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Abstract
The Braid Di�e-Hellman Public Key Cryptosystem is based on the

Di�e-Hellman version of a Decomposition Problem (DP) in the braid
group Bn. We propose a linear algebra attack on DP via the faithful
Lawrence-Krammer representation ρ′n. For generic and su�ciently long
instance braids we recover the ρ′n-image of the private key using just one
matrix inversion.
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In section 1 we give a description of the Braid Di�e-Hellman key agreement
protocol and its underlying algorithmic problems (DH-DP, DP). Representation
attacks on these problems especially by Cheon, Jun [6] and E. Lee, Park [20]
are discussed in section 2. In section 3 we develope our proposed linear algebra
attack on DP for generic and su�ciently long instance braids via the faithful
Lawrence-Krammer representation.
In the appendix we estimate the asymptotic complexity of this attack.

1 Braid Di�e-Hellman Key Agreement

Braid-based cryptography was introduced by Anshel, Anshel and Goldfeld in
1999 [1] and by Ko, Lee, Cheon, Han, Kang and Park at the CRYPTO 2000
[16]. Several attacks have been proposed for the AAG key agreement protocol
(KAP) for braid groups [21, 13, 14, 8, 11] and for the Ko, Lee et al. braid Di�e-
Hellman public key encryption scheme [12, 11, 6, 20] so far. An introducing,
summarizing and outlooking survey on braid group cryptography is given by P.
Dehornoy [7].
Here we deal with the revised version of the Braid Di�e-Hellman KAP
suggested at the ASIACRYPT 2001 [5]:
Let LBm and UBn−m (m < n) be the commuting subgroups of the n-braid
group Bn :=< σ1, . . . , σn−1|σiσj = σjσi , |i−j| > 1 , σiσi+1σi = σi+1σiσi+1∀i =
1, . . . , n−2 > generated by σ1, . . . , σm−1 and σm+1, . . . , σn−1 respectively. Then
A(lice) and B(ob) have to perform the following protocol steps:
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0) A or B select (and publish) a generic, su�ciently complicated braid x ∈
Bn.

1A) A generates randomly (al, ar) ∈ LB2
m, and sends yA = alxar in a rewritten

(normal) form to B.
1B) B generates randomly (bl, br) ∈ UB2

n−m, and sends yB = blxbr to A.
2A) A receives yB and computes K := alyBar.
2B) B receives yA and computes also the shared key blyAbr = bl(alxar)br =

al(blxbr)ar = alyBar = K.

The security of this key agreement scheme and the corresponding PKC1 de-
pend on the following Di�e-Hellman type Decompositon Problem (DH-
DP):

Instance: (x, yA, yB) ∈ B3
n such that yA = alxar and yB = blxbr for some

al, ar ∈ LBm and bl, br ∈ UBn−m.
Objective: Find K := alyBar = blyAbr = alblxarbr.

To recover the private key (al, ar) ∈ LB2
m of A(lice) it is su�cient to solve

the following Decompositon Problem (DP):

Instance: (x, yA) ∈ B2
n such that yA = alxar for some al, ar ∈ LBm.

Objective: Find (a′l, a
′
r) ∈ LB2

m such that a′lxa′r = yA.

A solution for the DP induces a solution for the DH-DP. In the case al = a−1
r

and bl = b−1
r we obtain the original braid Di�e-Hellman key agreement scheme,

which is based on a Di�e-Hellman version of the Generalized Conjugacy Search
Problem (GCSP) [16]. The fact that in general al 6= a−1

r (and bl 6= b−1
r ) for the

revised scheme is indeed its advantage:
al and ar are in general not in the same conjugacy class. So attacks, which
(frequently) use conjugacy operations like Cycling attacks [11] and Gebhardt's
computation of Ultra Summit Sets [10], don't work.
We can restrict to the monoid versions DP+ and DH-DP+, in which each braid
group is replaced by the corresponding monoid of positive braids, because we
can multiply the equations yA = alxar, yB = blxbr by a su�ciently high power
of the square of the Garside element ∆2

n, which generates the center of Bn.

2 Representation attacks and previous work

Linear algebra or representation attacks on braid-based cryptosystems work as
follows:

I) Choose a linear representation ρ : Bn −→ GL(k, R) of the n-braid group
for some ring R and k ∈ N, and compute the images of the instance braids
for this representation.

II) Solve the base problem in the matrix group GL(k,R). Keep in mind that
there will be in�nitely many solutions in general, and that not all solutions
are in imρ ⊂ GL(k,R).

III) Find preimage braids for solutions in imρ.
1Using an ideal hash function from the braid group into the message space H : Bn −→

{0, 1}k a corresponding Public Key Encryption can be constructed ([5], chapter 6).
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2.1 Linear algebra attack on DH-DP+ via Lawrence-Kram-
mer representation [6]

Let V denote the free Z[t±1, q±1]-module of rank
(
n
2

)
with basis {xij |1 ≤ i <

j ≤ n}. The Lawrence-Krammer (LK) representation [19]
ρn : Bn −→ GL(

(
n
2

)
, Z[t±1, q±1]) = Aut(V ) de�ned ∀k = 1, . . . , n− 1 by

(ρnσk)xij =



tq2xk,k+1 , i = k, j = k + 1
(1− q)xik + qxi,k+1 , i < k = j
xik + tqk−i+1(q − 1)xk,k+1 , i < k, j = k + 1
tq(q − 1)xk,k+1 + qxk+1,j , i = k, k + 1 < j
xkj + (1− q)xk+1,j , i = k + 1 < j
xij , j < k or k + 1 < i
xij + tqk−i(q − 1)2xk,k+1 , i < k, k + 1 < j

was proved to be faithful by Bigelow and Krammer [17, 3, 18] for all n and
even if q is a real number with 0 < q < 1.
We use the abbreviation ρ′n := ρn|q=1/2. Then the Cheon-Jun attack on DH-
DP+ works roughly as follows. For technical details see [6].

I) Compute X = ρ′nx, Y A = ρ′nyA, Y B = ρ′nyB ∈ Mat(
(
n
2

)
, Q[t]) for x, yA,

yB ∈ B+
n .

II) Compute
(
n
2

)
×

(
n
2

)
-matrices A′

l, A
′
r over Q[t] satisfying the following equa-

tions ∀k = m + 1, . . . , n− 1 :

XA′
r = A′

lY
A (1)

ρ′n(σk)A′
l = A′

lρ
′
n(σk)

ρ′n(σk)A′
r = A′

rρ
′
n(σk)

}
(2)

A′
l is invertible with overwhelming probability, so we can compute

(A′
l)
−1Y BA′

r = (A′
l)
−1(BlXBr)A′

r

(2)
= Bl((A′

l)
−1XA′

r)B
r (1)

= BlY ABr =
ρ′n(K) with Bl := ρ′nbl, B

r := ρ′nbr.
Note that in general (A′

l)
−1 6= Al := ρ′nal and A′

r 6= Ar := ρ′nar, and
(A′

l)
−1 and A′

r need not to lie in im ρ′n.
We remark that we can change the system (1), (2) by vectorization into
a highly overdetermined linear system with (2n − 2m − 1)

(
n
2

)2 equations
and 2

(
n
2

)2 variables, which are polynomials in Q[t]2. The complexity of
the Cheon-Jun attack is dominated by Gaussian elimination for such linear
systems.

III) In [6] chapter 3.2 Cheon and Jun developed a polynomial time algorithm
for inverting the LK-representation based on the ideas of Krammer [18].
Applying this algorithm to (A′

l)
−1Y BA′

r = ρn(K) we obtain the unique
preimage braid K.

So the Cheon-Jun attack provides a polynomial time solution to the DH-
DP. Nevertheless the complexity is too large to break the cryptosystem with
the proposed parameters in [16, 5] e�ciently.

2By precise analysis of Krammer matrices as in [6] we can reduce the number of vari-
ables and equations, but (in the case m = O(n)) they keep O(n4) and O(n5) (not O(n4)!)
respectively.
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2.2 Linear algebra attack on DP+ via Burau representa-
tion [20]

Let W denote the free Z[q±1]-module of rank n with basis {wi|1 ≤ i ≤ n}.
The (unreduced)3 Burau representation [4] ρBurau

n : Bn −→ GL(n, Z[q±1]) =
Aut(W ) de�ned by

ρBurau
n σk = Ik−1 ⊕

(
1− q q

1 0

)
⊕ In−k−1 ∀ k = 1, . . . , n− 1

provides the following special attack on DP+, but only in the symmetric case
2m = n:

I) Compute X = ρBurau
n x, Y = ρBurau

n yA ∈ Mat(n, Z[q]) for x, yA ∈ B+
n .

II) Consider the DP-induced decomposition W = spanL ⊕ spanU with L :=
{wi|1 ≤ i ≤ m}, U := {wi|m + 1 ≤ i ≤ n}. Then we obtain the following
block matrix equations:

Y =
(

YLL

YUL

YLU

YUU

)
=

(
Al

0
0

In−m

) (
XLL

XUL

XLU

XUU

) (
Ar

0
0

In−m

)
=

(
AlXLLAr AlXLU

XULAr XUU

)
Note that Al = ρBurau

m al, Ar = ρBurau
m ar. In the case 2m = n the o�diago-

nal blockmatrices XLU , XUL are quadratic. The probability that XLU or
XUL have full rank for randomly chosen x ∈ B+

n increases for n = const
and increasing word length |x|, and for |x| = const and decreasing braid
index n (n ≥ 5) [20]. If at least one of these two o�diagonal matrices is
regular, so we obtain Al = YLUX−1

LU or Ar = X−1
ULYUL.

In [15] Ko suggests the following countermeasure: Choose a x, which con-
tains just a few generators σm.

III) The Burau representation is proved to be not faithful for n ≥ 5 [2]. The
best known algorithms for computing preimage braids for the Burau rep-
resentation are the heuristic Hughes algorithm [13] and its variations by
Lee and Park [20]. Applying it to Al or Ar we might obtain al or ar, and
that's su�cient to solve DP.
But the success rates of these heuristics decreases for m = const with in-
creasing word length |a|, and they are very low for the parameter values
suggested in [5].

3 Cryptanalysis

Now we use ideas from Lee and Park [20] to develop an attack on DP+ via
LK-representation.

3.1 Symmetric case 2m = n

Consider the DP-induced decomposition V = spanL ⊕ spanM ⊕ spanU with
L := {xij |1 ≤ i < j ≤ m},M := {xij |1 ≤ i ≤ m < m + 1 ≤ j ≤ n} and
U := {xij |m + 1 ≤ i < j ≤ n} (|L| =

(
m
2

)
, |M | = m(n−m), |U | =

(
n−m

2

)
).

3It is also possible to use the reduced Burau representation Bn −→ GL(n− 1, Z[q±1]).
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The basis is reordered according to the DP-induced decomposition of V by the
transformation φ : {xij |1 ≤ i < j ≤ n} −→ {xk|1 ≤ k ≤

(
n
2

)
} de�ned by

xij 7→ xk with

k :=


(
j−1
2

)
, xij ∈ L(

m
2

)
+ (j −m− 1)m + i , xij ∈ M(

m
2

)
+ m(n−m) +

(
j−m−1

2

)
+ i−m ,xij ∈ U

So we get the following block matrix structures for embedded braids:

ρna =
(

ALL ALM

0 AMM

)
⊕ I(n−m

2 ) ∀a ∈ LBm and

ρnb = I(m
2 ) ⊕

(
BMM 0
BUM BUU

)
∀b ∈ UBn−m .

Note that ALL = ρma = ρma(t, q), ALM = ALM (t, q), rank ALM ≤ m, and
AMM = AMM (q) = (ρBurau−type

m a)⊕(n−m) ∈ Mat((n−m)m, Z[q±1]).
The commutativity equation ab = ba ∀a ∈ LBm ∀b ∈ UBn−m yields the fol-
lowing block matrix equations:

ρnab =

 ALL ALMBMM 0
0 AMMBMM 0
0 BUM BUU

 =

 ALL ALM 0
0 BMMAMM 0
0 BUMAMM BUU

 (3)

Our representation attack contains the following steps:

I) Compute the images of the instance braids:

ρ′nx =

 XLL XLM XLU

XML XMM XMU

XUL XUM XUU

 , ρ′nyA =

 YLL YLM YLU

YML YMM YMU

YUL YUM YUU

 .

II) The UL-block matrix from ρ′nalxar =
Al

LLXLLAr
LL+

Al
LMXMLAr

LL

(Al
LLXLL + Al

LMXML)Ar
LM+

(Al
LLXLM + Al

LMXMM )Ar
MM

Al
LLXLU+

Al
LMXMU

Al
MMXMLAr

LL Al
MM (XMLAr

LM + XMMAr
MM ) Al

MMXMU

XULAr
LL XULAr

LM + XUMAr
MM XUU


yields the equation YUL = XULAr

LL.
XUL is quadratic for 2m = n and non-singular with increasing probability
for increasing |x| (n = const) and decreasing n (|x| = const) (Table 1).
If XUL is regular, we can compute ρ′mar = Ar

LL = X−1
ULYUL.

If it is not, choose a generic, su�ciently long u ∈ UB+
n−m with ρ′nu =

I(m
2 ) ⊕

(
UMM

UUM

0
UUU

)
, and compute

(ρ′nualxar)UL = (UY )UL = UUMYML+UUUYUL = UUMAl
MMXMLAr

LL+

UUUXULAr
LL

(3)
= (UUMXML + UUUXUL)Ar

LL.
Then UUMXML + UUUXUL = (ρ′nux)UL has with high probability full
rank for su�ciently long u, and we obtain

Ar
LL = (UUMXML + UUUXUL)−1(UUMYML + UUUYUL).
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Table 1: p := Prob(rankXUL|t=3 =
(
m
2

)
)

n = 2m
6 |x| 15 20 25 30 35 40 45 50

p in % 6 30 41 62 77 90 92 95
8 |x| 30 40 50 60 70 80 90 100

p in % 0 7 30 48 69 87 89 99
10 |x| 70 90 110 130 150 170

p in % 5 21 60 80 92 100
12 |x| 100 140 180 220 260

p in % 1 20 65 88 99
100 random experiments were executed for each entry. A randomly chosen x ∈ B+

n

is rejected, if it doesn't contain all Artin generators.

Note that this regularization procedure does not work, if XML and XUL

have a common zero column, or if XUL is the null matrix and XML doesn't
have full rank. But for generic, su�ciently long and complicated x, which
of course contains all Artin generators σ1, . . . , σn−1, this will not occur.

III) By Cheon-Jun algorithm we lift back Ar
LL = ρ′mar to ar ∈ B+

m.

3.2 Asymmetric cases

a) m < n−m

Here we have to replace m by m′ := n/2 (n even) or m′ := (n + 1)/2 (n odd) in
the de�nitions of L,M,U . If n is even the problem is reduced to the symmetric
case n = 2m′.
But if n is odd we have to embed the problem into B2m′ and compute images
of the instance braids for ρ′2m′ . Choose the decomposition span{xij |1 ≤ i < j ≤
2m′} = spanL⊕ spanM̄ ⊕ spanŪ with M̄ := {xij |1 ≤ i ≤ m′,m′+1 ≤ j ≤ 2m′}
and Ū := {xij |m′ + 1 ≤ i < j ≤ 2m′}. Then XŪL is quadratic, but singular
- it contains (at least) m′ − 1 = (n − 1)/2 zero rows, and XM̄L has (at least)
m′ = (n + 1)/2 zero rows. Nevertheless we can apply the above regularization
procedure again:
Choose a generic, su�ciently long u ∈ ŪB+

2m′−m′ :=< σm′+1, . . . , σ2m′−1 >+⊂
B+

2m′ and compute

(ρ′2m′uyA)ŪL = UŪM̄YM̄L + UŪŪYŪL = UŪMYML + UŪUYUL =
(ρ′2m′ualxar)ŪL = (ρ′2m′uxar)ŪL = (UŪM̄XM̄L + UŪŪXŪL)Ar

LL

= (UŪMXML + UŪUXUL)Ar
LL.

(ρ′2m′ux)ŪL = UŪMXML + UŪUXUL is quadratic, and regular for generic, suf-
�ciently long u ∈ ŪB′+

m , x ∈ LB+
n , and we obtain

Ar
LL = (UŪMXML + UŪUXUL)−1(UŪMYML + UŪUYUL) = ρ′m′ar.

b) m > n−m

By half twist transformation τn : Bn −→ Bn def. by σi 7→ σn−i we reduce case
b) to case a).
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Note that we perform now an attack on Bob's private key, while in case a) we
only can compute the private key of Alice.

c) Simple Generalizations

We can introduce some simple variations and generalizations of the DH-DP:
One way is to choose di�erent partitions of the (l)eft and (r)ight areas, i.e.
choose al ∈ LBml

, bl ∈ UBn−ml
, ar ∈ LBmr

, br ∈ UBn−mr
with ml 6= mr

(ml,mr < n). By half twist transformation, reverse anti-automorphism of Bn

and proper embeddings of the private keys we can transform the problem to the
following standard form of l,r-asymmetric DP:

Instance: (x′, y′) ∈ B2
n such that y′ = plxpr for some pl ∈ LBm′

l
, pr ∈ LBm′

r

with m′
r = n−m′

l < n/2.
Objective: Find p′l ∈ LBm′

l
, p′r ∈ LBm′

r
such that p′lx

′p′r = y′.

De�ning L := {xij |1 ≤ i < j ≤ m′
r} and U := {xij |n−m′

r + 1 ≤ i < j ≤ n} we
get (ρ′ny′)UL = (ρ′nplx

′pr)UL = X ′
ULρ′m′

r
(pr). So recovering pr depends on the

regularity of the quadratic block matrix X ′
UL := (ρ′nx′)UL.

Another way is to choose ar ∈ UBn−m, br ∈ LBm (and keep al ∈ LBm, bl ∈
UBn−m) or vice versa. But in this case we can attack the DP, if one of the
quadratic matrices XUU or XLL is invertible.
Further generalizations e.g. by introducing re�ned partitions of each area, can
be treated with similar methods.
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Appendix: Complexity Analysis

For simplicity we assume that x, yA ∈ B+
2m, al, ar ∈ LB+

m, and x, al, ar have
the same (Artin) canonical length l. Therefore the entries in Ar

LL = ρ′mar are
polynomials in Q[t] with degree bounded above l. According to Corollary 1 in
[6] the absolute values of the numerators and denominators of the coe�cients
of these polynomials are bounded by 2|ar| and 22(m−1)l respectively. Let p be
a prime with p > 2|ar|+2(m−1)l and f(t) an irreducible polynomial of degree l
over Zp. Then we have

ρ′mar =
1

22(m−1)l
[22(m−1)lρ′mar mod(p, f(t))].

So we can work in the residue class �eld F = Zp[t]/(f) ∼= Fpl rather than in Q[t].
This allows us to estimate the costs of the ring operations. Using Schönhage-
Strassen method one multiplication in Zp takes O(log p log log p log log log p) =
O∼(log p) = O∼(|ar|) = O∼(m2l) bit operations4, and a multiplication in
Fpl takes O(l2) multiplications in Zp

5. Therefore an operation in F takes
O∼(l2 log p) = O∼(m2l3)bit operations.

Step II): Compute ρ′mar = X−1
ULYUL.

The matrix inversion has the same asymptotic complexity of O(m2τ ) op-
erations in F as matrix multiplication. The feasible matrix multiplication
exponent τ is 3 for classical algorithms, log2 7 using Strassen's method,
and the current world record is τ < 2.376 ([9], section 12.1). Therefore
the asymptotic complexity of step II is about O∼(m2τ+2l3).

Step III): Invert the Lawrence-Krammer representation.
In [6] the authors errouneously assume that the complexity of their Algo-
rithm 1 for inverting the Lawrence-Krammer representation is dominated
by the computation of a power of ρn∆n. This is not the case, because we
can compute even powers by formula ρn∆2k

n = t2kq2nkI(n
2) and ρn∆n is

sparse - it has the support of a permutation matrix.
Therefore the complexity of Algorithm 1 [6] is dominated by step 3.4 (for
k = 1 to l). So Inverting Ar

LL = ρ′mar has the same complexity as com-
puting ρ′mar

6.
In step 3.4 we have to perform O((m2)τ ) operations in F . That are
O(m2τ l) operations in Zp, because the (Artin) canonical length of a permu-
tation braid is 1. Therefore step 3.4 takes O∼(m2τ l log p) = O∼(m2τ+2l2)
and the whole Algorithm 1 O∼(m2τ+2l3) bit operations.
Note that the precomputation of the Krammer matrices of l permutation

4For a precise de�nition of the O∼-notation see de�nition 25.8 in [9].
5Using asymptotically fast algorithms this can be reduced to O∼(l) multiplications in Zp.6Because the (Artin) canonical length of yA is bounded by 3l, step I (compute ρ′nx, ρ′nyA)

has the same complexity as step III.
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braids takes O∼(m6l) bit operations:
The Krammer matrix of an Artin generator contains at most 2 nonzero
entries per column. So multiplication with ρ′mσj (j = 1, . . . ,m− 1) takes
O((m2)2) �eld operations in F , and also in Zp, because the (Artin) canon-
ical length of a permutation braid is 1. Because the word length of a
permutation braid bσ is O(m2), Schönhage-Strassen multiplication takes
O∼(|bσ|) = O∼(m2) bit operations.

Summary: Our proposed attack requires O∼(m2τ+2l3) bit operations using
Schönhage-Strassen multiplication in Zp and O(m2τ+4l4) bit operations
using classical multiplication.
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