
ar
X

iv
:1

10
5.

02
59

v1
 [

cs
.C

R
]

 2
 M

ay
 2

01
1

On the provable security of BEAR and LION

schemes

Lara Maines (lara.maines@gmail.com)

Department of Mathematics, University of Trento, Italy

Matteo Piva (matteo.piva@unitn.it)

Department of Mathematics, University of Trento, Italy

Anna Rimoldi (anna.rimoldi@gmail.com)

eRISCS, Universite de la Méditerranée, Marseille, France

Massimiliano Sala (maxsalacodes@gmail.com)

Department of Mathematics, University of Trento, Italy

Abstract

BEAR, LION and LIONESS are block ciphers presented by Biham and Anderson
(1996), inspired by the famous Luby-Rackoff constructions of block ciphers from
other cryptographic primitives (1988). The ciphers proposed by Biham and Ander-
son are based on one stream cipher and one hash function. Good properties of the
primitives ensure good properties of the block cipher. In particular, they are able to
prove that their ciphers are immune to any efficient known-plaintext key-recovery
attack that can use as input only one plaintext-ciphertext pair. Our contribution
is showing that these ciphers are actually immune to any efficient known-plaintext
key-recovery attack that can use as input any number of plaintext-ciphertext pairs.
We are able to get this improvement by using slightly weaker hypotheses on the
primitives. We also discuss the attack by Morin (1996).

Keywords: Cryptography, block cipher, stream cipher, hash function, BEAR,
LION, Luby-Rackoff cipher.

Introduction

In this paper we discuss three block ciphers, BEAR, LION and LIONESS,
proposed in [AB96] by Anderson and Biham, whose construction depends on
one stream cipher and one hash function. These block ciphers are inspired by
[LR88] and present a three-round (for BEAR and LION) or four-round (for

21/III/2022 BCRI–CGC–preprint, http://www.bcri.ucc.ie

http://arxiv.org/abs/1105.0259v1
http://www.bcri.ucc.ie

2 On the provable security of BEAR and LION schemes

LIONESS) Feistel construction. In particular, we treat the provable security
shown by them and provide some improvements.

In Section 1 we give some preliminaries, recalling in particular BEAR’s
construction (Subsection 1.1) with the results by Anderson and Biham, Th. 1.1
and Th. 1.2, that ensure the non-existence of efficient attacks (of a very specific
kind) on BEAR if at least one of the two primitives is robust. In this section
we also recall LION’s construction (Subsection 1.2) and their claimed results
on LION, Th. 1.6 and Th. 1.8, on the non-existence of similar attacks. We
provide our proof for them, with slightly weaker hypotheses. This preliminary
section is concluded by a description of LIONESS (Subsection 1.3).
In Section 2 we give our results on BEAR, LION and LIONESS, that show
the non-existence of some more general attacks. We also introduce two slight
variations, BEAR2 and LION2, of BEAR and LION, respectively. We identify
the hypotheses on the primitives that we need, in particular highlighting the
relation between key and hash function in the keyed hash function. In Sub-
section 2.1 we provide Th. 2.4 that improves Th. 1.2, and Th. 2.7 on BEAR2,
that improves Th. 1.1. In Subsection 2.2 we provide Th. 2.9 that improves
Th. 1.6, and Th. 2.10 on LION2, that extends and improves Th. 1.8. Finally,
in Subsection 2.3 we extend our results to LIONESS in Th. 2.13 and Th. 2.14.
In Section 3, we discuss our results and draw our conclusions. We also put in
context the attack to BEAR and LION by Morin ([Mor96]).

1 Preliminaries

We use F to denote F2 and typically when a capital R or a capital L
appear, they mean elements of Fr and F

l respectively, with r > l. The en-
crypted/decrypted messages are of kind (Li, Ri) ∈ F

l+r. The key space is
denoted by K. Usually the key K = (K1, K2) is composed of two subkeys,
each of length greater than l, so K = F

k × F
k, k ≥ l.

In this paper we consider oracles able to recover the key using as input
only a set of known plaintexts/ciphertexts. We call “single-pair” any oracle so
strong as to need only one pair and “multi-pair” any other.

1.1 Preliminaries on BEAR

The description of BEAR encryption/decryption is based on a keyed hash
function HK and a stream cipher S with the following properties.

(1) The keyed hash function HK(M)

(a) is based on an unkeyed hash function H ′(M), in which we append
and/or prepend the key to the message;

(b) is one-way and collision-free, i.e. it is hard given Y to findX such that
H ′(X) = Y , and to find unequal X and Y such that H ′(X) = H ′(Y);

(c) is pseudo-random, in that even given H ′(Xi) for any set of inputs, it
is hard to predict any bit of H ′(Y) for a new input Y .

CGC

L. Maines, M. Piva, A. Rimoldi, M. Sala 3

(2) The stream cipher S(M):

(0) is pseudo-random (this condition is assumed but not listed in [AB96]);
(a) resists key recovery attacks, in that it is hard to find the seed X given

Y = S(X);
(b) resists expansion attacks, in that it is hard to expand any partial

stream of Y .

We note that conditions (1)-c and (2)-0 ensure respectively that HK and S
are pseudo-random, in order to obtain security against some distinguishing
attacks in a rather theoretical model ([LR88] and [Luc96]).

We recall the BEAR encryption/decryption scheme (here k > l).

ENCRYPTION DECRYPTION

L = L+HK1
(R) L = L′ +HK2

(R′)

R′ = R + S(L) R = R′ + S(L)

L′ = L+HK2
(R′) L = L+HK1

(R)

In [AB96] Anderson and Biham claim the following results on one-pair oracles.

Theorem 1.1 (Th. 1 of [AB96]). An oracle which finds the key of BEAR,
given one plaintext/ciphertext pair, can efficiently and with high probability
find the seed M of the stream cipher S for any output Y = S(M).

Theorem 1.2 (Th. 2 of [AB96]). An oracle which finds the key of BEAR,
given one plaintext/ciphertext pair, can efficiently and with high probability
find preimages and collisions of the hash function H.

Remark 1.3. We observe that while proving Th. 1.1 and Th. 1.2 they only

need the following assumption on H :

for most R’s the map HR : Fk 7→ F
l, HR(K) = HK(R), is surjective.

This assumption is implied by the pseudo-randomness of the unkeyed hash
functionH ′ (and the bigger dimension of the key space), but it is not equivalent
to it. Indeed, it is easy to construct even linear functions satisfying it.
On the other hand, no hypothesis on the stream cipher S is used.

Remark 1.4. The word efficiently in Th. 1.1 and Th. 1.2 might be confus-
ing. The oracle could need huge resources to work. A trivial example is given
by a brute force search of all keys. What Biham and Anderson mean is that
the attacker will need little computational effort in addition to any effort
done by the oracle itself, whatever large.

As a direct consequence of Th. 1.1 and Th. 1.2 we have:

Corollary 1.5. If it is impossible to find efficiently the seed of S or it is
impossible to find efficiently preimages and collisions of H, then no efficient
(key-recovery) single-pair attack exists for BEAR.

CGC

4 On the provable security of BEAR and LION schemes

1.2 Preliminaries on LION

LION is quite similar to BEAR except that it uses the stream cipher twice
and the hash function only once. For LION, K = F

2l.
The requests are:

(1) The hash function H(M):

(b) is one-way and collision-free, i.e. it is hard given Y to findX such that
H ′(X) = Y , and to find unequal X and Y such that H ′(X) = H ′(Y);

(2) The stream cipher S(M):

(0) is pseudo-random,
(a) resists key recovery attacks, in that it is hard to find the seed X given

Y = S(X);
(b) resists expansion attacks, in that it is hard to expand any partial

stream of Y .

We note that Anderson and Biham here dropped 1-(a) and 1-(c).

We recall the LION encryption/decryption scheme (here k = l).

ENCRYPTION DECRYPTION

R = R + S(L+K1) R = R′ + S(L′ +K2)

L′ = L+H(R) L = L′ +H(R)

R′ = R + S(L′ +K2) R = R + S(L+K1)

Results similar to Theorem 1.1 and Theorem 1.2 are claimed also for LION
but without proof nor precise statement. They write the security reduction of
LION proceeds similarly to that of BEAR; an oracle which yields the key of
LION will break both its components.. Unfortunately, we have not been able
to write down direct adaptions of the previous proofs, especially because here
the property of H as in Remark 1.3 cannot be used and we do not see how
one could get something similar for the stream cipher. Therefore, we now state
precisely their claims, giving the weakest hypotheses we can exhibit.

Theorem 1.6. Assume nothing on H and S, except that they are set functions
H : Fr → F

l and S : Fl → F
r. An oracle A1 which finds the key of LION,

given one plaintext/ciphertext pair, can efficiently and with high probability
find the seed M of the stream cipher S for any particular output Y = S(M).

Proof. Let us choose a random input (L,R). Let K1 = M +L. Then S(L+
K1) = Y . We can compute R = R+ Y , L′ = L+H(R+ Y) and, by choosing
any K2, R

′ = R+Y +S(L′+K2). Then we give in input to the oracle the pair
{ (L,R), (L′, R′) } and A1 returns (K1, K2), so we can immediately compute
M = L+K1.

CGC

L. Maines, M. Piva, A. Rimoldi, M. Sala 5

To prove a similar theorem for the hash function, we need the following
definition.

Definition 1.7. Let H and S be functions, H : Fr → F
l and S : Fl → F

r,
with r ≥ l. We say that (S,H) is a good pairing if for a random Y ∈ F

l we
have H−1(Y) ∩ Im(S) 6= ∅.

We note that if at least one between H or S is pseudo-random, then (S,H)
is a good pairing. However, we might have a good pairing even if none of the
primitives is pseudo-random.

We are ready for our interpretation of their claim on the link between the
security of LION and of the hash function.

Theorem 1.8. Assume that (S,H) is a good pairing. An oracle A1 which
finds the key of LION, given one plaintext/ciphertext pair, can efficiently and
with high probability find preimages and collisions of the hash function H.

Proof. Since r > l we can choose R̃ /∈ Im(S) with probability 2r−2l

2r
and

calculate H(R̃) = Ỹ ∈ F
l. We can suppose H−1(Ỹ) ∩ Im(S) 6= ∅ (else we can

choose another R̃) and so there is an X ∈ H−1(Ỹ) ∩ Im(S). We consider as
plaintext (L, 0) , where L is any element of Fl and 0 ∈ F

r. There exists K1

such that R = S(L+K1) = X , because X ∈ Im(S). Thus L′ = L+H(R) =
L+H(X) = L+ Ỹ , because X ∈ H−1(Ỹ). It follows that for K2 = L+ Ỹ +X
we have R′ = X + S(L′ + K2) = X + X = 0. We give to A1 as input the

pair
{

(L, 0), (L+ Ỹ , 0)
}

and it returns (K1, K2), so we can compute easily

X = S(L + K1), finding a collision H(R̃) = H(X) = Ỹ . Note that R̃ 6= X ,
since R̃ /∈ Im(S) and X ∈ Im(S).

To find a preimage, argue as above but with an arbitrary Y ∈ F
l.

The same considerations as in Remark 1.4 hold and a corollary analogous
to Cor. 1.5 holds.

1.3 Preliminaries on LIONESS

The third block cipher proposed in [AB96] is LIONESS, which consists of
four rounds and uses four independent keys, K1, K3 ∈ F

l, K2, K4 ∈ F
k, so

K = F
l × F

k × F
l × F

k, for some k.

Anderson and Biham do not give explicit statements on LIONESS’s secu-
rity, but it is obvious from its construction that any provable-security result
for LION and/or BEAR directly extends to LIONESS, because any oracle at-
tacking LIONESS will be able to attack LION and BEAR, with possibly even
less effort.

CGC

6 On the provable security of BEAR and LION schemes

LIONESS

ENCRYPTION DECRYPTION

R = R + S(L+K1) L = L′ +HK4
(R′)

L = L+HK2
(R) R = R′ + S(L+K3)

R′ = R + S(L+K3) L = L+HK2
(R)

L′ = L+HK4
(R′) R = R + S(L+K1)

For completeness, we can state the following obvious corollary.

Corollary 1.9. Assume nothing on H and S, except that they are set func-
tions H : Fr → F

l and S : Fl → F
r and that for most R’s the map HR : Fk 7→

F
l, HR(K) = HK(R), is surjective. Then an oracle A1 which finds the key of

LIONESS, given one plaintext/ciphertext pair, can efficiently and with high
probability both find the seed of S and find preimages/collisions of H.

2 Our improvements

We propose a property for the keyed hash function, HK , able to ensure the
security from any key-recovery attack that uses plaintext/ciphertext pairs.

Definition 2.1. Given a keyed hash function H = {HK }
K∈Fk, HK : Fr 7→ F

l

for any K ∈ F
k, we say that H is key-resistant if, given a pair (Z,R) such

that Z = HK(R) for a random K and a random R, then it is hard to find K.

Let us consider a keyed hash function H of kind HK = H ′(f(K,R)) for
some injective function f . For practical purposes we want also that (K,R) is
easy to find from f(K,R). In [AB96] f can be a concatenation, but we do not
need to be so restrictive. Let K and R be random and consider the equation:

Z = H ′(f(K,R)) = HK(R) (1)

We note that 1-(b) for H ′ implies that (1) cannot be solved knowing Z. On the
other hand, the key-resistance of H means that (1) cannot be solved knowing
Z and R. It may seem that there is a logical link between the two conditions,
but generally speaking there is none, as we are going to show:

• Suppose that 1-(b) does not hold. From K and R we get Z. Then we
can solve Z = H ′(X). However, Z can have many preimages (2r−l on
average), and so X is likely to be outside Im(f). The knowledge of R
cannot help here, except in discarding unwanted preimages. Only if 1-(b)
fails badly, that is, if we can get efficiently all preimages of Z, then we
will be able to solve (1) by discarding all preimages except that of the
desired form (K,R).

CGC

L. Maines, M. Piva, A. Rimoldi, M. Sala 7

• Suppose that H is not key-resistant. If Z does not come from Im(f)
then there is no way the lack of key-resistance can help. But even if
Z = H(K,R) for some random K and R, still the attacker does not
know R and so lack of key-resistance cannot help, unless the attacker is
allowed to search in a brute-force effort the whole F

r, which is supposed
to be hard in our context.

If H ′ is pseudo-random, then H is clearly key-resistant.
As regards the stream-cipher, we can consider a similar notion in a slightly

more general situation, that is, when K ⊂ F
2l.

Definition 2.2. Let K ⊂ F
2l. Given a stream cipher S : Fl 7→ F

r, we say
that S is key-resistant if, given a pair (Z, L) such that Z = S(L+K1) for a
random (K1, K2) ∈ K and a random L ∈ F

l, then it is hard to find K1.

When K = F
2l we obviously have the equivalence between 2-(a) and the

key-resistance, since translations act regularly.
Remark 2.3. We could change the definition of LION by having a different
action induced by the keys, that is, S(τK(L)) instead of S(L + K), where
{τK}K∈K ⊂ Sym(Fl), Sym(Fl) being the symmetric group acting on F

l. All
subsequent results will still hold, provided the action is regular.

2.1 Our improvements for BEAR

It is possible to give an improvement of Theorem 1.2, passing from one-pair
oracles to multi-pair oracles.

Theorem 2.4. Let n ≥ 1. Let An be an oracle able to find the key of BEAR
given any set of n plaintext-ciphertext pairs { ((Li, Ri), (L

′
i
, R′

i
)) }

1≤i≤n
. Then

An is able to solve efficiently any equation Z = HK1
(R), knowing Z and R,

for any random R ∈ F
r and any random K1 ∈ F

k.

Proof. Let us choose a set { Li }1≤i≤n
⊂ F

l and consider the set of plaintexts
{ (Li, R) }

1≤i≤n
. It is possible to generate a set of ciphertexts { (L′

i
, R′

i
) }

1≤i≤n

by choosing any sub-key K2 and computing: Li = Li+Z, R′
i
= R+S(Li+Z),

L′
i
= Li +Z +HK2

(R′
i
). With { ((Li, R), (L′

i
, R′

i
)) }

1≤i≤n
as input, An outputs

K2, which was already known, and K1, which was unknown.

Again, when we say efficiently we disregard any effort put by the oracle
itself (see Remark 1.4).

Corollary 2.5. If the (keyed) hash function is key-resistant, no efficient multi-
pair oracle exists for BEAR.

Unfortunately we have not been able to obtain a direct improvement of
Theorem 1.1, but it is quite simple to modify BEAR in order to obtain a
similar result also for the stream cipher. Let us consider the following variation

CGC

8 On the provable security of BEAR and LION schemes

of BEAR’s scheme, in which K ⊂ F
k × F

l × F
k, for some k, with K1, K3 ∈ F

k

and K2 ∈ F
l.

BEAR 2

ENCRYPTION DECRYPTION

L = L+HK1
(R) L = L′ +HK3

(R′)

R′ = R + S(L+K2) R = R′ + S(L+K2)

L′ = L+HK3
(R′) L = L+HK1

(R)

First we extend Th. 2.4 from BEAR to BEAR2.

Theorem 2.6. Let n ≥ 1. Let An be an oracle able to find the key of BEAR 2
given any set of n plaintext-ciphertext pairs { ((Li, Ri), (L

′
i
, R′

i
)) }

1≤i≤n
. Then

An is able to solve any equation Z = HK1
(R), knowing Z and R, for any

random R ∈ F
r and any random K1 ∈ F

k.

Proof. Obvious adaption of the proof of Th. 2.4. We choose this time K2

and K3, we obtain K1 again.

Now we are ready for the following result, linking the security of BEAR2
also to the properties of the stream cipher S, in a multi-pair context.

Theorem 2.7. Let n ≥ 1. Let An be an oracle able to find the key of BEAR2
given any set of n plaintext-ciphertext pairs { ((Li, Ri), (L

′
i
, R′

i
)) }

1≤i≤n
. Then

An is able to solve any equation Z = S(X +K2), knowing Z and X, for any
random X ∈ F

l and any random K2 ∈ F
l.

Proof. Let us choose a set {Ri }1≤i≤n
⊂ F

r and two sub-keys K1, K3. It is
possible to generate plaintext/ciphertext pairs by choosing Li = X+HK1

(Ri)
and computing: Li = Li + HK1

(Ri) = X , R′
i
= Ri + Z, L′

i
= X + HK3

(R′
i
).

We give in input to An the set { (Li, Ri), (L
′
i
, R′

i
) }

1≤i≤n
, An returns K1, K3

which were already known, and K2, which was unknown.

We can summarize our findings on BEAR2 in the following corollary.

Corollary 2.8. No efficient multi-pair key-recovery oracle exists for BEAR2
if the hash function is key-resistant or the stream cipher is key-resistant.

2.2 Our improvements for LION

A result similar to Theorem 2.4 holds for LION.

Theorem 2.9. Let n ≥ 1. Let An be an oracle able to find the key of LION
given any set of n plaintext-ciphertext pairs { ((Li, Ri), (L

′
i
, R′

i
)) }

1≤i≤n
. Then

An is able to solve any equation Z = S(L +K1), knowing Z and L, for any
random L ∈ F

l and any random K1 ∈ F
k.

CGC

L. Maines, M. Piva, A. Rimoldi, M. Sala 9

Proof. Let us choose a set {Ri }1≤i≤n
⊂ F

r and consider the set of plaintexts
{ (L,Ri) }1≤i≤n

. It is possible to generate a set of ciphertexts { (L′
i
, R′

i
) }

1≤i≤n

by choosing any sub-key K2 and computing: Ri = Ri + S(L+K1) = Ri + Z,
L′
i
= Li +H(Ri + Z), R′

i
= Ri + Z + S(L′

i
+K2). Using An we can find K2,

which was already known, and K1, which was unknown.

As we have already seen for BEAR, we have not been able to extend a result
similar to Theorem 2.9 also for its hash functions, but it is quite simple to
modify LION in order to obtain it, as in the following table, where K1, K3 ∈ F

l

and K2 ∈ F
k, and so K ⊂ F

l × F
k × F

l for some k.

LION2

ENCRYPTION DECRYPTION

R = R + S(L+K1) R = R′ + S(L′ +K3)

L′ = L+HK2
(R) L = L′ +HK2

(R)

R′ = R + S(L′ +K3) R = R + S(L+K1)

Theorem 2.10. Let n ≥ 1. Let An be an oracle able to find the key of LION2
given any set of n plaintext-ciphertext pairs { ((Li, Ri), (L

′
i
, R′

i
)) }

1≤i≤n
. Then

An is able to solve any equation Z = S(L +K1), knowing Z and L, for any
random L ∈ F

l and any random K1 ∈ F
k.

Proof. Obvious adaption of the proof of Th. 2.9.

Theorem 2.11. Let n ≥ 1. Let An be an oracle able to find the key of LION 2
given any set of n plaintext-ciphertext pairs { ((Li, Ri), (L

′
i
, R′

i
)) }

1≤i≤n
. Then

An is able to solve any equation Z = HK2
(X), knowing Z and X, for any

random X ∈ F
r and any random K2 ∈ F

k.

Proof. Let us choose a set { Li }1≤i≤n
⊂ F

l and any sub-keys K1, K3 ∈ F
l. It

is possible to generate plaintext/ciphertext pairs by choosing Ri = X+S(Li+
K1) and computing: Ri = Ri +S(Li +K1) = X + S(Li +K1) + S(Li +K1) =
X , L′

i
= Li + Z, R′

i
= X + S(L′

i
+ K3) . We give in input to An the set

{ (Li, Ri), (L
′
i
, R′

i
) }, An returns K1, K3, which were already known, and K2,

which was unknown.

We can summarize our findings on LION and LION2 in the following
corollary.

Corollary 2.12. No efficient multi-pair key-recovery oracle exists for LION
if the stream cipher is key-resistant.

No efficient multi-pair key-recovery oracle exists for LION2 if the hash
function is key-resistant or the stream cipher is key-resistant.

CGC

10 On the provable security of BEAR and LION schemes

2.3 Our improvements for LIONESS

Since LIONESS combines the construction of LION and BEAR, it is quite
obvious that any provable-security result holding for BEAR and LION still
holds for LIONESS. For completeness, we give the formal proofs for our multi-
pair results.

Theorem 2.13. Let n ≥ 1. Let An be an oracle able to find the key of LI-
ONESS given any set of n plaintext-ciphertext pairs { ((Li, Ri), (L

′
i
, R′

i
)) }

1≤i≤n
.

Then An is able to solve any equation Z = S(L+K1), knowing Z and L, for
any random L ∈ F

l and any random K1 ∈ F
l.

Proof. Let us choose a set {Ri }1≤i≤n
⊂ F

r and consider the set of plaintexts
{ (L,Ri) }1≤i≤n

. It is possible to generate a set of ciphertexts { (L′
i
, R′

i
) }

1≤i≤n

by choosing any sub-keys K2, K3, K4 and computing: Ri = Ri + Z, Li =
L+HK2

(Ri), R
′
i
= Ri + S(Li +K3) and L′ = Li +HK4

(R′
i
). Using An we can

find K2, K3, K4, which were already known, and K1, which was unknown.

Theorem 2.14. Let n ≥ 1. Let An be an oracle able to find the key of LI-
ONESS given any set of n plaintext-ciphertext pairs { ((Li, Ri), (L

′
i
, R′

i
)) }

1≤i≤n
.

Then An is able to solve any equation Z = HK4
(R′), knowing Z and R′, for

any random R′ ∈ F
r and any random K ∈ F

k.

Proof. Let us choose a set { Li }1≤i≤n
⊂ F

l and consider the set of cipher-
texts { (L′

i
, R′) }

1≤i≤n
. It is possible to generate a set of plaintexts { (Li, Ri) }1≤i≤n

by choosing any sub-keys K1, K2, K3 and decrypting: Li = L′
i
+ Z, Ri =

R′ + S(Li +K3), Li = Li +HK2
(Ri), Ri = Ri + S(Li +K1). Using An we can

find K1, K2, K3, which were already known, and K4, which was unknown.

3 Conclusions and further comments

Let us consider a keyed hash function with a very weak requirement, i.e.,
that it is surjective both fixing the key and with respect to the keys (see
Remark 1.3). Anderson and Biham prove that no single-pair oracle exists for
BEAR, under the assumption that “the stream seed is difficult to recover
OR the hash function is collision resistant OR the hash preimage is hard
to recover”. We prove that no multi-pair oracle exists for BEAR under the
assumption that ”hash is key-resistant”. We also suggest a slight modification
of BEAR, BEAR 2, where we can prove that no multi-pair oracle exists under
the assumption that “hash is key-resistant OR stream is key-resistant”.

The conclusions about key-recovery attacks for LION are quite similar to
those for BEAR. Anderson and Biham claim without proof that no single-
pair oracle exists for LION under the assumption that “the stream seed is
difficult to recover OR the hash function is collision resistant OR the hash
preimage is hard to recover”. However, we have found no direct proof following

CGC

L. Maines, M. Piva, A. Rimoldi, M. Sala 11

their outline. We prove that no single-pair oracle exists for LION under the
assumptions that the stream seed is difficult to recover. To prove the same
thing with assumptions on the hash function, we need a condition that we
call good pairing. Interestingly, this condition follows from the pseudo-random
nature of S OR the pseudo-random nature of H . Given the good pairing for
granted, we finish to prove their claim, that is, no single-pair oracle exists for
LION under the assumption that “the hash function is collision resistant OR
the hash preimage is hard to recover”. As in the case of BEAR, we prove that
no multi-pair oracle exists for LION under the assumption that “the stream
cipher is key-resistant”, which is equivalent to “the stream preimage is hard
to recover” in many pratical situations. We also suggest a slight modification
of LION, LION 2, where we can prove that no multi-pair oracles exist under
the assumption that “the hash function is key-resistant OR the stream cipher
is key-resistant”.

As regards key-recovery attacks, LIONESS’s virtues are the sum of LION’s
and BEAR’s virtues. So it is possible to prove the non-existence of one-pair
oracles using the authors’ assumptions, but we can indeed prove the non-
existence of multi-pair oracles under only the key-resistance assumption.

We note that an attack by Morin ([Mor96]) has somehow diminuished the
confidence in the robustness of these schemes. However, the attack succeeds
only because its brute force search on the round function contradicts the key-
resistance of the hash function and of the stream function. So, whenever H or
S remain key-resistant, both LION and BEAR are immune to such attacks.

Acknowledgements

For their comments and suggestions the authors would like to thank
E. Bellini, G. Morgari and M. Coppola. The first three authors would like
to thank their supervisor (the fourth author).

This work has been supported by TELSY Elettronica e Telecomunicazioni,
an Italian company working in Information and Communication Security.

References

[AB96] R. Anderson and E. Biham, Two practical and provably secure block ciphers:

BEAR and LION, Proc. of FSE 1996, LNCS, vol. 1039, 1996, pp. 113–120.

[LR88] M. Luby and C. Rackoff, How to construct pseudorandom permutations

from pseudorandom functions, SIAM J. Comput. 17 (1988), no. 2, 373–
386.

[Luc96] S. Lucks, Faster Luby-Rackoff Ciphers, Proc. of FSE 1996, LNCS, vol. 1039,
1996, pp. 189–203.

[Mor96] P. Morin, Provably secure and efficient block ciphers, Proc. of SAC 1996,
1996, pp. 30–37.

CGC

	1 Preliminaries
	1.1 Preliminaries on BEAR
	1.2 Preliminaries on LION
	1.3 Preliminaries on LIONESS

	2 Our improvements
	2.1 Our improvements for BEAR
	2.2 Our improvements for LION
	2.3 Our improvements for LIONESS

	3 Conclusions and further comments
	References

