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Abstract

This paper presents two kinds of division polynomials for twisted Edwards curves.
Their chief property is that they characterise the n-torsion points of a given twisted
Edwards curve. We also present results concerning the coefficients of these polynomials,
which may aid computation.

1 Introduction

The famous last entry in the diary of Gauss concerns the curve with equation

x2 + y2 + x2y2 = 1 (1)

and its rational points over Fp. This curve is related to the elliptic curve y2 = 4x3 − 4x.
The idea of division polynomials on a curve with a group law on its points, is that we

try to write down a formula for [n]P in terms of the coordinates of P , where [n]P denotes
P added to itself n times under the group law. In this paper we shall give two distinct
solutions to this problem, in the general context of twisted Edwards curves, of which (1)
is a special case.

Edwards [5], generalising (1), introduced an addition law on the curves x2 + y2 =
c2(1 + x2y2) for c ∈ k, where k is a field of characteristic not equal to 2. He showed that
every elliptic curve over k is birationally equivalent (over some extension of k) to a curve
of this form.

∗Research supported by Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006, and
Grant 07/RFP/MATF846, and the Irish Research Council for Science, Engineering and Technology
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In [3], Bernstein and Lange generalised this addition law to the curves x2+y2 = 1+dx2y2

for d ∈ k \ {0, 1}. More generally, they consider x2 + y2 = c2(1 + dx2y2), however, any
such curve is isomorphic to one of the form x2 + y2 = 1 + d′x2y2 for some d′ ∈ k, so we
will assume c = 1. These curves are referred to as Edwards curves. Bernstein and Lange
showed that if k is finite, a large class of elliptic curves over k (all those which have a point
of order 4) can be represented in Edwards form. The case d = −1 gives the curve (1)
considered by Gauss.

In [2], Bernstein et al. introduced the twisted Edwards curves ax2 + y2 = 1 + dx2y2

(where a, d ∈ k are distinct and non-zero) and showed that every elliptic curve with a
representation in Montgomery form is birationally equivalent to a twisted Edwards curve.
Obviously, the case a = 1 of a twisted Edwards curve is an Edwards curve.

In this paper we describe a sequence of rational functions, and consequently a sequence
of polynomials, defined on the function field of a twisted Edwards curve which are analogous
to the division polynomials for elliptic curves in Weierstrass form. In particular, these
polynomials characterise the n-torsion points of the twisted Edwards curve for a positive
integer n (see Corollary 5.2 and Corollary 7.2). These twisted Edwards division polynomials
are polynomials in y with coefficients in Z[a, d], and have degree in y less than n2/2.

This paper is laid out as follows. In Section 2 we recall division polynomials for elliptic
curves in Weierstrass form. Section 3 recalls the basic properties of twisted Edwards curves.
In Section 4, on the function field of an Edwards curve, Theorem 4.1 proves a uniqueness
form for elements of the function field of an Edwards curve, analagous to the known result
that elements of the function field of a Weierstrass curve can be written uniquely in the
form p(x) + yq(x). Our division polynomials (actually rational functions) are presented in
this unique form. Section 6 compares our results to those of Gauss for the curve (1). In
Section 7 we isolate the important part of the Edwards division rational functions, which
are polynomials that could be called Edwards division polynomials. Furthermore, we show
in Section 8 that the coefficients of a given twisted Edwards division polynomial exhibit
a certain symmetry, which may reduce the amount of computation necessary for finding
that polynomial. In Section 9, we derive a different set of polynomials which also display
some properties we require from division polynomials. These have a different character to
the first set, since the nth polynomial is defined by a recursion on the n− 1th and n− 2th
polynomials, as opposed to polynomials of index ∼ n

2 .

2 Division polynomials for Weierstrass Curves

We recall the division polynomials for Weierstrass curves here.
First we recall the definition of the function field of an (affine) algebraic variety. If

V/k is a variety in affine n-space, I(V ) denotes the ideal generated by the polynomials in
k[x1, . . . , xn] that vanish on V . The affine coordinate ring of V is the integral domain

k[V ] := k[x1, . . . , xn]/I(V ).
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The function field of V over k, denoted by k(V ), is defined to be the quotient field of k[V ].
For example, if W is an elliptic curve with Weierstrass equation v2 = u3 +Au+B, the

function field of W , k(W ), is the quotient field of k[u, v]/(v2 − u3 −Au−B).
We use (u, v) as the coordinates for a curve in Weierstrass form and reserve (x, y) for

(twisted) Edwards curves.
If char(k) 6= 2 or 3, given an elliptic curve over k in short Weierstrass form

W : v2 = u3 +Au+B

with identity O , the division polynomials Ψn are polynomials defined on the function field
of W for each n ∈ N by the following recursion:

Ψ0(u, v) = 0

Ψ1(u, v) = 1

Ψ2(u, v) = 2v

Ψ3(u, v) = 3u4 + 6Au2 + 12Bu−A2

Ψ4(u, v) = 4v(u6 + 5Au4 + 20Bu3 − 5A2u2 − 4ABu−A3 − 8B2)

Ψ2m+1(u, v) = Ψm+2(u, v)Ψ
3
m(u, v) −Ψm−1(u, v)Ψ

3
m+1(u, v) for m ≥ 2

Ψ2m(u, v) =
Ψm(u, v)

Ψ2(u, v)

(

Ψm+2(u, v)Ψ
2
m−1(u, v) −Ψm−2(u, v)Ψ

2
m+1(u, v)

)

for m ≥ 3.

The Ψn are polynomials in u and v with coefficients in Z[A,B]. The principal properties
of the division polynomials are that Ψn(u, v) = 0 precisely when (u, v) is an n-torsion
point of W (i.e. [n](u, v) = O), and that the multiplication-by-n map [n] : W → W is
characterised by the division polynomials as

[n](u, v) =

(

uΨ2
n(u, v) −Ψn−1(u, v)Ψn+1(u, v)

Ψ2
n(u, v)

,
Ψ2n(u, v)

2Ψ4
n(u, v)

)

(see e.g. [9], Chapters 3 , 9, [8], Chapter 3). If n is odd then Ψn ∈ Z[u,A,B], and Ψn has
degree (n2 − 1)/2 in u. If n is even then Ψn ∈ vZ[u,A,B] with degree (n2 − 4)/2 in u. In
this paper we prove analagous results for twisted Edwards curves.

3 Twisted Edwards Curves

Let k be a field with characteristic 6= 2 or 3. Let K be an extension field of k. Let E(K)
be the twisted Edwards curve over K with coefficients a and d, where a and d are distinct
and non-zero:

E(K) : ax2 + y2 = 1 + dx2y2.
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Points on E(K) may be added by the rule

(x1, y1) + (x2, y2) =

(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − ax1x2
1− dx1x2y1y2

)

and under this operation, the points on E(K) form an abelian group. The identity is
(0, 1), and the additive inverse of a point (x, y) is (−x, y). The projective closure of E has
singularities at (1 : 0 : 0) and (0 : 1 : 0).

The twisted Edwards curve E(K) is birationally equivalent to the Weierstrass-form
elliptic curve

W (K) : v2 = u3 −
(a2 + 14ad + d2)

48
u−

(a3 − 33a2d− 33ad2 + d3)

864

under the transformation

u :=
(5a− d) + (a− 5d)y

12(1 − y)
, v :=

(a− d)(1 + y)

4x(1− y)
if x(1− y) 6= 0,

otherwise

(x, y) = (0, 1) ⇒ (u, v) = O

(x, y) = (0,−1) ⇒ (u, v) =

(

a+ d

6
, 0

)

.

The inverse transformation is given by

x =
6u− (a+ d)

6v
, y =

12u+ d− 5a

12u+ a− 5d
if v(12u + a− 5d) 6= 0

and

(u, v) = O ⇒ (x, y) = (0, 1)

(u, v) =

(

a+ d

6
, 0

)

⇒ (x, y) = (0,−1).

There are 4 points on W (k) that are not mapped to any point on the twisted Edwards

curve. These are (u, v) =
(

5d−a
12 ,± s(d−a)

4

)

and (u, v) =
(

−(a+d)±6t
12 , 0

)

where s, t ∈ k̄

such that s2 = d, t2 = ad. We note that
(

−(a+d)±6t
12 , 0

)

are points of order 2 on W , and
(

5d−a
12 ,± s(d−a)

4

)

are points of order 4 on W . Had we defined the birational equivalence

between the projective closures of W and E, the points (5d− a : ±3s(d− a) : 12) of W
would map to the singular point (0:1:0) of E, while the points (−(a+ d)± 6t : 0 : 12) of
W would map to the singular point (1:0:0) of E.
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4 The Function Field of a Twisted Edwards Curve

For Weierstrass curves W : v2 = u3 + Au + B it is well known (see [8] for example) that
an element of the function field K(W ) can be written uniquely in the form

p(u) + vq(u)

where p(u), q(u) are polynomials in u.
We will prove an analogous result for twisted Edwards curves E. Not surprisingly,

rational functions are needed in place of the polynomials. We use the notation ordP (f) to
denote the valuation of a function f ∈ K(E) at a point P .

Theorem 4.1 Any function g ∈ K(E) can be written uniquely as

g(x, y) = p(y) + xq(y)

where p(y), q(y) are rational functions in y.

Proof: Let f(x, y) = 0 be the equation defining E, where

f(x, y) = ax2 + y2 − 1− dx2y2.

In K(E) we have

x2 =
1− y2

a− dy2
.

If g(x, y) ∈ K(E), by replacing every occurence of x2 by this rational function in y it
follows that g(x, y) can be written in the form

A(y) + xB(y)

C(y) + xD(y)

where A,B,C,D are rational functions. Multiplying above and below by C(y) − xD(y),

and replacing each x2 by 1−y2

a−dy2
shows that g can be written in the stated form. This proves

existence.
Suppose for the sake of contradiction that this expression for g is not unique. Then

A(y) + xB(y) = 0 for some nonzero rational functions A(y), B(y). So

x = −
A(y)

B(y)

which implies
ord(0,1)x = ord(0,1)A(y)− ord(0,1)B(y). (2)

We obtain our contradiction by showing that the right-hand side of equation (2) is even,
but the left-hand side is equal to 1.

5



We expand at (0, 1) and we get

f(x, y + 1) = ax2 + (y + 1)2 − 1− dx2(y + 1)2

= ax2 + y2 + 2y − dx2y2 − 2dx2y − dx2.

This shows that the line x = 0 is not a tangent at (0, 1), so x is a local uniformizer there.
Then

f(x, 0 + 1) = (a− d)x2

which implies ord(0,1)(y − 1) = 2 ord(0,1)(x) = 2.

When computing ord(0,1)A(y), we translate (0, 1) to the origin, and write A(y+1) = a(y)
b(y)

for some polynomials a(y), b(y). Then

ord(0,1)A(y) = ord(0,0)a(y)− ord(0,0)b(y).

Of course, after translation we have ord(0,0)(y) = 2.
Let n0 be the degree of the term of smallest degree in a(y), and similarly let m0 be

the degree of the term of smallest degree in b(y). Then ord(0,0)a(y) =
(

ord(0,0)y
)

n0 = 2n0,
and similarly, ord(0,0)b(y) = 2m0. Thus ord(0,1)A(y) = 2(n0 −m0), which is even.

Similarly, ord(0,1)B(y) is even. This proves that the right-hand side of (2) is even, and
we are done. �

Corollary 4.2 Any function g ∈ K(E) can be written uniquely as

g(x, y) = p′(y) +
1

x
q′(y)

where p′(y), q′(y) are rational functions in y.

Proof: This follows from the Theorem 4.1, and the fact that

x =
1

x
·
1− y2

a− dy2

on the function field of E. In fact p′(y) is equal to p(y), using the notation of Theorem
4.1, and

q′(y) =
1− y2

a− dy2
q(y).

�
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5 Division Rational Functions on Twisted Edwards Curves

We define the following rational functions ψn(x, y) on the function field of E recursively
for n ≥ 0:

ψ0(x, y) := 0

ψ1(x, y) := 1

ψ2(x, y) :=
(a− d)(1 + y)

x(2(1− y))

ψ3(x, y) :=
(a− d)3(a+ 2ay − 2dy3 − dy4)

(2(1 − y))4

ψ4(x, y) :=
2(a− d)6y(1 + y)(a− dy4)

x((2(1 − y))7

ψ2m+1(x, y) := ψm+2(x, y)ψ
3
m(x, y)− ψm−1(x, y)ψ

3
m+1(x, y) for m ≥ 2

ψ2m(x, y) :=
ψm(x, y)

ψ2(x, y)

(

ψm+2(x, y)ψ
2
m−1(x, y)− ψm−2(x, y)ψ

2
m+1(x, y)

)

for m ≥ 3.

These functions are not defined at the points (0, 1) and (0,−1). We point out that
these elements of the function field K(E) are in the unique form given in Corollary 4.2.

For n ≥ 1, we also define

φn(x, y) :=
(1 + y)ψ2

n(x, y)

(1− y)
−

4ψn−1(x, y)ψn+1(x, y)

(a− d)

and ωn(x, y) :=
2ψ2n(x, y)

(a− d)ψn(x, y)
.

Next we show that these rational functions arise in the multiplication-by-n map.

Theorem 5.1 Let (x, y) be a point in E(k) \ {(0, 1), (0,−1)} and n ≥ 1 an integer. Then

[n](x, y) =

(

φn(x, y)ψn(x, y)

ωn(x, y)
,
φn(x, y)− ψ2

n(x, y)

φn(x, y) + ψ2
n(x, y)

)

.

Proof: Compute the division polynomials for the Weierstrass elliptic curve from Section
3, W : v2 = u3 +Au+B, where

A = −
(a2 + 14ad+ d2)

48
, B = −

(a3 − 33a2d− 33ad2 + d3)

864
.
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We get

Ψ0(u, v) = 0

Ψ1(u, v) = 1

Ψ2(u, v) = 2v

Ψ3(u, v) = 3u4 + 6Au2 + 12Bu−A2

Ψ4(u, v) = 4v(u6 + 5Au4 + 20Bu3 − 5A2u2 − 4ABu−A3 − 8B2)

Ψ2m+1(u, v) = Ψm+2(u, v)Ψ
3
m(u, v) −Ψm−1(u, v)Ψ

3
m+1(u, v) for m ≥ 2

Ψ2m(u, v) =
Ψm(u, v)

Ψ2(u, v)

(

Ψm+2(u, v)Ψ
2
m−1(u, v) −Ψm−2(u, v)Ψ

2
m+1(u, v)

)

for m ≥ 3.

Substituting

A = −
(a2 + 14ad + d2)

48
, B = −

(a3 − 33a2d− 33ad2 + d3)

864
and

u :=
(5a− d) + (a− 5d)y

12(1 − y)
, v :=

(a− d)(1 + y)

4x(1− y)
,

for the cases 0, 1, 2, 3, 4 we see that Ψi(u, v) = ψi(x, y) for i = 0, 1, 2, 3, 4. Hence, as the
recursion relations for the two sets of functions Ψi(u, v) and ψi(x, y) are identical for i ≥ 5,
we have that Ψn(u, v) = ψn(x, y) for all integers n ≥ 0.

From here on we will use the abbreviated notations ψn for ψn(x, y), φn for φn(x, y) and
ωn for ωn(x, y). Let (xn, yn) = [n](x, y), and (un, vn) = [n]W (u, v).

From the properties of the division polynomials,

un = u−
Ψn−1(u, v)Ψn+1(u, v)

Ψ2
n(u, v)

, vn =
Ψ2n(u, v)

2Ψ4
n(u, v)

,

i.e.,

un = u−
ψn−1ψn+1

ψ2
n

, vn =
ψ2n

2ψ4
n

,

and, applying the birational equivalence gives

xn =
6un − (a+ d)

6vn
, yn =

12un + d− 5a

12un + a− 5d
,

xn =
2ψ4

n

ψ2n

(

5a− d+ (a− 5d)y

12(1 − y)
−
ψn−1ψn+1

ψ2
n

−
a+ d

6

)

=
ψ2
n

ψ2n

(

(a− d)(1 + y)ψ2
n

2(1− y)
− 2ψn−1ψn+1

)

8



while

φnψn
ωn

=
(a− d)ψ2

n

2ψ2n

((

1 + y

1− y

)

ψ2
n −

4ψn−1ψn+1

a− d

)

=
ψ2
n

ψ2n

(

(a− d)(1 + y)ψ2
n

2(1 − y)
− 2ψn−1ψn+1

)

= xn.

Also,

yn =
12un + d− 5a

12un + a− 5d

and

12un + d− 5a =
5a− d+ (a− 5d)y

(1− y)
− 12

ψn−1ψn+1

ψ2
n

+ d− 5a

=
6(a − d)y

1− y
− 12

ψn−1ψn+1

ψ2
n

12un + a− 5d =
6(a − d)

1− y
− 12

ψn−1ψn+1

ψ2
n

so

yn =
(a− d)yψ2

n − 2(1− y)ψn−1ψn+1

(a− d)ψ2
n − 2(1− y)ψn−1ψn+1

and

φn − ψ2
n

φn + ψ2
n

=

(

1+y
1−y

)

ψ2
n −

4ψn−1ψn+1

a−d
− ψ2

n
(

1+y
1−y

)

ψ2
n −

4ψn−1ψn+1

a−d
+ ψ2

n

=
(a− d)yψ2

n − 2(1 − y)ψn−1ψn+1

(a− d)ψ2
n − 2(1 − y)ψn−1ψn+1

= yn.

Hence

[n](x, y) =

(

φn(x, y)ψn(x, y)

ωn(x, y)
,
φn(x, y)− ψ2

n(x, y)

φn(x, y) + ψ2
n(x, y)

)

.

�

Corollary 5.2 Let P = (x, y) be in E(k) \ {(0, 1), (0,−1)} and let n ≥ 1. Then P is an
n-torsion point of E if and only if ψn(P ) = 0.
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Proof: Since the identity is (0, 1), the result is clear from Theorem 5.1. �

So the ψn(x, y), though they are rational functions, can be seen as analogues of division
polynomials. Here are the first seven ψn(x, y):

ψ0 = 0

ψ1 = 1

ψ2 =
(a− d)(y + 1)

x(2(1− y))

ψ3 =
(a− d)3(−dy4 − 2dy3 + 2ay + a)

(2(1 − y))4

ψ4 =
2(a− d)6(−dy6 − dy5 + ay2 + ay)

x((2(1 − y))7

ψ5 =
(a− d)9(d3y12 − 2d3y11 + · · · + 2a3y − a3)

(2(1 − y))12

ψ6 =
(a− d)13(−d4y17 − d4y16 + (4ad3 + 4d4)y15 + · · ·+ (4a3d+ 4a4)y2 − a4y − a4)

x((2(1 − y))17
.

As we said earlier, these elements of the function field K(E) are in the unique form
given in Corollary 4.2.

The apparent patterns here are proved in theorem 7.1 below.

6 Gauss’s notes

We mention here how Gauss’s formulas (see Fig 1) are incorrect, although they are close
to being correct. Essentially the only errors are sign errors.

One can see that Gauss calls the point (s, c) and sin lemn nϕ denotes the x coordinate
of [n](s, c), and cos lemn nϕ denotes the y coordinate of [n](s, c).

We represent our formulas in the unique form given by Theorem 4.1.
Our division polynomial formulas applied to the curve (1) give

[2](s, c) =

(

2sc(c2 + 1)

c4 + 1
,
−c4 − 2c2 + 1

c4 − 2c2 − 1

)

which we can see agree with Gauss’s formula for twice the point in terms of c. However,
there is an error in Gauss’s formula for cos lemn 2ϕ in terms of s, which should be

1− 2s2 − s4

1 + 2s2 − s4

10



A sign error also occurs in the denominator of the sin lemn 5ϕ formula (coefficient of
s12 should be -12), and six times in the cos lemn 4ϕ formula, which should read

cos lemn4ϕ =
1− 8s2 − 12s4 − 8s6 ++38s8 + 8s10 − 12s12 + 8s14 + s16

1 + 8s2 − 12s4 + 8s6 + 38s8 − 8s10 − 12s12 − 8s14 + s16

We note that these sign errors break the apparent “reverse symmetry” between the
coefficients of the numerator and denominator. This symmetry, proved by Abel [1], is
explained in greater detail in Chapter 15 of [4].

For the general case, Gauss gave some information on the x coordinate of [n](s, c), but
not the y coordinate.

7 Division Polynomials

The next theorem isolates the key polynomial in the numerator of ψn, which we call ψ̃(y).
These polynomials could also be called the division polynomials for twisted Edwards curves.

Theorem 7.1 We have

ψn(x, y) =







(a− d)k(n)ψ̃n(y)/(2(1 − y))m(n) if n is odd

(a− d)k(n)ψ̃n(y)/x(2(1 − y))m(n) if n is even

where

m(n) =











n2
−1
2 if n is odd

n2
−2
2 if n is even

and

k(n) =

⌊

3n2

8

⌋

and

ψ̃0(y) = 0

ψ̃1(y) = 1

ψ̃2(y) = y + 1

ψ̃3(y) = −dy4 − 2dy3 + 2ay + a

ψ̃4(y) = −2y(y + 1)(dy4 − a) = −2dy6 − 2dy5 + 2ay2 + 2ay,

11



and

ψ̃2r+1(y) =































4(a−d)(a−dy2)2ψ̃r+2(y)ψ̃3
r
(y)

(y+1)2
− ψ̃r−1(y)ψ̃

3
r+1(y) if r ≡ 0 (mod 4), r ≥ 4

ψ̃r+2(y)ψ̃
3
r (y)−

4(a−dy2)2ψ̃r−1(y)ψ̃3
r+1

(y)

(y+1)2
if r ≡ 1 (mod 4), r ≥ 5

4(a−dy2)2 ˜ψr+2(y)ψ̃r

3
(y)

(y+1)2 − ψ̃r−1(y)ψ̃
3
r+1(y) if r ≡ 2 (mod 4), r ≥ 2

ψ̃r+2(y)ψ̃
3
r (y)−

4(a−d)(a−dy2)2ψ̃r−1(y)ψ̃3
r+1

(y)

(y+1)2
if r ≡ 3 (mod 4), r ≥ 3

and

ψ̃2r(y) =































ψ̃r(y)
y+1

(

ψ̃r+2(y)ψ̃
2
r−1(y)− ψ̃r−2(y)ψ̃

2
r+1(y)

)

if r ≡ 0 (mod 4), r ≥ 4

ψ̃r(y)
y+1

(

(a− d)ψ̃r+2(y)ψ̃
2
r−1(y)− ψ̃r−2(y)ψ̃

2
r+1(y)

)

if r ≡ 1 (mod 4), r ≥ 5

ψ̃r(y)
y+1

(

ψ̃r+2(y)ψ̃
2
r−1(y)− ψ̃r−2(y)ψ̃

2
r+1(y)

)

if r ≡ 2 (mod 4), r ≥ 6

ψ̃r(y)
y+1

(

ψ̃r+2(y)ψ̃
2
r−1(y)− (a− d)ψ̃r−2(y)ψ̃

2
r+1(y)

)

if r ≡ 3 (mod 4), r ≥ 3.

Proof:
First observe for all t ∈ Z, t > 0,

m(4t) =
16t2 − 2

2
= 8t2 − 1

m(4t± 1) =
(4t± 1)2 − 1

2
=

16t2 ± 8t

2
= 8t2 ± 4t

m(4t± 2) =
(4t± 2)2 − 2

2
=

16t2 ± 16t+ 2

2
= 8t2 ± 8t+ 1

m(4t± 3) =
(4t± 3)2 − 1

2
=

16t2 ± 24t+ 8

2
= 8t2 ± 12t+ 4

and

k(4t) =

⌊

3(4t)2

8

⌋

=
⌊

6t2
⌋

= 6t2

k(4t± 1) =

⌊

3(4t± 1)2

8

⌋

=

⌊

6t2 ± 3t+
3

8

⌋

= 6t2 ± 3t

k(4t± 2) =

⌊

3(4t± 2)2

8

⌋

=

⌊

6t2 ± 6t+
12

8

⌋

= 6t2 ± 6t+ 1

k(4t± 3) =

⌊

3(4t± 3)2

8

⌋

=

⌊

6t2 ± 9t+
27

8

⌋

= 6t2 ± 9t+ 3.

The proof is by induction. The claim is true for n = 0 . . . 4.
Assume true for 0 . . . n− 1

12



Case 1: n ≡ 0 (mod 8) i.e. n = 8l for some l ∈ Z. Let r = 4l.
By definition,

ψn =
ψr
ψ2

(

ψr+2ψ
2
r−1 − ψr−2ψ

2
r+1

)

=
(a− d)k(r)−1ψ̃r

(y + 1)(2(1 − y))m(r)−1

(

(a− d)k(r+2)+2k(r−1)ψ̃r+2ψ̃
2
r−1

x(2(1− y))m(r+2)+2m(r−1)
−

(a− d)k(r−2)+2k(r+1)ψ̃r−2ψ̃
2
r+1

x(2(1− y))m(r−2)+2m(r+1)

)

.

Also,

m(4l) − 1 +m(4l + 2) + 2m(4l − 1) = 8l2 − 1− 1 + 8l2 + 8l + 1 + 16l2 − 8l

= 32l2 − 1 = m(8l) = m(n)

m(4l) − 1 +m(4l − 2) + 2m(4l + 1) = 8l2 − 1− 1 + 8l2 − 8l + 1 + 16l2 + 8l

= 32l2 − 1 = m(8l) = m(n)

and

k(4l) − 1 + k(4l + 2) + 2k(4l − 1) = 6l2 − 1 + 6l2 + 6l + 1 + 12l2 − 6l

= 24l2 = k(8l) = k(n)

k(4l) − 1 + k(4l − 2) + 2k(4l + 1) = 6l2 − 1 + 6l2 − 6l + 1 + 12l2 + 6l

= 24l2 = k(8l) = k(n).

So

ψn =
(a− d)k(n)

x(y + 1)(2(1 − y))m(n)

(

ψ̃r

(

ψ̃r+2ψ̃
2
r−1 − ψ̃r−2ψ̃

2
r+1

))

=
(a− d)k(n)ψ̃n(y)

x(2(1 − y))m(n)
.

Case 2: n ≡ 1 (mod 8) i.e. n = 8l + 1 for some l ∈ Z. Let r = 4l.
By definition

ψn = ψr+2ψ
3
r − ψr−1ψ

3
r+1

=
(a− d)k(r+2)+3k(r)ψ̃r+2ψ̃

3
r

y4(2(1− x))m(r+2)+3m(r)
−

(a− d)k(r−1)+3k(r+1)ψ̃r−1ψ̃
3
r+1

(2(1 − y))m(r−1)+3m(r+1)
.

Using the curve equation
ax2 + y2 = 1 + dx2y2

13



gives

x2 =
(1− y2)

(a− dy2)
=

(1− y)(1 + y)

(a− dy2)

⇒x4 =
(1− y)2(1 + y)2

(a− dy2)2

so

ψn =
4(a− d)k(r+2)+3k(r)(a− dy2)2ψ̃r+2ψ̃

3
r

(y + 1)2(2(1 − y))m(r+2)+3m(r)+2
−

(a− d)k(r−1)+3k(r+1)ψ̃r−1ψ̃
3
r+1

(2(1 − y))m(r−1)+3m(r+1)
.

Again,

k(4l + 2) + 3k(4l) = 6l2 + 6l + 1 + 18l2 = 24l2 + 6l + 1

= k(n) + 1

k(4l − 1) + 3k(4l + 1) = 6l2 − 3l + 18l2 + 9l = 24l2 + 6l

= k(n)

and

m(4l + 2) + 3m(4l) + 2 = 8l2 + 8l + 1 + 24l2 − 3 + 2 = 32l2 + 8l

= m(n)

m(4l − 1) + 3m(4l + 1) = 8l2 − 4l + 24l2 + 12l = 32l2 + 8l

= m(n).

Hence

ψn =
4(a− d)(a− dy2)2ψ̃r+2(y)ψ̃

3
r (y)

(y + 1)2
− ψ̃r−1(y)ψ̃

3
r+1(y) .

Cases 3,. . . 8: n ≡ 2, . . . 7 (mod 8). Similar. �

Corollary 7.2 Let P = (x, y) be in E(k) \ {(0, 1)} and let n ≥ 1. Then

P is an n-torsion point of E if and only if ψ̃n(y) = 0.

Proof: The result follows from Corollary 5.2 and Theorem 7.1. �
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8 Further Facts

Here are some more facts about the ψ̃.

Theorem 8.1 ψ̃n(y) ∈ Z[a, d, y] ∀n > 0, and (y + 1) divides ψ̃n(y) if n is even

Proof: Proof is by induction. The statement is true for n = 0, 1, 2, 3, 4. Now suppose
it is true for 0, 1, 2, . . . , n − 1:

Case 1: n ≡ 0 (mod 8) i.e. n = 8l for some l ∈ Z. Let r = 4l.

Then ψ̃n(y) =
ψ̃r(y)
y+1

(

ψ̃r+2(y)ψ̃
2
r−1(y)− ψ̃r−2(y)ψ̃

2
r+1(y)

)

and ψ̃r(y), ψ̃r+2(y), ψ̃r−1(y), ψ̃r−2(y), ψ̃r+1(y) ∈ Z[a, d, y]. Also, (y + 1) divides
ψ̃r(y), ψ̃r+2(y), and ψ̃r−2(y) by hypothesis. Hence ψ̃n(y) ∈ Z[a, d, y] and (y + 1) divides
ψ̃n(y).

Case 2: n ≡ 1 (mod 8) i.e. n = 8l + 1 for some l ∈ Z. Let r = 4l.

Then ψ̃n(y) =
4(a−d)(a−dy2)2ψ̃r+2(y)ψ̃3

r
(y)

(y+1)2 − ψ̃r−1(y)ψ̃
3
r+1(y)

and ψ̃r+2(y), ψ̃r(y), ψ̃r−1(y), ψ̃r+1(y) ∈ Z[a, d, y]. Also, (y + 1) divides ψ̃r(y) and
ψ̃r+2(y) by hypothesis. Hence ψ̃n(y) ∈ Z[a, d, y].

Cases 3,. . . 8: n ≡ 2, . . . 7 (mod 8). Similar. �

Theorem 8.2 and Corollary 8.3 provide results for the degrees of these polynomials
ψ̃n(y), and Theorem 8.6 shows that the coefficients of the polynomials exhibit a large
amount of symmetry.

Theorem 8.2 If char(k) = 0 or 4 · char(k) ∤ n, then ψ̃n(y) has leading term (term of
largest degree in y)







δ(n)dm(n)−k(n)ym(n) if n 6≡ 0 (mod 4)

δ(n)dm(n)−k(n)ym(n)−1 if n ≡ 0 (mod 4)

where

δ(n) =







































n
2 if n ≡ 0 (mod 8)

−n
2 if n ≡ 4 (mod 8)

1 if n ≡ 1, 2, or 5 (mod 8)

−1 if n ≡ 3, 6, or 7 (mod 8)

and m(n), k(n) are as defined in Theorem 7.1.
If char(k) 6= 0 and 4 · char(k) | n, then deg(ψ̃n(y)) < m(n)− 1 .
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Proof: Proof is by induction. The statement is true for n = 0, 1, 2, 3, 4. Now suppose
it is true for 0, 1, 2, . . . , n − 1:

Case 1: n ≡ 0 (mod 8) i.e. n = 8l for some l ∈ Z. Let r = 4l. Then

ψ̃n(y) =
ψ̃r(y)

y + 1

(

ψ̃r+2(y)ψ̃
2
r−1(y)− ψ̃r−2(y)ψ̃

2
r+1(y)

)

=(δ(r)dm(r)−k(r)ym(r)−2 + . . . )×

[(δ(r + 2)(δ(r − 1))2dm(r+2)+2m(r−1)−k(r+2)−2k(r−1)ym(r+2)+2m(r−1) + . . . )

− (δ(r − 2)(δ(r + 1))2dm(r−2)+2m(r+1)−k(r−2)−2k(r+1)ym(r−2)+2m(r+1) + . . . )]

So, computing the m’s and k’s as in previous proofs, and noting that

δ(r) = ±2l, δ(r + 2) = ±1, δ(r − 1) = −1,

δ(r − 2) = ∓1, δ(r + 1) = 1,

the leading term is thus

±2ldm(n)−k(n)ym(r)−2(±ym(r+2)+2m(r−1) ± ym(r−2)+2m(r+1))

=
n

2
dm(n)−k(n)ym(n)−1

= δ(n)dm(n)−k(n)ym(n)−1.

The only exception being if char(k) 6= 0 and char(k) | r, (i.e. if char(k) | n) in which
case, deg(ψ̃r(y)) < m(r)− 1 and deg(ψ̃n(y)) < m(n)− 1.

Case 2: n ≡ 1 (mod 8) i.e. n = 8l + 1 for some l ∈ Z. Let r = 4l.

Then ψ̃n(y) =
4(a−d)(a−dy2)2ψ̃r+2(y)ψ̃3

r
(y)

(y+1)2
− ψ̃r−1(y)ψ̃

3
r+1(y).

The degree (in y) of the first term above is m(r+2)+3(m(r)−1)+4−2 = 32l2+8l−3.
The degree (in y) of the second term is m(r − 1) + 3m(r + 1) = 32l2 + 8l Thus

4(a−d)(a−dy2)2ψ̃r+2(y)ψ̃3
r
(y)

(y+1)2
does not contribute to the leading term which is

−δ(r − 1)(δ(r + 1))3dm(r−1)+3m(r+1)−k(r−1)−3k(r+1)y32l
2+8l.

Now,
δ(r − 1) = −1, δ(r + 1) = 1, δ(n) = 1

k(r − 1) + 3k(r + 1) = 24l2 + 6l

m(n) = m(8l + 1) = 32l2 + 8l − (24l2 + 6l) = 8l2 + 2l.

So the leading term is dm(n)−k(n)ym(n) = δ(n)dm(n)−k(n)ym(n), as required.
The only exceptional case is if char(k) 6= 0 and char(k) | r, in which case deg(ψ̃r(y)) <

m(r) − 1, but as ψ̃r(y) does not contribute to the leading term, this does not affect the
result.

Cases 3,. . . 8: n ≡ 2, . . . 7 (mod 8). Similar. �
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Corollary 8.3 If 4 ∤ n, then deg(ψ̃n(y)) = m(n) where

m(n) =











n2
−1
2 if n is odd

n2
−2
2 if n is even.

If 4 | n and char(k) ∤ n, deg(ψ̃n(y)) = m(n)− 1.
Otherwise deg(ψ̃n(y)) < m(n)− 1.

Proof: Immediate from Theorem 8.2 . �

The only case where the degree of the polynomial ψ̃n is not known precisely is when
4 · char(k) | n. In any case, n

2

2 is an upper bound for deg(ψ̃n).

Lemma 8.4 If char(k) = 0 or 4 · char(k) ∤ n, then ψ̃n(y) has final term (term of least
degree in y)







ǫ(n)am(n)−k(n) if n 6≡ 0 (mod 4)

ǫ(n)am(n)−k(n)y if n ≡ 0 (mod 4)

where

ǫ(n) =







































−n
2 if n ≡ 0 (mod 8)

n
2 if n ≡ 4 (mod 8)

1 if n ≡ 1, 2, or 3 (mod 8)

−1 if n ≡ 5, 6, or 7 (mod 8)

and m(n), k(n) are as defined in Theorem 7.1.
If char(k) 6= 0 and 4 · char(k) | n, then the term of least degree has degree greater than

1.

Proof: Similar to proof of Theorem 8.2. �

Recall from Theorem 8.1 that ψ̃n(y) = ψ̃n(a, d, y) ∈ Z[a, d, y]. If we write ψ̃n in the
form

ψ̃n(a, d, y) = αm(n)y
m(n) + αm(n)−1y

m(n)−1 + · · ·+ α1y + α0

where m(n) is as defined in Theorem 7.1 (so, in particular, if 4 | n, αm(n) = α0 = 0) and
αi ∈ Z[a, d], then we define

ψ̃∗

n(a, d, y) := α0y
m(n) + α1y

m(n)−1 + · · ·+ αm(n)−1y + αm(n)
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Lemma 8.5 ψ̃n(a, d, y), considered as a polynomial in a and d (with coefficients in Z[a, d])
is homogeneous of degree m(n)− k(n).

Proof: Proof is by induction using Theorem 7.1. �

Theorem 8.6 Consider ψ̃n(a, d, y) ∈ Z[a, d, y], as a polynomial in three variables. Then
ψ̃n(a, d, y) = ψ̃∗

n(−d,−a, y).

Proof: We can restate this theorem as: If

ψ̃n(a, d, y) = αm(n)(a, d)y
m(n) + αm(n)−1(a, d)y

m(n)−1 + · · ·+ α1(a, d)y + α0(a, d)

then

ψ̃n(a, d, y) = α0(−d,−a)y
m(n)+α1(−d,−a)y

m(n)−1+· · ·+αm(n)−1(−d,−a)y+αm(n)(−d,−a).

If E is as defined at the outset,

E : ax2 + y2 = 1 + dx2y2

and we let E′ be the twisted Edwards curve

E′ : dx2 + y2 = 1 + ax2y2

then the birational equivalence (x, y) 7→
(

x, 1
y

)

maps E to E′, and E′ to E.

Now,

ψn(x, y) =
(a− d)k(n)ψ̃n(y)

(2(1 − y))m(n)xγ(n)

where

γ(n) =

{

1 if n is even
0 if n is odd

and

ψ′

n(x, y) =
(d− a)k(n)ψ̃′

n(y)

(2(1 − y))m(n)xγ(n)

where ψ′
n(x, y), ψ̃

′
n(y) are the relevant functions defined on E′.

Now,

ψ′

n(x,
1

y
) =

(d− a)k(n)ψ̃′
n(

1
y
)

(2(1 − 1
y
))m(n)xγ(n)

=
(a− d)k(n)((−1)m(n)−k(n)ym(n)ψ̃′

n(
1
y
))

(2(1 − y))m(n)xγ(n)
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and by theorem 8.2, (−1)m(n)−k(n)ym(n)ψ̃′
n(

1
y
) ∈ Z[a, d, y].

By the birational equivalence, for any (x, y) ∈ E,

ψn(x, y) = 0 ⇔ ψ′

n

(

x,
1

y

)

= 0

so

ψ̃n(y) = 0 ⇔ (−1)m(n)−k(n)ym(n)ψ̃′

n(
1

y
) = 0

which gives

ψ̃n(y) = t(−1)m(n)−k(n)ym(n)ψ̃′

n(
1

y
)

for some t. By comparing leading terms using theorems 8.2 and 8.4, we get t = 1, i.e.,

ψ̃n(y) = (−1)m(n)−k(n)ym(n)ψ̃′

n(
1

y
).

Now,

ψ̃n(a, d, y) = αm(n)(a, d)y
m(n) + αm(n)−1(a, d)y

m(n)−1 + · · ·+ α1(a, d)y + α0(a, d)

and

ψ̃′

n(a, d, y) = αm(n)(d, a)y
m(n) + αm(n)−1(d, a)y

m(n)−1 + · · ·+ α1(d, a)y + α0(d, a).

Recall (lemma 8.5) that each of the αi is homogeneous in a and d of degree m(n)−k(n),
so

(−1)m(n)−k(n)ψ̃′

n(a, d, y) = αm(n)(−d,−a)y
m(n)+αm(n)−1(−d,−a)y

m(n)−1+· · ·+α1(−d,−a)y+α0(−d,−a)

and

(−1)m(n)−k(n)ym(n)ψ̃′

n(
1

y
) = αm(n)(−d,−a) + αm(n)−1(−d,−a)y + . . .

+ α1(−d,−a)y
m(n)−1 + α0(−d,−a)y

m(n)

= ψ̃∗

n(−d,−a, y).

Hence, ψ̃n(a, d, y) = ψ̃∗
n(−d,−a, y). �
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9 Another Approach to Division Polynomials

9.1 Rephrasing the addition laws

Let (x+, y+) = (x1, y1) + (x2, y2), (x−, y−) = (x1, y1)− (x2, y2)

Theorem 9.1

x+ =
x1y2(1− dx22) + x2y1(1− dx21)

1− adx21x
2
2

Proof:

x+ =
(x1y2 + x2y1)(1− dx1x2y1y2)

1− d2x21x
2
2y

2
1y

2
2

=
x1y2(1− dx22y

2
1) + x2y1(1− dx21y

2
2)

1− d2x21x
2
2y

2
1y

2
2

=
x1y2(1− dx22

1−ax2
1

1−dx2
1

) + x2y1(1− dx21
1−ax2

2

1−dx2
2

)

1− d2x21x
2
2(

1−ax2
1

1−dx2
1

)(
1−ax2

2

1−dx2
2

)

=
(1− d(x21 + x22) + adx21x

2
2)(x1y2(1− dx22) + x2y1(1− dx21))

(1− dx21)(1− dx22)− d2x21x
2
2(1− ax21)(1− ax22)

=
(1− d(x21 + x22) + adx21x

2
2)(x1y2(1− dx22) + x2y1(1− dx21))

(1− d(x21 + x22) + adx21x
2
2)(1 − adx21x

2
2)

=
x1y2(1− dx22) + x2y1(1− dx21)

1− adx21x
2
2

�

Notes: If ad is a nonsquare in K, it is immediate that the above addition law is complete
(in the sense of [3]). It is also straightforward to see that

x− =
x1y2(1− dx22)− x2y1(1− dx21)

1− adx21x
2
2

,

and thus the following theorem holds.

Theorem 9.2

x+ + x− =
2x1y2(1− dx22)

1− adx21x
2
2

.

Analogously:

y+ =
(a− d)y1y2 − (a− dy21)(a− dy22)x1x2

a− d(y21 + y22) + dy21y
2
2
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Proof:

y+ =
(y1y2 − ax1x2)(1 + dx1x2y1y2)

1− d2x21x
2
2y

2
1y

2
2

=
y1y2(1− adx21x

2
2)− x1x2(a− dy21y

2
2)

1− d2x21x
2
2y

2
1y

2
2

=
y1y2((a− dy21)(a− dy22)− ad(1− y21)(1 − y22))− x1x2(a− dy21y

2
2)(a− dy21)(a− dy22)

(a− dy21)(a− dy22)− dy21y
2
2(1− y21)(1− y22)

=
(a− d)(a− dy21y

2
2)y1y2 − (a− dy21)(a− dy22)(a− dy21y

2
2)x1x2

(a− dy21y
2
2)(a− d(y21 + y22) + dy21y

2
2)

=
(a− d)y1y2 − (a− dy21)(a− dy22)x1x2

a− d(y21 + y22) + dy21y
2
2

�

Thus

y− =
(a− d)y1y2 + (a− dy21)(a− dy22)x1x2

a− d(y21 + y22) + dy21y
2
2

and

Theorem 9.3

y+ + y− =
2(a − d)y1y2

a− d(y21 + y22) + dy21y
2
2

9.2 Recursion formulae

Motivated by the polynomials studied by Abel in proving his theorem on the n-division
points of the lemniscate [1] (and see also Cox [4]), we use the above addition formulae to
derive a new set of polynomials defined by a recursion to specify the nth multiple of a
point. From here on we denote the x-coordinate of [n](x, y) by xn, and the y-coordinate
by yn.

Theorem 9.4

xn =











xyPn(x2)
Qn(x2)

if n is even

xPn(x2)
Qn(x2)

if n is odd

where Pn(t), Qn(t) ∈ Z[t] are defined by:

P1(t) = 1, Q1(t) = 1, P2(t) = 2(1 − dt), Q2(t) = 1− adt2
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Pn+1(t) =







2(1− at)(1− dt)PnQn−1Qn − Pn−1((1 − dt)Q2
n − adt2(1− at)P 2

n) if n is even

2(1− dt)PnQn−1Qn − Pn−1(Q
2
n − adt2P 2

n) if n is odd

Qn+1(t) =







Qn−1((1− dt)Q2
n − adt2(1− at)P 2

n) if n is even

Qn−1(Q
2
n − adt2P 2

n) if n is odd

Note that (Pn+1, Qn+1) is generated by a recursion on (Pn, Qn) and (Pn−1, Qn−1), as
distinct from the recursions on various polynomials of index ∼ n

2 as in theorem 7.1.

Proof: By induction on n. The claim is true for n = 1, and, by Theorem 9.1, for n = 2.
Assume the claim is true for n, n− 1. Then, by Theorem 9.2,

xn+1 + xn−1 =
2xny(1− dx2)

1− adx2nx
2

Case 1: n even

xn+1 =
2xy2 Pn

Qn

(1− dx2)

1− adx4y2 P
2
n

Q2
n

−
xPn−1

Qn−1

=
2xy2PnQn(1− dx2)

Q2
n − adx4y2P 2

n

−
xPn−1

Qn−1

=
2x(1 − ax2)(1− dx2)PnQn

(1− dx2)Q2
n − adx4(1− ax2)P 2

n

−
xPn−1

Qn−1

=
x(2(1− ax2)(1− dx2)PnQn−1Qn − Pn−1((1− dx2)Q2

n − adx4(1− ax2)P 2
n))

Qn−1((1 − dx2)Q2
n − adx4(1− ax2)P 2

n)

proving the claim for the case of n being even.
Case 2: n odd

xn+1 =
2xy Pn

Qn

(1− dx2)

1− adx4 P
2
n

Q2
n

−
xyPn−1(x

2)

Qn−1(x2)

=
2xyPnQn(1− dx2)

Q2
n − adx4P 2

n

−
xyPn−1

Qn−1

=
xy(2(1 − dx2)PnQn−1Qn − Pn−1(Q

2
n − adx4P 2

n))

Qn−1(Q2
n − adx4P 2

n)
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Proving the claim for the case of n being odd, and thus, by induction, the theorem. �

Equally, one could rephrase the previous theorem as a recursion of rational functions.

Theorem 9.5

xn =







xyαn(x
2) if n is even

xαn(x
2) if n is odd

where αn(t) are defined by:

α1(t) = 1, α2(t) =
2(1− dt)

1− adt2
,

αn+1(t) =











2(1−at)(1−dt)αn

(1−dt)−adt2(1−at)α2
n

− αn−1 if n is even

2(1−dt)αn

1−adt2α2
n

− αn−1 if n is odd

Proof: Similar �

We can also express xn in terms of y, and yn in terms of y or x. For brevity’s sake, we
omit these formulae.

9.3 Recovering the y coordinate

The formulae above can be used to perform x-coordinate-only arithmetic (cf Montgomery
ladder, [7]). For this purpose, we manipulate Theorem 9.1 and the analogous result for y+
to get

Theorem 9.6

yn =
xn−1(1− adx2x2n) + xny(1− dx2)

x(1− dx2n)

xn =
yn−1(a− d(y2 + y2n) + dy2y2n)− (a− d)yyn

(a− dy2)(a− dy2n)

Proof: Immediate from

x+ =
x1y2(1− dx22) + x2y1(1− dx21)

1− adx21x
2
2

and

y+ =
(a− d)y1y2 − (a− dy21)(a− dy22)x1x2

a− d(y21 + y22) + dy21y
2
2

.

�
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