 5.2.12 in [23].

> with(Ore_algebra): with(OreModules):
After loading the required Maple packages, the first step is to define the Ore algebra
D =R(my1,mq, M, Ly, Lo, g)[t][0; 0, §],
where 0 = idR(m,,ms,M,L1,L2,9)[¢] a0d 6 = %. In what follows, this Ore algebra is denoted by Alg.
> Alg:=DefineOreAlgebra(diff=[Dt,t], polynom={t}, comm={m1,m2,M,L1,L2,g}):

In Alg, we need to declare the constants my, ms, M, L1, Lo, and g which occur in the system. Then,
we define the matrix R € D3** which corresponds to the system.

> R:=evalm([[m1*L1%*Dt~2, m2*L2*Dt~2, -1, (M+ml+m2)=*Dt"2],
> [m1*L1~2*Dt~2-m1*L1l*g, O, 0, ml*L1%Dt~2],
> [0, m2+L2~2%Dt~2-m2xL2*g, 0, m2*L2xDt~2]]);

m1 L1 Dt® m2 L2 Dt* -1 (M + mi1 + m2) D¢’
R:=| mlLI*Dt® —mi1Llg 0 0 m1 L1 Dt?
0 m2L2°Dt* —m2L2g O m2 L2 Dt*

We compute R.q; = (R) € D**3 using the involution 6 defined in 2 of Example 6.3.

> R_adj:=Involution(R, Alg);

m1 L1 Dt? m1L1>Dt* —mi1Llg 0
. m2 L2 Dt* 0 m2L2> D> —m2L2g
R _adj := 1 0 0
Dt?> M + Dt?> m1 + Dt? m2 m1 L1 Dt? m2 L2 Dt?

We compute extl, (N, D), where N = D1*4/D1*3 R ;. using the procedure EXT1(Rag;).

> st:=time(): Extl:=Exti(R_adj, Alg, 1): time()-st;
1.220
The computation of extl,(N, D) only takes 1.220 s. Let us notice that all the computations are done
generically. In other words, the results are valid for almost all values of the parameters (e.g., outside

an algebraic hypersurface).

> Exti[1];

IThe characteristic p of the ground field k can be chosen in the definition of the Ore algebra using the option
“characteristic=p”.

2 OreModules and all examples of this appendix are available on the web page
http://wwwb.math.rwth-aachen.de/OreModules.
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OO =
O = O
= o O

Ext1[1] corresponds to the matrix Ly returned by EXT1(R) and defined in Algorithm 7.8. In our case,
Ly is the identity matrix which shows that exth (N, D) = 0 (see Remark 7.9). Therefore, the system
is controllable, and thus, parametrizable (see Proposition 4.2 and Theorem 8.3). The parametrization
of the system corresponds to the matrix Ly =Ezt1[3] of EXT1(R) (see Algorithm 7.8).

> map(collect, Ext1[3], Dt);

[-L2 Dt* + Dt* g]

[-Dt* L1 + Dt* g]

[L2 Dt L1 M+ (—=L2gml —L2gM —gL1 M — L1 gm2) Dt*
+ (> M + g> m1 4+ m2 ¢°) Dt?]

[L2 Dt* L1 + (—~L2 g — g L1) Dt* + ¢?]

Thus, we obtain the parametrization (z; : z2 : 23 : u)T = Lyz of R(z1 : x2 : 23 : u)T = 0. Using
the fact that D is a principal ideal domain, then, by 1 of Theorem 3.6, we know that the D-module
M = D'** /D3 R is free, and thus, the system defined by R is flat.

> LeftInverse(Ext1[3], Alg);

L1? L2? 0 —L1+1L2
9> (-L2+1L1) 9% (-L2+ L1) 9?(—L2 + L1)

LeftInverse(Ext1[3], Alg) computes a left-inverse of the parametrization Ly = Ext1[3]. We deduce
that z = (L? x1 — L3 xy + (L1 — La) u)/(g? (L1 — L2)) is a flat output of the system.

Let us notice that the difference of the pendula lengths L1 — Lo appears in the denominator of the
flat output of the system. Thus, we need to study the non-generic case where L; = Ls.

> Rmod:=subs(L2=L1, evalm(R));

m1 L1 Dt? m2 L1 Dt? —1 (M + m1 + m2) Dt*
Rmod := | m1L1*>Dt> —mi1Llg 0 0 m1 L1 Dt?
0 m2L1°Dt* —m2L1g 0 m2 L1 Dt*
> st:=time(): Extlmod:=Exti(Involution(Rmod, Alg), Alg, 1): time()-st;
0.959
> Extimod;
L1Dt* —g 0 0 1 -1 0 0
0 L1Dt*—g 0 .0 mlg+m2g -1 D*M |,
i 0 0 L1Dt:—g 0 MLID? —gM—-mlig—m2g 1 0
i —D¢?
—D¢?
L1 Dt*M — Dt*ml1g—gM Dt> — Dt>m2g
L1 Dt —g

The first matrix of ExtImod is not an identity matrix, and thus, we know that ext},(Npod, D) # 0,
where Nimoa = D'*3/DY*46(Ri0a) and Rmea corresponds to R, where Ly = L;. Thus, the system
is not controllable (see Proposition 4.2 and Theorem 8.3). The second matrix of EztImod gives a
(non minimal) family of generators of the torsion elements of Mmoq = D'**/D1*3 R04, i.e., of the
non-controllable elements of the system. The initial rows in the first two matrices of EzxtImod shows
that d = x, — x5 satisfies (L1 82 — g)d = 0 (non-controllable element). The third matrix of Extimod
gives a parametrization of the torsion-free part Mod/t(Mmod) 0f Mmea, i.€., of the controllable part
of the system. Finally, let us notice that it has only taken 0.959 s to obtain all these informations.
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A.2 Linear differential algebraic equations

Let us consider the following example of a time-varying linear OD system which corresponds to a
linear system of differential algebraic equations (DAEs) studied in [16].
Therefore, we introduce the Weyl algebra D = A; (see Example 2.3).

> Alg:=DefineOreAlgebra(diff=[Dt,t], polynom={t}):
The time-varying linear system is defined by means of the following matrix.

> Ri:=evalm([[-t*Dt+1, t~2*Dt, -1, 0], [-Dt, t*Dt+1, 0, -111);

R | —tDt+1 2Dt -1 0
T —-Dt tDt+1 0 -1
Then, the system is defined by R (21 : 22 : u1 : us)? = 0 and we define the left D-module M =
D1><4/D1><2 R.

> R_adj:=Involution(R, Alg);

tDt + 2 Dt
—t2Dt — 2t —tDt

-1 0

0 -1

R _adj =

—~—

Using the procedure EXT1(Raqj), we compute ext, (N, D), where N = D'*2/D'** R, 4; is the left
D-module associated with R,q; = 8(R) € D**2.

> st:=time(): Extl:=Exti(R_adj, Alg, 1): time()-st; Ext1[1];
0.301

o 1]

This shows that the left D-module M = D'X*/D1*2 R is a torsion-free D-module (see Remark 7.9),
and thus, a projective D-module (see 1 of Theorem 3.6).
Then, a parametrization Ls of the system is given by the following matrix of operators.

> Ext1[3];

1
0
—tDt+1
—Dt

OO = o+

Thus, we obtain the parametrization (1 : 2 : 23 : u)T = Lyz of R(z1 : 29 : 23 : )T = 0. The
system is flat, i.e., the left D-module M = D'**/D'%2 R is free, iff the parametrization L, admits a
left-inverse. Let us check whether or not L, admits a left-inverse.

> LeftInverse(Ext1[3], Alg);
010 O
L [ 0 01 —t]
T

We see that the system is flat and a flat output is defined by (z1 : 22)7 = P (21 : 22 : z3 : u)T.
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A.3 Wind tunnel model

In this example, we consider again the linear differential time-delay system (4) defined in 3.2. We first
need to define the Ore algebra Dy = R(a, k, (, w)[t, s][0; 01, 61][0n; 02, 62] of differential time-delay
operators.

> Alg:=DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom={t,s},
> comm={a, omega, zeta, k}):

The linear differential time-delay system is defined by matrix (5).

> R:=evalm([[Dt+a, -k*a*delta, O, 0], [0, Dt, -1, 0], [0, omega~2,
> Dt+2*zeta*omega, -omega~2]]);

Dt+a —kab 0 0
R = 0 Dt -1 0
0 w? Dt+2¢w —w?
> R_adj:=linalg[transpose] (R);
Dt+a O 0
) —kaé Dt w?
R_adj = 0 -1 Dt+2(w
0 0 —w?

The Grobner basis G defined in Example 5.5 can be computed as follows.

> Integrability(R_adj, Alg);

[w?kadps +w? Dt ps +w?aps +w? Dt? uz + w?a Dt pg + Dt® g + 2 Dt* Cw g
+ a Dt? g + Dt w? g +2a Dt Cw pg + aw? pg, A3w? + g,

w? Ao + Dt pg + w? pig + 2w pa,

WA kad + Dt? pg +w? Dt g + 2 Dt Cw pig + w? po + w? g, A\ Dt + A\ a — pia]

The syzygy module of D}** RT can be computed using SYZYGY(Raq;) (see Example 5.5).

> SyzygyModule(R_adj, Alg);

[w2 kaé, Dtw? +aw?, w? Dt*> + w?a Dt,Dtw? + aw?® + Dt + 2 Dt* Cw + a Dt* + 2aDt§w]
The Grobner basis G defined in Example 7.4 can be computed as follows.

> Integrability(linalg[transpose] (S), Alg);

[—w® g + w?® gz + Dt pz + 2w pz, —piz + Dt po, —kadpa + Dt py +apy, Mw’kad — py,
A1 Dtw? + A\ aw? — )

The syzygy module D}** R_; can be computed using SYZYGY(R_;) (see Example 7.4).

> L:=SyzygyModule(linalg[transpose] (S), Alg);

Dt+a —kaé 0 0
L:= 0 w? Dt+2¢w —w?
0 Dt -1 0

Finally, we compute QUOTIENT(L, R) (see Example 7.7) as follows.

> Q:=Quotient(L, R, Alg);
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100
Q=010
001

We deduce that ext}, (N,D) = 0, where N = D;*®/D;** RT (see Remark 7.9), and thus, system
(4) is controllable and parametrizable (see Proposition 4.2 and Theorem 8.3).
We can directly compute extp, (N, D) using EXT1(R,q;) defined in Algorithm 7.8.

> st:=time(): Extl:=Exti(Involution(R, Alg), Alg, 1); time()-st;

1 0 0 Dt+a —-kab 0 0
Ezxt1 = 01 0|, 0 w? Dt+2¢w —-u? |,
0 0 1 0 Dt -1 0
—w?kaé

—Dtw? — aw?
—w?Dt? —w?2a Dt
—Dt? —2Dt* (w —a Dt* — Dtw? —2a Dt (w — aw?
0.819
The first two matrices in Ezt! are @ and L. Moreover, Ezt1[3] gives (up to the sign) the parametriza-
tion (30) of system (4), i.e., we have (z1 : z2 : 9 : u)? = Ext1[3] 2, where 2 is an arbitrary function

of t.
We compute ext?, (N, D) in order to check whether or not system (30) is flat.

> Ext2:=Exti(Involution(R, Alg), Alg, 2);

6

Ext2 ::[[ Di+a

], [ 1], SURJ(L), INJ(1)]

Since the first matrix in Ezt2 is not an identity matrix, we know that ext}, (N,Dp) # 0 (see Re-
mark 7.9). Hence, M = D}**/D}*® R is a torsion-free but not a free D,-module, and thus, (4) is not
a flat system. Finally, let us notice that (14) is equivalent to the reduced system:

(0+a)y=0, 6pby=0.

Then, the formal obstructions of flatness are defined by 7-POLYNOMIAL(R.qj, {0, 6r}).

> PiPolynomial(R, Alg);
[6, Dt + a]

The 7m-polynomial, such that (Dp)r ®p, M is a free (Dy)-module, is defined by the generator of the
principal ideal m-POLYNOMIAL(Raqj, {6n}) of R(a, k, ¢, w)[0n; 02, 62].

> PiPolynomial(R, Alg, [deltal);

[6]

Therefore, we find that system (4) is §,-flat (see Example 9.6).

> PiPolynomial(R, Alg, [Dt]);
[Dt + a)
The fact that (4) is not a flat system is coherent with the fact that the full row-rank matrix R, defined
by (5), does not admit a right-inverse (R admits a right-inverse iff the Dj,-module M is projective,

and thus, free by 2 of Theorem 3.6).

> RightInverse(R, Alg);
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[

The fact that (4) is not a flat system is also coherent with the fact that its parametrization (30) does
not admit a left-inverse (a linear system is flat iff it is parametrizable and its parametrization admits
a left-inverse).

> LeftInverse(Ext1[3], Alg);

I
But, we have shown that system (4) is é,-flat, and thus, the Dh[é,:l]—module Dh[é,:l] ®p, M is free.

Let us compute a basis of the free D,[5, ']-module D4[6, '] ®p, M. In order to do that, we compute
a left-inverse S of the parametrization Ezt1/3]in the commutative polynomial ring Dy [6, '].

> S:=LocallLeftInverse(Ext1[3], [deltal,Alg);

1
S=| -——— 0 0 0
bw?ka
By construction, we have S Ext1(3] = 1.
> simplify(evalm(S&*Ext1[3]));
[1]
Hence, we obtain that 2 = S (21 : 22 : 23 : u)T = —6;1 71/(w? ka) is a basis of the Dh[égl]—module
Dy[6, '] ®p, M because we have (z1 : 22 : 23 : u)T = Eztl[3]z and 2 = -6, ' x1/(w? ka) € M.
Let us finally point out that we can also substitute z = —6;1 71/(w? k a) into the parametrization

(1 : o9 23 : u)T = Ext1[3] 2 of system (4) in order to express the system variables in terms of ;.

> T:=simplify(evalm(Ext1[3]&*S));

I 1 0 0 017
Dt+a
—_— 0 00
kad
T := Dt (Dt +a)
—_— 0 00
kad
Dtw? +aw?+ Dt + 2Dt Cw+aDt* +2a Dt w
0 0
L wkab .

We obtain (z1 : o2 : x3 : u)7 = Tz, and thus, 2; is also a basis of the module Dh[tS;l] ®p, M over
Dy[6;7'], and thus, a flat output of system (4) over Dy [6;"]. To finish, let us notice that, by imposing
x1 to be a desired trajectory z14(t), we obtain the corresponding open-loop input [20]:

2
Ud(t):ﬁ ((% +2Cw%+w2) <%+a>> z14(t + h).

A.4 A two reflector antenna
Let us consider the example of a two reflector antenna [20]. Any linear differential constant time-delay

systems can be studied similarly. We refer to [20, 21] for more examples.

> Alg:=DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom={t,s},
> comm={K1,K2,Te,Kp,Kc}):

The system of the two reflector antenna is defined by the following matrix with entries in the com-

mutative polynomial ring Dy, = R(K1,K2,Te, Kp, Kc)[0;01,61][6n; 02, 62] of differential time-delay
operators.
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> R:=evalm([[Dt, -K1, 0, 0, O, O, O, O, O],
> [0, Dt+K2/Te, 0, 0, 0, O, -Kp/Te*delta, -Kc/Texdelta, -Kc/Texdelta],
> [0, O, Dt, -Ki1, 0, 0, 0, 0, 0],
> [0, 0, O, Dt+K2/Te, 0, 0, -Kc/Te*delta, -Kp/Texdelta, -Kc/Texdelta],
> [0, O, O, O, Dt, -K1, O, 0, 0],
> [0, 0, 0, 0, O, Dt+K2/Te, -Kc/Te*delta, -Kc/Texdelta, -Kp/Texdeltal]);
[ Dt —-K1 0 0 0 0 0 0 0
K2 Kpéb Kcé Kcé
Dt + == _ _ _
0 b+ Te 0 0 0 0 Te Te Te
0 0 Dt —K1 0 0 0 0 0
R:= K2 Kcé Kpéb Kcé
0 0 0 Dt+— O 0 — — —
+ Te Te Te Te
0 0 0 0 Dt —-K1 0 0 0
K2 Kcé Kcé Kpé
Dt + —  — _ _
i 0 0 0 0 0 bt Te Te Te Te

> R_adj:=Involution(R, Alg):
Let us check whether or not the system, defined by the matrix R, is controllable and, if it is the case,
let us find one of its parametrizations. In order to do that, we need to compute extth (N, Dy,), where

N = D,lf<6 /D,ll><9 R. The displayed result corresponds to Lg in the output of ExT1.

> st:=time(): Extl:=Exti(R_adj, Alg, 1): time()-st; Ext1[1];

2.410
100 0 00
010000
001 000
000100
000010
0 00 0O01

We obtain that (M) = ext}, (N, Dj) = 0 (see Remark 7.9), where M = D;*°/D;*° R, and thus, the
system of two reflector antenna is controllable (see Proposition 4.2 and Theorem 8.3).
Then, the matrix Lo, defined by

> Ext1[3];
[ Kcb K1 Kcb K1 KpK1é i
KeDté KcDté Kp Dté
Kcé K1 KpK1é6 Kcod K1
KeDté Kp Dté KeDté
Kp K16 Kcé K1 Kcé K1
Kp Dté KeDté KeDté
0 0 Dt* Te + K2 Dt
0 Dt* Te + K2 Dt 0
| Dt Te + K2 Dt 0 0 |

is a parametrization of the two reflector antenna. The two reflector antenna is not a flat system
because we have ext}, (N, D) # 0 as it is shown below.

> st:=time(): Ext2:=Exti(R_adj, Alg, 2): time()-st; Ext2[1];

1.931
) 0 0
Dt? Te + K2 Dt 0 0
0 8 0
0 Dt? Te + K2 Dt 0
0 0 8
0 0 Dt? Te + K2 Dt
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Since the torsion-free degree i(M) of M is equal to 1 (see Proposition 9.4), we can find a polynomial
7 containing only one of the indeterminates Dt and ¢ such that (Dp)r ®@p, M is a free (Dy)r-module.
We study polynomials in §y,.

> PiPolynomial(R, Alg, [deltal);

[6]

So, we conclude that the two reflector antenna is &,-free [20]. Let us compute a basis of the Dy [6; ']
module D,[6, '] ®p, M. In order to do that, let us compute a left-inverse S of Ezt1[3]in Dy[6;"].

> S:=LocalleftInverse(Ext1[3], [deltal,Alg);

Kc Kc Kp+ Kc
- 0 - 0 0 0 O
6 K1 %1 6 K1 %1 6 K1 %1
Kc Kp + Kc Kc
S=1 — ——— 0 0 0 O
6 K1 %1 6 K1 %1 6 K1 %1
Kp + Kc Kc Kc
—_— - 0 —~~— 0 0 0 O
6 K1 %1 6 K1 %1 6 K1 %1
%1 := Kp?> — 2Kc? + Kp Kc
We easily check that S € D[, ']°*? satisfies S Ext1[3] = I5.
> simplify(evalm(S&*Ext1[3]));
1 0 0
010
0 0 1
Hence, in the Dy[8, ']-module D,[§, '] ®p, M, we have
(z1:20: 23) =S (w1 :...: @6 :ug s uz s uz)?, (42)

and thus, {21, 22, 23} is a basis of the D,[§; ']-module D,[§; '] ®p, M which satisfies:
(z1:...:@6:uy s ug:ug)! = Extl[3] (21 : 221 23)7.
Finally, if we substitute (42) into the parametrization Ezt1[3] of the system, we obtain
(a:l:,..:x6:u1:uQ:U3)T:T(:c1 DX UL U :u3)T,

where the matrix T € Dy[6;, ']°*? is defined by:

> T:=simplify(evalm(Ext1[3]&*S));
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r 1,0,0,0,0,0,0,0,0 1
ﬂ 0,0,0,0,0,0,0,0
KI’ b b b k) k) k) )
0,0,1,0,0,0,0,0,0
Dt
—,0,0,0,0,0,0
0707 K]’ b b b b )
0,0,0,0,1,0,0,0,0
T:= Dt
O’O’O’O’KI’O’O’O’O
Dt(Te Dt + K2) (Kp + Kc)
2 2
SKI%1 ,0,%2,0,%2,0,0,0,0
Dt(Te Dt + K2) (Kp + Kc)
2 2
%2, 0, K11 ,0,%2,0,0,0,0
Dt(Te Dt + K2) (Kp + Kc)
2 2
_% ,0,%2,0, SK1%1 ,0,0,0,0_
%1 := Kp®> —2Kc*> + Kp K
(72'__Dt(TeDt+K2)Kc
e § K1 %1

Then, we notice (z2 : x4 : xg : w1 : uz : uz) are only expressed in terms of 21, z3 and z5. Therefore,
{21, 23, 25} is also a basis of the D,[6, }]-module D[, '] ®p, M of rank 3 (compare with [20]).

A.5 An electric transmission line

To finish with linear differential time-delay systems, we shall study the example of an electric trans-
mission line [34]. We shall exhibit an explict parametrization of this system. It seems that no
parametrization for such a system was previously known [20]. This can be easily explained by the
fact that it was very difficult to guess such a parametrization (indeed, the characterization in terms of
the extension functor of the existence of a parametrization has only been recently developed in [27]).
Moreover, it becomes very difficult to avoid the use of a symbolic computation program in order to
handle all the computations.

We first introduce Dy, = R(ao, a1, az, a3, aq,as, bo)[t, s][0; o1, 61][6r; 02, 82], the Ore algebra of dif-
ferential time-delay operators.

> Alg:=DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom={t,s},
> comm={al[0],a[1],al2],al3],al[4],al[5],b[0]1}):

The electric transmission line is defined by means of the following matrix:

> R:=evalm([[Dt+al[0], -(al4]1*Dt+al[0])*delta, -al[0], 0, -b[0]*Dt],
> [-deltax(a[5]*Dt+al1]), Dt+al[1], 0, al[1], 0],

> [a[2], -al[2]*a[4]*delta, Dt, 0, -a[2]*b[0]],

> [a[3]*al[5]*delta, -al3], 0, Dt, 011);

Dt + ag —(a4 Dt + a()) 6 —ag 0 —=byDt
R .= -6 (a5 Dt + a1) Dt + ax 0 ax 0
‘_ as —Qa92 a4 1) Dt 0 —as b()
azasé —as3 0 Dt 0
> R_adj:=Involution(R, Alg):
> st:=time(): Extl:=Exti(R_adj, Alg, 1): time()-st; Ext1[1];
10.351
1 0 0 0
01 0 0
0 01O
0 0 01
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Therefore, by Proposition 4.2 and Theorem 8.3, we find that the electric transmission line is control-
lable and parametrizable and a parametrization is given by the following matrix.

> Ext1[3];

[~bo Dt* — Dt* by a1 az — ag az bo Dt* — a1 ag az b as — ag a1 as bo Dt — ay by Dt
[—a5b06Dt4—a56Dt2b0a1a3—alboéDt3—aoa2a5b06Dt2
—a0a1a2a5a36b0—a0a1a2b06Dt]

[ao as a1 bo as as 8% — ag as bo Dt — ay ag as by as + ag ay as by 62 Dt

— ag a az by Dt + ag as as 6% by th]
[agalag%agébg—6Dt2b0a1a3+a56Dt2b0a1a3—a0a1a2a36b0]

[— Dt* — ay Dt? — agay Dt? — ag Dt + a5 Dt* 62 aq + ay as Dt? az as 6% + ay Dt° ay 62

+aoa2a5Dt2a4§2+a0Dt352a5—a1a3a0a2—aoalath—aoalath
+a0a1 Dt252+a0a1a2a5a3a462+a0a1 atha462+a0a1 0,3(52 Dta5

— ax Dt2 as — ap a2 Dt2]

> st:=time(): Ext2:=Exti(R_adj, Alg, 2): time()-st; Ext2[1];

6.990
[—6a12a5a32+2a0a1aga5a36—Dt6a2a1ao+6Dta12a3+6a5a2a0Dta1
—8a12asa3 Dt + 6% a2 asag — 2 a5 as ag aq az 6% + as? ax? ap? 6% + a1 as? asz? 6°
—a5a22ap%26 — a2 basy ao]
|:Dt¢52 a1 — Dt?> + a1 az a5 62 — Dtay — ay az — as 6% as ao]

6 as ao + 6 D7
[al Dt + Dt? 412 + ag as as Dt2 — a5 Dt? ay a3 + 62 a12 as ag — 2 as? as ag aq ag 62
+as2as?aop? 6%+ a12a52a326% + Dtar?as + asas ao Dtay — a12 as as Dt

+ ay as a3 as ag — a12 as a32]

Since we have ext?, (N,Dy) # 0, where N = D;**/D;*® R, the transmission line is not a flat
system. Thus, we have i(M) = 1, and we can find a polynomial 7 that contains only Dt or é such that
(Dp)rx ®p, M is a free (Dp)r-module. The third argument for 7-POLYNOMIAL selects the variable for
the 7-polynomial:

> pi:=PiPolynomial(R, Alg, [deltal): factor(pi);

[(5(&52 a22 a02 64 — 262 as a22 002 + 022 a02 - 2a52 a2 ag a1 as 64 + 462 a1 as as as ag
+ a12 as ag — 2(52 a12 as ag — 20,1 as ag ag + (54 a12 as ag + a12 0,52 a32 (54
—26%a1% a5 a3 + a1? as?))

We conclude that the system is 7-free, where 7 is the previous polynomial in 6, and thus, the D, [7~1]-
module Dy[r~!] ®p, M is free. Let us compute a basis of the Dj,[r~1]-module D,[r~1] ®p, M.

S:=LocalLeftInverse(Ext1[3],pi,Alg):
> T:=map(collect,S,delta);
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T :=
6 (6% ag as? + (—as ap — ap as?® + a1 — a1 as) 6% — ay + ay as + as ao)
a %2 aobo (—1 + as) ’
(a5 ag — a1 as ag + a1 ag) 6* + (—as ag + a1 as ay — ay ag — ag) 62 + ag
%2aqbo (=1 + as) ’
5((—0,1 as as + as as a0)§2 —apgaz + ay a3)
%2 ag as by ’
(apas?as — as?ay az +a1?)6* + (2ay a5 a3 — 2asaz a9 —2a12) 6% + a1? + agas — a1 a3
%2ay az by (—1+ as) ’

Say (62 —1)
 %2ag
%1 := a12 as ag
%2 = (ao® az? as? + %1 — 2as? a1 az as ap + as? a1? az?) &°
+(=2asa12a3® +4agayasasaz —2a12 azag — 2 ap? as az?) é
+ (%1 —2ay azaz ag + az? ag® + ay2 az?) 6

3

We check that the matrix T € (Dj,)1*5 is a left-inverse of Ezt1/3], i.e., we have T Ext1[3] = 1.

> simplify(evalm(T&*Ext1[3]));
[1]

Hence, z = T (z1 : ... : x4 = u)T is a basis of the Dj,[r~1]-module Dy[r~!] ®p, M which satisfies
(x1:... 1242 )T = Extl[3] 2.

A.6 Einstein equations

Let us show that the results exposed in this paper can also be interesting for the study of underde-
termined systems of PDEs coming from mathematical physics. We shall study the parametrizability
of the Einstein equations using the linearized Ricci equations in the vacuum [24] (see also [37]).

Let us introduce the Weyl algebra D = A, (1, 22, and z3 stand for the three space components
and x4 = ct for the time ¢ component up to the speed of light factor).

> Alg:=DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3],
> diff=[D4,x4], polynom={x1,x2,x3,x4}):

The linearized Ricci equations in the vacuum are defined by the following 10 x 10 matrix of partial
differential operators.

R:=evalm(

[[D2~2+D3~2-D4~2, D1~2, D1~2, -D1~2, -2%D1*D2, 0, 0, -2xD1xD3, O,
2xD1xD4] ,

[D2~2, D1~2+D3~2-D4~2, D2~2, -D2~2, -2xD1xD2, -2xD2xD3, 0, O,
2*D2*D4, 0],

[D3~2, D32, D1~2+D2"2-D4"2, -D3"2, 0, -2xD2*D3, 2*D3*D4, -2*xD1xD3,
0, 01,

[D4~2, D4~2, D4~2, D1°2+D2~2+D3"2, 0, 0, -2%D3*D4, 0, -2%D2x*D4,
-2%D1xD4],

[0, 0, Di1xD2, -D1xD2, D3~2-D4~2, -D1xD3, 0, -D2%D3, D1xD4, D2xD4],
[D2xD3, 0, 0, -D2%D3,-D1%*D3, D1~2-D4~2, D2%D4, -D1xD2, D3*D4, 0],
[D3%*D4, D3xD4, 0, 0, 0, -D2xD4, D1~2+D2~2, -Di1xD4, -D2%D3, -D1xD3],
[0, D1%D3, 0, -D1%D3, -D2xD3, -DixD2, D1xD4, D2~2-D4~2, 0, D3xD4],
[D2xD4, 0, D2xD4, O, -DixD4, -D3%*D4, -D2%D3, O, D1~2+D3"2, -D1xD2],
[0, D1xD4, Di1xD4, O, -D2*xD4, 0, -Di1xD3, -D3*D4, -D1xD2,
D2~2+D3"2]]);

VVVVVVVVVVVVYVVVYV
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r D22 + D32 - D42, D12, D12, -D12, —2D1D2,0,0, —2D1D3, 0, 2D1D4 ]
D2?, D12 + D3? — D4%, D2%, —D2?, —2D1D2, —2D2D3, 0,0, 2D2D4, 0
D3?, D3%, D12 + D22 — D4%, —D3%, 0, —2D2D3, 2D3D4, —2D1D3, 0, 0
D42, D4%, D4? , D12 + D22 + D32,0,0, —2D3D4, 0, —2D2D4, —2D1D4
0,0,D1D2, —-D1D2, D32 - D42, —D1D3, 0, —D2D3, D1D4, D2D4
D2D3,0,0, -D2D3, -D1D3, D1> — D4*>, D2D4, —D1D2, D3D4, 0
D3D4,D3D4,0,0,0, —D2D4, D12 + D2?, —D1D4, —D2D3, —D1D3
0,D1D3,0,-D1D3, -D2D3, —D1D2, D1 D4, D22 — D42, 0, D3D4
D2D4, 0,D2D4, 0, -D1D4, —-D3D4, —D2D3, 0, D1? + D32, —D1D2
| 0,D1D4,D1D4,0,-D2D4, 0, —D1D3, —D3D4, —D1D2, D2% + D32
> R_adj:=Involution(R, Alg);

r D2% + D3? — D4%, D2?, D3%, D4%?, 0, D2D3, D3D4, 0, D2D4, 0 7
D1?, D1%? + D3? —D4%, D3?, D4%, 0, 0, D3D4, D1D3, 0, D1 D4
D1?,D2?, D1? + D2? — D4?, D4%,D1D2,0, 0, 0, D2D4, D1 D4

-D1?, -D2?, —D3?, D1? + D2? + D3%, -D1D2, -D2D3, 0, -D1D3, 0, 0
—-2D1D2, -2D1D2, 0,0, D3? —D4?, —D1D3, 0, -D2D3, —D1D4, —D2D4
0,-2D2D3, —-2D2D3, 0, —D1D3, D12 — D4*>, -D2D4, —-D1D2, —-D3D4, 0

0,0,2D3D4, —2D3D4, 0, D2D4, D1?2 + D22, D1 D4, —-D2D3, —D1D3
—-2D1D3,0, —-2D1D3, 0, -D2D3, -D1D2, —D1D4, D2* — D4%, 0, —D3D4

0,2D2D4, 0, —2D2D4, D1D4, D3D4, —-D2D3, 0, D1?> + D3, —D1D2

2D1D4,0,0, —2D1D4, D2D4, 0, —D1D3, D3D4, —D1 D2, D2% + D3>

R _adj :=

Let us study whether or not the linearized Ricci equations are parametrizable. Let us notice that this
problem is related to a question asked by J. Wheeler on the existence of potentials for the Einstein
equations [24].

> st:=time(): Extl:=Exti(R_adj, Alg, 1): time()-st; Ext1[1];

86.810

[ %1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,%1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,%1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,%1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,%1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,%1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,%1,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,%1,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,%1,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,%1,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,%1,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,%1,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,%1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,%1,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,%1,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,%1,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,%1,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,%1,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,%1,0

| 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %1 |

%1 := D3* + D2* — D4® + D1°

Therefore, we see that the linearized Ricci equations are not parametrizable because the system,
defined by R € D'%*10 admits a family of 20 torsion elements which generate the torsion submodule
of the D-module M = D'*10/D1x10 B Tet us notice that every torsion element of the system satisfies
the Dalembertian equation, namely (A — czg_;) y = 0 (travelling wave in space-time).

The list of 20 torsion elements of the system is given by the following 20 x 10 matrix.
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> Ext1[2];

D2D4,0,0,0,-D1D4,0,0,0,D1*, -=D1D2 ]
D3D4,0,0,0,0,0,D1%>, —-D1D4, 0, -D1D3
D2D3,0,0,0,-D1D3, D12,0, -D1D2, 0,0
D4%,0,0,D1%,0,0,0,0,0, —2D1D4
D3%,0,D1%,0,0,0,0, —-2D1D3, 0,0
D2?, D1%,0,0, -2D1D2,0,0,0,0,0
0,D3D4,0,0,0,-D2D4, D2?,0, -D2D3, 0
0,D4%,0,D2%,0,0,0,0, —2D2D4, 0
0,D32,D22,0,0,-2D2D3,0,0,0,0
0,-D1D4,0,0,D2D4,0,0,0,D1D2, —D2?
0,-D1D3,0,0,D2D3,D1D2,0, -D2%,0,0
0,0,D4% D3%,0,0,—2D3D4,0,0,0
,0,-D2D4,0,0,D3D4, D2D3, 0, —D32,0

b

)

b

,—D1D4,0,0,0,D1D3,D3D4, 0, —D3?
,D1D2,0,D3?, —D1D3,0, -D2D3, 0,0

)

D1D3,0,0, —-D1D4, D4%, 0, —D3D4

D1D2,D4%,0,0,0, —-D1D4, —D2D4
0,0,0,0,D3D4, -D1D4,D1D2, 0,0, —-D2D3

| 0,0,0,0,0,-D1D4,0,D2D4,D1D3, —D2D3 |

0

0,0

0,0
0,0,0,D2D3,0,D4?, —-D2D4, 0, -D3D4, 0
0,0

0,0

0,
0,

b

The parametrization of the D-module M/t(M) = D**10/D'*20 Ezt1[2] is defined by:

> Ext1[3];

[ —2D1 0 0 0 ]
0 —-2D2 0 0
0 0 —-2D3 0
0 0 0 —-2D4
-D2 -Di1 0 0
0 -D3 -D2 0
0 0 -D4 -D3
-D3 0 -D1 0
0 -D4 0 -D2
—-D4 0 0 —-D1 |

Therefore, the underdetermined linear system of PDEs Ext1[2]y = 0, which is associated with the
D-module M/t(M) = D'*10/Dx20 Ext1[2], is parametrized by Ext1[3], i.e., we have y = Ext1[3] z,
where 2 = (21 : 20 : 23: 24)7 are four potentials.

> st:=time(): Ext2:=Exti(R_adj, Alg, 2):

5.529

time()-st; Ext2[1];

RR n° 5181



D1 0 0 0
D42 0 0 0
D3D4 0 0 0
D2D4 0 0 0
D32 0 0 0
D2D3 0 0 0
D22 0 0 0
0 D2 0 0
0 D42 0 0
0 D3D4 0 0
0 DID4 0 0
0 D32 0 0
0 DID3 0 0
0 D1? 0 0
0 0 D3 0
0 0 D42 0
0 0 D2D4 0
0 0 DID4 O
0 0 D22 0
0 0 D1D2 0
0 0 D12 0
0 0 0 D4
0 0 0 D32
0 0 0 D2D3
0 0 0 D1D3
0 0 0 D22
0 0 0 D1D2
| 0 0 0 D1* |

We compute a free resolution of the linearized Ricci equations.

> st:=time(): Resolution(R, Alg, 4); time()-st;

table([1 = R,
-D4 -D4 -D4 -D4 0 0 2D3 0 2D2 2D1
9 — -D3 -D3 D3 D3 0 2D2 -2D4 2D1 0 0
~ | -D2 D2 -D2 D2 2D1 2D3 0 0 —2D4 0
D1 -D1 -D1 D1 2D2 0 0 2D3 0 —2D4
3 =1INJ(4),
4 =ZERO

D
7.540

We compute a free resolution of the formal adjoint of the linearized Ricci equations.

> st:=time(): Resolution(R_adj, Alg, 4); time()-st;

2D1 0 0 0 D2 0 0 D3 0 D4
0 2D2 O 0 D1 D3 O 0 D4 0
0 0 2D3 O 0 D2 D4 DI O 0
0 0 0 2D4 O 0 D3 0 D2 D1

table([1=R_adj, 2 =

3 =1INJ(4),
4 = ZERO
D)

3.360



A.7 Lie-Poisson structures

Finally, let us notice that the results developed in this paper can be applied to underdetermined linear
systems of PDEs with variable coefficients that appear in some problems of mathematical physics.
For instance, let us give an example coming from the study of Lie-Poisson structures [3, 35].

> Alg:=DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3],
> polynom={x1,x2,x3}):

The following example appears in the study of the Ey algebra [3]. The authors of [3] investigated the
possibility to parametrize all the solutions of the system of PDEs defined by the following matrix.

> R:=evalm([[x1%D3, x2%D3, 0],
> [-x1%D2+x2%D1, -1, x2x%D3],
> [-1, -x2xD1+x1%D2, x1*D3]1]);

z1 D3 2 D3 0
R:=| —z1D2+ 22D1 -1 2 D3
-1 —22D1+ 21 D2 z1D3

Let D = A3 be the Weyl algebra (see Example 2.3) and M = D1*3/D'*3 R be the left D-module

associated with R. The previous problem can be solved by computing ext} (N, D), where N =
D3 /D*3(R) is a left D-module and 6 is the involution defined in 2 of Example 6.3.

> Extl:=Exti(Involution(R, Alg), Alg, 1);

D3 0 0
—z2 D10+ 1 D2 20D3 8 21 22 0
Ertl = 0 L D3 o |- | Dt D2 D3 |,

0 _22D14+21D2 0 —1 —22D1+21D2 21D3
0 0 1

—z2D3

z1 D3

—z1 D2+ z2D1

We find that the system R(F : G : H)? = 0 is not parametrizable because there exist two torsion
elements in the left D-module M

by =21 F+22G,
Py =01 F+9G+ 93 H,

which satisfy:
X1 83 @2 = 0,
X9 83 @2 = 0,

{ 63 (}1 = 0,
(—1’2 81 + x1 82) @2 =0.

(—.’L’2 81 + x1 82) (I)l = 0,

However, the system of PDEs Ext1[2]y = 0 is parametrized by y = Ext1[3]z. Up to the mistake
underlined in [35] concerning the existence of the torsion elements, we recover the parametrization
exhibited in [3]. We refer the interested reader to [35] for more details.

The previous computation shows M is not a torsion left D-module even if R is a square matrix.

Hence, R does not have full row rank. This result can be checked by computing a free resolution of
the left D-module M = D'*3/D'*3 R,

> Free:=FreeResolution(R,Alg);

z1 D3 z2 D3 0
Free := table([1 = | —z1D2+ 22D1 -1 z2D3 |,
-1 —22D1+21D2 z1D3
2=[ -22D1+421D2 z1D3 —z2D3 ],

3 =1INJ(1)
D
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In particular, the left D-module L = D'*3/D Free[2] is torsion-free as we have L & D'X3 R C D'*3,

> ext:=Exti(Involution(Free[2], Alg), Alg, 1);

D3 z1D3 0
ext:= |[1],] —22D1+21D2 21D3 —22D3 |, | —D2 —z1D2+22D1 22
-D1 -1 1

Therefore, the matrices R € D3*3 and ert[3] are two parametrizations of the left D-module L =
D'X3/D Free[2). Let us compute rankp L.

> OreRank(Free[2],Alg);
2

Hence, we conclude that y = Rz and y = ext[3] # are not minimal parametrizations of the system
R(F: G: H)T = 0 because they depend on three arbitrary functions of (x1, 2, z3). Let us compute
some minimal parametrizations of the system R (F : G : H)T = 0.

> P:=MinimalParametrizations(Free[2],Alg);

D3 21 D3 D3 0 z1 D3 0
P .= —-D2 —2z1D2+22D1 |, | -D2 22 |, | —21D2+22D1 z2
-D1 -1 —-D1 =1 -1 zl

Then, we can check that y = P[1] z, y = P[2] z and y = P[3] z are three minimal parametrizations of
the system R(F : G : H)T =0, where z = (21 : 2)7, and z; and 2, are two arbitrary functions of
1, T2 and x3.

> seq(SyzygyModule(P[i],Alg) ,i=1..3);

%1, %1, %1
%1 := [ —22D14+21D2 z1D3 —2z2D3 ]

To finish, let us consider the Ore algebra Bs = R(x1, 22, 23)[01;01,61][02; 02, 62][03; 03, 03], where a;
and 6; are defined as in the last part of Example 2.3 and let us define the left Bs-module M’ =
B}*3/B}*? R associated with R over Bj. Since the domain of coefficients of Bj is the quotient field of
R[z1, 2, 23], we are going to use the Weyl algebra D = A3 (see Example 2.3) and allow our algorithms
to divide by non-zero polynomials in z;, x5, x3. This is taken into account by ExtiRat below.

> st:=time(): ExtiRat(Involution(R, Alg), Alg, 1);
> time()-st;

- D3 0
—z1 D2+ 22 D1 0 zl z2 0
0 D3 | 0 —21°D2+ 1 22D1—22 —2z12D3 |’

L 0 —z1 D2+ z2D1

z2 D3

—z1 D3
| —22D1+ 21 D2

0.670

Q

We find that the system R (F :
elements

: H)T = 0 is not parametrizable because there exist two torsion

P =21 F+22G,
By = (—2{ 02 + 212201 —22) G — 2} 33 H,

INRIA



which both satisfy the system:

{83@":0’ i=1,2.

(—.%‘1 Oy + 22 81) P, = 0,

We recover the torsion element ®; exhibited in [35] as well as the parametrization of the torsion-free
left Bs-module M'/¢t(M') given in [3].
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