
AAECC (2007) 18:297–311
DOI 10.1007/s00200-007-0038-9

When cache blocking of sparse matrix vector multiply
works and why

Rajesh Nishtala · Richard W. Vuduc ·
James W. Demmel · Katherine A. Yelick

Received: 8 November 2005 / Revised: 21 September 2006 /
Published online: 6 March 2007
© Springer-Verlag 2007

Abstract We present new performance models and more compact data struc-
tures for cache blocking when applied to sparse matrix-vector multiply
(SpM×V). We extend our prior models by relaxing the assumption that the
vectors fit in cache and find that the new models are accurate enough to pre-
dict optimum block sizes. In addition, we determine criteria that predict when
cache blocking improves performance. We conclude with architectural sugges-
tions that would make memory systems execute SpM×V faster.

Keywords Performance optimization · Sparse matrix multiplication ·Memory
hierarchies · Performance modeling

1 Introduction and overview

We consider the problem of building high-performance implementations of
sparse matrix-vector multiply (SpM×V), or y← y+A · x. We call x the source
vector and y the destination vector. Making SpM×V fast is complicated both
by modern hardware architectures and by the overhead of manipulating sparse

R. Nishtala (B) · R. W. Vuduc · J. W. Demmel · K. A. Yelick
Computer Science Division, University of California at Berkeley,
575 Soda Hall, Berkeley, CA 94720, USA
e-mail: rajeshn@cs.berkeley.edu

R. W. Vuduc
e-mail: richie@cs.berkeley.edu

J. W. Demmel
e-mail: demmel@cs.berkeley.edu

K. A. Yelick
e-mail: yelick@cs.berkeley.edu

298 R. Nishtala et al.

data structures. It is not unusual to see SpM×V run at under 10% of the peak
floating point performance of a single processor [15, Fig. 1]. Moreover, in con-
trast to optimizing dense matrix kernels (dense BLAS) [16,1], performance
depends on the nonzero structure of the matrix which may not be known until
run-time.

In prior work on the Sparsity system (version 1.0) [7], Im developed an
algorithm generator and search strategy for SpM×V that was quite effective in
practice. The Sparsity generators employed a variety of performance optimiza-
tion techniques, including register blocking, cache blocking, and multiplication
by multiple vectors. Cache blocking differs from register blocking in that cache
blocking reorders memory accesses to increase temporal locality, whereas reg-
ister blocking compresses the data structure to reduce memory traffic. This
paper focuses on performance models for cache blocking (Sect. 2) and asks
the fundamental questions of what limits exist on such performance tuning,
extending our prior models [15] by accounting for the TLB (translation look
aside buffer, i.e., a buffer of most recently used virtual-to-physical address
translations), enabling accurate selection of optimal cache block sizes. Cache
blocking increases the complexity of the data structures used to represent the
matrix by adding an extra set of row pointers for each block. The trade-off that
needs to made is whether the benefit of the added temporal locality outweighs
the added costs of accessing the extra data structures that facilitate the increase
in temporal locality. We explore a subset of the matrices used by Vuduc [15],
namely, those that are so sparse that register blocking has no benefit. For all
the other matrices it was found that cache blocking did not have a significant
impact on performance. Thus, to simplify the analysis, we only consider these
especially sparse matrices where cache blocking had noticeable advantages or
disadvantages. We also assume the matrices are stored in row-oriented format.
If the matrices were stored using a column-oriented data structure the roles of
x and y would be reversed.

We classify the set of matrices on which we see benefits from cache blocking,
concluding that cache blocking is most effective when simultaneously (1) x does
not fit in cache (2) y fits in cache, (3) the nonzeros are distributed throughout the
matrix (as opposed to a band matrix) and (4) the non-zero density is sufficiently
high but not high enough where register blocking makes an appreciable differ-
ence. If a matrix does not exhibit one of these properties then cache blocking
has no significant impact on performance and thus we do not apply cache block-
ing to that matrix. However, if these properties exist then the choice of block
size is important since blocking can either greatly increase (as high as 2.93×) or
greatly decrease (as low as 0.33×) the performance compared to the unblocked
versions. One of our aims in this work is to construct models that will allow us
to predict the best block-size given static matrix and machine properties.

Traditional static models of cache behavior used to select tile sizes for dense
kernels cannot be applied to sparse kernels due to the presence of indirect
and irregular memory accesses known only at run-time. Nevertheless, there
have been a number of notable attempts to model performance. Temam and
Jalby [12], Heras et al. [6], and Fraguela et al. [3] have developed sophisticated

When cache blocking of sparse matrix vector multiply works and why 299

probabilistic cache miss models, but assume uniform distribution of non-zero
entries. These models differ from one another in their ability to account for self-
and cross-interference misses. Our model in Sect. 3 differs from the prior work
in that (1) we consider multi-level memory hierarchies including the TLB, and
(2) we explicitly model the execution time in addition to cache misses.

Gropp et al. use bounds similar to the ones we develop to analyze and tune
a computational fluid dynamics code [4]; Heber et al. present a detailed perfor-
mance study of a fracture mechanics code on Itanium [5]. This paper considers
tuning for matrices that come from a variety of other domains, and explores
performance modeling for cache block size selection.

Due to space limitations we only present the high level intuition and sum-
mary data. We refer the reader to the full report [8] for details. The software
and algorithms described in this paper are available in OSKI (the Optimized
Sparse Kernel Interface) [13]. OSKI is a collection of low-level C primitives
that provide automatically tuned computational kernels on sparse matrices, for
use in solver libraries and applications.

2 Summary of the cache blocking optimization

Matrix data structures

The original matrix is represented in compressed sparse row format (CSR) [9].
In CSR, the nonzero elements of each row and their column indices are stored
sequentially in memory (in arrays called value and col_idx in Fig. 1) with
another indexing array (called block_ptr) to identify where the new rows
start. In essence, cache blocking breaks the CSR matrix into multiple smaller
rcache × ccache CSR matrices and then stores these sequentially in memory. In
addition a new array (called row_start) is created which points to the start of
each row of cache blocks. A diagram of this is shown in Fig. 1. One of the main
goals of this work is to choose the size of these rcache × ccache blocks so that we
get the most reuse out of caching of the source and destination vectors while
keeping the cost associated with the extra overhead low. Henceforth we will
refer to rcache as r and ccache as c and assume that there is no register block-
ing. Below, we discuss how (1) we compress the size of each block using the
row start/end (RSE) optimization, and (2) further exploit the fact that each
cache block is just another sparse matrix. The latter technique also allows easy
recursion with multiple levels of cache blocking.

Row start / end

When matrices (especially band matrices) are blocked it is possible that within
a cache block non-zeros do not exist on all the rows. The first cache block, for
example, might have only nonzero elements in the first tenth of the rows and
have the rest of the cache block be empty. However, the basic cache blocked
data structure would loop over all zero rows without doing any useful work. In

300 R. Nishtala et al.

0 8 16row_start

0 2 2 4 5 6 8 10 11 12 25block_ptr

A00 A03 A21 A22 A30 A06 A14 A17 A25 A26 A34 A42

0 3 1 2 0 6 4 7 5 6 4 2col_idx

val

....

....

Fig. 1 Cache blocking data structures [7]

order to avoid the unnecessary accesses, a new vector that contains row start
(RS) and row end (RE) information for each cache block is also created to
point to the first and last nonzero rows in the cache block. This new indexing
information makes the performance less sensitive to the size of the cache block.
Performance results have shown that this optimization can only improve perfor-
mance [8]. In our matrix suite, we found that the use of pointers to the first and
last nonzero row were sufficient since the nonzero rows were clustered together
and thus a list of nonzero rows would have added unnecessary overhead.

Exploiting cache block structure

As described above, the cache blocked matrix can be thought of as many smaller
sparse matrices stored sequentially in memory. We exploit this fact by calling
our prior sparse matrix vector multiplication routines on each smaller matrix,
passing the appropriate part of the source and destination vectors as arguments.
The advantage of handling the multiplication in this fashion is that the inner
loops can be generated independently of the code for cache blocking and code
previously written for non-cache blocked implementations can be reused. This
optimization also allows easy recursion with multiple levels of cache blocking.
Tests indicate that the function call overhead is negligible since the number
of cache blocks for a matrix is usually small compared to the total memory
operations.

3 Analytic models

In this section, we create analytic upper and lower bounds on performance by
modeling various levels of the memory hierarchy. We first describe the overall
performance model and then model the different parts of the memory system

When cache blocking of sparse matrix vector multiply works and why 301

that contribute to this overall model. First, we create a load model; we then
discuss analytic upper and lower bounds for the number of cache misses at
every level. We next examine the upper and lower bounds for TLB misses, and
develop a more complex relation between TLB upper and lower bounds to
yield a more accurate estimate of the actual number of TLB misses. Our tech-
niques can be extended to construct more accurate cache models, though we
found in practice that this initial estimate of TLB misses is sufficiently accurate
to predict good block sizes.

3.1 Overall performance model

The overall performance model is similar to the one in [14] except that we have
added one more latency term to account for the TLB misses.

We model execution time as follows. First, since we want an upper bound on
performance (lower bound on time), we assume we can overlap the latencies of
computation and memory accesses. Let hi be the number of hits at cache level
i, and mi be the number of misses. Then the execution time T is

T =
κ−1∑

i=1

hiαi +mκαmem +mTLBαTLB, (1)

where αi is the access time (in cycles or seconds) at cache level i, κ is the low-
est level of cache, and αmem is the memory access time. The L1 hits h1 are
given by h1 = Loads(r, c) −m1 where Loads(r, c) is the number of loads with
an rcache × ccache cache block size (see Sect. 3.2 below). Assuming a perfect
nesting of the caches, so that a miss at level i is an access at level i + 1, then
hi+1 = mi − mi+1 for i ≥ 1. The TLB and the L3 might not be nested, so we
account for this by assuming that the TLB misses are not overlapped with the
misses at the other levels and that they must be serviced before the cache misses
can be serviced. The performance, which is expressed as Mflop/s, is 2k

T × 10−6

because each of the k nonzero matrix entries leads to one floating point multiply
and one floating point add.

To get an estimate of the upper bound on performance, let mi = M(i)
lower in

Eq. (1) (where M(i)
lower is a lower bound on misses at the ith cache level as dis-

cussed below), and convert to Mflop/s. Similarly, we can get a lower bound on
performance by letting mi = M(i)

upper(where M(i)
upper is a upper bound on misses

at the ith cache level as discussed below).
In order to take the TLB effects into account we estimate the number of

cycles that are needed to process a TLB miss in order to make Eq. (1) match
the measured performance. We incorporate it into the upper bound model by
setting mTLB equal to M(TLB)

model , as described in Sect. 3.4. We use our previously
estimated values for the latencies [8].

302 R. Nishtala et al.

3.2 Load model

We assume the cache block data structure as described in Sect. 2. We can count
the number of loads required for SpM×V as follows. Let A be an m×n matrix
with k non-zeros. Henceforth we assume no register blocking is done which is
optimal for all our sparse test matrices. We define a new variable, Krc, to equal
the number of cache blocks that a given cache block size (r × c) produced. In
the case that the nonzeros are uniformly randomly distributed throughout the
matrix, then Krc = �m

r ��n
c �. However, this is not always true and depends on

the nonzero structure of the matrix. The loads can be counted in the following
manner:

Loads(r, c) = 2k+ 2(Krc)+ 2
Krc∑

j=1

δj + 2
⌈m

r

⌉

︸ ︷︷ ︸
matrix

+ k︸︷︷︸
src vector

+
Krc∑

j=1

δj

︸ ︷︷ ︸
dest vector

(2)

In Eq. (2), the matrix terms can be counted as follows. We first count two
loads for every element of the matrix, one for the column index and one for
the actual value. For each cache block j we load the corresponding RSj and
REj. Then for each cache block j we load δj elements of the block_ptr ar-
ray twice, once for when the index is used as an ending bound for a row
and once again as a starting bound for the next row. Finally we load each
element of the row_start twice, once when it is used as the pointer for the
end of a row of cache blocks and once when it is used for the start of the
next row of cache blocks. For each cache block j we calculate the result
of the corresponding destination vector and make δj updates to the corre-
sponding destination vector. Since we assume the matrix multiplication is
done through compressed sparse row, the total number of reads to the source
vector is k.

The fewest number of loads would occur if the matrix were not cache blocked;
in this case

∑Krc
j=1 δj equals m and Krc equals 1. Therefore cache blocking does

not decrease the number of loads. If anything, too many cache blocks would
greatly increase the overhead.

3.3 Cache miss model

Here we develop upper and lower bounds on the number of cache misses, which
lead to lower and upper bounds on performance in MFlops, respectively.

We start with the L1 cache. Let l1 be the L1-cache line size, in integers.
We also assume that a double precision number is represented with twice the
number of bytes of an integer. In order to estimate the minimum number of
cache misses that can occur we take the total amount of data that we access and
divide by the line size. This will give us the total number of lines the matrix,
source, and destination vectors would take assuming all the data was perfectly
aligned.

When cache blocking of sparse matrix vector multiply works and why 303

Thus, a lower bound M(1)

lower on L1 misses is

M(1)

lower(r, c) = 1
l1

⎡

⎢⎢⎢⎢⎢⎣
2k+ k+

Krc∑

j=1

δj +
⌈m

r

⌉
+ 2(Krc)

︸ ︷︷ ︸
matrix

+ 2n︸︷︷︸
src vector

+ 2m︸︷︷︸
dest vector

⎤

⎥⎥⎥⎥⎥⎦
(3)

To find the lower bounds for another level of the cache simply replace l1 with the
appropriate line size. To find the upper bound we still assume that every entry
in the matrix is loaded once as in the lower bound, but we assume that every
access to the source and every access to the destination vectors miss because of
conflict and capacity misses.

Thus, an upper bound M(1)
upper on L1 misses is

M(1)
upper(r, c) = 1

l1

⎡

⎣2k+ k+
Krc∑

j=1

δj +
⌈m

r

⌉
+ 2(Krc)

⎤

⎦

︸ ︷︷ ︸
matrix

+ k︸︷︷︸
src vector

+
Krc∑

j=1

δj

︸ ︷︷ ︸
dest vector

(4)

The first k indicates that we miss for every access to the source vector. The sec-
ond term

∑Krc
j=1 δj is the number of times that we access the destination vector.

Since we stream through the matrix entries and access each element once the
number of misses does not depend on conflict or capacity. Notice that neither
the load model of Sect. 3.2 nor the cache miss model of this section predict the
advantages of cache blocking since they only show an increase in data structure
overhead.

3.4 TLB miss model

According to our simple load and cache miss models, cache blocking has no
benefit. It turns out that the main benefit of cache blocking is increased tempo-
ral locality in the source vector which can be seen in the number of TLB misses,
which we model here. Experimental data in Sect. 4 do in fact show improve-
ments in cache misses too, though this is not captured by our model. Still, the
model will turn out to be adequate for predicting good cache block sizes. To
estimate the lower bounds on the TLB misses, we simply take the total size of
the data that we access and divide that by the page size. This quantity is the
minimum number of pages that the data resides in and the minimum number of
compulsory misses for the TLB. For an estimate of the upper bound we assume
that we load every matrix page once. We then assume that we take a TLB miss
on every access to the source vector and destination vector. The equations are
identical to the cache miss models in Eq. (3) and Eq. (4) except we replace the
line size with the page size. All our test matrices incurred at least 1000 TLB

304 R. Nishtala et al.

misses on the Itanium 2, the only platform on which we have hardware TLB
miss counters.

Modeling performance based merely on the lower and upper bound models
does not take the increased locality of cache blocking into account because the
lower bound on cache misses (which is used to calculate the upper bound on
performance) only counts the compulsory misses. Since blocking adds over-
head to the data storage, the least amount of overhead occurs when there is no
blocking. To factor this in, we need a more accurate model. We had previously
observed that many of the matrices have a noticeable increase in the number
of TLB misses when the source vector occupies a large fraction of the TLB [8].
Because the number of TLB misses is orders of magnitude higher when the
incorrect block size is chosen,1 we chose to try to more accurately estimate the
number of TLB misses through a combination of the lower and upper bound
models.

From Fig. 2 we see that there are two distinct categories of block sizes that
yielded good performance on our matrix suite (Table 1 in the next section)
for the Itanium 2. The first category of matrices (Matrices 2–11) showed the
best performance when the column block size equaled 1

4 th of the TLB. In the
second category of matrices (Matrices 12–14) the added overhead of blocking
hurt performance so the performance was best when the column block size

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log
2
(Column Dimension / TLB Size)

lo
g 2(R

ow
 D

im
en

si
on

 /
T

LB
 S

iz
e)

Histogram Of Blocksizes with 90% of Peak
Performance (itanium2−linux)

2

3

4

5

6

7

8

9

10

11

Fig. 2 Histogram of Block sizes for Itanium 2. For each row and column block size shown above,
the shade of each cell represents the number of matrices whose performance was within 90% of
peak if that block size was chosen. This is a graphical way of representing the optimum cache block
sizes for a variety of matrices and their impact on performance. We define TLB Size to be the
number of entries in the TLB multiplied by the page size. On the Itanium 2 this was 2MB or 256K
doubles [15]

1 This is probably due to early eviction of the source vector with the LRU page replacement
policies.

When cache blocking of sparse matrix vector multiply works and why 305

exceeded the number of columns in the matrix (i.e., there was no blocking in
the column direction). We also notice that the performance does not depend
heavily on the row block size once it is large enough and thus we conclude that
no blocking should be done in the row dimension.

To capture this behavior in our performance model we present a modified
version of the TLB miss model that combines both the upper bound and lower
bound to create a reasonable estimate of the number of misses. One of the
main aims is to expose the penalty when there is not enough temporal locality
in accessing the source vector. To account for this penalty, our TLB miss model
switches to using the upper bound model as an estimate for the number of
misses when the column block size is too large.2 Since the optimal block size
as a percentage of the TLB size changes from machine to machine, the optimal
crossover point for switching between the lower and upper bound models will
vary from platform to platform. TLB counter data was only available for the
Itanium 2, thus we present the model for that platform only. The models for the
other platforms will be similar.

M(TLB)

model (r, c) =

⎧
⎪⎨

⎪⎩
M(TLB)

upper (r, c) ·min(

c×2
p

ET
, 1) if (2c

p ≥ ηET)&(k
nzcols > ρT) (5a)

M(TLB)

lower (r, c) otherwise (5b)

Equation (5) shows the model used to calculate the approximate number of
TLB misses for the Itanium 2. The variables are as follows: p is the page size in
integers, ET is the number of TLB entries in the TLB, and nzcols is the number
of non-zero columns. We use the variable η to define the fraction of the TLB
that is filled with the source vector. According to our empirical data for the
Itanium 2, for Matrices 2–11 the optimal column block size is 1

4 th of the TLB,
thus when the column block size is 1

2 of the TLB we switch to using the upper
bound model. The upper bound is scaled by the fraction of the source vector
that overflows the TLB. This switch is only performed when the matrix is dense
enough (the average number of nonzeros per nonzero column is greater than
ρT) ensuring us that blocking provides enough reuse. If either of these condi-
tions fail we use the lower bound model on TLB misses. For the Itanium 2 we
empirically determined the values of η and ρT to be 1

2 and 4 respectivly. Our
data in [8] shows that when this model is applied to the Itanium 2, it closely
predicts the noticeable jump in the number of TLB misses for Matrices 5–8 and
Matrices 10–11, the matrices for which cache blocking has the most significant
benefits. Therefore this is at least good enough to predict good cache block
sizes. In future work, we will refine this model further and verify it for the other
platforms. The peaks of the upper bound performance model correlate better
to the peaks of the actual performance in most of the matrices. Without this

2 The actual definition of too large varies across different platforms, for the Itanium 2 we set it at
1
2 of the TLB.

306 R. Nishtala et al.

model the peaks of the upper bound model would show that blocking is not a
good idea, which is not the case. We will evaluate the models further in Sect. 4.

4 Verification of the analytic model

We evaluate SpM×V on a set of matrices that are, in principle, large enough
and sparse enough for cache blocking to have a significant effect. The properties
of the 14 matrices that were chosen are referenced in Table 1. We evaluate the
performance model in which we use true hardware counters through PAPI [2]
to predict the performance (henceforth called the PAPI model) and compare it
to the model in which we use estimates of lower and upper bound of cache and
TLB misses (henceforth termed the analytic lower and upper bound models).
The cache and memory latencies were derived [15] from published processor
manuals, curve fitting, and experimental work using the Saavedra-Barrera mem-
ory system microbenchmark [10] and MAPS benchmarks [11]. Due to space
limitations we present a summary of the full data [8].

Figure 3 shows an evaluation of the models in Sect. 3. The Base Performance
line is the performance without cache blocking while Best Performance shows
the performance with the optimum cache block size (found through an exhaus-
tive search of power of two cache block sizes). The Best RC with Analytic Model
line shows the performance if the cache block size was chosen by the analytic
model. The best cache block size was found by running the analytical model for
various power of two cache block sizes. The Analytic Upper and Lower Bounds
show the performance predicted by the models. The PAPI Model line is the
performance if the actual cache miss values found through hardware counters

Table 1 Matrix benchmark suite

Application area Dimension Nonzeros Density

1 Dense matrix 2000 × 2000 4000000 1.00
2 Statistical experimental design 231 × 319770 8953560 1.21e−1
3 Linear programming (LP) 52260 × 379350 1567800 7.91e−5
4 LP 10280 × 243246 1408073 5.63e−4
5 Latent semantic indexing 10000 × 255943 3712489 1.45e−3
6 column wise expansion of LSI 10000 × 2559430 3712489 1.45e−4
7 row wise expansion of LSI 100000 × 255943 3712489 1.45e−4
8 row wise stamping of LSI 100000 × 255943 37124890 1.45e−3
9 Queuing model 65535 × 65535 1114079 2.59e−4

of mutual exclusion
10 LP problem from Italian 4284 × 1092610 11279748 2.41e−3

Railways scheduling
11 Italian railways 4284 × 546305 5661231 2.42e−3

scheduling (small) (LP)
12 Web connectivity graph (WG) 1000005 × 1000005 3105536 3.11e−6
13 WG after MMD reordering 1000005 × 1000005 3105536 3.11e-6
14 WG after RCM reordering 1000005 × 1000005 3105536 3.11e-6

Note that matrices 6, 7, and 8 are just modified versions of matrix 5

When cache blocking of sparse matrix vector multiply works and why 307

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

900

M
F

lo
p/

s

Matrix No.

Performance Model Verification (itanium2−linux)

Base Performance
Best Performance
Best RC with Analytic Model
Analytic Upper Bound Model
Analytic Lower Bound Model
PAPI Model

Fig. 3 Performance model for the Intel Itanium 2

were plugged into the execution time model. As shown by Fig. 3, the analytic
model of Sect. 3 overpredicts performance by up to a factor of 2 on the Itanium
2, implying time still unaccounted for. However, the relative performance as
a function of block size is well predicted [8], meaning we can use the model
as a heuristic for choosing a good block size. Indeed, performance at the opti-
mal block sizes chosen to maximize performance from the PAPI model are all
within 90% of the best on Itanium 2, implying the model is a good heuristic if
the miss models are accurate. Furthermore, except in the case of Matrix 3, the
analytic model makes similarly good predictions on the Itanium 2, yielding 90%
of the best performance. We also notice that the base performance for Matrix
6 on the Itanium 2 is lower than our predicted lower bound on performance.
Further examination of the actual cache misses from Matrix 6 shows that actual
number of misses are much closer to the modeled upper bound (much more so
than other matrices) indicating that most access to the source and destination
are causing cache misses. This could indicate that the memory latencies used
to calculate the lower bound in performance are too optimistic. Future work
would validate this hypothesis.

Figure 4 however shows that the heuristic is not as good on the Pentium 3 and
the Power 4 compared to the Itanium2 since the TLB model from the Itanium
2 was used to describe the performance on the Pentium 3 and the Power 4. This
motivates a different set of TLB model parameters (i.e., the η and ρT terms in
Eq. (5)) for these platforms as described in Sect. 3.4. Availability of hardware
TLB miss counters would help model validation on these and other platforms.
Figure 4 also shows that the upper bound on performance underpredicts the
overall performance for the Power4 on Matrix 1 which could be caused by the
prefetch engine correctly predicting the access stream and therefore reducing
the number of compulsory misses.

308 R. Nishtala et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

M
F

lo
p/

s

Matrix No.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Matrix No.

Performance Model Verification (power4−aix)

10

20

30

40

50

60

70

80

90

100

M
F

lo
p/

s

Performance Model Verification (pentium3−linux)

Base Performance
Best Performance
Best RC with Analytic Model
Analytic Upper Bound Model
Analytic Lower Bound Model

Base Performance
Best Performance
Best RC with Analytic Model
Analytic Upper Bound Model
Analytic Lower Bound Model
PAPI Model

Fig. 4 Performance model for the IBM power 4 and Intel Pentium 3. Note that Matrix 8 was not
run on these platforms due to memory limitations

5 Evaluation across matrices and platforms

Matrix structure

The speedups for each matrix varied across machines, but the best speedups
(Table 2) were observed for the same matrices. The best speedups occurred
with Matrices 2, 5–8, and 10–11. Except for Matrices 7 and 8, these matrices
have small row dimensions and very large column dimensions, with nonzeros
scattered throughout the matrix. Furthermore, the largest increases in cache

When cache blocking of sparse matrix vector multiply works and why 309

Table 2 Speedups across matrices and across platforms

Matrix no.

Platform 1 2 3 4 5 6 7

Itanium 2 1.00 1.27 1.28 1.14 2.00 2.84 1.72
Pentium 3 1.01 1.61 1.02 1.15 1.40 1.33 1.10
Power 4 1.01 1.77 1.24 1.37 1.97 2.93 1.68

Matrix no.
Platform 8 9 10 11 12 13 14
Itanium 2 1.94 1.00 1.40 1.34 1.00 1.00 1.00
Pentium 3 N/A 1.00 1.21 1.21 1.00 1.00 1.00
Power 4 N/A 1.00 1.75 1.73 1.01 1.09 1.01

This table shows the performance of the optimum cache block divided by the performance of the
non-blocked implementation on that platform for that matrix. The highlighted values are the top
four speedups on each platform

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10−3

10−2

10−1

100

F
ra

ct
io

n
of

 M
is

se
s

Matrix No.

Fraction of Misses Remaining after Blocking (itanium2−linux)

Best L3 Data Cache
Best TLB Misses

Fig. 5 Effect of cache blocking on L3 data cache and TLB on the Itanium 2. This plot shows the
effect of cache blocking on the L3 Cache misses and TLB Misses, as measured by PAPI. The Best
L3 Data Cache line is the number of cache misses with the optimum block size divided by number
of cache misses that occur with the unblocked implementation. The Best TLB Misses line is an
analogous line for the TLB. The matrices that showed the largest performance gains (Matrices 2,
5–8, and 10; see Table 2) also showed the greatest drop in L3 Cache misses implying that cache
blocking is having the desired effect

misses as c increased occurred on the matrices with the largest speedups, imply-
ing that cache blocking increased locality.

Figure 5 shows the effect of cache blocking. As the plots show, the matrices
with the largest speedups have the largest drop in the number of cache misses
and TLB misses. In addition, Matrices 12–14 also show very little change in
their optimum cache misses, implying that cache blocking has very little effect

310 R. Nishtala et al.

on these matrices. Matrices 12–14 are so sparse that there is effectively no
reuse when accessing the source vector and thus blocking does not help, even
though their source vector is large. Matrices with densities higher than 10−5 (all
matrices except Matrix 3 and Matrices 12–14) were helped with cache blocking,
provided that their column block size is large enough (greater than 200,000
elements, e.g., Matrix 2, Matrices 4–8, Matrices 10–11). There was enough reuse
in x for the blocking to pay off.

We also find that in general matrices in which the row dimension is much less
than the column dimension benefit the most from cache blocking. The smaller
row dimension implies the overhead added by cache blocking is small since the
number of rows themselves are limited. The larger column dimension implies
that the unblocked implementations may lack locality. Even though Matrix
3 has a large column dimension, blocking did not yield much performance
improvement. We performed additional experiments on random but banded
matrices confirming theoretical work by Temam and Jalby [12]. As expected,
cache blocking does not help when the band is relatively narrow because the
natural access pattern to x is optimal, but pays off as the band grows. In this lat-
ter case, the RSE optimization smooths out differences in performance across
block sizes [8].

Platform evaluation

Certain matrices such as Matrix 5 experienced significant performance gains
through cache blocking on the Itanium 2 and the Power 4, but the speedup was
less drastic on the Pentium 3. We expect that as the average number of cycles
to access the memory grows, cache blocking will provide a good improvement
in performance since cache blocking allows us to reduce expensive accesses
to the main memory. The behavior of cache blocked SpM×V has a number
of implications for architecture and systems. First, the TLB misses reduced by
cache blocking can also be avoided by selecting large page sizes. Second, hard-
ware support for cacheable and non-cacheable accesses to memory would be
useful since only access to x is helped by caches, and not accesses to the matrix
itself. Separate paths would prevent cache conflicts between matrix data and
source vector data. In contrast, increased associativity only partially addresses
this issue since it still allows premature eviction of “old” source vector elements
by matrix elements. Future work might verify the impact of separate memory
paths on the hybrid scalar-vector architecture of the Cray X1.

6 Conclusions and future work

Cache blocking significantly reduces cache misses in SpM×V particularly when
x is large, y is small, the distribution of nonzeros is nearly random, and the non-
zero density is sufficiently high. When these conditions appear in the matrix,
we find that TLB misses are an important factor of the execution time. Our
new performance bounds models incorporate the effect of TLB by implicitly

When cache blocking of sparse matrix vector multiply works and why 311

modeling capacity and conflict misses ignored by our prior models [14,15].
Moreover, these new models predict optimal (or near-optimal) cache block size
leading to speedups up to 2.93×.

Future work includes improving the accuracy of the miss models at all the
levels in the memory hierarchy and obtain more accurate memory latencies.
More accurate models should lead to even more accurate heuristics that decide
when and how to cache block a sparse matrix, given the platform and matrix
structure. Future work would also analyze the problem on novel architectures.

References

1. Bilmes, J., Asanović, K., Demmel, J., Lam, D., Chin, C.W. PHiPAC: A portable, high-
performance, ANSI C coding methodology and its application to matrix multiply, University
of Tennessee, LAPACK Working Note 111 (1996)

2. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-platform infra-
structure for application performance tuning using hardware counters. In: Proceedings of
supercomputing, November (2000)

3. Fraguela, B.B., Doallo, R., Zapata, E.L.: Memory hierarchy performance prediction for sparse
blocked algorithms. Parallel Proc Lett, 9(3) (1999)

4. Gropp, W.D., Kasushik, D.K., Keyes, D.E., Smith, B.F.: Towards realistic bounds for implicit
CFD codes. In: Proceedings of parallel computational fluid dynamics, pp. 241–248 (1999)

5. Heber, G., Dolgert, A.J., Alt, M., Mazurkiewicz, K.A., Stringer, L.: Fracture mechanics on the
Intel Itanium architecture: a case study. In: Workshop on EPIC architectures and compiler
technology (ACM MICRO 34), Austin, TX (2001)

6. Heras, D.B., Perez, V.B., Dominguez, J.C.C., Rivera, F.F.: Modeling and improving locality for
irregular problems: sparse matrix-vector product on cache memories as a case study. In: HPCN
Europe, pp. 201–210 (1999)

7. Im, E.-J.: Optimizing the performance of sparse matrix-vector multiplication. PhD thesis,
University of California, Berkeley, May (2000)

8. Nishtala, R., Vuduc, R.W., Demmel, J.W., Yelick, K.A.: Performance modeling and analysis
of cache blocking in sparse matrix vector multiply. Technical report (UCB/CSD-04-1335),
University of California, Berkeley, EECS Dept. (2004)

9. Saad, Y. SPARSKIT: A basic toolkit for sparse matrix computations (1994) www.cs.umn.
edu/Research/arpa/SPARSKIT/sparskit.html

10. Saavedra-Barrera, R.H.: CPU performance evaluation and execution time prediction using
narrow spectrum benchmarking. PhD thesis, University of California, Berkeley, February
(1992)

11. Snavely, A., Carrington, L., Wolter, N.: Modeling application performance by convolving
machine signatures with application profiles (2001)

12. Temam, O., Jalby, W.: Characterizing the behavior of sparse algorithms on caches. In: Proceed-
ings of supercomputing ’92 (1992)

13. Vuduc, R.W. OSKI: Optimized Sparse Kernel Interface (2005) http://bebop.cs.berkeley.
edu/oski/

14. Vuduc, R., Demmel, J.W., Yelick, K.A., Kamil, S., Nishtala, R., Lee, B.: Performance opti-
mizations and bounds for sparse matrix-vector multiply. In: Proceedings of supercomputing,
Baltimore, MD, USA, November (2002)

15. Vuduc, R.W.: Automatic performance tuning of sparse matrix kernels. PhD thesis, University
of California, Berkeley (2003)

16. Whaley, C., Dongarra, J.: Automatically tuned linear algebra software. In: Proceedings of
supercomputer (1998)

	When cache blocking of sparse matrix vector multiply works and why
	Abstract
	Introduction and overview
	Summary of the cache blocking optimization
	Analytic models
	Overall performance model
	Load model
	Cache miss model
	TLB miss model
	Verification of the analytic model
	Evaluation across matrices and platforms
	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

