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Abstract

In this paper, using the LLL reduction method and computing the
integral points of two classes of conics, we develop attacks on DSA and
ECDSA in case where the secret and the ephemeral key and their modular
inverse are quite small or quite large.

MSC 2010: 94A60, 11T71, 11Y16.
Keywords: Public Key Cryptography; Digital Signature Algorithm; El-
liptic Curve Digital Signature Algorithm; Algorithm LLL; Discrete Loga-
rithm; Diophantine Equations.

1 Introduction

In August 1991, the U.S. government’s National Institute of Standards and
Technology (NIST) proposed an algorithm for digital signatures. The algo-
rithm is known as DSA, for Digital Signature Algorithm [13, 12, 10]. It is an
efficient variant of the ElGamal digital signature scheme [4] intended for use in
electronic mail, electronic funds transfer, electronic data interchange, software
distribution, data storage, and other applications which require data integrity
assurance and data authentication. In 1998, an elliptic curve analogue called
Elliptic Curve Digital Signature Algorithm (ECDSA) was proposed and stan-
dardized [5, 9, 10].

Let us recall the outlines of DSA and ECDSA. First, for DSA, the signer
chooses a prime p of size between 512 and 1024 bits with increments of 64, q
is a prime of size 160 with q|p − 1 and g is a generator of the unique order
q subgroup G of Z

∗
p. Further, he chooses a ∈ {1, . . . , q − 1} and computes

A = ga mod p. The public key of the signer is (p, q, g, A) and his private key
a. Furthermore, the signer chooses a publicly known hash function h mapping
messages to {0, . . . , q − 1}. To sign a message m, he chooses a random number
k ∈ {1, . . . , q − 1} which is the ephemeral key, computes

r = (gk mod p) mod q and s = k−1(h(m) + ar) mod q.
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The signature of m is the pair (r, s). The verification of the signature is per-
formed by checking

r = ((gs
−1h(m)modqAs−1rmodq) mod p) mod q.

The ECDSA uses an elliptic curve E over Zp and a point P ∈ E(Zp) with
order a prime q of size around 160 bits. The signer selects a ∈ {1, . . . , q − 1}
and computes Q = aP . Its public key is (p,E, P, q,Q) and his private key a. To
sign a message m having hash value h(m) ∈ {0, . . . , q− 1}, he selects a random
number k ∈ {1, . . . , q−1} which is the ephemeral key and computes kP = (x, y)
(where x and y are regarded as integer between 0 and p−1). Next, he computes

r = x mod q and s = k−1(h(m) + ar) mod q.

The signature of m is the pair (r, s). For the verification of the signature one
computes

u1 = s−1h(m) mod q, u2 = s−1r mod q, u1P + u2Q = (x0, y0).

He accepts the signature if and only if r = x0 mod q.
The assumption here is that the only way to forge signature is to recover

either the secret key a, or the ephemeral key k (in this case is a simple matter
to compute a). Thus, the parameters of the two systems were chosen in such a
way that the computation of discrete logarithms is computationally infeasible,
and so a or k is well protected.

The use of lattices and the so-called LLL reduction method [11] is a well
established tool for attacking a variety of cryptosystems. Attacks to DSA and
to ECDSA using lattice reduction techniques are given in [1], [8], [14], [15] and
[2]. A common feature of these attacks is that take advantage of the form of
equality s = k−1(h(m) + ar) mod q. In [1] it was shown that one can recover
the DSA secret key a, if the ephemeral key k is produced by Knuth’s linear
congruential generator with known parameters, or variants. In [8], an attack
on DSA is described in case where for some number of different signatures a
proportion of bits of each of the associated ephemeral keys are revealed. A
polynomial-time attack on DSA which recover a is described in [14], in case
where the size of q is not too small compared with p, the probability of collisions
for the hash function is not too large compared to 1/q and for a polynomially

bounded number of messages, about log
1/2
2 (q) of the least significant bits of

the ephemeral keys are known. The previous attack is adapted to the case of
ECDSA [15]. Finally, in [2], under the assumption that the second shortest
vector of the reduced lattice is sufficiently short, it is determined how large the
keys a and k can be in order for them to be computed by considering only one
signature.

In this paper, using the algorithm LLL and two algorithms for the computa-
tion of the integral points of two classes of conics, we present some new rigorous
attacks on DSA and ECDSA which are based on the equality s = k−1(h(m) +
ar) mod q. Assuming that a signature is available and each number in at least
one of the sets {a, k−1 mod q}, {k, a−1 mod q} and {a−1 mod, k−1 mod q} is
smaller or larger that a certain explicit bound, we prove that the secret keys a
and k can be revealed. Moreover, if two signatures with ephemeral keys k1 and
k2 are available and each numbers in at least one of the sets {k1, k−1

2 mod q},
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{k2, k−1
1 mod q} and {k−1

1 mod, k−1
2 mod q} is smaller or larger that a certain

explicit bound, then k1, k2 and so a can be computed.
In [16], we presented a version of the DSA which combines the intractability

of the integer factorization problem and discrete logarithm problem, and it is
at least as secure as DSA. It uses computations in the group Z

∗
n, where n is the

product of two large primes which is part of the private key, and so the order
of the underlying group is hidden. An immediate consequence of this fact is
that the above mentioned attacks and the attacks described in this paper do
not longer work.

The paper is organized as follows. In Section 2, some results on the LLL
reduction method are recalled and two methods for the solution of Diophantine
equations bx+ cy+ dxy = 0 and b+ cy+ dxy = 0 are given which are necessary
for our attacks. Our attacks using one signed message are presented in Section
3. In Section 4, we deal with the attacks using two signed messages. Finally,
Section 5 concludes the paper.

2 Auxiliary Results

Let B = {b1, . . . ,bn} ⊂ Z
n
be a basis of R

n
. A n-dimensional lattice spanned

by B is the set

L = {z1b1 + · · ·+ znbn/ z1, . . . , zn ∈ Z}.

If bi = (bi,1, . . . , bi,n) (i = 1, . . . , n), then the determinant detL of L is the
absolute value of the determinant whose (i, j) element is bi,j .

The Euclidean norm of a vector v = (v1, . . . , vn) ∈ R
n
is defined to be the

quantity ||v|| = (v21 + · · ·+ v2n)
1/2 and for a polynomial h(x, y) =

∑
i,j hi,jx

iyj

the quantity ||h|| = (
∑

i,j |hi,j |2)1/2.
The LLL algorithm [11] acting on a matrix with rows the vectors of a basis of

L and produces a basis having a quite short vector. We shall need the following
result:

Lemma 1 (LLL) Let M = max{||b1||, . . . , ||bn||}. The number of bit opera-
tions needed by the LLL algorithm for the computation of a vector b ∈ L with
b �= 0 such that

||b|| ≤ 2(n−1)/4(detL)1/n

is O(n6(logM)3).

Furthermore, we shall use the following well known lemma whose proof is
given in [7].

Lemma 2 (Howgrave-Graham) Suppose h(x, y) ∈ Z[x, y] is a polynomial which
is the sum of at most ω monomials. Suppose that h(x0, y0) = 0 mod n,
where x0, y0 ∈ Z with |x0| ≤ X, |y0| ≤ Y and ||h(xX, yY )|| < n/

√
ω. Then

h(x0, y0) = 0 holds over the integers.

Let f(x, y) = bx + cy + dxy and g(x, y) = b + cy + dxy, where b, c, d ∈ Z.
Next, we give two algorithms for the solutions of the Diophantine equations
f(x, y) = 0 and g(x, y) = 0, respectively.

3



SOLVE-CONIC1
Input: The equation f(x, y) = 0 and the prime factorization of b and c.

Output: The couples (x, y) ∈ Z
2
with f(x, y) = 0.

1. Compute the sets of all the divisors D(b) and D(c) of b and c, respectively.

2. For every β ∈ D(b) and γ ∈ D(c) compute δ = −(bβ + cγ)/dβγ.

3. Output the couples (γδ, βδ) where β ∈ D(b), γ ∈ D(c) and δ is a positive
integer.

Proof of correctness. Let (x, y) ∈ Z
2
be a solution of f(x, y) = 0. If

δ = gcd(x, y), then x = δx′ and y = δy′, where x′ and y′ are integers with
gcd(x′, y′) = 1. Then, we have bx′ + cy′ + dδx′y′ = 0. It follows that x′|cy′ and
since gcd(x′, y′) = 1, we get x′|c. Similarly, we deduce y′|b. Furthermore, we
have δ = −(bx′ + cy′)/dx′y′.

Time complexity. Put M = max{|b|, |c|, |d|}. Let |b| = pb11 · · · pbkk be the

prime factorization of b. The computation of a divisor β = pβ1

1 · · · pβk

k (0 ≤
βi ≤ bi, i = 1, . . . , k) of b requires O((log β)2) bit operations. By [6, Theorem
315], the number of positive divisors of b is τ(|b|) = O(|b|ε) for arbitrarily small
ε > 0. Hence, the computation of the setD(b) requires O(|b|ε(log |b|)2) = O(|b|ε)
bit operations. Similarly, the computation of the set D(c) requires O(|c|ε) bit
operations. Therefore, for the Step 1 we need O(M ε) bit operations. For every
β ∈ D(b) and γ ∈ D(c) the computation of δ needs O((logM)2) bit operations
and so, step 2 requires O((logM)2 +M ε) = O(M ε) bit operations. Thus, the
time complexity of SOLVE-CONIC1 is O(M ε) bit operations.

Remark 1 The above algorithm implies that the number integer solutions of
the equation f(x, y) = 0 is O(M ε), where ε > 0 is arbitrarily small.

SOLVE-CONIC2
Input: The equation g(x, y) = 0 and the prime factorization of b.

Output: The couples (x, y) ∈ Z
2
with g(x, y) = 0.

1. Compute the sets of all the divisors D(b) of b.

2. For every y ∈ D(b) compute x = −(b/y + c)/d.

3. Output the couples (x, y) with y ∈ D(b) and x ∈ Z.

Proof of correctness. Let (x, y) ∈ Z
2
be a solution of g(x, y) = 0. Then

y|b and so, b = yβ, where β ∈ Z. Simplifying the equation we get β + c + dx,
whence x = −(β + c)/d.

Time complexity. Put M = max{|b|, |c|, |d|}. The computation of D(b) in
Step 1 requires O(aε) bit operations, where ε > 0 is arbitrarily small. For every
y ∈ D(b) the computation of x needs O(M ε) bit operations and so Step 2 needs
O(τ(|b|)M ε) bit operations. Therefore, the time complexity for the algorithm
is O(M ε) bit operations.

Remark 2 The above algorithm implies that the number integer solutions of
the equation g(x, y) = 0 is O(M ε), where ε > 0 is arbitrarily small.
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3 Attacks Using One Signed Message

Let x, x′ ∈ {1, . . . , q − 1} be such that x = q − x′. We set x = x if x ≤ x′ and
x = −x′, otherwise. Further, we write simply x−1 instead of x−1 mod q.

In this section we describe our attacks using one signed message. Let m
be a message and (r, s) its signature with DSA (resp. ECDSA). Then there is
k ∈ {1, . . . , q − 1} such that r = (gk mod p) mod q (resp. kP = (x, y)) and
s = k−1(h(m) + ar) mod q.

(1) Suppose there are positive integersX and Y such that |a| < X , |k−1| < Y
and XY 2 < q/63/2.

ATTACK1
Input: (h(m), r, s).
Output: a.

1. Compute b = −sr−1 mod q and c = r−1h(m) mod q.

2. Let L be the lattice generated by (q, 0, 0), (0, qY, 0) and (b, cY,XY ). Using
the LLL algorithm, compute (C0, C1, C2) ∈ L such that ||C0, C1, C2)|| ≤√
2(q2XY 2)1/3.

3. Compute γ1, γ2 ∈ Z such that γ1 = C1/X , γ2 = C2/XY and put γ0 = C0.

4. Let Γ(x, y) = γ0 + γ1y + γ2xy. Using the algorithm SOLVE-CONIC2,

compute the set S of solutions (x, y) ∈ Z
2
to Γ(x, y) = 0.

5. Compute the quantities gx mod q (resp. xP ), where (x, y) ∈ S.

6. If (x0, y0) ∈ S and gx0 = A mod p (resp. x0P = Q), then output x0.
Otherwise, output “No solution”.

Proof of correctness. Let g(x, y) = b + cy + xy. We remark that the couple
(a, k−1) is a solution of the congruence g(x, y) ≡ 0 mod q. Consider the poly-
nomials g1(x, y) = q and g2(x, y) = qy. The coefficient vectors of g(xX, yY ),
g1(xX, yY ) and g2(xX, yY ) areR-linearly independent and so generate a lattice
L of rank 3 having as basis the rows of the matrix

I =

⎛
⎝

q 0 0
0 qY 0
b cY XY

⎞
⎠ .

We have detL = |detI| = q2XY 2. By Lemma 1, there is a vector v =
(γ0, γ1Y, γ2XY ) in L such that

||v|| ≤ √
2(q2XY 2)1/3 < q/

√
3.

Let Γ(x, y) = γ0 + γ1y + γ2xy. The polynomial Γ(xX, yY ) is an integral
linear combination of g(xX, yY ), g1(xX, yY ) and g2(xX, yY ). It follows that
G(a, k−1) ≡ 0 (mod q). Furthermore, if γ2 = 0, then γ0 = qt0, γ1 = qY t1
with t0, t1 ∈ Z and so, q

√
2 ≤ ||v|| < q/

√
3 which is a contradiction. Hence

c2 �= 0. Since ||Γ(xX, yY )|| < q/
√
3, Lemma 2 yields Γ(a, k−1) = 0. So (a, k−1)
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is the element of the set S of solutions (x, y) ∈ Z
2
to Γ(x, y) = 0 satisfying

ga = A mod q.
(2) Suppose there are positive integersX and Y such that |k| < X , |a−1| < Y

and XY 2 < q/63/2. The following algorithm provide us with the secret key a.

ATTACK2
Input: (h(m), r, s).
Output: a.

1. Compute b = −rs−1 mod q and c = −h(m)s−1 mod.

2. Let L be the lattice generated by (q, 0, 0), (0, qY, 0) and (b, cY,XY ). Using
the LLL algorithm, compute (C0, C1, C2) ∈ L such that ||C0, C1, C2)|| ≤√
2(q2XY 2)1/3.

3. Compute δ1, δ2 ∈ Z such that δ1 = C1/X , δ2 = C2/XY and put δ0 = C0.

4. Let Δ(x, y) = δ0 + δ1y + δ2xy. Using the algorithm SOLVE-CONIC2,

compute the set S of solutions (x, y) ∈ Z
2
to Δ(x, y) = 0.

5. Compute the quantities gy
−1 mod q mod p (resp. (y−1

0 mod q)P ), where
(x, y) ∈ S.

6. If (x0, y0) ∈ S and gy
−1
0 mod q = A mod p (resp. (y−1

0 mod q)P = Q),
then output y−1

0 mod q. Otherwise, output “No solution”.

Proof of correctness. The proof is similar to the previous one.
(3) Suppose that X and Y are positive integers such that |k−1| < X , |a−1| <

Y and XY < q1/2/63/4. We have the following algorithm for the computation
of the secret key a.

ATTACK3
Input: (h(m), r, s).
Output: a.

1. Compute b = −sh(m)−1 mod q and c = rh(m)−1 mod.

2. Let L be the lattice spanned by (qX, 0, 0), (0, qY, 0) and (b, cY,XY ). Using
the LLL algorithm, compute (C0, C1, C2) ∈ L such that ||C0, C1, C2)|| ≤√
2(qXY )2/3.

3. Compute η0, η1, η2 ∈ Z such that η0 = C0/X η1 = C1/X and η2 =
C2/XY .

4. Let H(x, y) = η0x + η1y + η2xy. Using the algorithm SOLVE-CONIC1,

compute the set S of solutions (x, y) ∈ Z
2
to H(x, y) = 0.

5. Compute the quantities gx
−1 mod q mod p (resp. (x−1

0 mod q)P ), where
(x, y) ∈ S.

6. If (x0, y0) ∈ S and gx
−1
0 mod q = A mod p (resp. (x−1

0 mod q)P = Q),
then output x−1

0 mod q. Otherwise, output “No solution”.
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Proof of correctness. Let f(x, y) = bx+ cy + xy. The couple (a−1, k−1) is a
solution of the congruence f(x, y) ≡ 0 mod q. Let f1(x, y) = q and f2(x, y) = qy.
The rows of the matrix

J =

⎛
⎝

qX 0 0
0 qY 0
bX cY XY

⎞
⎠

are the coefficient vectors of f(xX, yY ), f1(xX, yY ) and f2(xX, yY ). They
are R-linearly independent and so generate a lattice L of rank 3 with detΛ =
|detJ | = (qXY )2. By Lemma 1, there is a vector v = (η0X, η1Y, η2XY ) in L
such that

||v|| ≤
√
2(qXY )2/3 < q/

√
3.

Put H(x, y) = η0x + η1y + η2xy. As in the first case we have η2 �= 0 and
H(a−1, k−1) = 0. Thus, the couple (a−1, k−1) is an element of the set T of

solutions (x, y) ∈ Z
2
to H(x, y) = 0 satisfying ga = A mod q.

Time complexity of the attacks. We deal with the three attacks similtane-
ously. Step 1 needs O((log q)2) bit operations. By Lemma 2, the application
of LLL algorithm in Step 2 requires O((log q)3) bit operations. Step 3 requires
O((log q)2) bit operations. Since the coefficients of polynomials Γ(x, y), Δ(x, y)
and H(x, y) are no negarive integers < q, Step 4 needs O(qε) bit operations,
where ε > 0 is arbitrarily small, provided the factorization of γ0 in the first
attack, δ0 in the second attack, and of η0, η1 in the third attack are known. In
practice q is a prime of size 160 and so, the integers γ0, δ0, η0 and η1 have less
than 50 decimal digits. As it is pointed out in [3] it is now routine to factor
a 100-decimal digits integer and so, the factorization of the above numbers is
quite easy with the current algorithms. Furthermore, note that the numbers
γ0, δ0, η0 and η1 are random and are not constructed in a such way that their
factorization is difficult. Finally, since |S| = O(qε), Step 5 needs O(qε(log p)3)
bit operations in case of DSA and O(qε) bit operations and O(qε log q) elliptic
curve group operations in case of ECDSA. Thus, if we ignore the time needed for
the factorization of γ0, δ0, η0 and η1, our attacks on DSA require O(qε(log p)3)
bit operations and on ECDSA need O(qε) bit operations and O(qε log q) elliptic
curve group operations.

Thus we have the following theorem:

Theorem 1 Suppose that we have a message signed with ephemeral key k and
one of the following conditions holds:
(a) There are integers X > 0 and Y > 0 satisfying |a| < X, |k−1| < Y ,
XY 2 < q/63/2 and the factorization of γ0 is known.
(b) There are integers X > 0 and Y > 0 satisfying |k| < X, |a−1| < Y ,
XY 2 < q/63/2 and the factorization of δ0 is known.
(c) There are integers X > 0 and Y > 0 satisfying |k−1| < X, |a−1| < Y ,
XY < q1/2/63/4 and the factorization of η0, η1 is known.
Then there is a deterministic algorithm which computes a. The algorithm in
case of DSA requires O(qε(log p)3) bit operations and in case of ECDSA needs
O(qε) bit operations and O(qε log q) elliptic curve group operations, where ε > 0
is arbitrarily small.
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4 Attacks Using Two Signed Messages

Let (r1, s1) and (r2, s2) be the DSA or ECDSA signatures of two messages m1

and m2 with ephemeral keys k1 and k2, respectively. Then we have

s1 = k−1
1 (h(m1) + ar1) mod q and s2 = k−1

2 (h(m2) + ar2) mod q.

Eliminating a from the two equalities we obtain the congruence

s1r2k1 − r1s2k2 + r1h(m2)− h(m1)r2 ≡ 0 (mod q).

Hence the couples (k1, k
−1
2 ), (k−1

1 , k2) and (k−1
1 , k−1

2 ) are solutions of the con-
gruences

yx+ (s−1
1 r1r

−1
2 h(m2)− h(m1)s

−1
1 )y − r1s2s

−1
1 r−1

2 ≡ 0 (mod q),

yx+ (s−1
2 r2r

−1
1 h(m1)− h(m2)s

−1
2 )y − r2s1s

−1
2 r−1

1 ≡ 0 (mod q),

yx+ r2s1(r1h(m2)− r2h(m1))
−1y− r1s2(r1h(m2)− r2h(m1))

−1x ≡ 0 (mod q).

Thus, in case we have two signed messages as above and there are positive
integers X and Y satisfying one of the following:

1. |k1| < X , |k−1
2 | < Y and XY 2 < q/63/2,

2. |k2| < X , |k−1
1 | < Y and XY 2 < q/63/2,

3. |k−1
2 | < X , |k−1

1 | < Y and XY < q1/2/63/4,

we can develop similar attacks to the attacks 1, 2, 3 of Section 3, respectively.
Since the algorithms of the attacks and the complexity issues are essentially the
same as in the aforementioned attacks we omit their description.

We denote by γ0 + γ1y + γ2xy, δ0 + δ1y + δ2xy and η0x + η1y + η2xy the
polynomials constructed using the LLL-algorithm, as in the previous section,
for the cases (1), (2) and (3), respectively. Then we have the following theorem:

Theorem 2 Suppose that we have two messages signed with ephemeral keys k1,
k2 and one of the following conditions holds:

(a) There are integers X > 0 and Y > 0 satisfying |k1| < X, |k−1
2 | < Y ,

XY 2 < q/63/2 and the factorization of γ0 is known.

(b) There are integers X > 0 and Y > 0 satisfying |k2| < X, |k−1
1 | < Y ,

XY 2 < q/63/2 and the factorization of δ0 is known.

(c) There are integers X > 0 and Y > 0 satisfying |k−1
2 | < X, |k−1

1 | < Y ,
XY < q1/2/63/4 and the factorization of η0, η1 is known.
Then there is a deterministic algorithm which computes a. The algorithm in
case of DSA requires O(qε(log p)3) bit operations and in case of ECDSA needs
O(qε) bit operations and O(qε log q) elliptic curve group operations, where ε > 0
is arbitrarily small.
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5 Conclusion

In this paper, combining lattice reduction techniques with algorithms for com-
puting the integral solutions of the Diophantine equations bx+cy+dxy = 0 and
b+ cy+ dxy = 0, we develop some rigorous attacks on DSA and ECDSA. If one
signature is available having secret key a and ephemeral key k and each number
in at least one of the sets {a, k−1 mod q}, {k, a−1 mod q}, {a−1 mod, k−1 mod q}
is quite small or quite large, then a can be computed in practice (note that if the
positive integer x is large, then x is small). The same happens, if two signatures
are available with ephemeral keys k1, k2 and each numbers in at least one of the
sets {k1, k−1

2 mod q}, {k2, k−1
1 mod q}, {k−1

1 mod, k−1
2 mod q} is quite small or

quite large. These attacks can also be applied on other schemes where the secret
and the ephemeral keys are solutions of a modular bivariate linear equation as
in DSA or of a modular bivariate equation of second degree. For instance, such
schemes are Schnorr’ signature, Heyst-Pedersen signature, etc [12, 17].

Our attacks on DSA requireO(qε(log p)3) bit operations and on ECDSA need
O(qε bit operations andO(qε log q) elliptic curve group operations. Furthermore,
these two attacks need the factorization of one or two integers < q. Note that
these numbers are random and not chosen in such a way that their factorization
is difficult. In practice the size of q is 160 and so, the factorization of the above
numbers is quite easy with the current algorithms. Therefore, our attacks can
be quite efficient.
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